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Abstract: We propose in this paper a new approach to construct exact solutions of nonlin-
ear PDEs. The method used is called ”the travelling profiles method”. The travelling profiles
method enables us to obtain many exact solutions to large classes of nonlinear PDEs.
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1 Introduction

In recent years, a certain number of methods had been developed for seeking exact solutions to nonlinear
PDEs, a variety of powerful methods such as the Hirota’s bilinear methods [4] based on the Hirota trans-
formation, the truncated Painlevé expansion method [1,12]; the homogeneous balance method [12,13], the
special ”separation” of the variables [6] were used to investigate nonlinear problems.

In this paper, we present a new approach to find exact solutions to some nonlinear PDEs. The approach
presented one will be called ”the traveling profiles method” (TPM).

Consider the following equation :
∂u

∂t
= Axu, (1.1)

where Axu is a linear or nonlinear differential operator.

2 The travelling profiles method (TPM):

The principle of this method is to seek the solution of the problem (1.1) in the form

u (x, t) = c (t) ψ(ξ) with ξ =
x− b (t)

a (t)
, a, b, c ∈ R, (2.1)

where ψ is in L2, that one will call ”the based-profile”. The parameters a (t) , b (t) , c (t) are real valued
functions of t.

The coefficients c (t) , a (t) , b (t) are determined by the solution of minimizition problem:

min
·
c,
·
a,
·
b

∫ +∞

−∞

∣∣∣∣
∂u

∂t
−Axu

∣∣∣∣
2

dx, (2.2)

therefore, we obtain three orthogonality equations which are read




〈∂u

∂t −Axu, ψ〉 = 0
〈∂u

∂t −Axu, ξψ′ξ〉 = 0
〈∂u

∂t −Axu, ψ′ξ〉 = 0
(2.3)
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where 〈., .〉 is the inner product in L2 space.
The PDE (1.1) is then transformed into a set of three coupled ODE’s :

·
c
c〈ψ, ψ〉 −

·
a
a〈ξψ′ξ, ψ〉 −

·
b
a〈ψ′ξ, ψ〉 = 1

c 〈Aξu, ψ〉
·
c
c〈ξψ′ξ, ψ〉 −

·
a
a〈ξψ′ξ, Xψ′ξ〉 −

·
b
a〈ξψ′ξ, ψ′ξ〉 = 1

c 〈Aξu, ξψ′ξ〉
·
c
c〈ψ, ψ′ξ〉 −

·
a
a〈ξψ′ξ, ψ′ξ〉 −

·
b
a〈ψ′ξ, ψ′ξ〉 = 1

c 〈Aξu, ψ′ξ〉
(2.4)

2.1 A priori estimates of solutions :

Let:
Vt =

{
ψ, ξψ′ξ, ψ′ξ

}

the subspace of L2 generated by associated functions to ψ at the moment t.
From relations (2.3), it is deduced that ∂u

∂t −Axu is orthogonal to subspace Vt.
In particular we have ∂u

∂t εVt, then 〈∂u
∂t − Axu, ∂u

∂t 〉 = 0, thus if also Axu belongs to Vt then the method
provides us a weakly exact solution, which is written under the form

u (x, t) = c (t) ψ

[
x− b (t)

a (t)

]
. (2.5)

Now we want to establish conditions on the method to find exact solutions to equation (1.1).

2.2 Exact solutions to some nonlinear PDEs

Theorem 1 For ψεC2∩L2, the equation (1.1) admits an exact solution in the form u (x, t) = c (t) ψ
[

x−b(t)
a(t)

]
,

if
1. Axu = cp

aq Aξψ, for p, q ∈ R,
2. the ”based profile” ψ is a solution of the following equation:

Aξψ = αψ + βξψ′ξ + γψ′ξ, where α, β, γ ∈ R , with α, β, γ 6= 0, (2.6)

in this case, the coefficients c (t) , a (t) , b (t) are determined by the system:

·
c = cp

aq α
·
a = − cp−1

aq−1 β
·
b = − cp−1

aq−1 γ

(2.7)

Proof. According to the estimation principle of this method, if Axu belongs to the subspace Vt, then
the function u (x, t) = c (t) ψ(ξ) is an exact solution of equation (1.1), in this case the term Aξψ can
be expressed as a linear combination of functions ψ, ξψ′ξ, and ψ′ξ, thus Axψ = αψ + βξψ′ξ + γψ′ξ, for
α, β, γ ∈ R.

The system (2.7) is obtained as follow: when one replaces Aξ(ψ) by the combination αψ+βξψ′ξ +γψ′ξ
in (2.4), we obtain the system:

MX =
cp−1

aq
MF (2.8)

with

M =




〈ψ, ψ〉 〈ξψ′ξ, ψ〉 〈ψ′ξ, ψ〉
〈ξψ′ξ, ψ〉 〈ξψ′ξ, ξψ′ξ〉 〈ξψ′ξ, ψ′ξ〉
〈ψ′ξ, ψ〉 〈ξψ′ξ, ψ′ξ〉 〈ψ′ξ, ψ′ξ〉


 , X =




·
c
c

−
·
a
a

−
·
b
a


 and F =




α
β
γ




where 〈., .〉 is the inner product in L2.
The matrix in system (2.8) is symmetric and invertible, then (2.8) can be written under the form (2.7).
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2.2.1 Resolution of the differential system:

We can resolve the system (2.7) as follow: from (2.7) we have
{

c(t) = K0 a(t)
−α
β ,

b(t) = γ
β a(t) + K ′

0

, with K0, K ′
0 constants, (2.9)

If we replace (2.9) in (2.7), we can deduct finally:

a(t) =
[
A(−Kp−1

0 βt + K1)
] 1

A
,

c(t) = K0

[
A(−Kp−1

0 βt + K1)
]−α

βA

b(t) = γ
β

[
A(−Kp−1

0 βt + K1)
] 1

A + K ′
0

, (2.10)

with K0, K ′
0, K1 constants and A = q + α

β (p− 1) 6= 0.
Now, to illustrate the idea of this method we have this example.

2.2.2 Example :

Let the equation
∂u

∂t
= (u2)xx, (2.11)

in this case we have Aξu = c2

a2 Aξψ, if we seek an exact solution like u (x, t) = c(t)ψ
(

x−b(t)
a(t)

)
, then the

”based-profile” ψ must verify the following ODE:

(ψ2)ξξ = αψ + βξψ′ξ + γψ′ξ. (2.12)

If we take for exemple α = β, and for γ, the equation (2.12) can be written in the form

d

dξ

[
(ψ2)ξ − (βξ + γ)

]
= 0

then we obtain
(ψ2)ξ − (βξ + γ) = k

for k = 0 we have

ψ (ξ) =
1
2
(
β

2
ξ2 + γξ + k′), with k′ constant. (2.13)

Then an exact solution to equation (2.11) takes the form:

u (x, t) =
1
2

[
β

2
(
x− b(t)

a(t)
)2 + γ(

x− b(t)
a(t)

) + k′
]

, with k′ constant (2.14)

where c(t), a(t), and b(t) are given by:

a(t) = [−βK0t + K1]
1
3

c(t) = K0 [−βK0t + K1]
−1
3

b(t) = − γ
β [−βK0t + K1]

−1
3 + K ′

0

,

with K0, K ′
0, K1 constants.

3 Conclusion

A method to construct exact solutions to some PDEs is presented in this paper. This method enables us to
obtain exact solutions to large classes of nonlinear PDEs. It gives us the possiblity to obtain very varied
choice of classes of exact solutions. The idea of our method (TPM) is well illustrated by an example. This
approach is very promising and can also bring new results for other applications in PDEs.
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