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1 Introduction:

In general, the partial di¤erential equations does not admit an exact
solutions, particularly when we imposed initial /boundary conditions.
But for some classes of PDEs which enjoy certain symmetries we can
�nd their exact solutions for many particular cases. With some �nite
or in�nite transformations, these partial di¤erential equations becomes
invariant and are exactly reduced to ordinary di¤erential equations which
can be integrated in a closed form. These solutions are called "self similar
solutions".
The porous medium equation it one of class of equations which admit

these properties of similarity. This equation is written in the form�
@u

@t
=

@2

@x2
(um) ; (1.1)

where x 2 R; t > 0; and m > 1; is a �xed real number.
Equation (1.1) arises in many other applications, e.g, in the theory

of ionized gases at high temperature [17] for values of m > 1; and in
various models in plasma physics [8] for values of m < 1: Of course, for
m = 1; equation (1.1) is the classical equation of heat conduction. In
these lectures we will focus on the case m > 1:
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A classical "self similarity solutions" from which the known explicit
analytical solution of porous media equation may be obtained as special
case, takes the form

u(x; t) = t�f(�); � = xt��; (1.2)

where � and � (constants) and the pro�le f are to be determined. Many
authors has been study this problem, Aronson [1] ; Barenblat [4; 5] : In
the case of equation (1.1) the similarity exponent � and � have to satisfy

2� + �(m� 1) = 1; (1.3)

this form is called self-similarity of Type I. We note that such self similar
solutions are the guideline for the general PDE theory.
There is another form of self-similarity of Type II with

u(x; t) = (T � t)��f(x(T � t)��); (1.4)

for T > 0: with the same relation between � and � as before:
Also, there is a general self similar solution, where we seek the solu-

tion in the form:
u = c(t)f(�); � =

x

a(t)
; (1.5)

where a(t), c(t) and the pro�le f are to be determined. Gilding and
Peletier has studied this form for some particular cases of parameters
a(t) and c(t) [11] :
In this work we want to �nd a most general form of self similar

solutions to equation (1.1), which are written in the form:

u (x; t) = c (t) f

�
x� b(t)

a (t)

�
; a; c; b 2 R+; (1.6)

where a(t), c(t); b(t) and the pro�le f are to be determined. We prove:also
the existence of these solutions under certain conditions.
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2 General self similar solution to porous medium
equation:

In this work we search a general form of self similar solutions, in the
form:

u (x; t) = c (t) f(�); with � =
x� b(t)

a (t)
; a; b; c 2 R+: (2.1)

The parameters a (t) ; c (t), b(t) are real valued functions of t.
If we replace this form of solutions in equation (1.1) we �nd ,

�
c

c
f �

�
a

a
�f 0� �

�
b

b
f 0� =

cm�1

a2
(fm)00��; (2.2)

this equation depends of many unknown parameters, our aim is to de-
termine the coe¢ cients a (t) ; c (t), b(t) and the pro�le f:
In that case, a simple separation of variables argument implies that the
following three conditions must hold:8>><>>:

�
c
c
= cm�1

a2
�

�
a
a
= � cm�1

a2
�

�
b
a
= � cm�1

a2


(2.3)

with parameters �; �;  2 R; and the pro�le f must satisfy the equation

(fm)
00

�� (�) = �f(�) + ��f
0

�(�) + f
0

�(�) (2.4)

2.1 Resolution of the di¤erential system:
At the boundaries, we impose the lateral boundary conditions

a (0) = 1; c (0) = 1; b(0) = 0; (2.5)

we can see that from (2.3) we have(
c(t) = a(t)

��
�

b(t) = 
�
a(t) +K2

; (2.7)

if we replace (2.7) in (2.3) then we deduct8><>:
a(t) = (1� A�t)

1
A ;

c(t) = (1� A�t)
��
�A

b(t) = 
�
(1� A�t)

1
A � 

�

; 0 < t < T; (2.8)
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for :
2� + (m� 1)� > 0 (2.9)

with A = 2 + �
�
(m� 1) and . T = 1

2�+(m�1)� ;
and 8<:

a(t) = exp (��t)
c(t) = exp (�t)
b(t) = 

�
exp (��t)� 

�

; 0 < t <1; (2.10)

for :
2� + (m� 1)� = 0: (2.11)

we have proved the following theorem

Theorem 1 The function

u (x; t) = c (t) f (�) ; with � =
x� b(t)

a (t)
; a (t) ; c (t) ; b(t) > 0; x 2 R:

is an exact solution of problem (1.1), if the "based pro�le" f is a solution
of following di¤erential equation

(fm)
00

�� = �f + ��f
0

� + f
0

�; where �; �;  2 R;

in this case, the coe¢ cients c (t) ; a (t) and b(t) are determined by the
system: 8>><>>:

�
c
c
= cm�1

a2
�

�
a
a
= � cm�1

a2
�

�
b
a
= � cm�1

a2


:

3 Existence and uniqueness of the "based pro�le":

In this section, we discuss the existence and uniqueness of weak solutions
with compact support for the boundary value problem

(fm)
00

�� = �f + ��f 0� + f 0�; 0 < � <1; where �; �;  2 R; (3.1)

with � = x�b(t)
a(t)

; and

f (0) = V and f (1) = 0; (3.2)

where V > 0 are arbitrary real constants. This equation has been in-
vestigated in detail in a series papers (Gilding and Peletier, 1976,1977;

                             International Arab Conference on Mathematics and Computations (2016), Zarqa University, Jordan

34



Gilding 1980, [11]), with  = 0.
Thus the solution u(x; t) satisfy the lateral boundary condition

u(b (t) ; t) = c (t)V; with V 2 R+; (3.3)

to the porous medium equation (1.1) in the domain b(t) < x <1; t > 0

@u

@t
=

@2

@x2
(um) ; b(t) < x <1; t > 0: (3.4)

Our aim is to generalize the results of [11] for  6= 0; we follow
de�nition.
De�nition : A function f is a weak solution of (3.1) if it satis�es

the following conditions.
a) f is bounded, continuous, and nonnegative on [0;1).
b) (fm) (�) has a continuous derivative with respect to � on (0;1):
c) f satis�es the equationZ 1

0

�
0
n
(fm)

0
� (�� + ) f

o
d� + (�� �)

Z 1

0

�fd� = 0

for all � 2 C10(0;1):
We prove the following theorem

Theorem 2 Suppose that V > 0. Then the boundary value problem
(3.1), (3.2) has a weak solution with compact support if and only if
� � 0;  � 0 and � � 2� > 0. Furthermore, this weak solution is
unique.

To prove this theorem, we pose the following boundary value problem
for (3.1),

f (0) = V (3.5)

and
f (�) = 0; (fm)

0
(�) = 0 (3.6)

where � > 0 is a real number. Using a shooting argument with � >
0 as the shooting parameter, we �rst prove the following theorem for
the existence and uniqueness of classical solutions for (3.1) with the
boundary conditions (3.5) and (3.6).

Theorem 3 Suppose that V > 0. Then the boundary value problem
(3.1), (3.5), and (3.6) has a unique solution and there exists a unique
�(V ) > 0 such that f(�;�(V )) is positive on (0; �) if and only if � �
0;  � 0 and �� 2� > 0.
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We �rst determine necessary conditions on the parameters �; � and
 for the existence of a nontrivial weak solution of (3.1) with compact
support.

Lemma 4 There exists a nontrivial weak solution of (3.1) with a com-
pact support only when � =  = 0 and � > 0 or � < 0 and  < 0:

Proof. Suppose that f(�;�) is a nontrivial weak solution of (3.1) with
compact support. Then f > 0 in (�� "; �) and f = 0 in [�;1) for some
� > 0 and " > 0.
It follows that f is a classical solution of (3.1) on (�� "; �) and satis�es
(3,6) at � = �; that is, f(�) = 0, (fm)

0
(�) = 0. Integrating (3.1) from �

to �, where �� " < � < �, we get:

� (fm)
0
(�) = � (�� + ) f (�) + (�� �)

Z �

�

f (�) d�: (3.7)

The continuity of f and (fm)
0
ensures the existence of �0 2 (� � "; �)

such that f
0
(�0) < 0. This implies that the LHS of (3.7) is positive at

� = �0 , and, therefore, � (��0 + ) and �� � cannot both be less than
zero. Thus, � =  = 0 implies that � > 0.
Now consider the case � > 0 et  > 0. This requires that ��� > 0; and
hence � > 0. We easily check from (3.1) that f cannot have a maximum
as long as f is positive. Therefore, f does not assume a maximum at
any point in (� � "; �), thus, f

0
(�0) < 0 on (� � "; �): It follows from

(3,7) that

�mfm�2 (�) f 0 (�) + (�� + ) � � (�� �) (�� �) ; (3.8)

where we have used the fact that f(�) � f(�) for � 2 (�; �); � � " <
� < �. As � ! � in (3,8), LHS becomes positive, and the RHS tends to
zero, a contradiction.
Thus we have shown that � =  = 0 and � > 0 or � < 0 and  < 0 are
the only cases for which a nontrivial weak solution of (3.1) exists with a
compact support.

3.1 The case when � =  = 0 and � > 0

With � =  = 0 and � > 0, (3.1) becomes

(fm)
00
= � (fm)

1
m ; (3.9)

Substituting fm = g in (3.9) and integrating we get�
g
0
�2
=
2�m

m+ 1
g
m+1
m ;
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Solving (3.9) for g and using (3.6), we obtain

g =

"
� (m� 1)2

2m (m+ 1)
(�� �)2

# m
m�1

; 0 < � < �;

thus

f(�;�) =

"
� (m� 1)2

2m (m+ 1)
(�� �)2

# 1
m�1

; 0 < � < �; (3.10)

is the unique solution of the problem (3.1) satisfying (3.6).
We observe that

f(0;�) =

"
� (m� 1)2

2m (m+ 1)
�2

# 1
m�1

:

Because m > 1; f(0;�) is a continuous function of � with f(0; 0) = 0
and f(0;1) = 1; furthermore, f is a continuous and monotonically
increasing function of a. This implies that, for a given V > 0; there exists
a unique �(V ) such that f(0;�(V )) = V . Therefore, f(�;�(V )) is the
unique solution of (3.1) satisfying (3.5) and (3.6). An easy calculation
shows that

�(V ) =

�
2m (m+ 1)

� (m� 1)2
V m�1

� 1
2

:

3.2 The case when � < 0 and  < 0

We give below an elementary lemma for the case � < 0 and  < 0.

Lemma 5 Suppose that 0 < � < � and f is a positive solution of (3.1)
on [�; �) satisfying (3.6). Then the following results hold.
(i) f 0(�) < 0 on [�; �) provided that �� � � 0:
(ii) Suppose that � � � < 0 and f

0
(�0) = 0 for some �0 2 [�; �): Then

f has a maximum at �0 and �0 <
�(���)�

�
:

Suppose that f is a positive solution of (3.1) and (3.6) on [0; �). Then

f
0
(0) < 0; for �� � � 0:

Proof.
(i) Integration of (3.1) from � < � < � we obtain

� (fm)
0
(�) = � (�� + ) f (�) + (�� �)

Z �

�

f (�) d�: (3.11)
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Because � < 0 and  < 0, the RHS of (3.11) is positive when �� � � 0
and hence (fm)

0
(�) < 0. This implies that f

0
(�) < 0 on [�; �).

(ii) if �� � < 0 then � < 0 (because � < 0), by (3.1), f
00
(�0) < 0 when

f
0
(�0) = 0, thus f has a maximum at � = �0 and is strictly decreasing

on (�0; �); that is, f
0
(�) < 0 on (�0; �). Putting � = �0 in (3.11), we

have:

0 = � (��0 + ) f (�0)+(�� �)

Z �

�0

f (�) d� > � (��0 + ) f (�0)+(�� �) (�� �0) f (�0) ;

therefore,

� (��0 + ) + (�� �) (�� �0) < 0 or �0 <
�(�� �)� 

�

With � = 0, (3.11) becomes

� (fm)
0
(0) = �f (0) + (�� �)

Z �

�

f (�) d�: (3.12)

The result for f
0
(0) follows immediately from (3.12).

In the next lemma, we prove the local existence and uniqueness of a
solution of (3.1) satisfying (3.6). This is accomplished by formulating an
equivalent integral equation following the work of Atkinson and Peletier
[4].

Lemma 6 Suppose that � < 0;  < 0 and � is any real number. Then,
for any � > 0, equation (3.1) with initial condition (3.6) at � = �; has
a unique positive solution in a neighborhood (�� "; �) of �, here, " > 0
is a constant.

Proof. Suppose that f is a positive solution in a left neighborhood of
� = �. By lemma 5, f

0
(�) < 0 for � 2 (�� "; �) for some " > 0.

Let � = G(f) where G is the inverse of f on (��"; �). Rewriting (3.11),
we have:

(fm)
0
(�) = (�� + ) f (�) + (�� �)

Z �

�

�f
0
(�) d�: (3.13)

With G(f) = � in (3.13) we have:

dG

df
=

mfm�1

(�G+ ) f � (�� �)
R f
0
G(')d'

; (3.14)
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equation (3.14) is an integro-di¤erential equation for G = G(f). Inte-
grating (3.14) from 0 to f , we obtain

G(f)� � = m

Z f

0

�m�1d�

(�G+ )�� (�� �)
R �
0
G( )d 

: (3.15)

Let
H(f) = 1� ��1G(f); (2.16)

Then, equation (3.15) becomes

H(f) =
m

�2

Z f

0

�m�1d�

(�� � )�+ ��H(�)� (�� �)
R �
0
H( )d 

: (3.17)

By using the Banach�Cacciopoli contraction mapping principle (see Hart-
man [13]), we now show that equation (3.17) admits a unique positive
solution in a right neighborhood of f = 0. Let X be the set of all
bounded functions H(f) on [0; h]; h > 0, satisfying

0 � H(f) � � =
j� + j

2(j�j+ j�� �j) : (3.18)

Let k::k be the sup norm de�ned on X. Then X is a complete metric
space.

M (H) (f) =
m

�2

Z f

0

�m�1d�

� (� + )�+ ��H(�)� (�� �)
R �
0
H( )d 

; H(f) 2 X:

(3.19)
First we show that M maps X into X over [0; h0]; h � h0. Let H 2 X.
Clearly,

� (� + )�+ ��H(�)� (�� �)

Z �

0

H( )�� (� + )�� j�j�H(�)� j�� �j kHk�

�� (� + )�� (j�j+ j�� �j) kHk�

� � (� + )�

2
; (3.20)

where we have used (3.18). Therefore, from (3.19), we have

M (H) (f)� 2m

� (� + )�2

Z f

0

�m�2d�

=
2mfm�2

� (� + )�2 (m� 1)

� 2mhm�2

� (� + )�2 (m� 1)
: (3.21)
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Thus, M(H) is well de�ned on X and M(H) : [0; h]! R is nonnegative
and continuous. The RHS of (3.21) suggests that we may �nd h0; h � h0
such that kM(H)k � �; H 2 X: Thus M maps X into X for h � h0.
In the next step, we show that M is a contraction map on X. Let
H1; H2 2 X, and h � h0.
Then

kM(H1)�M(H2)k�
4m

(� + )2 �2

Z f

0

�m�3
�
j�j� kH1 �H2k+ j�� �j

Z �

0

kH1 �H2k d 
�
d�

� 4m

(m� 1) (� + )2 �2
(j�j+ j�� �j)hm�1 kH1 �H2k :

Therefore, there exists h1 2 (0; h0] such that if h � h1,M is a contraction
on X. By the Banach�Cacciopoli contraction principle, M has a unique
�xed point in X and hence equation (3.17) has a unique solution. This,
in turn, implies that there exists a unique positive solution of (3.1), (3.6)
in an interval (�� "; �) for some " > 0.
In the next lemma, we prove that a positive solution f(�;�) of (3.1)

and (3.6) cannot be unbounded.

Lemma 7 Suppose that � < 0;  < 0 and � 2 [0; �). Furthermore, let
f be a positive solution of (3.1) and (3.6) on (�; �). Then f is bounded
on (�; �) and

sup f (�) �
�
(m� 1)�
2m

max f� (��+ 2) ; [(�� 2�)�� 2]g
� 1
m�1

Proof. We prove this lemma for the following two cases: (i) �� � � 0;
(ii) �� � < 0.
Case (i). �� � � 0:
Because, for this case, f

0
(�) < 0 on (�; �) by Lemma 5, f (�) � f (�) ; � 2

(�; �): By (3.11),

� (fm)
0
(�) � � (�� + ) f (�) + (�� �) f (�) (�� �) ; � � � < �;

or

�mfm�2f 0 � ��� �  + � (�� �) � ��� �  + � (�� �) ; � � � < �:
(3.22)

Integrating (3.22) from � to � gives

m

m� 1f
m�1 (�) �

�
��� �  +

1

2
� (�� �)

�
(�� �) ; � � � � �: (3.23)
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Thus,
m

m� 1 sup(�;�)

fm�1 (�) � 1

2
[(�� 2�)�� 2]� (3.24)

Case (ii). �� � < 0:
By equation (3.11),

� (fm)
0
(�) � � (�� + ) f (�) ; � � � < �;

or
�mfm�2f 0 � � (�� + ) ; � � � < �: (3.25)

Integrating (3.25) from � to �, we have

m

m� 1f
m�1 (�) � �

�
�

2

�
�2 � �2

�
+  (�� �)

�
; � � � � �: (3.26)

This, in turn, implies that

m

m� 1 sup(�;�)

fm�1 (�) � ��
2
(��+ 2) : (3.27)

Observe that the bounds in (3.24) and (3.27) are independent of � and,
therefore, f (�) cannot be unbounded as � decreases from � = �.

Lemma 8 Suppose that f is a positive solution of (3.1) and (3.6) in a
left neighborhood of � = �, and � < 0;  < 0. Then f(�) > 0 on [0; �)
when �� 2� > 0.

Proof. Integrating (3,11) from � to � we have

fm (�) = � (�� + )

Z �

�

f (�) d� + (�� 2�)
Z �

�

(� � �) f (�) d�: (3.28)

It is easy to see from (3.28) that, if �� 2� > 0, then f(�) > 0 on (0; �).

Prove of Theorem 3: Now we proceed to prove Theorem 3. We
have already proved in Lemma 6 the local existence of a solution about
� = � for (3.1) and (3.6). This unique local solution may be extended
back to � = 0 as a positive solution with f(0) > 0 if and only if when
�� 2� > 0 (see Lemma 8). Now if we can prove that there exists �(V )
such that f(0;�(V )) = V; then Theorem 3 is proved. To that end, we use
the following result due to Barenblatt (see [4]),. Suppose that f(�;�) is
a solution of (3.1) and (3.6) on (0; �); then !�

2
m�1f(!�;!�) is a solution

of (3.1) and (3.6) on (0; !�) for any ! > 0. Let ! = ��1. Then,

f(0;�) = �
2

m�1f(0; 1) = V: (3.31)
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Because f(0; 1) > 0 for � � 2� > 0; � < 0;  < 0, we get a unique
root � = �(V ) of (3.31). Thus, f(�;�(V )) is the unique solution of (3.1),
(3.5), and (3.6).
Theorem 3 follows if we add that, for � =  = 0, we have already

constructed the explicit solution (3.10)

f(�;�) =

"
� (m� 1)2

2m (m+ 1)
(�� �)2

# 1
m�1

; 0 < � < �:

Prove of Theorem 2:
We observe that

f(�) =

�
f(�;�); 0 < � < �
0; � < � <1 ; (3.32)

is a weak solution of (3.1) and (3.6). Now we must show that, given
V > 0, (3.32) is the only solution of (3.1), (3.5), and (3.6) with compact
support.
Suppose that f(�) is a weak solution of the problem (3.1) and (3.2) with
compact support. By Lemma 8, this is possible only if � � 2� > 0.
Moreover,

f(�)

�
> 0; on � 2 [0; �)
= 0; on � 2 [�;1) ; � > 0

By Theorem 3, this is also the unique solution. Thus, we have proved
Theorem 2.
We conclude with a discussion of the implications of Theorems 2 and

3 for general form of self similar solutions to equation (1.1).

Theorem 9 If � < 0;  < 0 and � � 2�
1�m ;

the problem (3.4), (3.3) has a weak solution with compact support in the
form

u (x; t) = c (t) f (�) ; with � =
x� b(t)

a (t)
;

with the "based pro�le" f is a solution of following di¤erential equation

(fm)
00

�� = �f + ��f 0� + f 0�; 0 < � <1:

and the coe¢ cients c (t) ; a (t) and b(t) are given by
1) 8><>:

a(t) = (1� A�t)
1
A

c(t) = (1� A�t)
��
�A

b(t) = 
�
(1� A�t)

1
A � 

�

; 0 < t < T:
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If � > 2�
1�m ; with A = 2 +

�
�
(m� 1) and T = 1

2�+(m�1)� ;
and by
2) 8<:

a(t) = exp (��t)
c(t) = exp (�t)
b(t) = 

�
exp (��t)� 

�

; 0 < t <1:

If � = 2�
1�m :

Proof. We have already proved in theorem 3 the existence of "based
pro�le" f with compact support if and only if � < 0;  < 0 and ��2� >
0:
The coe¢ cients c (t) ; a (t) and b(t) are given by (2.8)8><>:

a(t) = (1� A�t)
1
A

c(t) = (1� A�t)
��
�A

b(t) = 
�
(1� A�t)

1
A � 

�

; 0 < t < T

with A = 2 + �
�
(m� 1) and T = 1

2�+(m�1)� :

if 2� + (m� 1)� > 0; ie � > 2�
1�m :

Clearly the coe¢ cients c(t); a(t) and b(t) are de�ned if 1�A�t > 0 this
implies

t <
1

A�
=

1

2� + (m� 1)� = T:

We see that the solution u (x; t) blows up at t = T . and T = 1
2�+(m�1)� ; is

the blow-up time, such that the solution is well de�ned for all 0 < t < T;
while u (x; t)!1 as t = T:
and (2.10) 8<:

a(t) = exp (��t)
c(t) = exp (�t)
b(t) = 

�
exp (��t)� 

�

; 0 < t <1:

if 2� + (m� 1)� = 0; ie � = 2�
1�m :

Finally, we prove the solution u (x; t) = c (t) f
h
x�b(t)
a(t)

i
exist when � <

0;  < 0 and � � 2�
1�m :

Conclusion

In this work we have �nd a new solution of porous media equation in
a general form of self similar solutions. We discuss their Existence and
uniqueness of the "based pro�le".
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