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Abstract: This study addresses the problem of automatic target detection in a heterogeneous Pareto background. To achieve
this, the Pietra index based and constant false alarm rate processor (CFAR) is conceived. Specifically, assuming a non-
stationary Pareto background with the presence or not of any clutter edge or interfering targets, the Pietra index and the log
geometric mean ratio statistic tests are concomitantly used to allow the proposed processor to switch dynamically to the
appropriate detector; i.e. the geometric mean-CFAR, the greatest of-CFAR or the trimmed mean-CFAR, where all of these
detectors assume a priori unknown scale parameter. That is, according to the outcomes of the Window Selection Probability, the
background level is systematically estimated through the preselected detector. The detection performances of the proposed
processor are assessed, via Monte Carlo simulations, in multiple target and clutter edge situations.

1 Introduction
As it is well-known, a good knowledge of the background model in
which targets of interest may be embedded is beneficial to
automatic target detection; which highly depends on the
background's statistics. In order to reduce this sensitivity, while
keeping constant the desired probability of false alarm, adaptive
thresholding techniques have been used for decades [1, 2].
Constant false alarm rate (CFAR) detectors have been widely
developed to deal with several detection schemes; however, a
traditional detector is designed to treat only one kind of a situation.
That is why, in real life applications, we often look for a robust
processor to cope with all kinds of heterogeneities of the
background under investigation.

The first works on radar detection show that CFAR detectors
have been proposed to generally cope with a Gaussian background
[3–7], which can be either homogeneous or heterogeneous.
Whereas for homogeneous clutter, researchers look for optimal
detectors, for heterogeneous clutter, they make do with suboptimal
detectors. Heterogeneities may appear as an extended clutter edge
or unwanted interfering targets. For instance, while some CFAR
detectors rely upon automatic censoring algorithms to discard any
number of unknown interfering targets and/or any unknown clutter
edge position [4, 8], others make use of test statistics based on an
irregularity index or the test cell information to select or build the
prevailing CFAR detectors [9–14]. In this paper, we only focus on
the second kind of detectors. For instance, Smith and Varshney [9]
proposed the variability index CFAR (VI-CFAR) processor for a
Gaussian background. Based on the outcomes of a second-order
statistic, namely the variability index (VI) and the mean ratio (MR)
of either half of the reference window; this processor judiciously
switches to the cell averaging-CFAR (CA-CFAR) detector [15], the
smallest Of-CFAR (SO-CFAR) detector [16] or the greatest Of-
CFAR (GO-CFAR) detector [17]. It is worth noting that the VI-
CFAR processor exhibits low CFAR-Loss values when operating in
a homogeneous background and enough robustness in multiple
target or clutter edge situations. Always for a Gaussian clutter and
multiple target situations, Hammoudi and Soltani [10] introduced
the performance of the distributed improved VI-CFAR (IVI-CFAR)
algorithm. Using the ‘AND’, ‘OR’ and ‘MAJORITY’ fusion rules,
the IVI-CFAR may also switch to the order statistics CFAR (OS-
CFAR) whenever the interfering targets are spread in both halves

of the reference window. Later, based on ordered data variability
(ODV), Farrouki and Barkat [11] proposed the automatic censored
cell averaging (ACCA) CFAR detector, i.e. ACCA-ODV-CFAR
detector, for non-homogeneous Gaussian backgrounds (capture
effect). This detector does not require any prior knowledge of the
background and uses the VI statistic to reject or accept the ordered
cells under investigation. It is shown that the ACCA-ODV-CFAR
detector has the same performance as the CA-CFAR detector in a
homogeneous background and performs robustly in a non-
homogeneous one. Based on the test cell information, Cao [12]
developed the switching-CFAR (S-CFAR) detector, which does not
require any rank ordering. This detector is shown to achieve a
small CFAR loss when operating in a homogeneous background
and a good robustness in the presence of interfering targets or
clutter edge situations. The improved and the generalised versions
of the S-CFAR detector, namely, the improved S-CFAR (IS-CFAR)
and the generalised S-CFAR (GS-CFAR) detectors are suggested in
[13, 14], respectively.

With the advent of high resolution radars, the Gaussian
distribution became no more suitable for radar clutter modelling.
Non-Gaussian backgrounds such as log-normal, Weibull, K and
Pareto, have then led to the development of new genres of CFAR
detectors [18–20]. Automatic censoring for non-Gaussian
background was introduced in [21–23]. Almarshad et al. [21]
proposed the forward automatic censored cell averaging detector
(F-ACCAD) CFAR for a lognormal clutter and multiple target
situations. This detector uses ranked transformed normal samples
to censor automatically the highest unwanted cells. The censoring
and the detection algorithms are based on a biparametric linear
threshold for which the parameters of the normal distribution are
estimated using a simple linear approach. In [22], they considered
the forward/backward automatic censoring order statistics detectors
(F/B-ACOSD) CFAR by use of the Weber–Haykin adaptive
threshold introduced in [23]. Recently, Chabbi et al. [24]
introduced the dual automatic censoring best linear unbiased
(DACBLU-CFCAR) detector in Weibull clutter, when both clutter
edge and interferences are present in the reference window. In this
detector, the censoring and the detection algorithms rely upon the
same biparametric linear threshold based on the BLU estimators
(BLUEs) of the Gumbel parameters. In [25], assessing that the VI-
based approach makes the VI-CFAR detector lose the CFAR
property for a Pareto distributed clutter; Weinberg proposed a
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novel formulation of a generalised switching detector for any kind
of the clutter model. Despite the interesting idea behind this
detector, the switching procedure requires the a priori knowledge
of the Pareto scale parameter. As an alternative, he tested its
performance in a one parameter Lomax background, which
happens to be an insufficient model for real data [26]. That is, the
same author proposed an extended version of the work done in
[25], based exclusively upon a geometric-mean detector with a full
CFAR property.

In an attempt to use the VI as a heterogeneous Pareto
background discriminator, Mehanaoui et al. [27] developed the
enhanced VI-automatic selection and detection CFAR (EVI-ASD-
CFAR) processor for multiple target situations. This approach is
only useful for a priori known scale parameter, and therefore, for a
Gaussian background. In effect, its switching procedure is used to
dynamically select the suitable detector among the geometric
mean-CFAR (GM-CFAR), the greatest Of-CFAR (GO-CFAR) and
the trimmed mean-CFAR (TM-CFAR) detectors developed in [28].
In other words, the authors exploited the properties inherent to the
duality between the Pareto and the exponential distributions. As the
former detectors are not fully CFAR; i.e. the scale parameter
should be a priori known, in this paper, we show how the Pietra
index (PI) can be a good substitute for the VI in a heterogeneous
non-Gaussian background. That is, in a Pareto context, we develop
the PI-based CFAR (PI-CFAR) processor. In doing this, we analyse
the performance of the proposed processor in the presence of
interfering targets or clutter edge, in terms of the detectors
developed by Weinberg [29, 30], which are known to attain the
CFAR property for a priori unknown scale parameter. The
remaining of the paper is organised as follows. In Section 2, we
present an overview on the Pareto distribution along with its
corresponding CFAR detectors. In Section 3, we describe the PI as
a sensor of variability in a non-Gaussian background and develop
in details the PI-CFAR processor. In Section 4, we conduct, by
means of Monte Carlo simulations, a performance comparison of
the proposed processor and the ones given in [29, 30]. In Section 5,
we summarise and conclude the paper with the main results of our
contribution.

2 Overview on CFAR detectors in a Pareto clutter
Studies on modelling X-band sea radar clutter have shown that the
Pareto distribution constitutes the best fit to the received Ingara
data [31]. The probability density function (PDF) of an observed
random Pareto sample X in the intensity domain is given by [25–
33]

f X x = α
β

β
x

α + 1
, x ≥ β (1)

where α > 0 and β > 0 are the shape and scale parameters,
respectively.

Based on (1), with the assumption that β is a priori unknown,
three CFAR detectors have been developed; namely, the GM-
CFAR, GO-CFAR and TM-CFAR detectors [29, 30]. Their block
diagram is depicted in Fig. 1. Let Xis, i = 0, 1, 2, …, N be the
square law detector (SLD) matched filter output samples. They are
assumed to be independent and identically distributed (IID)
random variables drawn from the Pareto distribution whose PDF is
given by (1). They are clocked and stored into a tapped delay line
(TDL) of length N + 1, corresponding to the N reference cells and
the cell under test (CUT) X0. Their adaptive thresholds are denoted
TGMW, where W = A, B or A○B (‘○’ designates the concatenation
operator), TGO and TTM, respectively. The constant coefficients
τGMW, τGO and τTM are sets such as the probability of false alarm
(Pfa) remains equal to its preset value. 

The probabilities of detection Pd
Dt and false alarm Pfa

Dt of the
preselected detector are given, respectively, by [5]

Pfa
Dt = ∫

0

∞
Pr (X0 > TDt H0) f TDt TDt dTDt (2)

Pd
Dt = ∫

0

∞
Pr (X0 > TDt H1) f TDt TDt dTDt (3)

where Dt denotes either GM-, GO-, or TM-CFAR detector,
f TDt(TDt) the PDF of the corresponding adaptive threshold TDt, Pr
the probability operator, H0 the absence of a target, H1 the presence
of a target, Pr (X0 > TDt H0) = ∫TDt

∞ f X0 H0)(x0 H0) dx and
Pr (X0 > TDt H1) = ∫TDt

∞ f X0 H1)(x0 H1)dx. Table 1 shows the
expressions of the probabilities of detection and false alarm, Pd

Dt

and Pfa
Dt of the three CFAR detectors. The detection performance of

each of these detectors is assessed in a homogeneous and
heterogeneous background in terms of the number of the training
(reference) cells, the desired false alarm rate, the shape parameter
and the H/V radar antenna polarisation [29, 30]. 

It is shown that the GM-, the GO- and the TM-CFAR detectors
behave satisfactorily compared to the benchmark detector (fixed
threshold) for a homogeneous background. However, for a
heterogeneous clutter, the GM- and the GO-CFAR exhibit CFAR
losses. That is, their detection performances are affected by the
presence of the interfering targets. The TM-CFAR detector is
known to censor the T1 and T2 upper and lower undesirable cells,
respectively. For instance, T1 = 10% and T2 = 20% of N, preserve
the robustness of the TM-CFAR detector; inducing a small CFAR
loss which is due to the reduction of the number of training cells
from N to N − (T1 + T2) [32]. Its detection performance could be,
however, optimised for higher values of N. Finally, it is also shown,
that, for a clutter transition, the GO-CFAR detector controls fairly
the probability of false alarm [5, 26].

3 PI-based CFAR processor
The PI is a valuable measure of statistical heterogeneity in
socioeconomics and econophysics [34–36]. However, from a radar
literature point of view, we observe that all of the above-cited
works did not make any use of the PI. Hence, as stated earlier,
based on this statistical background discriminator, we suggest the
exploration of an alternative to the VI in a non-Gaussian
background. The definition of the PI is given by [34]

PI = 1
E[X]∫E[X]

∞
pX x dx (4)

Fig. 1  Block diagram of the Pareto CFAR detectors
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where pX(x ≥ 0) is the survival function and E X  the mean of X.
Equation (4) can be written as

PI = 1
E[X]E max 0, X − E X (5)

Proofs of (4) and (5) are given in [34, Appendix]. Note that the PI
is an unbiased estimation of the deviation of the random variable X
from its mean and normalised by its mean. It measures the largest
excess of the data compared with the sample average. Graphically,
it represents the maximum vertical deviation between the Lorenz
curve and the egalitarian line [35]. It can also be written as

PI = E max 0, X
E X − 1 (6)

or, it terms of the sample mean as

PI = 1
N ∑

i = 1

N
max 0, Xi

E X − 1 (7)

Recall that the VI is a second-order statistic which uses the
variance to mean ratio. It represents a symmetric measurement for
the irregularity of the random variable X around its mean. It is
given by [9]

VI = 1 + σ̂2

μ^ 2 (8)

where σ̂2 and  μ^  are, respectively, the estimated variance and mean
of X. The VI is a measure of the statistical heterogeneity suited for
a Gaussian background with symmetric unimodal PDF. Practically,
the VI statistic introduced in [9], operates mainly in an
exponentially distributed background and is shown to handle
heterogeneity discrimination in merely the Gaussian clutter. The
main limitation of the VI is its incapability to handle skewness and
heavy-tailed behaviours of the Pareto distribution [25].
Furthermore, the variance, therefore the VI, for a Pareto
distribution, does not exist for values of the shape parameter α ≤ 2.
The PI statistics described in (4)–(6) is an asymmetric exceedance
measurement of the random variable over its mean, inherent to a
non-Gaussian background with skewed or heavy-tailed probability
distributions. Here, in order to assess data variability, the PI is
tested on the Pareto distribution given by (1). The results are
shown in Section 3.

The estimation of the background level, in which the target of
interest is embedded, is an essential task in target detection.

Moreover, the estimator as well as its respective used number of
samples affect the accuracy of the unknown background level
estimation. The PI-CFAR processor is an automatic target detector
which copes with the background vicissitudes. In order to select the
correct background level estimation, the processor needs decisive
information about the background nature. For this purpose, the PI
and the Log Geometric Mean Ratio (LGMR) statistics, whose
expressions are given below, are calculated and used in a switching
logic. These latter allow the processor to tell whether the reference
cells constitute a homogeneous set; in which case, the appropriate
detector is preselected. This is accomplished through the use of two
statistical tests on the PI and the LGMR. In this way, any
irregularities in the background profile, i.e. the presence of a clutter
edge or multiple target situations, are detected. In doing this, the
reference window is first divided into two finite sub-sets of N/2
cells, namely, the leading (A) and the lagging (B) sub-windows.
Then, the variability of each set is tested separately, and their
respective means are calculated and compared. That is, as long as
the calculated PI is below a certain threshold, the background is
likely to be homogeneous. In other words, depending on the
situation at hand, the switching logic selects automatically the
desired detector; namely, the GM-, GO- or TM-CFAR.

Fig. 2 illustrates the block diagram of the proposed processor. It
is mainly based on the set of CFAR detectors introduced in Section
2, in which the detector selection is governed by the statistical tests
performed on the PI and the LGMR. Note that when both reference
sub-windows include interfering targets, the Xis can also be rank-
ordered to get the X i , i = 1, …, N, to be eventually treated by the
TM-CFAR detector [30, 37]. 

The PI-CFAR processor decides, therefore, whether a
homogeneous background exists, through the following hypothesis
tests, involving the PI and the LGMR, as follows:

PI ≷
hH

nhH
TPI (9)

where TPI (Threshold PI) is a discriminating threshold chosen to
ensure a low probability of error, the nhH hypothesis refers to a
non-homogeneous background, i.e. the samples X1, X2, …, XN
correspond to the presence of a clutter edge or interferences, and
the hH hypothesis to a homogeneous background. Now, let α0 be
the probability of making an erroneous decision upon the
hypothesis test given by (9). It is defined as

α0 = Pr PI > TPI hH (10)

Table 1 Detectors in a Pareto background with a priori unknown scale parameter [29, 30]
Detector (Dt) Pfa

Dt Pd
Dt

GM-FAR Pfa
GM = N

N + 1(1 + τ)−(N − 1) Pd
GM = Pr log X0

X 1
> τGM∑ j = 1

N log X j
X 1

H1

TM-CFAR
Pfa

TM = N
N + 1 ∏

j = 1

N − T1 − T2
Mvj(τ), where

Mv1 τ = (N − 1)!
(T1 − 1)!(N − T1 − 1)!(N − T1 − T2)!

× ∑
j = 0

T1 − 1
T1 − 1

j
( − 1)T1 − 1 − j

((N − 1 − j)/(N − T1 − T2)) + τ

and Mvj τ = (N − T1 − j + 1)/(N − T1 − T2 − j + 1)
((N − T1 − j + 1)/(N − T1 − T2 − j + 1)) + τ ,

for 2 ≤ j ≤ N − T1 − T2

Pd
TM = Pr log X0

X 1
> τTM∑ j = T1 + 1

N − T2 log X j
X 1

H1

GO-CFAR
Pfa

GO = 2N
N + 2 (1 + τ)−N /2 − ∑

k = 0

(N /2) − 2 N
2 + j − 1

j
2 + τ −((N /2) + j) Pd

GO = Pr log X0
X 1

> τGO max ∑
j = 1

N /2
log X j

X 1
,

∑
j = (N /2) + 1

N
log X j

X 1
H1
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Practically, to detect an effective change in the background, α0 must
be as small as possible and limited to the order of magnitude of the
desired Pfa.

Let GMR be the ratio of the geometric means of the leading and
the lagging windows, respectively. It is defined as

GMR = GME[XA]

GME[XB]
(11)

That is

GMR =
(∏i = 1

N /2 Xi)
2/N

(∏i = (N /2) + 1
N Xi)

2/N (12)

Since the logarithm is a monotonically increasing function, taking
the logarithm of (12), yields

LGMR = log(GMR) = 2
N log

(∏i = 1
N /2 Xi)

(∏i = (N /2) + 1
N Xi)

(13)

or,

LGMR = 2
N ∑

i = 1

N /2
log Xi − ∑

i = (N /2) + 1

N
log Xi (14)

The hypothesis test on the LGMR is then given by

TMR−1 ≤ LGMR ≤ TMR, same means
LGMR < TMR−1 or LGMR > TMR, otherwise

(15)

The corresponding probability of error β0 made upon the
hypothesis test given by (15), is

β0 = 1 − Pr TMR−1 ≤ LGMR ≤ TMR hH (16)

where TMR (Threshold MR) is also a discriminating threshold
chosen to ensure a low probability of error. In a clutter edge
situation, β0 controls the switching between the GO- and the GM-
CFAR and vice versa. In a homogeneous background, values of
TPI and TMR are chosen to ensure low probabilities of making
erroneous decisions upon (9) and (15). As shown in Figs. 3 and 4, a
trade-off is made, by simulation, to determine graphically the
threshold values of α0  and β0, respectively. Note that a successful
selection, which would make the processor sensitive to the
background variations, is closely related to the values of these
thresholds which must be neither too small nor too large. Finally, it
is important to notice that (10) and (16) assume fixed thresholds
TPI and TMR, respectively. At this, stage, we still lack of a
solution to their adaptive issue. 

The switching strategy is based on the selection logic of the PI-
CFAR processor operating in a Pareto background. In doing so, we
propose a procedure which deals with the inhomogeneities
commonly encountered in automatic radar detection; namely, the
presence of multiple targets or the presence of a clutter transition
within the reference window. All possible situations, which are
governed by the hypothesis tests on the PI and the LGMR, are
summarised in Table 2. 

Explicitly, depending on the problem at hand, the PI-CFAR
processor selects the appropriate CFAR detector according to the
results provided by the switching logic of this table. That is, each
of the five rows corresponds to a situation that may be met in a
real-world application. First, when the two reference sub-windows
are homogeneous, i.e. PIA < TPI and PIB < TPI, and there is no
clutter edge, i.e. LGMR < TMR; therefore, the PI-CFAR processor
switches to the GM-CFAR detector; which leads to row 1. Note
that this detector is applied to the entire reference window A○B.
Second, if either one of the reference sub-window is non-
homogeneous; i.e.PIA ≥ TPI or PIB ≥ TPI, irrespective of the test on
the means, two cases can be encountered; namely the presence of a

clutter transition or the presence of interfering targets. In the
former situation, the clutter edge could be in either side of the
CUT, in such a case, the PI-CFAR processor chooses the
homogeneous reference sub-window (A or B) and switches to the
GM-CFAR detector with only N /2  cells; yielding row 3 or 4.
Third, if the leading window and the CUT experience a high-power
clutter, and the lagging window is immersed in a low-power
clutter; thus both reference sub-windows have different means, i.e.
LGMR ˃ TMR but neither is non-homogeneous, i.e. PIA < TPI and
PIB < TPI. In such a case, the PI-CFAR processor sets its threshold
according to the maximum of the leading and lagging sub-windows

Fig. 2  Block diagram of the PI-CFAR Processor
 

Fig. 3  Simulated error probabilities (α0) versus TPI in the presence of one
interfering target; for N = 32, α = 4.7241, P f a  = 10−5 and ICR as a
parameter

 

Fig. 4  Simulated error probabilities (β0 ) versus TMR; for N = 32 and
α = 4.7241
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geometric means, and thus switches to the GO-CFAR detector;
which corresponds to row 2.

Before proceeding to the simulation section, take notice of the
definitions of the respective probabilities of window selection A, B
and A○B, noted PWSA, PWSB, and PWSA○B

PWSA = Pr (TPI = TGO nhH + TGMA nhH) (17)

PWSB = Pr (TPI = TGMB nhH) (18)

PWS(AoB) = Pr (TPI = TGMAoB hH + TTM nhH) (19)

where ‘TPI’ designates the detection threshold of the PI-CFAR
processor and ‘+’ the logical ‘OR’ operator. Note that depending
on the clutter heterogeneity, TPI can be set equal to either TGMW,
TGO or TTM.

Finally, a couple of events may also occur. First, the presence of
one or more interfering targets in either reference sub-window; this
case can be assimilated to the second situation in which the clutter
edge is replaced by the interfering targets; that is row 3 or 4 is
selected. Second, when both reference sub-windows contain
interfering targets, i.e. PIA ≥ TPI and PIB ≥ TPI, independently of
the LGMR, the PI-CFAR processor switches to the TM-CFAR
detector; which matches row 5.

4 Simulation results and discussion
In this section, we evaluate, through Monte Carlo simulations, the
switching and detection performances of the PI-CFAR processor.
To this effect, we deal with the following assumptions. A single-
pulse detection, which corresponds to Swerling I and II models and
Pfa = 10−5. This means that 107 Monte Carlo trials; i.e. desired
accuracy of 10%, are acceptable to obtain the thresholds [38,
Appendix]. The interfering targets are primary target-like with the
same interference to clutter ratio (ICR). The reference window size
is N = 32, the upper and lower numbers of the censored cells are
T1 = 3  and T2 = 6, respectively, kOS = 3N/4, the shape and scale
parameters are α = 4.7241 and β = 0.0446, respectively; which
values correspond to the Ingara database for a spiky and
horizontally polarised X-band maritime surveillance radar [28, 29].
At each Monte Carlo run, the scale parameter β is estimated using
the maximum likelihood estimator (MLE), which comes out to be
the minimum of the ordered samples set, i.e. β = Min X i = X(1), i 
= 1, 2, …, N [29, 30]. Note that the shape parameter governs the
tail of the Pareto clutter; its values should lie in the interval (2, ∞),
i.e. the smaller α  is, the spikier the clutter becomes. Fig. 3 shows a
set of curves representing simulated probability of error α0, versus
TPI for the given shape parameter and ICR = −∞, 0, 5, 10, 15, 20,
25 dB. Since the PI bears the samples variability, its value allows
us to decide whether the background is homogeneous
(ICR = − ∞). In other words, except the curve relative to the
homogeneous case, which is usable, all others just show how α0
depends upon the ICR value in an interfering background situation.
As expected, the larger ICR, the greater α0. According to a
homogeneous background, an order magnitude of the desired Pfa = 
10−5 is α0 = 1.05 × 10−5, which corresponds to TPI = 0.46.
Similarly, Fig. 4 shows the simulated probability of error β0  versus

TMR. According to this curve. Here also, an order magnitude of
the desired Pfa = 10−5 is β0 = 1.06 × 10−5, which is achieved for
TMR = 1.44. Once the thresholds levels TPI and TMR are chosen,
the switching strategy of Table 2 is used to select the adequate
detector.

4.1 Homogeneous background

According to the obtained values of TPI and TMR, let us assume
that the background is homogeneous. Due to the optimal
performance of the GM-CFAR detector in such a background, the
processor should select it among all those of Table 2. In addition to
the detectors cited in Table 2, and for comparison purposes, two
more detectors; namely, the smallest of (SO)-CFAR and the order
statistic (OS)-CFAR [5, 29, 39] are also analysed along with the
fixed threshold detector defined by (20). Fig. 5 shows the detection
probability curves versus the signal-to-clutter ratio (SCR) of the
different CFAR detectors. It is clear, that the PI-CFAR performs
exactly as the GM-CFAR; which agrees with row 1 of Table 2.

TOPT = βPfa
−1/α (20)

To illustrate the CFAR property of the PI-CFAR processor,
Fig. 6 shows the Pfa versus the scale factor τ. Based upon this
figure, we can deduce that for Pfa = 8.81 × 10−6, the choice of τ = 
0.4542 is appropriate. 

Fig. 7 shows the resulting PWS. In effect, by means of these
curves, we would figure out how the PI-CFAR processor selects
effectively the suitable reference window. Specifically, in regard to
PWSA○B = 0.9978, the entire reference window is selected instead
of the reference sub-window A or B, whose PWSA = PWSB≃0.
Note that the SCR has no effect on these curves.

4.2 Multiple target situations

As a first example of the multiple target situations, Fig. 8 shows
the detection curves versus ICR = SCR of the different CFAR
detectors in the presence of one interfering target in the reference
sub-window A. According to row 3 of Table 2, the PI-CFAR

Table 2 Selection logic

PIA
nhH

≥ TPI PIB
nhH

≥ TP? LGMR > TMR? Adaptive threshold Selected detector

no no no X(1)
1 − NτGM∏i = 1

N Xi
τGM GMA○B-CFAR

no no yes X(1)
1 − (N /2)τGO max ∏i ∈ A Xi, ∏ j ∈ B X j

τGO GO-CFAR

yes no do not care X(1)
1 − (N /2)τGM∏i = N /2

N Xi
τGM GMB-CFAR

no yes do not care X(1)
1 − (N /2)τGM∏i = 1

N /2 Xi
τGM GMA-CFAR

yes yes do not care X(1)
1 − (N − (T1 + T2))τTM∏i = 1 + T1

N − T2 (X(i))τTM TM-CFAR

 

Fig. 5  Simulated detection probabilities (Pd) of the of the different CFAR
detectors versus SCR in a homogeneous environment; for N = 32,
P f a = 10−5, α = 4.724, TPI = 0.46 and TMR = 1.44
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processor must switch to the GMB-CFAR detector for all SCR
values. However, PWSA, PWSB and PWSA○B of Fig. 9 show that as
long as the ICR values are below 9 dB, the PI-CFAR processor is
likely to track the GMA○B-CFAR with a reduced probability value.
Then, for larger values of ICR, the PI-CFAR processor switches
progressively to the GMB-CFAR. Note that, in this case, due to the
selected sub-window B, the PI-CFAR processor switches to neither
the TM-CFAR detector nor the OS-CFAR detector. Note that the Pd
of the PI-CFAR overlaps that of the SO-CFAR and is slightly better
than that of the OS-CFAR detector. To test the robustness of the PI-
CFAR processor, we injected an interfering target in sub-window A
at ICR = 5, 10, 15, 20, 25 and 30 dB, respectively. The resulting
values of the ratio of the simulated Pfa to the design Pfa are reported
in Table 3a. We notice that the higher the ICR, the better the Pfa
regulation of the PI-CFAR processor and the GMB-CFAR detector. 

As a second example of the multiple target situations, Fig. 10
shows the probability curves versus SCR = ICR of the different
CFAR detectors in the presence of two interfering targets, one in
each of the sub-windows A and B. Here, and according to row 5 of
Table 2, the PI-CFAR processor must switch to the TM-CFAR
detector. In doing this, and as shown in Fig. 11, the PI-CFAR starts
by tracking the GMA○B-CFAR detector for ICR values small <10 
dB, and then tracks the TM-CFAR detector until it reaches a
complete overlap for ICR values >25 dB. Finally, note that the PI-
CFAR processor performs better than the OS-CFAR detector
especially for high SCR. 

Here also, to test the robustness of the PI-CFAR processor, we
injected two interfering targets, one in of the sub-widows A and B
at, respectively, ICR = 5, 10, 15, 20, 25 and 30 dB. The resulting
values of the ratio of the simulated Pfa to the design Pfa are reported
in Table 3b. We notice that the higher the ICR, the better the Pfa
regulation of the PI-CFAR processor and the TM-CFAR detector. It
is useful to mention that the mean and variance of the background
power level under investigation would be very promising to
evaluate the robustness of a CFAR detector [40].

Finally, in order to improve the switching algorithm of the PI-
CFAR, it is possible to extent the automatic censoring procedure
introduced in [37 and references therein] to the TM-CFAR detector
with a priori unknown scale parameter and an unknown number of
interfering targets and unknown of the clutter position.

4.3 Clutter edge situations

The clutter edge background, generally due to atmospheric and
maritime phenomena, is related to an abrupt variation of the clutter
power. It is known in the radar literature that the Pfa is excessive
over the edge area. In this work, we assume a unique clutter
transition. In this case, the CUT may be before, on or after the
clutter edge. As shown earlier, the first and the third situations are
solved by rows 4 and 3, respectively. We are interested with the
second situation, i.e. the CUT is exactly on the clutter edge, in
which case the two reference sub-windows A and B are
homogeneous. Let us assume that the shape parameters of the low-
powered and the high-powered clutter, are, respectively.
α1 = 4.7241 and α2 = 2/(1 − 10( − 0.1*CCR)(1 − (2/α1))) = 2.1115  for a
clutter-to-clutter ratio, CCR = 20 dB. Hence for each clutter power
and the same desired probability of error α0, we should set a TPI
value. To this end, Fig. 12 represents the probability of error α0
versus TPI. The solid line curve illustrates α0 for the first
homogeneous reference sub-window with α1 as a parameter, and
the dashed line curve for the second homogeneous reference sub-
window with α2 as a parameter. For α0 ≃ 10−5, the respective TPI
values are clearly shown to be TPI1 = 0.46 and TPI2 = 0.92. 

Similarly, Fig. 13 illustrates the probability of error β0 versus
TMR; whose curves yield, respectively, TMR1 = 1.44 and TMR2 = 
2.22. 

As a final stage of the PI-CFAR processor performances, we
consider the effect of a clutter edge on the false alarm regulation.

Fig. 6  Simulated probability of false alarm (P f a) versus scale factor (τ) of
the PI-CFAR processor

 

Fig. 7  Simulated window selection probabilities (PWS) versus SCR,
relative to Fig. 5

 

Fig. 8  Simulated detection probabilities (Pd) of the different CFAR
detectors versus SCR in the presence of one interfering target in sub-
window A; for N = 32, P f a = 10−5, α = 4.7241, ICR = SCR, TPI = 0.46
and TMR = 1.44

 

Fig. 9  Simulated window selection probabilities (PWS) versus SCR,
relative to Fig. 8
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To this end, the clutter boundary is modelled as a gradual transition
of its power, across the reference cells. This results in a
discontinuity between the high-powered clutter and the low-
powered clutter within the reference window.

To examine the effects of a clutter edge on the design Pfa, we
simulate a clutter transition through the generation of two Pareto
distributions with two different shape parameters α1 and α2. Here,
we show the behaviour of the proposed detector performance
during clutter transitions, when it progresses from the first
reference cell up to the last one, passing through the CUT. That is,
the Pfa curves are estimated by dynamically varying the clutter
edge position in the reference cells. Once exactly half of the clutter
reference cells are completely immersed in the high-powered
clutter, the CUT is then also considered to be embedded in the
higher power clutter. Fig. 14 shows the false alarm rate
performance of the different CFAR detectors, versus the number of
the high-powered clutter cells at CCR = 20 dB. For the first half of
the reference window, we remark that, while the PI-CFAR
processor regulates the Pfa as good as an even better than the SO-
and GMB-CFAR detectors; all other detectors seem to depart from
the design value. When the number of the high-powered clutter

cells coincides with the position of the CUT, as expected, the Pfa of
the PI-CFAR processor shows a sharp discontinuity, but still
remains close to that of the GO-CFAR detector until the high-
powered clutter covers the entire reference window. 

According to the situation where the last high-powered clutter
cell overlaps the CUT, Fig. 15 depicts the detection probabilities
versus SCR of the different CFAR detectors. Referring to row 2 of
Table 2, the PI-CFAR processor should switch to the GO-CFAR
detector; which agrees with Fig. 16, where the PWSA equals to
unity for all SCR values, and Fig. 14 in which the Pfa of the two
detectors are much the same. As the clutter transition progresses,
although all detectors do not regulate correctly the Pfa, the PI-
CFAR processor, along with the GO-CFAR detector, are the only
ones which exhibit a good regulation. 

4.4 Expected performance of the PI-CFAR processor with
real data

This section attempts to show how we could expect the PI-CFAR
processor to operate in practice. As the performance of the overall
detection scheme critically depends upon the choice of the
thresholds TPI and TMR, we recall that, in this paper, they are set
to pre-set values whose corresponding probabilities of error α0 and

Table 3 Regulation of the Pfa in a heterogeneous background
Detector Simulated Pfa/design Pfa = 10−5

05 dB 10 dB 15 dB 20 dB 25 dB B
(a) One interfering target in sub-window A
PI-CFAR 0.2399 0.2799 0.3200 0.7798 0.7399 0.7998
GMB-CFAR 0.4395 0.7194 0.5200 0.8892 0.7501 0.7907
(b) One interfering target in each of sub-windows A and B
PI-CFAR 0.0500 0.1300 0.2200 0.3999 0.4898 0.6095
TM-CFAR 0.4699 0.4797 0.5600 0.5297 0.5400 0.6194
 

Fig. 10  Simulated detection probabilities (Pd) of the different CFAR
detectors versus SCR in the presence of two interfering targets, one in each
of the sub-windows A and B; for N = 32,
P f a = 10−5, α = 4.7241, ICR = SCR, TPI = 0.46 and TMR = 1.44

 

Fig. 11  Simulated window selection probabilities (PWS) versus SCR,
relative to Fig. 10

 

Fig. 12  Simulated error probabilities (α0) versus TPI in the case of low
and high powered clutters; for N = 32 and P f a = 10−5

 

Fig. 13  Simulated error probabilities (β0) versus TMR in the case of low
and high powered clutters; for N = 32 and P f a = 10−5
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β0 should be limited to an order of magnitude of the design Pfa. It is
clear that in real-world applications, we are confronted to a priori
unknown Pareto clutter parameter. In this case, (10) and (16)
become

α0 = ∫
0

+∞
Pr PI > TPI hH f TPI x dx (21)

where

Pr PI > TPI hH = ∫
TPI

+∞
f PI x dx (22)

Similarly

β0 = ∫
0

+∞
f TMR x dx

−∫
0

+∞
Pr TMR−1 ≤ LGMR ≤ TMR hH f TMR x dx

(23)

where

Pr TMR−1 ≤ LGMR ≤ TMR hH = ∫
TMR−1

TMR
f LGMR x dx (24)

Now, if we consider adaptive thresholds TPI and TMR, we should
evaluate, through Monte Carlo simulations, (21) and (23). To do it
analytically, we should, first evaluate the PDFs f PI x  and
f LGMR x  of the PI and LGMR given by (7) and (14), respectively,
and the PDFs f TPI x  and f TMR x  from some thresholds whose
forms are to be determined; and then solve for α0 and β0 the
integrals of (21) and (23), respectively. In this way, the thresholds
TPI and TMR would adapt automatically to the changes of the
Pareto background.

Another issue that may arise in practice is the fact that real
clutter data contains values arbitrarily close to zero, so the sample
minimum, i.e. Min X i = X(1), i = 1, 2, …, N cannot be used to
estimate the scale parameter β. In which case, as it is stated in [40],
we should first, for each radar set, estimate the scale parameter
using the ML estimator. Then, scale the data by β. This normalises
the dataset, producing an unbiased estimator. The real data are thus
pre-processed by censoring any returns smaller than the scale
parameter β. This yields reduced sample set sizes, but provides
more valid outcomes.

Finally, it has been shown in [41] that although the detectors
proposed in [29, 30], upon which the PI-CFAR processor is built,
attain the CFAR property without a priori knowledge of the scale
parameter β; i.e. they assumed that the clutter sample are drawn
from a Pareto type I law, and therefore do not contain any sample
smaller than β. Nevertheless, this assumption is not valid in
practice; in this respect the Pareto type II law with support
beginning at zero, is a better model for the Pareto clutter.
Unfortunately, the authors showed that there is not any CFAR
property with respect to β. According to this result, we may still
compare the overall performance of the PI-CFAR processor based
on the data pre-processing steps given in [42].

5 Conclusion
In this work, we addressed the problem of automatic target
detection in a heterogeneous Pareto background. In doing this, we
developed the PI-CFAR. Assuming a non-stationary Pareto
background with the presence or not of any clutter edge or
interfering targets, the PI and the LGMR statistic tests were
concomitantly used to allow the proposed processor to switch
dynamically to the appropriate detector; i.e. the GM-CFAR, the
GO-CFAR or the TM-CFAR, whose scale parameter is a priori
unknown. Depending upon the window selection probability
(PWS), the background level is estimated according to the
preselected detector. The detection performances of the proposed

processor were assessed via extensive Monte Carlo simulations. As
expected, for a homogeneous Pareto clutter, the PI-CFAR
processor overlaps the GMA○B-CFAR detector, for a unique
interfering target, it tracks the GMB-CFAR or equivalently the SO-
CFAR detector, and for two interfering targets, one in each of the
reference sub-windows; it tracks the TM-CFAR detector. For a
clutter edge situation, we showed that the PI-CFAR processor
performs a fair regulation of the false alarm rate and tracks the GO-
CFAR detector when the last high-powered clutter cell joins the
CUT. As an overall conclusion, we may think of the PI-CFAR
processor as an effective non-Gaussian background-dependent
detector. In other words, we showed that the PI statistic is a good

Fig. 14  Simulated probability of False Alarm (P f a) regulation of the
different CFAR detectors versus the number of high-powered clutter cells at
CCR = 20 dB; for N = 32, P f a = 10−5, α1 = 4.7241,α2 = 2.1115, TPI1 = 
0.46, TPI2 = 0.92, TMR1 = 1.44 and TMR2 = 2.22

 

Fig. 15  Simulated detection probabilities (Pd) of the different CFAR
detectors versus SCR in the presence of a clutter edge for which the last
high-powered clutter cell overlaps the CUT at CCR = 20 dB; for N = 32,
P f a = 10−5, α1 = 4.7241, α2 = 2.1115, TPI1 = 0.46 and TPI2 = 0.92, TMR1 
= 1.44, TMR2 = 2.22

 

Fig. 16  Simulated window selection probabilities (PWS) versus SCR,
relative to Fig. 15
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substitute for the VI statistic, which happens to be a handy
discriminator in a Gaussian background only. Finally, as an
ultimate opening for future works, we may consider TPI and TMR
as adaptive thresholds.
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