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A B S T R A C T

We apply the travelling wavelets method to gravitational instability theory for the investigation of

large-scale structure formation in cosmology. As the ®rst step of our approach, the method is ®rst

applied to the 1D cosmological Euler±Poisson equation system. We test the stability of the linear

(evolution) regime in this plane-symmetric case. As a result, our analysis con®rms the existence

of the linear regime for some con®gurations of ®elds describing the evolution of cosmological

structures. Moreover, it provides us with estimates for the delay needed for structures of given

scale and magnitude to deviate from the linear regime. We also exhibit other con®gurations for

which the linear approximation is not valid at any time. In particular, density defaults (i.e. holes)

turn out to be highly non-linear structures that dominate the evolution.

Key words: gravitation ± instabilities ± galaxies: formation ± cosmology: theory.

1 I N T R O D U C T I O N

The purpose of this paper is to present a new Eulerian approach for

studying the large-scale structure formation after decoupling, based

on the recently proposed travelling wavelets method (Basdevant et

al. 1990).

As usual, we assume a pressureless distribution of matter in an

expanding cosmological background. It is well known that the

ef®ciency of gravity in creating structures from ¯uctuations in a

uniform distribution of matter is caused by a (local) instability of

the evolutionary equations governing the expansion of the

Universe. As the basis of most investigations, the linear theory of

perturbations is used as a ®rst step for the understanding the

dynamics of such structures, see e.g. GottloÈber (1994), Buchert

(1996) and Bouchet (1996). Although the linear regime is assumed

to provide an accurate solution for the growth of density ¯uctuations

as long as the density contrast dr=r < 1 (Peebles 1993), one may ask

whether additional criteria intervene to validate such an approach.

In this paper, with the aim of checking the mathematical basis of such

an approach, we also investigate the stability of the linear regime.

Namely, we integrate the Euler±Poisson equations within an Ein-

stein±de Sitter background by assuming solutions de®ned by single

travelling wavelets. Such an assumption should improve the investi-

gation of the structure formation at large scales, because these

functions show vanishing integrals. Indeed, it must be noted that the

standard cosmological model requires homogeneity and isotropy of

the matter and cosmic velocity distributions, when these constraints

are not present in the Euler±Poisson differential equation system.

In order to show clearly the contribution of wavelets in such a

problem, and to avoid numerical dif®culties and cumbersome

mathematics, the present investigation is restricted to its 1D

formulation. In this restricted case the general exact solution has

been obtained by Zentsova & Chernin and Buchert (1989) in an

extended derivation including 3D solutions and other backgrounds.

The interpretation of this solution in term of travelling wavelets is

discussed in Appendix A4.

The equations governing the evolution of ¯uctuations are

interpreted in term of wavelets with time-dependent parameters,

which account for their location, their scale and their amplitude

(Section 2). For simplicity, we restrict our investigation to

shapes de®ned by the derivatives of a Gaussian function

(Section 3). The solutions can be classi®ed in term of wavelet

characteristics (e.g. the linear regime is an arti®cial evolution where

the scales and the positions of ¯uctuations are constant). With this in

mind, the evolution of cosmological structures is investigated under

various constraints on their scales and their positions (Section 4).

Release from these constraints enables us to investigate the stability

problems and additional non-linear effects (Section 5).

Units are chosen so that the speed of the light c � 1 and Newton's

constant of gravitation G � 1. Hence, the time and the mass are

measured in units of length (1 s < 3 ´ 1010 cm and the unit of mass

1 g < 7:4 ´ 10ÿ29 cm).

2 WAV E L E T A N A LY S I S O F T H E

G R AV I TAT I O N A L I N S TA B I L I T Y

2.1 The 1D gravitational instability

The simplest scenario of large-scale structure formation assumes:
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(i) a zero-pressure medium in the Newtonian approximation;

(ii) each structure can be seen as isolated within a given

neighbourhood (locality hypothesis);

(iii) the background expands according to the Einstein±de Sitter

solution;

(iv) the effects of the space curvature and the cosmological

constant are negligible,

although the effect of inhomogeneities on the average expansion

may not be negligible (Buchert & Ehlers 1997). Moreover, we

assume that the deformation of structures with respect to the Hubble

¯ow can be described by means of a single Cartesian coordinate.

Under the above assumptions, we specify the 1D gravitational

instability theory (see Appendix A4 for more details) as follows:

the energy density of sources (i.e. the mass density ®eld) at

comoving distance1 x and (cosmic) time t is given by

r�x; t� � rb�t��1 � d�x; t�� $ 0; �1�

where rb�t� ~ aÿ3 describes the background energy density ®eld,

a � a�t� ~ t2=3 is the (dimensionless) expansion parameter, and

d�x; t� $ ÿ1 is called the density contrast. As usual the ¯uctuations

are differentiated from the mean in order to investigate their

behaviour in term of d�x; t� and u�x; t�, the scaled peculiar velocity

®elds. The evolution of these ®elds is governed by the (1D) Euler±

Poisson equations, which read (in comoving coordinates)

¶d

¶t
�

¶
¶x

�1 � d�u� � � 0; �2�

¶u

¶t
� 2H u � u

¶u

¶x
� ÿ

1

a2

¶f

¶x
; �3�

1

a2

¶2f

¶x2
� 4prbd; �4�

where H � Ça=a � 2=3tÿ1 stands for the Hubble constant and the

gravitational potential w � w�r; t� acts through the function

f�x; t� � w ÿ 1=2 Èax2.

By dropping the terms ¶�du�=¶x and u¶u=¶x from equations (2)

and (3), one obtains a linear system of differential equations. Its

solution reads

d0�x; t� � A1�x� t2=3
� A2�x� tÿ1; �5�

u0�x; t� � B1�x�t
ÿ1=3

� B2�x�t
ÿ2; �6�

where the functions Bi�1;2 are given by

B1�x� � ÿ
2

3

�x

ÿ¥
A1�y�dy; B2�x� �

�x

ÿ¥
A2�y�dy; �7�

and satisfy Bi��¥� � 0, since the density contrast has a vanishing

integral.

The growth of structures in the linear regime is de®ned by

equations (5)±(7). The question of whether such behaviour may

be interpreted as an approximation of the true solution or is solely (a

solution to) an ersatz is discussed in our analysis.

2.2 Travelling wavelets method

The basis of the travelling wavelets method is sketched in Appendix

A1. The application of this method to the non-linear differential

equation system given in equations (2)±(4) consists of seeking

solutions via a non-linear transformation that maps such a system

into an ordinary differential equation system, which is easier to

solve. The resolution of the latter system is then performed either

analytically in the simplest situations or numerically if all the

degrees of freedom are taken into account.

In order to use this method it is convenient to write equations (2)±

(4) in term of the following function:

q �
1

4prba2

¶f

¶x
: �8�

Hence, the density contrast reads d � ¶q=¶x, and the Euler±Poisson

equations (2) and (3) transform into

¶u

¶t
� F1�q; u� � 0; �9�

¶
¶t

¶q

¶x

� �
� F2�q; u� � 0; �10�

where the functions Fi�1;2 are given by

F1�q; u� � 2H u � u
¶u

¶x
� 4prbq; �11�

F2�q; u� �
¶
¶x

1 �
¶q

¶x

� �
u

� �
: �12�

We seek solutions (with wavelet pro®les)

u�x; t� < w1�x; t�; q�x; t� < w2�x; t�; �13�

where

wi�x; t� � ci
Ãwi�yi�; yi �

x ÿ bi

ai

�14�

are travelling wavelets, the Ãwi de®ne the shape, and the parameters

ai � ai�t�, bi � bi�t� and ci � ci�t� provide us with the scale, the

position and the amplitude. Then the density contrast reads

d�x; t� <
c2

a2

Ãw0
2�y2� $ ÿ1; �15�

where Ãw0
2 � d Ãw2=dy2.

As the evolution with time of parameters ai, bi and ci speci®es the

only permitted behaviour for the ®elds wi�1;2, it is clear that we

obtain approximated solutions. We could have more accuracy by

assuming a ®nite series of travelling wavelets instead of a single one

(for each ®eld), but such an approach suffers from the usual shell-

crossing problems and has not yet been improved. On the other

hand, it is important to note that a single wavelet ensures
�

ddx � 0

and
�

udx � 0 (as required by the geometry at large scales of a

Friedmann universe), while the ansatz de®ned by equations (2)±(4)

does not.

Thus the candidate behaviours have to be determined by an error

minimization method. Such an optimization problem requires us to

de®ne a control of accuracy, which is not a trivial question. Ideally,

one would like to control some norm of the difference between the

computed solution and the true behaviour. However, with the

motivation in mind of investigating the 3D case, the best we can

propose to do is to focus on the following (time-dependent) residual

functions:

e1�w2;w1� �
¶w1

¶t
� F1�w2;w1�; �16�

e2�w2;w1� �
¶
¶t

¶w2

¶x

� �
� F2�w2;w1�: �17�

Thus one expects that the smaller the L2
�IR� norm2 of these terms,

the higher the accuracy of solutions.

The optimization method is as follows: the time derivatives of
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2 The inner product of two functions f ; g [ L
2
�IR� is given by

hf ; gi �
�

IR f �x� g�x�dx. Hence, the norm reads in term of the inner product

as follows: k fk �
����������
hf ; f i

p
.
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wavelet parameters are obtained by minimizing (at constant t) the

L2
�IR� norm of ei�1;2. Therefore, we obtain six orthogonality

equations which read

hei�w2;w1�;
¶

¶mi

ei�w2;w1�i � 0; �i � 1; 2�; �18�

where h; i stands for the L2
�IR� inner product, and the symbol m

denotes the variables Ça, Çb and Çc respectively. Hence, we obtain an

ordinary differential equation system, which can be written as

follows:

M1 03

03 M2

� �
X1

X2

� �
�

Y1

Y2

� �
; �19�

where 03 denotes the 3 ´ 3 null matrix, and the Mi are 3 ´ 3

symmetric matrices de®ned as follows:

M1 �

kw1k
2

hw1; y1w
0
1i hw1;w

0
1i

. . . ky1w
0
1k

2
hy1w

0
1;w

0
1i

. . . . . . kw0
1k

2

0@ 1A �20�

M2 �
1

a2
2

kw0
2k

2
hw0

2;w
0
2 � y2w

00
2i hw0

2;w
00
2i

. . . kw0
2 � y2w

00
2k

2 . . .

. . . hw0
2 � y2w

00
2 ;w

00
2i kw00

2k
2

0@ 1A; �21�

where w0
i � dwi=dyi and w00

i � d2wi=dy2
i ,

Y1 � ÿ

hF1�w2;w1�;w1i �1�

hF1�w2;w1�; y1w
0
1i �2�

hF1�w2;w1�;w
0
1i

0B@
1CA �22�

Y2 � ÿ
1

a2

hF2�w2;w1�;w
0
2i �3�

hF2�w2;w1�;w
0
2 � y2w

00
2i �4�

hF2�w2;w1�;w
00
2i

0B@
1CA �23�

and the unknown variables

X1 �

Çc1=c1

ÿÇa1=a1

ÿÇb1=a1

0@ 1A; X2 �

Çc2=c2

ÿÇa2=a2

ÿÇb2=a2

0@ 1A �24�

are obtained by inverting equation (19).

Although the evaluation of residues keik at their minimum

(d�; u�) provides us with accuracy criteria, dimensionless values

are preferred. Such quantities are obtained by normalizing the

above values by the linear solution de®ned in equation (56),

which gives

Res1�t� �
¶u0

¶t

 ÿ1

ke1k; �25�

Res2�t� �
¶d0

¶t

 ÿ1

ke2k: �26�

When no formal solution can be found then a numerical scheme

is used to solve equations (19)±(24), in both constrained and

unconstrained cases (see Sections 4, 5). The time discretization is

performed via a standard Adams±Bashforth scheme (Stoer &

Bulirsch 1991). Then the matrix M is inverted by using conjugate

gradient methods (Stoer & Bulirsch 1991). Several runs have been

made with different time-steps in order to check the accuracy of the

scheme. Most of the results presented in this paper have been

obtained with a time-step dt � 5 ´ 10ÿ5Gyr=h0.

2.3 Discussion

The extension of the above formalism to the 3D situation presents

no conceptual dif®culty. However, it is obvious that the number of

degrees of freedom increases, and that special attention has to be

paid. Indeed, several 3D generalizations of wavelet analysis may be

designed: translations and dilatation may be kept alone, or com-

bined with extra transformations, such as rotations or even more

complex transformations. The choice of these new degrees of

freedom is far from being innocuous, and it deeply affects the

kind of physics that the method will be able to account for.

In this paper, we refrain from considering that level of generality,

and postpone the detailed analysis of the 3D problem to a forth-

coming publication.

3 G AU S S I A N - T Y P E S H A P E

Part of the analysis we are about to describe does not depend on the

particular choice of wavelets. However, for simplicity we have to

make a choice, and the derivatives of a Gaussian function

Kn�x� � ÿ
d

dx
Knÿ1�x� �n $ 1�;

K0�x� � eÿx2=2; �27�

are used as the base wavelets

Ãwi � Kni
; �28�

(see equation 14), where the integer n stands for the mode of the

base wavelet. These functions show interesting mathematical

properties: they are real functions and well settled in both Fourier

and x spaces; their inner products can be written analytically in term

of their indices; and they have vanishing moments, which makes the

algebra less cumbersome.

The shape of base wavelet Kn is mode-dependent ± the larger n,

the more oscillating the tails [since the number of roots of equation

Kn�x� � 0 is equal to n], and the parity of n accounts for symmetries

[because Kn�ÿx� � �ÿ1�nKn�x�, see Fig. 1]. Namely, we have

(i) a symmetrical shape (even function) if n is even, with either a

central bump if n � 4; 8; . . . ; 4m, or a central hole if

n � 2; 6; . . . ; 4m ÿ 2; or

(ii) anti-symmetrical shape (odd function) if n is odd, with either

a bump to the right-hand side and a hole to the left-hand side if

n � 1; 5; . . . ; 4m ÿ 3, or vice versa if n � 3; 7; . . . ; 4m ÿ 1;

and the higher the mode the less dominant the central structure (see

Fig. 2). It is interesting to note that such an approach provides us

with a classi®cation method for cosmological sub-structures in

term of wavelet characteristics.

Travelling wavelets and gravitational instability theory 809
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Figure 1. The base wavelets Kl�x�; �l � 0; 1; 2�.
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By assuming that such functions, given in equations (27) and

(28), are solutions of equations (9)±(14), the matrix Mi�1;2 and the

vectors Yi�1;2, (see equations 20±23) can be written in term of

convolution products of the form

J m;...;n;p;...;q �

�
IR

Km�y1� . . . Kn�y1�Kp�y2� . . . Kq�y2�dx �29�

where the yi are given in equation (14), and the subscripts account

for modes n1 � m . . . n and/or modes n2 � p; . . . ; q. Namely, the

J functions read in term of parameters �a1; b1� if subscripts are

present to the left-hand side of the semicolon and/or in term of

parameters �a2; b2� if subscripts are present to the right-hand side.

The explicit expressions of the J functions are given in Appendix

A2.

Hence, the system given in equation (19) transforms as follows:

the matrix de®ned in equation (20) is given by

M1 � c2
1

J n1 ;n1; ÿ 1
2
J n1 ;n1; 0

ÿ 1
2
J n1 ;n1;

4n1 � 3

4
J n1 ;n1; 0

0 0 J n0
1
;n0

1
;

0BB@
1CCA �30�

where n0
1 � n1 � 1; the matrix de®ned in equation (21) is given by

M2 �
c2

2

a2
2

J ;n0
2
;n0

2

1
2
J ;n0

2
;n0

2
0

1
2
J ;n0

2
;n0

2

4n2 � 7

4
J ;n0

2
;n0

2
0

0 0 J ;n00
2
;n00

2

0BB@
1CCA �31�

where n0
2 � n2 � 1 and n00

2 � n2 � 2; and ®nally the vector de®ned

in equations (22) and (23) is given by

Y1 �

c3
1

a1

J n1 ;n
0
1
;n1; ÿ

4

3
tÿ1c2

1a1J n1 ;n1;

ÿ 2
3

tÿ2c1c2a1J n1;n2

24 35
ÿ

c3
1

a1

J n1 ;n
0
1
;n1�2; � n0

1J n1 ;n
0
1
;n1;

� �
� 4

6
tÿ1c2

1a1J n1 ;n1;

ÿ 2
3

tÿ2c1a1c2 J n1�2;n2
� n0

1J n1;n2

ÿ �
26664

37775
ÿ

c1
3

a1

J n1 ;n
0
1
;n0

1
; �

2

3
tÿ2c1a1c2J n0

1
;n2

0BBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCA
; �32�

Y2 �
c1c2

a2
2

ÿJ n0
1
;n0

2
ÿ

c2

a2

J n1;n0
2
;n00

2

J n0
1
;n2�3 � n0

2J n0
1
;n0

2

�
c2

a2

J n1;n0
2
;n2�4 � n0

2J n1;n0
2
;n00

2

� �24 35
J n0

1
;n00

2
�

c2

a2
J n1;n0

2
;n2�3

0BBBBBB@

1CCCCCCA: �33�

3.1 Analysis of solutions

It is convenient to de®ne a state (or con®guration) by the pair of

integers (n1; n2), in which the cosmological structure evolves from

given boundary conditions ai � ai�t�, bi � bi�t� and ci � ci�t� at

date t � t0. Since we deal with approximations, the true solution

may, however, deviate from it with time. Then the analysis of

residuals is the only way to validate candidate behaviour. The

calculations show that in general one has Res2 q Res1, which

suggests that the quality criterion can be based solely on the residual

Res2.

Moreover, we easily understand that physical interpretations of

this behaviour are also useful in order to prevent our analysis from

containing artefacts. Such an analysis can be performed by taking

into account the pro®les of ®elds. The central part of a ®eld exhibits

the following shape:

(i) the density contrast is symmetrical if n2 is odd, which de®nes

either a density excess if n2 � 3; 7; . . . 4m ÿ 1, or a density default

if n2 � 1; 5; . . . 4m ÿ 3, and anti-symmetrical if n2 is even, which

de®nes a gutter -like structure (neighbouring excess and default

density);

(ii) the velocity ®eld indicates whether the structure is expand-

ing (n1 � 1; 5; . . . ; 4m ÿ 3), collapsing (n1 � 3; 7; . . . ; 4m ÿ 1) or

(simply) shifting.

It is important to emphasize that these velocities account for

local displacements. On the other hand, variations of the position

parameters bi correspond to large-scale velocity ®elds, e.g. Lauer &

Postman effect-like.

Thus identical wavelet parameters for both ®elds account for a

cluster composed of a main central structure surrounded by neigh-

bouring ones, which evolves regularly (simpler structure for the

lower the modes) from `soft boundary conditions', when `complex

evolutions' may be described by states such that the modes n1 Þ n2.

On the other hand, we expect that very different wavelet parameters

a1 Þ a2 or b1 Þ b2 produce less reliable solutions (in particular for

the position parameter). Such situations are investigated mainly to

check the stability of solutions.

4 S T R U C T U R E S AT F I X E D P O S I T I O N S A N D

C O N S TA N T S C A L E S

The constraints Çai�1;2 � 0 and Çbi�1;2 � 0, with equations (9)±(10),

de®ne cosmological structures which evolve at ®xed position and

constant scale. Their evolution depends on the following dimen-

sionless quantities:

w � a1=a2; v � �b1 ÿ b2�=a2; �34�

and satis®es equation (19), which reads

Çc1

a1

� l2�
c1

a1

�
2
ÿ

4

3

c1

a1

tÿ1
ÿ

2

3

1

w
l1

c2

a2

tÿ2; �35�

Çc2

a2

� w l3

c2

a2

ÿ l4

c1

a1

� �
; �36�
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Figure 2. The base wavelets Kl�x�; �l � 3; 4; 5�.
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where the l functions account for the ratios of J terms,

l1�n1; n2; w; v� �
J n1;n2

J n1 ;n1;

; �37�

l2�n1� �
J n1 ;n1�1;n1;

J n1 ;n1;

; �38�

l3�n1; n2; w; v� �
J n1;n2�1;n2�2

J ;n2�1;n2�1

; �39�

l4�n1; n2; w; v� � l1�n2; n1; 1=w;ÿv=w�: �40�

It is interesting to note in equation (36) that the evolution of the

density contrast depends strongly on the velocity ®eld, although

equation (35) shows that the evolution of the latter decouples with

time. Such a feature is characteristic of gravitational instability

behaviour. A rough analysis of the coupling shows that the

contribution of the ®rst right-hand term of equation (35) gives a

virtual behaviour c1 < a1c1�t0� a1 ÿ l2�n1�c1�t0��t ÿ t0�
� �

ÿ1. Thus

the larger the magnitude of the velocity ®eld, the larger l2, even

though the effect of the other two terms works against the evolution

toward such an asymptotic state, since c2 increases with c1, see

equation (36).

The equations system given in equations (35) and (36) depends

on the symmetry properties of the J terms given in equations (37)±

(40), which accounts for the correlation of modes ni�1;2. Hence, we

propose an investigation with regard to the parity of wavelet modes,

and we group (a posteriori ) the solutions into three classes, in which

(i) both modes are even, (ii) both are odd, or (iii) they show different

evenness.

In general, we seek a numerical solution obtained by computer

methods, although the l functions vanish for some combination of

modes. Hence, equations (35) and (36) may transform into classes

of differential equation systems with a known analytical solution.

Such a situation can happen when the ®elds show the same

positions, and does not depend on their scale parameters ± see

equations (37) and (39) and Appendix A2. With this in mind, the

analysis is performed by taking into account whether a1 � a2 and/

or b1 � b2, and we use the following notation:

a � ai�1;2 if a1 � a2;

y � �x ÿ bi�=a if b1 � b2: �41�

The case w p 1 accounts for local displacements involving a small

part of the central structure, while w q 1 accounts for structures

embedded in velocity ®elds.

4.1 States with even modes

If the modes are even, ni�1;2 $ 2, then the central regions of related

structures are shifting gutters (a density excess near to a density

default, which shows a local displacement).

4.1.1 The case (a1 � a2, b1 � b2)

If b1 � b2 then l2 � l3 � 0 (since the terms J n1;n2�1;n2�2 and

J n1 ;n1�1;n1; vanish), and equations (35) and (36) give scale-indepen-

dent equations, which can be combined to provide us with

¶2c2

¶t2
�

4

3t

¶c2

¶t
�

2

3t2
t0�n2; n1�c2; �42�

where the function3

t0�m; n� �
�m � n � 1�!!�m � n ÿ 1�!!

�2m � 1�!!�2n ÿ 1�!!
�43�

takes discrete values within 0 < t0 # 1 (see Appendix A3). Hence,

we obtain a set of power-law solutions de®ned by

c1�t� � ÿ
J n2 ;n2;

J n1;n2

lukutluÿ1
� ldkdtldÿ1

ÿ �
; �44�

c2�t� � kutlu � kdtld ; �45�

where

lu �
ÿ1 �

��������������������������������
1 � 24t0�n2; n1�

p
6

; �46�

ld �
ÿ1 ÿ

��������������������������������
1 � 24t0�n2; n1�

p
6

; �47�

the kr are integration constants related to a growing mode (r � u)

and a decaying mode (r � d), with

0 < lu #
2

3
; ÿ1 # ld < ÿ

1

3
; �48�

see equation (A16). If the decaying mode is neglected then the

(normalized) residuals are given by

Res1�t�
2
�

k
2l1

3
Kn2

ÿ l�l � 1
3
�Kn1

k
2

l2�l ÿ 1�2kKn1
k2

�
k2l2

a2�l ÿ 1�2
kKn1

Kn1�1k
2

kKn1
k2

t2l; �49�

Res2�t�
2
�

kl1Kn2�1 ÿ Kn1�1k
2

kl1Kn2�1k
2

�
k2

a2

k Kn1
Kn2�1

ÿ �0
k

2

kKn2�1k
2

t2l; �50�

(see equations 25 and 26), where l � lu and k � ku. In both cases,

the ®rst term on the right-hand side is a bias due to the method,

while the second one is due to an error which increases with time

and depends on the scale parameter a.

It is interesting to mention that this set of solutions can be

arranged in order of increasing value of t0 within the bounded

domain 0 < t0 # 1 (see equations 43 and A16). The larger the

value, the faster the evolution of structures with time. The highest

value t0�n2; n1� � 1 de®nes a behaviour which dominates the

evolution (see Fig. 3). The related modes are such that

n1 ÿ n2 � 0; 2, and the ®elds read as follows:
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3 We recall that the double factorial symbol has the following meaning:

n!! � n�n ÿ 2��n ÿ 4� . . .

�
2n=2

�n=2�! if n is even;

n!=�2�nÿ1�=2
��n ÿ 1�=2�!� if n is odd:

�

Figure 3. Evolution of the magnitude of density contrast d � c2=a2 for even

modes (n1; n2 � 2; 4; 6); the linear regime is given by the constraint (n1ÿ

n2 � 0; 2). The structure is de®ned by a1 � a2 � 1 Mpc and b1 � b2.
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(i) if n1 � n2 � 2n then

d�x; t� <
ku

a
K2n�1�y�t

2=3
�

kd

a
K2n�1�y�t

ÿ1
�51�

u�x; t� < ÿ
2

3
kuK2n�y�t

ÿ1=3
� kdK2n�y�t

ÿ2; �52�

(ii) if n1 � n2 � 2 � 2n then

d�x; t� <
ku

a
K2nÿ1�y�t

2=3
�

kd

a
K2nÿ1�y�t

ÿ1
�53�

u�x; t� <
J 2nÿ2;2nÿ2;

J 2n;2nÿ2

ÿ
2

3
kuK2n�y�t

ÿ1
3 � kdK2n�y�t

ÿ2

� �
: �54�

These solutions identify the (usual) linear regime (see equations

5 and 6). However, it must be noted that, although they show the

same temporal behaviour, the velocity ®eld amplitude of the

(n1 � n2 � 2) solutions does not satisfy equation (7). It is important

to remind the reader that this constraint is not required for solutions

of the equations system given by equations (2)±(4) but rather for its

linear ersatz. The accuracies of these solutions are given as follows:

(i) if n1 � n2 � 2n then

Res1�t� � 2
k

a

kK2nK2n�1k

kK2nk
tl; �55�

Res2�t� �
k

a

k K2nK2n�1

ÿ �0
k

kK2n�1k
tl; �56�

(ii) if n1 � n2 � 2 � 2n � 2 then

Res1�t�
2
� 9

jjK2n�2 ÿ l1K2njj
2

jjK2n�2jj
2

�57�

� 4
k2

a2

kK2n�2K2n�3k
2

kK2n�2k
2

t2l;

Res2�t�
2
�

kK2n�3 ÿ l1K2n�1k
2

kl1K2n�1k
2

�
k2

a2

k K2n�2K2n�1

ÿ �0
k

2

kK2n�1k
2

t2l: �58�

Hence, we see that the (n1 � n2) solution is more reliable than the

(n1 � n2 � 2) one because the systematic bias vanishes (see Fig. 4),

and the larger the discrepancy between the modes, the higher the

residual (e.g. see the curves n1 � n2 � 2 � 4; 6). These results will

be con®rmed in the next section when discussing modes with non-

constant position and scale.

Finally, it turns out that the larger the discrepancy between the

modes ni�1;2, the slower the growth of ¯uctuations (see Fig. 3), and

the higher the residues Res2 (see Fig. 4). This is a consequence of

equation (46) and the fact that t0�2m; 2n� (and thus lu) are decreas-

ing functions of jm ÿ nj (see Appendix A3).

Let us emphasize that by choosing a threshold Resi upon these

residues (Resi�t� < Resi) we obtain a sensible de®nition for linearity

criteria (and thus an exit date from such a regime). The above

equations show clearly that the larger the scale of a cosmological

structure, the longer it lies in the linear regime, but also that the exit

criteria depend on the magnitude of the density contrast,4 and on the

wavelet modes.

4.1.2 The cases (a1 Þ a2) and/or (b1 Þ b2)

Let us investigate the cases where the scales and/or the positions are

unmatched. For the (a1 Þ a2, b1 � b2) case, the solutions read as in

equations (44) and (45), but where t0�n2; n1� is substituted by

t1�m; n; w� � t0�m; n�
2m�n�2w2n�2

�1 � w2�m�n�2
; �59�

which satis®es 0 # t1 # 1. The analysis of behaviour shows that the

linear regime (n1 ÿ n2 � 0; 2, w � 1) still dominates (see Fig. 5).

Moreover, other numerical results (not presented here) show that

the more different the scales, the less reliable the solution. It is

interesting to note that the function t1 ! 0 when w ! 0 or w ! ¥,

which makes lu ! 0 and ld ! ÿ1=3. In other words, if the scales are

very different then the velocity ®eld vanishes and the density

contrast converges toward a constant structure.

Similar results are obtained in the case (a1 � a2, b1 Þ b2).

Compared with the solutions given in equations (44) and (45), the

behaviour of the density contrast accounts for the correlation term

related to l3 Þ 0. The analysis of solutions shows that again the

larger the shift v between the ®elds, the slower the growth of the

density contrast (see Fig. 6) and the higher the residual Res2.

4.2 States with odd modes

If the state is de®ned by odd modes ni�1;2 $ 1 then none of the

J terms vanishes, and equations (35) and (36) de®ne a non linear

system that we solve by means of computer methods.
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4 Let us recall that density contrast d�t� ~ ku

a
tl ± see equations (51) and (53).

Figure 4. The residual Res2 for even modes (n1; n2 � 2; 4; 6); the linear

regime is given by the constraint (n1 � n2). The structure is de®ned by

a1 � a2 � 1 Mpc and b1 � b2.

Figure 5. Magnitude of density contrast as a function of w � a1=a2 for with

(n1 � n2 � 2) solution, with scale a2 � 1 Mpc and b1 � b2.
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4.2.1 The case (a1 � a2, b1 � b2)

The regular structures (n1 � n2) are either collapsing density

excesses (ni � 4m ÿ 1), with growth slower than the linear

regime, or expanding density defaults (ni � 4m ÿ 3), with growth

faster than the linear regime (see Fig. 7). Moreover, the higher the

mode the faster the growth for density defaults and the slower the

growth of density excess. The analysis of residuals shows that the

(n1 � n2 � 1) state is even more accurate than the linear regime

(see Fig. 8). Such behaviour clearly indicates that the usual linearity

criteria (d < 1) fail if the initial conditions are de®ned by odd modes.

4.2.2 The cases (a1 Þ a2) and/or (b1 Þ b2)

As before, let us start with the case where only the scales are

unmatched. As may be seen from Fig. 9, the w � 1 solution

dominates, and the more different the scales, the slower the

growth of density ¯uctuations (see Fig. 9), and the less reliable

the solution (up to a given date).

As expected, when the positions do not match, the larger the shift

v between the ®elds, the slower the growth of the density contrast,

and the v � 1 solution dominates (see Fig. 10).

Finally, the analysis of solutions shows that the dominant

behaviour is de®ned such that the scale and the position of the

density contrast coincide with those of the velocity ®eld.

4.3 States with different evenness modes

According to the de®nitions given above, we identify related

structures, which are classi®ed as follows.

(i) If (n1 � 2q; n2 � 2p � 1) then they show a shifting central

feature, which is either an excess or default of density,

(ii) if (n1 � 2q � 1; n2 � 2p) then the central component looks

like a gutter which either expands or collapses.

As we shall see, compared with previous behaviour, these modes

show peculiar evolution toward stable con®gurations (vanishing

peculiar velocities providing us with static density contrasts). In this

paper, we only describe the cases where scales and positions are

matched, and we refer to Benhamidouche (1995) for a discussion of

other con®gurations. We have two situations:

(i) If (n1 � 2q; n2 � 2p � 1) then l1 � l3 � 0, and the terms

Jn1;n2
, Jn1�1;n2�1, Jn1;n2�1;n2�2 and Jn1 ;n1�1;n1; vanish. The solution

reads

c1�t� � k1tÿ
4
3; �60�

c2�t� � k2; �61�

where the ki�1;2 are constants. Hence, the density contrast and the
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Figure 6. Magnitude of the density contrast for different values of v �

�b1 ÿ b2�=a2 for the (n1 � n2 � 2) solution, with scale a1 � a2 � 1Mpc.

Figure 7. Magnitude of the density contrast for odd modes (ni � 1; 3; 5; 7),

with scale a1 � a2 � 1Mpc and position b1 � b2. The linear regime, de®ned

by the state (n1 � n2 � 2), is given by the continuous line.

Figure 8. Residual Res2 for the (ni � 1; 3; 5; 7) solutions, with scale

a1 � a2 � 1Mpc and position b1 � b2. The linear regime, de®ned by the

state (n1 � n2 � 2), is given by the continuous line.

Figure 9. Magnitude of the density contrast versus w � a1=a2 for the (n1 �

n2 � 1) solution, with scale a2 � 1Mpc and position b1 � b2.
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velocity ®elds are given by

d�x; t� <
k2

a
K2p�2�y�; �62�

u�x; t� < k1K2q�y�t
ÿ4=3: �63�

Such behaviour describes stable structures: constant contrast and

velocity ®elds varying with time, asymptotically vanishing. It turns

out that the residual Res2 becomes useless because ¶d=¶t � 0.

Therefore, we are forced to limit ourselves to the other residual

Res1 to investigate the accuracy of these solutions:

Res1�t� �
1

kk1K2qk
k

k2
1

a
K2qK2q�1tÿ1=3

�
2

3
k2K2p�1t1=3

k: �64�

This term does not go to zero as t grows, which suggests that such

behaviour is either poorly determined by the wavelets method or is

an artefact.

(ii) If (n1 � 2q � 1; n2 � 2p) then the terms Jn1;n2
and Jn1;n2

vanish (i.e., l1 � l3 � 0), and Eq. (27) transforms into a (scale-

independent) Bernoulli-type equation. The solution may be

obtained explicitly and reads

c1�t� � a1 3l2t � k1a1t4=3
ÿ �ÿ1

; �65�

c2�t� � k2 t1=3 1 �
1

3
k1

a1

l2

t1=3

� �ÿ1� ��a1l3�=�a
2
2l2�

; �66�

where the li are given in equations (38) and (39) with w � 1 and

v � 0, and the ki�1;2 are constants. By noting that c1 , kÿ1
1 tÿ4=3 and

c2 < k2�3l2=k1a�
l3=al2 when t ! ¥, we see that this behaviour is

asymptotically equivalent to the previous one (n1 � 2q; n2 �

2p � 1), with similar residuals, and thus the analysis of this solution

provides us with equivalent results.

Although the relevance of these types of behaviour may be rather

questionable or poorly determined, they are less stringent than the

stable clustering hypothesis (Jain 1997).

5 U N C O N S T R A I N E D B E H AV I O U R

We now turn to the general case, in which the structures show

characteristics of scale and position which are time-dependent

functions. The goal of this section is twofold, to investigate

(i) the stability of the linear regime, and

(ii) the behaviour of `non-linear' regimes as exhibited in the

previous sections.

5.1 States with even modes

Let us remember that, at constant scale and position, the states de®ned

by even modes (i.e. the case where n1 and n2 are even numbers)

provide us with behaviour compatible with the linear regime. We

understand that the structure exits from the linear regime when the

variations of the position and scale parameters become signi®cant. We

now solve by numerical methods the system of non-linear ordinary

differential equations given in equation (19). An example of the

results that we obtain is given in Fig. 11, which shows the amplitude c2

of the density contrast as a function of time, for several structures with

different initial scales. As expected, the time evolution of the

amplitude deviates from the linear regime after a given period of

time. It turns out that the length at which the deviation becomes

signi®cant is a decreasing function of the initial scale. In other words,

the structures at small scales leave the linear regime earlier. Fig. 12

shows the time evolution of the normalized amplitude

Äc2�t� � tÿ2=3c2�t� �67�

and the scale a2, for an initial scale a1 � a2 � 1 Mpc at t � t0. It is

clear that the non-linearity effect can be interpreted as an ampli®ca-

tion of the structure (the amplitude increases) when the scale

decreases. This suggests the use of numerical simulations to

814 N. Benhamidouche, B. TorreÂsani and R. Triay

q 1999 RAS, MNRAS 302, 807±820

Figure 10. Magnitude of the density contrast versus v � �b1 ÿ b2�=a2 for the

(n1 � n2 � 1) solution, with scale a1 � a2 � 1 Mpc.

Figure 11. Evolution of the magnitude of density contrast d � c2=a2 for even

modes (n1 � n2 � 2), for several scales: a1 � a2 � 1; 5 and 10 Mpc and

b1 � b2.

Figure 12. Evolution of the scale and the normalized magnitude of density

contrast d � c2=a2 for even modes (n1 � n2 � 2). The structure is de®ned by

a1�t0� � a2�t0� � 1 Mpc and b1 � b2.
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obtain an estimate for the time needed for a structure to exit from the

linear regime. This may be done as follows. Let d be a ®xed

discrepancy limit. We say that the structure is non-linear at the

discrepancy level d if Äc2 $ d. For given structure and discrepancy

level d, we shall denote by t� the linearity time, i.e. the time needed

for the structure to `become non-linear". More precisely, t� is

de®ned as the value of t such that

Äc2�t� $ d ; "t $ t�: �68�

As stressed before, t� is an increasing function of the initial scale

(large structures are linear for a longer time). An example of

variation of the linearity time t� as a function of the initial scale

a2�t0� is given in Fig. 13; the discrepancy level is d � 0:005 (other

values lead to similar behaviour).

5.2 States with odd modes

Let us remember that, at constant scale and position, the states

de®ned by odd modes have already led to `non-linear" behaviour.

As may be seen from Fig. 14 the growth of the amplitude of the

structure becomes much faster in this new situation, showing that

such con®gurations are highly non-linear. This fact is con®rmed by

the study of the time evolution of the scales of the velocity a1 and

density contrast a2. It is clearly seen in Fig. 15 that the scale

decreases as a function of time, which shows that the corresponding

structures tend to get smaller and smaller as time increases, while

the amplitude of contrast grows.

5.3 States with different evenness modes

We have also investigated the other modes, which appeared to be

stable in the constrained situation. In the unconstrained case, such

modes exhibit similar behaviour: they have a short evolution till

they become stable. Again, this case does not seem relevant. Again,

we refer the reader to Benhamidouche (1995) for a more complete

discussion of those cases.

6 C O N C L U S I O N

The formation and evolution of large-scale structures in a 1D space

are investigated by means of the travelling wavelets method with

the goal of extending this programme to the 3D case. We derive the

temporal evolution of the scale, the position and the amplitude of

structures, which are assumed to evolve within a shape given by

derivatives of a Gaussian function. The order of the derivative (the

mode) characterizes the shape of the wavelet: the larger mode, the

more oscillating the tails. Thus this behaviour belongs to an

approximation space and is de®ned in terms of a couple of integers

which give the modes of wavelets, one for the density contrast and

the other for the velocity ®elds. The analysis of residuals and the use

of a threshold ensure the likelihood of candidate solutions and

provide us with sensible criteria to de®ne a regime within a given

accuracy.

Our analysis con®rms the existence of a linear regime , under-

stood as a solution of the complete set of Euler±Poisson equation

systems. However, it turns out that the usual criterion d < 1 is not

suf®cient to ensure such a regime for any structure. In particular, it

becomes obvious that large-scale structures show a linear regime

for a longer time than ones at smaller scales. An exit criterion is

derived which involves the complexity and the scale of the struc-

ture, in addition to its amplitude. Hence, estimates for the time spent

by a structure of a given size in the linear regime can be calculated.

Moreover, it turns out that the growth of structures exhibits a high

sensitivity to initial conditions. In particular, there are structures

that do not evolve in the linear regime.

The expanding density defaults (odd modes) are actually the

structures that dominate, the faster the growth the more complex the

structure (i.e. the higher the mode). The shifting gutters (even

modes) are structures that evolve slower. They form a one-bounded

parameter family of solutions, in which the linear regime belongs to

the boundary and dominates the others. On the other hand, the
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Figure 13. Linearity time for a structure as a function of the initial scale.

Figure 14. Amplitude of the density contrast as a function of time in three

situations: linear regime, constrained modes unconstrained modes.

Figure 15. Evolution of the scales of the density contrast and peculiar

velocity as functions of time in the unconstrained situation.
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collapsing density excesses (odd modes) show much slower evolu-

tion, the slower the growth the more complex the structure.

Extrapolating this result to 3D cosmology would suggest that the

expansion of voids is the clue to the understanding of the problem of

large-scale structure formation. A detailed treatment of this more

realistic situation is in progress, and a version which takes into

account different background cosmologies is envisaged.
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A P P E N D I X A 1 : T H E T R AV E L L I N G WAV E L E T S

M E T H O D

The travelling wavelets method (Basdevant, Holschneider & Perrier

1990) applies to (non-linear) partial differential equations of the

form

¶f

¶t
� Axf � 0:

It provides us with an approximate solution

f �x; t� �
XN

i�1

wi�x; t�; wi�x; t� � ciw
x ÿ bi

ai

� �
which reads as a ®nite sum of wavelets wi called atoms . The

function w is the base wavelet: it is de®ned upon a compact support

and veri®es
�

w�x�dx � 0. The time-dependent parameters ai, bi and

ci are respectively the scale, the position and the amplitude of the ith

atom. The time derivatives of these parameters are obtained by

minimizing the quantity�
¶f

¶t
� Axf j2dx

����
at any time t. Hence, one obtains a linear system of ordinary

differential equations in terms of Çai, Çbi and Çci, which de®nes the

resolution method.

Because of reasons of compactness, it turns out that two atoms i

and j evolve independently provided the conditions

aj

ai

ÿ 1

���� ����q 0;
jbj ÿ bij

ai

q 1

are ful®lled. Hence, one understands that the evolution of individual

structures can be investigated separately, which is a major advan-

tage compared with Fourier analysis. On the other hand, the

differential system becomes numerically unstable when the above

conditions are not satis®ed, and the present mathematical frame-

work does not account yet for such a situation. With this in mind, the

solution space is reduced to a single atom, which limits the

dynamics to be described solely by the evolution of the scale, the

position and the amplitude of a wavelet. It must be noted that such a

solution is less constrained than the linear regime, although being a

simpli®ed version of the dynamical behaviour of the gravitational

instability.

A P P E N D I X A 2 : T H E H E R M I T E F U N C T I O N S

The aim of this section is to calculate the expression of J terms

given in equation (29), which account for coupling effects between

modes. Such calculations turn out to be easier to perform in Fourier

space by using the integration by parts method. The ®rst step is to

calculate the Fourier transforms of base wavelets de®ned in

equation (27). They are given as follows:

ÃKn�k� �
1������
2p

p �
Kn�x�e

ikxdx � ik� �
neÿk2 =2: �A1�

The base wavelet K�x� can be written by means of the following

recurrence formula:

Kn�x� � xKnÿ1�x� ÿ �n ÿ 1�Knÿ2�x�; �A2�

where K0�x� � exp�ÿx2=2� and K1�x� � xK0�x�, which can be

obtained by calculating the inverse Fourier transforms:

Kn�x� �
1������
2p

p �
ik� �

neÿk2=2eÿikxdk

� ÿ
i������
2p

p �
ik� �

nÿ1eÿikxd eÿk2=2
� �

�
1������
2p

p �
x ik� �

nÿ1
ÿ�n ÿ 1� ik� �

nÿ2
� �

eÿikxÿk2 =2dk:

By using the recurrence formula given in equation (A2) down to the

lowest order, the base wavelets transforms are

Kn�x� � 2ÿn=2eÿx2=2Hn

x���
2

p !
� eÿx2=2

Xn

i�0

hn
i xi; �A3�

where Hn is an Hermite polynomial, and the coef®cients are given

by

hn
0 � ÿ�n ÿ 1�hnÿ2

0 ; �A4�

hn
i � hnÿ1

iÿ1 ÿ �n ÿ 1�hnÿ2
i ; �1 # i # n ÿ 2�; �A5�

hn
i � hnÿ1

iÿ1 ; �i � n ÿ 1; n�; �A6�
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with h0
0 � 1, h1

0 � 0 and h1
1 � 1; a little algebra gives

hn
n � 1; h2n

0 � �ÿ1�n
�2n�!

2nn!
; �A7�

if i � n is odd then hn
i � 0: �A8�

A2.1 Calculation of J m; n

According to equation (29), we have

J m;n � a1

�
dyKm�y�Kn�wy � v�

� a2

�
dk1

ÃKm�k1�

�
dk2

ÃKn

k2

w

� �
eÿik2v=wd�k1 � k2�

� �ÿ1�m
a2

wn

�
dk2�ik2�

m�neÿ�1�wÿ2
�k2

2 =2eÿik2v=w

� �ÿ1�m
������
2p

p a2

wn

w��������������
1 � w2

p !m�n�1

´ Km�n

v��������������
1 � w2

p !
;

where y � y1, w � a1=a2 and v � �b1 ÿ b2�=a2; the second equality

is obtained by writing the base wavelets as inverse Fourier trans-

forms of their Fourier transforms; the integration over y gives the

Dirac distribution function d; using the integration over k1, and

according to equation A1, we obtain the third equality; by using the

variable transform k2 ! k � k2

�����������������
1 � wÿ2

p
and by recognizing the

inverse Fourier transforms of ÃKm�n, the integration over k gives the

last equality. Finally, by substituting the original variables, we

obtain

J m;n � �ÿ1�mI m;nKm�n

b1 ÿ b2���������������
a2

1 � a2
2

p !
; �A9�

where

I m;n �
������
2p

p an�1
1 am�1

2

a2
1 � a2

2

ÿ ��m�n�1�=2
: �A10�

Let us note that if a1 � a2 � a then

I m;n �
����
p

p
2ÿ�m�n�=2a: �A11�

Moreover, if b1 � b2 the J terms simplify with regard to the parity

of integers m and n, one has

J m;n �
0 if m � n � 2p � 1;

�ÿ1��nÿm�=2
�2p�!=2pp!I m;n if m � n � 2p;

�
�A12�

equations (A7) and (A8).

A2.2 Calculation of J m; n; p

According to equation (29), we have

J m;n;p � a1

�
dyKm�y�Kn�y�Kp�wy � v�

�
a2������
2p

p �
dk1

ÃKm�k1�

�
dk2

ÃKn�k2�

´
�

dk3
ÃKp

k3

w

� �
eÿik3v=wd�k1 � k2 � k3�

�
a2������
2p

p �
dk1

ÃKm�k1�

�
dk2

ÃKn�k2�

´
�ÿ1�p

wp
ÃKp�k1 � k2�e

i�k1�k2�v=w

�
a2������
2p

p �ÿ1�p

wp

Xp

j�0

p!

j!�p ÿ j�!

´
�

dk1 ik1

ÿ �m�j
eÿk2

1�1�wÿ2
�eik1v=w

´
�

dk2 ik2

ÿ �n�pÿj
eÿk2

2 �1�wÿ2
�eik2v=weÿk1k2

�
a2������
2p

p �ÿ1�pwm�n�2

�1 � w2��m�n�p�2�=2

X
l$0

1

l!

w2

1 � w2

� �l

´
Xp

j�0

p!

j!�p ÿ j�!

�
dk1

ÃKm�j�l�k1�e
�ik1v=

���������
1�w2

p
´
�

dk2
ÃKn�pÿj�l�k2�e

�ik2v�=

���������
1�w2

p
� a2

������
2p

p �ÿ1�m�nw�m�n�2

�1 � w2��m�n�p�2�=2

´
X
l$0

1

l!

w2

1 � w2

� �lXp

j�0

p!

j!�p ÿ j�!

´ Km�j�l

v��������������
1 � w2

p !
Kn�pÿj�l

v��������������
1 � w2

p !
;

where the notations are given above and the integration technique is

similar; the ®rst two equalities are trivial and the third one is

obtained from the integration over k3, the following one by writing

the expression of ÃK functions and by expanding the term

�ik1 � ik2�
p; by using the variable transform k2 ! k �

k2

�����������������
1 � wÿ2

p
and writing the correlation term eÿk1k2 as an expo-

nential expansion the two integrals decouple, and we obtain the ®fth

equality; and by recognizing the inverse Fourier transforms, we

obtain the last equality. Finally, by substituting the original vari-

ables, we obtain

J m;n;p � �ÿ1�m�nI m;n;p

X
l$0

1

l!

a2
1

a2
1 � a2

2

� �l

´
Xp

j�0

p!

j!�p ÿ j�!
Km�j�l

b1 ÿ b2���������������
a2

1 � a2
2

p !
�A13�

´ Kn�pÿj�l

b1 ÿ b2���������������
a2

1 � a2
2

p !
;

where

I m;n;p �
������
2p

p am�n�2
1 a

p�1
2

�a2
1 � a2

2�
�m�n�p�2�=2

: �A14�

Note that if a1 � a2 � a then one has

I m;n;p �

����
p

2

r
2ÿ�m�n�p�=2a: �A15�

As in Section A2.1, if b1 � b2 then the J terms accounts for the

parity properties of integers m, n and p. Indeed, note that the only

way to have Km�j�l�0�Kn�pÿj�l�0� Þ 0 is that both m � j � l and

n � p ÿ j � l must be even integers, which implies that m � n � p

is even as well.

A P P E N D I X A 3 : T H E F U N C T I O N t

Let us show that the function t0�m; n� given in equation (43)

satis®es the inequality

0 < t0�m; n� # 1: �A16�
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It is clear that if n ÿ m � 0; 2 then t0 � 1, otherwise one has two

cases, which are either m > n or m < n ÿ 2.

(i) If (m > n) then we can write m � n � 2i with i $ 1, and the

function t0 reads

t0�n � 2i; n� �
�2n � 2i � 1�!!�2n � 2i ÿ 1�!!

�2n � 4i � 1�!!�2n ÿ 1�!!
:

Hence, we use a recurrence upon i, by assuming that the inequality

is valid for any j # i : one has (for i � 1)

t0�n � 2i � 2; n� �
�2n � 2i � 3�!!�2n � 2i � 1�!!

�2n � 4i � 5�!!�2n ÿ 1�!!

�
�2n � 2i � 3��2n � 2i � 1�

�2n � 4i � 5��2n � 4i � 3�
t0�n � 2i; n�

<
�2n � 2i � 3��2n � 2i � 1�

�2n � 4i � 5��2n � 4i � 3�

< 1:

(ii) If (m < n ÿ 2) then we can write n � m � 2i with i $ 2, and

the function t0 reads

t0�m; m � 2i� �
�2m � 2i � 1�!!�2m � 2i ÿ 1�!!

�2m � 1�!!�2m � 4i ÿ 1�!!
;

Using a similar reasoning to that above, one has (for i Þ 0)

t0�m; m � 2i � 2� �
�2m � 2j � 3�!!�2m � 2i � 1�!!

�2m � 1�!!�2m � 4i � 3�!!

<
�2m � 2i � 3��2m � 2i � 1�

�2m � 4i � 3��2m � 4i � 1�

< 1:

Therefore, we see that the function t0�2m; 2n� is a decreasing

function of jm ÿ nj (see Fig. A1). The same holds true for the

function t0�2m � 1; 2n � 1�.

A P P E N D I X A 4 : L AG R A N G I A N

I N T E R P R E TAT I O N

The aim of this section is to compare our results to Zentsova &

Chernin's (1980) solution (hereafter ZC), which has been derived

from a Lagrangian scheme. In general, the translation of a Lagran-

gian scheme into an Eulerian one, and vice versa, is quite a dif®cult

task from a mathematical point of view. A helpful reference for the

inversion of Lagrangian models is Susperregi & Buchert (1997).

Although the interpretation can be reduced into a more simple

formalism for a 1D system some dif®culties still remain because of

implicit de®nitions of functions. Nevertheless, a Lagrangian inter-

pretation of wavelet pro®les can be obtained under some hypoth-

esis, and a rough comparison of wavelets behaviour to the ZC

solution can also be performed.

A4.1 Eulerian/Lagrangian formalism

Let us assume a pressureless system of sources moving within a

Friedmann cosmological background (used as `body'). The dis-

placement of a test particle which lies at initial comoving coordi-

nate q1 at time t � t0 can be written as

t ° x � q1 � F�q1; t�: �A17�

The function

q1 ° F�q1; t�; F�q1; t0� � 0; �A18�

de®nes the Lagrangian scheme. The Eulerian interpretation is given

by implicit de®nitions of the density contrast and the scaled

peculiar velocity ®elds, as follows:

d�x; t� � 1 � d0�q1�
� �

1 �
¶F

¶q1

�q1; t�

� �ÿ1

ÿ1; �A19�

u�x; t� �
¶F

¶t
�q1; t�; �A20�

where d0�q1� � d�q1; t0� stands for the initial density pro®le, and the

argument x is given by equation (A17). Such a de®nition enables us

to investigate the evolution with time of individual structures. On

the other hand, it does not provide us with a pure Eulerian

description in term of ®elds at a given constant coordinate x. It is

also important to mention some limitations of such an approach.

Indeed, equation (A19) is obtained from the equality

d0�q1�dq1 � r�x; t�dx; �A21�

which accounts for the conservation of the trajectory ¯ow. How-

ever, such a property is valid as long as the mapping q1 ° x stands

for a coordinate transform, which means that the condition

¶F

¶q1

Þ ÿ1 �A22�

must be ful®lled within the q1 value domain. It is clear that, if a one-

to-one mapping is required only between the initial and ®nal

positions, then this model must account for particular physical

conditions of the medium which make the test particles ignore each

other. On the other hand, with respect to a physical viewpoint, it is

also clear that equation (A22) must be ful®lled from t0 up to t, in

order to avoid trajectory crossing problems. The validity of this

model is discussed in detail by Zel'dovich (1970a, b) and Shandarin

& Zel'dovich (1984, 1989), see also Doroshkevich & Shandarin

(1973) and Doroshkevich et al. (1973).

On the way around, the determination of the function F�q1; t�

from equation (A19, A20) demands to invert equation (A17). This is

an implicit problem to solve. The translation of an Eulerian scheme

into a Lagrangian formalism is made easier by using the function

t ° q1 � x ÿ ÄF�x; t�; ÄF�x; t0� � 0; �A23�

which is a solution of the equation

d ÄF

dt
�x; t� � u�x; t�: �A24�

This function gives the initial Lagrangian coordinates q1 � q1�x; t�
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at time t � t0 of the test particle that lies at coordinate x at time t. A

similar reasoning to the one above provides us with the following

implicit equation system:

¶ ÄF

¶x
�x; t� �

d0�q1� ÿ d�x; t�

1 � d0�q1�
; �A25�

¶ ÄF

¶t
�x; t� �

1 � d�x; t�

1 � d0�q1�
u�x; t� �A26�

where q1 is given by equation (A23), from which the displacement

F�q1; t� � ÄF�x; t� can be estimated, by substituting the Eulerian

®elds d�x; t� and u�x; t� according to equations (13)±(15) by their

Gaussian type shapes.

According to above descriptions, we easily understand that

because the Lagrangian/Eulerian translations of the dynamics are

not de®ned explicitly (but by implicit formulas), the interpretation

of the evolution of structures in term of travelling wavelet char-

acteristics is not as simple as that. However, under the hypothesis

d0�q1� < 0; �A27�

which means that the structure formation is induced from the

background mainly by velocity gradients, one has a quite straight-

forward interpretation. Indeed, according to equation (A25) one has

¶ ÄF

¶x
�x; t� < ÿd�x; t�: �A28�

This equality, with equation (15), provides us with the interpretation

of Lagrangian displacements in term of travelling wavelets as

follows:

ÄF�x; t� < ÿc2
Ãw2

x ÿ b2

a2

� �
; �A29�

up to a time-dependent function. It is interesting to note that if the

same wavelet is used for the density contrast and the velocity ®elds

( Ãw1 � Ãw2), and the scale and position parameters are kept identical

and constant (a1 � a2 � a and b1 � b2 � b), then such a displace-

ment can be written as a product of a time-dependent function times

a space-dependent function. Although these are typical features of

the linear regime, we know that parity properties for the modes are

also required, according to Section 4.1. These features interpret

Zel'dovich's (1970a) approach in term of wavelet criteria, which

extrapolate the linear theory of gravitational instability into the non-

linear regime.

A4.2 The Zentsova & Chernin solution

In this section in addition to deriving the ZC solution, we shed

enlightenment on the 1D ansatz de®ned by equations (2)±(4). The

ZC solution is obtained by interpreting the constraints related to 3D

Euler±Poisson equations on the displacement function given by

Eq. (68). Hence, one obtains a differential equation which can be

easily integrated.

For a 1D ¯ow (the velocity of particles is parallel to their

acceleration), the 3D position of a test particle which lies at initial

coordinate q at time t � t0 reads

t ° r � aq � e�q1; t�h; h �

1

0

0

0@ 1A; �A30�

where a � a�t� is the dimensionless expansion parameter and

q ° e�q1; t� � a�t�F�q1; t�; e�q1; t0� � 0; �A31�

where F is the displacement function de®ned in equation (A18), and

its velocity is given by

t ° v �
¶r

¶t
� Çaq �

¶e

¶t
h: �A32�

The 3D Euler±Poisson equations read

dv

dt
� ÿ=rJ �A33�

dr

dt
� ÿr=r ´v �A34�

DJ � 4pr; �A35�

where =r stands for the gradient operator with respect to r coordi-

nates, and one has

¶
¶r1

� a �
¶e

¶q1

� �ÿ1 ¶
¶q1

;
¶

¶ri�2;3

� aÿ1 ¶
¶qi

: �A36�

The projection of these equations on to the comoving space

provides us with the 1D ansatz de®ned by equations (2)±(4),

where x � aÿ1r1 and u � aÿ1¶e=¶t, as long as the 3D ¯ow is

described by equation (A30).

According to equations (A33) and (A35), one has

ÿ4pr � =r ´
dv

dt

� �
�A37�

� Èa �
¶

¶q1

¶2e

¶t2

� �
a �

¶e

¶q1

� �ÿ1

�2
Èa

a
�A38�

according to equations (A32) and (A36). Hence, the constraint on

the 3D displacement is given by the following differential equation:

3Èa � k � ÿ4pr a �
¶e

¶q1

� �
; �A39�

where the function

k�q1; t� �
¶2

¶t2
� 2

Èa

a

� �
¶e

¶q1

; k�q1; t0� � 0: �A40�

Let us emphasize that this function has a vanishing value at t � t0
because e�q1; t0� � 0 for all q1, see equation (A31).

According to equations (A32) and (A36), equation (A34)

transforms to

dr

r
� ÿ =r´v

ÿ �
dt � ÿ2

Ça

a
dt

ÿ a �
¶e

¶q1

� �ÿ1

Ça �
¶

¶q1

¶e

¶t

� �
dt �A41�

which integrates easily by identifying the terms with derivatives of

logarithm functions, and thus provides us with the energy density

®eld

r�r; t� � r�q; t0�
a

a0

� �ÿ3

1 �
1

a

¶e

¶q1

�q1; t�

� �ÿ1

; �A42�

in terms of initial conditions. Therefore, according to equations

(A39) and (A42), the ratio

3Èa � k�q1; t�

3Èa0 � k�q1; t0�
�

a

a0

� �ÿ2

�A43�

shows that

3Èaa2
� k�q1; t�a2

� 3Èa0a2
0 �A44�

is a constant term, see equation (A40). The evolution of the

expansion parameter is governed by Friedmann equations,

Èaa2
�

1

3
La3

ÿ 4pÅr0

ÿ �
; �A45�
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Ça

a

� �2

�
k

a2
�

8

3
pÅr0aÿ3

�
L

3
; �A46�

which provide us with two constant terms

a1 � Èaa2
ÿ

L

3
a3

� Èa0a2
0 ÿ

L

3
a3

0; �A47�

a2 � Ça2a � ka ÿ
L

3
� Ça2

0a0 � ka0 ÿ
L

3
: �A48�

Hence, equation (A44) transforms to

a2

a
ÿ k �

L

3
a2

� �
¶2

¶a2
�

a1

a2
�

L

3
a

� �
¶

¶a

�
�2

a1

a3
�

L

3

� ��
¶e

¶q1

� L
a3

0

a2
ÿ a

� �
; �A49�

and for a ¯at space (k � 0) and a vanishing cosmological constant

(L � 0), equation (A49) transforms to

a2 ¶2

¶a2
ÿ

a

2

¶
¶a

ÿ 1

� �
¶e

¶q1

� 0: �A50�

The solution is the polynomial

¶e

¶q1

� C1�q1�
a

a0

� �2

ÿC2�q1�
a

a0

� �ÿ1=2

; �A51�

where we have, necessarily,

C�q1� � C1�q1� � C2�q1�; �A52�

which stands for the only5 arbitrary function of q1. Hence, we have

¶F

¶q1

�
1

a

¶e

¶q1

�
C�q1�

a0

a

a0

� �
ÿ

a

a0

� �ÿ3=2� �
�A53�

with a=a0 � 1 � 3=2 ´ H0�t ÿ t0�
� �2=3

~t2=3, which has to be substi-

tuted in equation (A19). Hence, the displacement function F�q1; t�

can be determined to be an additive time-dependent function which

must be vanishing at t � t0. However, such a function is not taken

into account because it stands for global displacement. Therefore,

by referencing with respect to a particle which follows the Hubble

expansion, one can write

F�q1; t� �
ÃC�q1�

a0

a

a0

� �
ÿ

a

a0

� �ÿ3=2� �
; �A54�

where C � d ÃC=dq1.

Finally, according to equations (A53), (A19) and (A20), we can

see that the Eulerian ®eld de®ned by the ZC solution is fully de®ned

by initial conditions upon the functions d0�q1� and ÃC�q1�.

The most straightforward method to test our results is to use the

following equations:

1 � d0�q1�

1 � d�x; t�
� 1 �

C�q1�

a0

a

a0

� �
ÿ

a

a0

� �ÿ3=2� �
�A55�

u�x; t� �
ÃC�q1�

a0

Ça

a

a

a0

� �
�

3

2

a

a0

� �ÿ3=2� �
; �A56�

with a=a0 ~ t2=3 and Ça=a ~ tÿ1, where the Eulerian ®elds are sub-

stituted by their wavelet pro®les with x given by equation (A17).

Hence, we understand that a formal comparison of the ZC solution

to wavelet behaviour cannot be carried out simply.

This paper has been typeset from a TEX=LATEX ®le prepared by the author.
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5 It must be emphasized that the ZC solution does not impose such a

constraint when the equality e�q1; t±� � 0 must be veri®ed for all q1.

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/302/4/807/1015019 by guest on 09 February 2020


