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Abstract 
The effect of additional Mg on the microstructure, mechanical properties, and 

transformation kinetics during aging in Al–3.3 wt.% Cu alloy was studied. The 

compositions and microstructure were examined by X-ray diffraction, Differential 

scanning calorimetry (DSC) and scanning electron microscope (SEM) with energy 

dispersive X-ray spectroscopy (EDS). The results show that the Mg in the Al–Cu alloy 

mainly precipitated to the grain boundaries during the process of transformation and 

formed a ternary Al2CuMg metallic compound and the rate of discontinuous precipitation 

reaction decreases with increasing concentration of Mg. The activation energy of 

crystallization was evaluated by applying the Kissinger equation. 

 

Keywords: Al–Cu–Mg alloys; Discontinuous precipitation; Activation energy; 

DSC. 

Introduction 
The aluminum has excellent mechanical properties in the presence of alloying 

elements, mainly due to the precipitation hardening (e.g., Al–Cu(Mg) alloys). These 
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alloys and materials are widely used in the aeronautics field [1–5]. For a concentration of 

Cu less than 4%, the Al–Cu and Al–Cu–Mg phase diagrams show the formation of a solid 

solution α. Increasing the concentration leads to precipitation of copper in the form of 

Guinier Preston zones (GP1 and GP2) and the first compound Al2Cu (θ' metastable, then 

θ stable), and phases (S' metastable, then S stable) in Al–Cu–Mg alloys [6–7]. 

The precipitation sequence in the Al–Cu–Mg system can be presented as 

SSSS (αo) → GPB → S' '→ S’ → S 1 

where SSSS (αo) is the supersaturated solid solution obtained after solution 

treatment and quenching. S. C. Wang and M. J. Starink, investigated the effect of heat 

treatments and deformation on the formation of two variants of S phase precipitation in 

an Al–4.2Cu–1.5Mg–0.6 Mn–0.5 Si (AA2024) and Al–4.2 Cu–1.5 Mg–0.6 Mn–0.08 Si 

(AA2324) (wt.%) alloys using transmission electron microscopy (TEM) and a scanning 

electron microscopy (SEM) analysis [7]. The DSC analysis of the as–solution treated 

samples shows two distinct exothermic peaks in the range from 250 to 350 °C. An S phase 

with a composition of Al2CuMg has been determined as an orthorhombic Cmcm structure 

with lattice parameters: aS = 0.400 nm, bS = 0.923 nm, cS = 0.714 nm [8–9]. A range of 

structures has been proposed for GPB, S”, S ', and S as shown in Table 1 [10–14]. 

Table 1. Previous reported and proposed structures for GPB and S”, S’ and S phases. 

Crystallographic structure Composition 

Experimental 

data supporting 

model 

Structure 

name 

Reference 

 

Orthorhombic,  

a = 0.405 nm,  

b = 0.906 nm and  

c = 0.725 nm 

Al2CuMg Proposed GPB [10, 11] 

Tetragonal,  

a = 0.405 nm,  

c = 0.81 nm, P4/nbm 

Al2CuMg FPTEC GPB [12] 

Monoclinic,  

a = 0.400 nm,  

b = 0.925 nm,  

c = 0.718 nm, α = 88.6◦ 

Al2CuMg XRD S” [13] 

Orthorhombic,  

a = 0.405 nm,  

b = 0.405 nm and  

c = 0.81 nm, Imm2 

Al2CuMg TEM S” [14] 

Orthorhombic,  

a = 0.400 nm, 

b =0. 461nm,  

c =0.718nm, Pmm2 

Al2CuMg HREM S ' [8] 

Orthorhombic,  

a = 0.400 nm, 

b =0. 923nm,  

c =0.714 nm, Cmcm 

Al2CuMg XRD S [15] 

*XRD: X-ray diffraction, TEM: Transmission Electron Microscopy, FPTEC: First–

Principles Total Energy Calculations 
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Nanodiffraction and HREM technology by J.C.L. Yan et al. have been used to 

determine the crystal structure of the S' phase (Al2CuMg), and conclude it, at 200 °C for 

times ranging from 10–10.000 h, there appears to be no difference in crystal structure 

between S ' and equilibrium S phase [15]. Recent work of R.K.W. Marceau et al. show 

diffusion couple after aging for 5 min at 200 °C in Al–1Cu–0.76Mg and Al–2.18Cu–

1.66Mg (wt.%); above a critical Cu content the rapid hardening phenomena diminishes 

[16]. 

The aim of this research is to study the effect of Mg content on the microstructure 

and mechanical properties of Al–Cu alloy. The possible effect mechanism will also be 

discussed. 

Experimental methods 
Two commercials purity Al–Cu–Mg alloys ingots have been studied; the 

compositions are shown in Table 2. 

Table 2. Compositions of the alloys (wt.%). 

   Element   

Cu Mg Fe Si Al 

S1 3.3 0.98 0.08 0.01 Bal. 

S2 3.3 2.03 0.06 0.01 Bal. 

 

Specimens with the size of 10mm×10mm×12mm were wired-cut from the center 

of the ingot. The specimens were homogenized at 470oC for one week and quenched in 

water. Microstructure, morphologies of fracture surface and compositions of tested alloys 

were analyzed by Scanning Electron Microscopy (SEM) (JEOL 2000FX) equipped with 

energy dispersive spectroscopy (EDS). Phase identification of the alloys was further 

confirmed by analyzing X-ray diffraction patterns generated by PAN alytical X'Pert PRO 

diffractometer. CuK radiation and a speed of 1°/min were used. The DSC measurements 

were performed with a NETZSCH 200 PC DSC. Vickers hardness is one of the most 

testing techniques and scientists. It is a form of microhardness that uses a diamond 

indenter and is suitable for a wide range of materials. A Yukon 2500 device was used in 

the microhardness measurements. 

Results and discussion 

The as-quenched microstructure 

The as-quenched microstructures are shown in Fig. 1. It is a typical structure that 

consists of the fine precipitates with a grain boundary. Fig. 2 represents a typical EDS 

spectrum of the presents alloys in the as-quenched condition. The quantitative analysis of 

six different EDS spectra indicated that the average chemical compositions were: Al–

3.3±0.3 wt.%–Cu–0.96±0.2 wt.% Mg and Al–3.28±0.1 wt.% Cu–1.98±0.4 wt.% Mg 

respectively. 
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Fig. 1. Microstructures of as-quenched Al–3.3wt.%Cu–1wt.%Mg  

(a) and Al–3.3wt.%Cu–2wt.%Mg (b) alloys. 

  

 

Fig. 2. A typical EDS profile of Al–3.3wt.%Cu–1wt.%Mg (a) and  

Al–3.3wt.%Cu–2wt.%Mg (b) alloys in the as-quenched conditions. 

For studying the heat treatment effect on the discontinuous precipitation in  

Al–3.3wt.% Cu–1 wt.% Mg and Al–3.3 wt.% Cu–2 wt.% Mg alloys, the samples are 

homogenized at 470 °C for one week and quenched in water. In this part of the 

investigation, we present the results of differential scanning calorimetry (DSC) in 
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nonisothermal conditions, previously homogenized and quenched (Fig. 3 and Fig. 4); and 

age at different heating rates (2, 5, and 10 °C/min). 
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Fig. 3. DSC curve of Al–3.3wt.%Cu–1wt.%Mg alloy, homogenized one week at 470 °C, 

quenched in water and heated in the range 25 – 450 °C (heating rate 2 °C·min–1). 
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Fig. 4. DSC curve of Al–3.3wt.%Cu–2wt.%Mg alloy, homogenized one week at 470 °C, 

quenched in water and heated in the range 25 – 450 °C (heating rate 2 °C·min–1). 
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Five main effects may be identified in these thermograms [17–19] an exothermic 

peak; A, between 60 and 130 °C that occurred due to the formation of co–clusters [20, 

21]; an endothermic effect, B, between 130 and 170 °C, may be attributed to Cu–Mg co–

cluster dissolution (with possibly some GPB2 dissolution); two exothermic peaks effect, 

C, and D between about 200 and 300 °C, are attributed to the formation of S’ and S phases 

precipitates respectively; a broad endothermic effect, E, at 300 to 450 °C is identified as 

progressive dissolution of the S’ and S precipitates [22, 23]. 

To determine the activation energy Ea of S‘ and S phases of our alloys we use the 

Kissinger method, this method relies on the assumption that, during the temperature 

increase, the reaction passes through a maximum before decreasing, using the following 

relation [24]: 

2
ln a

mm

V E
C

RTT

 
   

 
 2 

where C is constant, at the maximum rate of transformation which corresponds to 

the maximum at the DSC peak T = Tm (d2y/dt2=0) and R, the perfect gas constant (8.314 

J/mol·K). 

The maximum temperatures of reactions were determined from the slopes of the 

DSC curves. The activation energy for the formation of the S‘ and S phases (Al2CuMg) 

under nonisothermal conditions was calculated from the slope of 
2

ln
m

V

T

 
 
 

 – function of 

1/Tm. 

The value of Ea may be calculated from the slope of each curve it is shown in this 

following Table 3; these values are in good accordance with the literature [25]. 

 

Table 3. The activation energies of S’ and S phases of Al–3.3wt.%Cu1wt.%Mg and  

Al–3.3wt.%Cu2wt.%Mg alloys. 

 Phase Ea(kJ/mol) study 

Al–3.3%Cu1%Mg 
S’ 

S 

150.71±2.44 

158.44±1.62 

Al–3.3%Cu2%Mg 
S’ 

S 

151.82±1.99 

157.82±2.05 

 

The results of the heating rate and Mg concentration effect on precipitation are 

presented in the relative volume fraction versus temperatures (Fig. 5), this figure shows 

sigmoidal curves at different temperatures for the discontinuous precipitation (DP). It is 

clear that as the concentration of Mg increases, the rate of DP reaction decreases (shift 

curves on basis temperatures). 



Fatmi et al. - Effect of Mg Contents on the Precipitation Kinetics in al–3.3 wt.% Cu … 341 

 

460 480 500 520 540

0,0

0,2

0,4

0,6

0,8

1,0
T

ra
n

fo
rm

e
d

 f
ra

c
ti

o
n

Temperature (K)

  v=2
o
C/mn

 v=5
o
C/mn

 v=10
o
C/mn

a

  

460 480 500 520 540 560 580

0,0

0,2

0,4

0,6

0,8

1,0

T
ra

n
s
fo

rm
e
d

 f
ra

c
ti

o
n

Temperature (K)

 v=2
o
C/mn

 v=5
o
C/mn

 v=10
o
C/mn

B

 

Fig. 5. Transformed fraction as a function of the temperature at various heating rate of 

Al–3.3wt.%Cu–1wt.%Mg (a) and Al–3.3wt.%Cu–2wt.%Mg (b) alloys of S’ phase. 

To determinate the Avrami exponent we used the formula, 
22.5
m

R
n T

T Ea

 

 [26]: 

where are: ΔT – The width at half maximum, Ea– activation energy and R – ideal 

gas constant. 

The Table 4. shows the values of Avrami exponent (n). Avrami analysis was 

utilized to study the overall bulk crystallization kinetics after a specific thermal history. 

The Avrami exponent evaluated empirically, generally between 1 and 4. In the present 

study, the mean value of Avrami coefficient (n) for S’ and S phases is 1.41 and 1.42 

respectively; which may correspond to phase transformation mechanism driven by the 

diffusion. It has been found, that like any other diffusion controlled nucleation and growth 
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process, the reaction front velocity in DP usually records an ‘inverse-C’ variation with 

temperature [27]. 

Table 4. Avrami exponent of S’ and S phases of Al–3.3wt.%Cu1wt%Mg and  

Al–3.3wt.%Cu2wt.%Mg alloys. 

Alloy Al–3.3% Cu–1% Mg Al–3.3%Cu–2%Mg 

Phase S’ S S’ S 

n 1.50 1.31 1.46 1.37 

 

It is suggested that atomic mobility is essential for the time-dependent nucleation. 

It is noticed that the peak moves towards basis temperatures as much as the concentration 

of Mg increases. 

After DSC treatment  

The nonisothermal treatment effect on the transformation of precipitation in Al–

3.3wt.%Cu1wt.%Mg and Al–3.3wt.%Cu2wt.%Mg was examined before and after DSC 

treatments. The initial samples are homogenized at 470°C for one week and quenched in 

water. The X-ray diffraction spectrum of this quenched alloy which corresponds to 

supersaturated solid solution αo is shown in Fig. 6 (a). The second nonisothermal 

treatment applied on quenched alloy is performed by DSC analysis, from room 

temperature to 470 °C with heating rate 2 °C/min. The DSC curves show an exothermal 

peak that corresponds to energy dissipation during the discontinuous precipitation. The 

formation of this new S phase after last treatment is detected by the X-ray diffraction, 

where the S phase (Al2CuMg) peaks are present in the spectrum, Fig. 6 (b, c). 
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Fig. 6. X-ray diffraction spectrum of Al–3.3wt.%Cu–1wt.%Mg alloy, homogenized at 

470 °C for one week and quenched in water (a), after DSC treatment (25–450 °C,  

v=2 °C.min–1) of Al–3.3wt.%Cu1wt.%Mg (b), and Al–3.3wt.%Cu2wt.%Mg (c) alloys. 
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However, differential scanning calorimetry (DSC) and XRD analysis, justifies the 

precipitation of new phases corresponding to the intermetallic phases S’ and S 

(Al2CuMg). The grain size has not changed in the same grains observed in the quenched 

state (bellow DSC treatment). The SEM and EDS analysis revealed these precipitates of 

different types marked with B and C in Fig. 7. The chemical compositions of the phases 

are presented in the correspondent EDS curves. The phase marked by B and C is found 

to have the following composition: 14% Cu, 10% Mg and balance Al and 40% Cu, 3% 

Mg and balance Al of Al–3.3wt.%Cu1wt.%Mg and Al–3.3wt.%Cu2wt.%Mg 

respectively, which is consistent with the S phase. 

 

 

Fig. 7. Microstructures and typical EDS profiles of Al–3.3wt.%Cu–1wt.%Mg alloy 

marked by A and B and Al–3.3wt.%Cu–2wt.%Mg alloy marked by C (After DSC 

treatment). 
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Based on the Al–Cu–Mg phase diagram [28], the solid solubility of Mg is 

relatively low at room temperature in aluminum alloys. Therefore, the concentration of 

Mg at the interface of the solid/liquid phases was certain increased correspondingly 

during the solidification proceeds. 

The Vickers hardness value of Al– 3.3wt.%Cu–1 wt.%Mg and Al–3.3wt.%Cu–2 

wt.%Mg alloys are presented in Table 5. All samples are aging for various time at 150 oC 

. Vickers hardness measurements were carried out in order to investigate the effect of 

mechanical properties with the small addition of magnesium. The Vickers hardness value 

of sample of Al–3.3wt.% Cu–2wt.% Mg alloy is slightly lower than that of Al– 3.3wt.% 

Cu–1 wt.% Mg alloy. We concluded that the hardening observed is due to the formation 

of the phase S’ which is converted into the hardening phase S in order to obtain the 

maximum hardening in these alloys. values of the microhardness with the prolongation 

of aging at 150 °C, is directly attributed to the decrease in the amount of precipitated 

phases and in particular, the metastable phase S 'and the precipitation of equilibrium 

phases S. The study of Eskin [29] explained the hardening and precipitation in the Al-Cu-

Mg-Si alloying system. The composition and hardening phase in Al-Cu-Mg-Si alloys 

containing 2.5% - 4.5% Cu, are considered with respect to the chemical composition of 

the supersaturated solid solution. 

Table 5. The value of Vickers hardness as a function of aging time at 150 °C of Al–

3.3wt.%Cu–1wt.%Mg and Al–3.3wt.%Cu–2wt%Mg alloys. 

 Hv (Kg/mm2)  

Aging time /min. Al–3.3%Cu1%Mg Al–3.3%Cu2%Mg 

0 

300 

600 

1200 

1800 

2400 

3000 

109.72±2.35 

115.00±2.22 

115.20±2.12 

116.05±3.01 

118.31±3.11 

123.11±2.63 

125.21±2.41 

109.62±2.33 

113.5±2.14 

114.30±2.15 

114.70±2.35 

115.20±1.98 

114.95±1.99 

117.32±2.09 

Conclusion 
In this work, the small contents of magnesium and the heating rate of the 

nonisothermal transformation in the alloy Al–3.3wt.%Cu was studied. Several 

experimental methods suited to this kind of scientific research, to follow the various 

structural, and to try to understand the kinetics of various phenomena that occur was used 

Magnesium in the Al–Cu alloy mainly precipitated to the grain boundaries during the 

process of transformation and formed ternary Al2CuMg phase. The DSC curves show the 

formation two phases S 'and S, with a mean activation energy 154.57 and 154.82 kJ/mol 

for Al–3.3wt.%Cu–1wt.%Mg and Al–3.3wt.%Cu–2wt.%Mg, respectively. The value of 

Avrami coefficient (n) for S’ and S phases is 1.4; which may correspond to a phase 

transformation mechanism driven by the diffusion. The rate of discontinuous 

precipitation reaction decreases with the concentration of Mg increases. 
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