

On the Continuity of the free boundary in a class of two-dimensional elliptic problems with Neuman boundary condition

SAADI Abderachid

Laboratory of Non Linear PDE and History of Mathematics, ENS, 16050 Kouba, Algiers, Algeria. Department of Mathematics, Mohamed Boudiaf University of Msila, B.P 166 Ichbelia, Msila, Algeria.

rachidsaadi81@gmail.com

Résumé : In this work, we study the continuity of free boundary, in a class of elliptic problems, with Neuman boundary condition, which generalize the work of [5]. We prove that the free boundary is represented locally by a family of continuous functions.

Mots-Clefs : free boundary, continuity, Neuman boundary condition.

1 Statement of the problem and preliminary results

Let Ω be a bounded domain of \mathbb{R}^2 , with C^1 boundary $\partial \Omega = \Gamma_1 \cup \Gamma_2 \cup \Gamma_3$. Let $a = (a_{ij})$ be a two-by-two matrix with for λ and Λ are positive constants;

 $a_{ij} \in L^{\infty}(\Omega), \qquad |a(x)| \leq \Lambda, \qquad \text{for a.e. } x \in \Omega, \qquad a(x)\xi.\xi \geq \lambda |\xi|^2 \quad \forall \xi \in \mathbb{R}^2, \quad \text{for a.e. } x \in \Omega,$

Let $H = (H_1, H_2) \in C^1(\overline{\Omega})$ be a vector function, satisfying for some positive constants $\overline{H} \ge \underline{H}$ and p > 2

$$|H_1(x)| \le \bar{H}, \underline{H} \le H_2(x) \le \bar{H} \qquad \text{div} \, H(x) \ge 0 \qquad \text{for a.e. } x \in \Omega$$
$$\text{div} \, H(x) \in L^p_{loc}(\Omega), \qquad H(x).\nu \ne 0 \, \forall x \in \partial\Omega.$$

Let $\beta(x, v)$ be a nonnegative, continuous function such that $\beta(x, .)$ non-decreasing for a.e. $x \in \Gamma_3$. We consider the following problem

$$(P) \begin{cases} \text{Find}(u,\chi) \in H^{1}(\Omega) \times L^{\infty}(\Omega) \text{ such that } :\\ (i) \quad u \geq 0, \quad 0 \leq \chi \leq 1, \quad u(1-\chi) = 0 \quad \text{a.e. in } \Omega \\ (i) \quad u = 0 \quad \text{ a.e. on } \Gamma_{2} \\ (ii) \quad \int_{\Omega} (a(x)\nabla u + \chi H(x)) . \nabla \xi dx \leq \int_{\Gamma} \beta(x,\varphi-u) \xi d\sigma(x) \\ \forall \xi \in H^{1}(\Omega), \quad \xi \geq 0 \text{ on } \Gamma_{2} \end{cases}$$

Consider the following differential system: $(E(w,h)) \begin{cases} X'(t,w,h) = H(X(t,w,h)) \\ X(0,w,h) = (w,h) \end{cases}$ where: $h \in \pi_{x_2}(\Omega), w \in \pi_{x_1}(\Omega \cap [x_2 = h]).$ This system has a maximal solution X(., w, h) defined on: $(\alpha_{-}(w, h), \alpha_{+}(w, h))$ and consider the mappings:

2 Continuity of the Free Boundary

We define the function Φ_h in $\pi_{x_1}(\Omega \cap [x_2 = h])$ by:

$$\Phi_h(w) = \begin{cases} \sup\{\tau : (w,\tau) \in S_h(D_h) : \widetilde{u}(w,\tau) > 0\} & : \text{ if this set is not empty} \\ 0 & : \text{ otherwise} \end{cases}$$
(1)

Lemma 1 If we have for some positive number μ ,

$$H.\nu - \beta(x,\varphi(x)) > \mu$$
 in T

then we have for $\epsilon > 0$ small enough

$$\int_{\mathcal{T}_h(D)} \Big(a(x)\nabla v + \theta \cdot H(x) \Big) \cdot \nabla \zeta dx \ge \int_{\Gamma_3} \beta(x,\varphi) \zeta d\sigma(x)$$
$$\forall \zeta \in H^1(\mathcal{T}_h(D)), \quad \zeta \ge 0, \quad \zeta = 0 \text{ on } \partial \mathcal{T}_h(D) \setminus \Gamma_3$$

The main result is the following theorem:

Theorem 2 Let $w_0 \in \pi_{x_1} \{ x_2 = h \}$ such that $(w_0, \Phi_h(w_0) \in S_h(D_h)$ and:

$$\beta(X(\alpha_+(w_0), w_0), \varphi(X(\alpha_+(w_0), w_0))) < H(w_0, \tau_+(w_0)).\nu(X(\alpha_+(w_0), w_0)$$
(2)

Then Φ_h is continuous at w_0 .

References

- M. Chipot and A. Lyaghfouri. The dam problem with linear Darcy's law and nonlinear leaky boundary conditions. Advances in Differential Equations, Vol. 3, No. 1: 1–50, 1998.
- S. Challal and A. Lyaghfouri. A Filtration Problem through a Heterogeneous Porous Medium. Interfaces and Free Boundaries, 6: 55–79, 2004.
- [3] S. Challal and A. Lyaghfouri. On the Continuity of the Free Boundary in Problems of type $div(a(x)\nabla u) = -(\chi(u)h(x))_{x_1}$. Nonlinear Analysis : Theory, Methods & Applications, Vol. 62, 2: 283–300, 2005.
- [4] D. Gilbarg, N.S. Trudinger. *Elliptic Partial Differential Equations of Second Order*. Springer-Verlag, 1983.
- [5] A. Saadi. Coninuity of the free boundary in elliptic problems with Neuman boundary condition. Electronic Journal of Differential Equations, Vol. 2015, No. 160: 1–16, 2015.

2

