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Résumé : In this work, we study the continuity of free boundary, in a class of elliptic
problems, with Neuman boundary condition, which generalize the work of [5]. We prove
that the free boundary is represented locally by a family of continuous functions.

Mots-Clefs : free boundary, continuity, Neuman boundary condition.

1 Statement of the problem and preliminary results

Let Ω be a bounded domain of R2, with C1 boundary ∂Ω = Γ1 ∪ Γ2 ∪ Γ3. Let a = (aij) be a
two-by-two matrix with for λ and Λ are positive constants;

aij ∈ L∞(Ω), |a(x)| ≤ Λ, for a.e. x ∈ Ω, a(x)ξ.ξ ≥ λ|ξ|2 ∀ξ ∈ R2, for a.e. x ∈ Ω,

Let H = (H1, H2) ∈ C1(Ω) be a vector function, satisfying for some positive constants H̄ ≥ H
and p > 2

|H1(x)| ≤ H̄, H ≤ H2(x) ≤ H̄ divH(x) ≥ 0 for a.e.x ∈ Ω

divH(x) ∈ Lploc(Ω), H(x).ν 6= 0∀x ∈ ∂Ω.

Let β(x, v) be a nonnegative, continuous function such that β(x, .) non-decreasing for a.e. x ∈ Γ3.

We consider the following problem

(P )



Find(u, χ) ∈ H1(Ω)× L∞(Ω) such that :

(i) u ≥ 0, 0 ≤ χ ≤ 1, u(1− χ) = 0 a.e. in Ω

(i) u = 0 a.e. on Γ2

(ii)

∫
Ω

(
a(x)∇u+ χH(x)

)
.∇ξdx ≤

∫
Γ
β(x, ϕ− u)ξdσ(x)

∀ξ ∈ H1(Ω), ξ ≥ 0 on Γ2

Consider the following differential system: (E(w, h))

{
X ′(t, w, h) = H(X(t, w, h))
X(0, w, h) = (w, h)

where: h ∈ πx2(Ω), w ∈ πx1(Ω ∩ [x2 = h]).
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This system has a maximal solution X(., w, h) defined on: (α−(w, h), α+(w, h))

and consider the mappings:
Th : Dh −→ Th(Dh)

(t, w) 7−→ Th(t, w) = X(t, w)
Sh : Dh −→ Sh(Dh)

(t, w) 7−→ Sh(t, w) = (w, τ)

Where: τ = Lh(t, w) =

∫ t

α−(w)
|X ′(s, w)|ds =

∫ t

α−(w)
|H(X(s, w))|ds

2 Continuity of the Free Boundary

We define the function Φh in πx1(Ω ∩ [x2 = h]) by:

Φh(w) =

{
sup{τ : (w, τ) ∈ Sh(Dh) : ũ(w, τ) > 0} : if this set is not empty
0 : otherwise

(1)

Lemma 1 If we have for some positive number µ,

H.ν − β(x, ϕ(x)) > µ inT.

then we have for ε > 0 small enough∫
Th(D)

(
a(x)∇v + θ.H(x)

)
.∇ζdx ≥

∫
Γ3

β(x, ϕ)ζdσ(x)

∀ζ ∈ H1(Th(D)), ζ ≥ 0, ζ = 0 on ∂Th(D) \ Γ3

The main result is the following theorem:

Theorem 2 Let w0 ∈ πx1{x2 = h} such that (w0,Φh(w0) ∈ Sh(Dh) and:

β(X(α+(w0), w0), ϕ(X(α+(w0), w0))) < H̃(w0, τ+(w0)).ν(X(α+(w0), w0) (2)

Then Φh is contiuous at w0.
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