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Abstract. We have investigated the structural, elastic, electronic, optical and thermal properties of an
insulator perovskite CsCdF3 using the pseudo-potential plane wave (PP-PW) scheme in the frame of
generalized gradient approximation (GGA) and local density approximation (LDA). The computed lattice
parameter and bulk modulus agree reasonably with experimental and previous theoretical works. We find
that the cubic Pm-3m crystal symmetry persists throughout the pressure range studied. The anisotropy
in CsCdF3 crystal is strong, while, by analyzing the ratio between the bulk and shear moduli, we conclude
that CsCdF3 is ductile material. The calculations reveal that CsCdF3 is an indirect-gap insulator under
ambient conditions, with the gap increasing under pressure. Also, we present the results of the densities of
states and charge densities. The static dielectric constant and static refractive index are proportional to
the fundamental indirect band gap Γ-R. The thermal effect on the volume, bulk modulus, heat capacities
CV and CP and Debye temperature was predicted using the quasi-harmonic Debye model. To the author’s
knowledge, most of the studied properties are reported for the first time.

1 Introduction

The ternary fluorides with the perovskite crystal struc-
ture have been extensively investigated, because they have
many potential applications due to their wide band gaps,
optical properties [1,2], ferroelectricity [3], antiferromag-
netism [4] and semiconductivity [5]. There are many kinds
of perovskite-type fluorides, in particular, the Cs-based
CsXF3 (X = Ca, Sr, Cd and Hg) [6]. The application of
CsCdF3 in the field of luminescence has motivated several
experimental and theoretical investigations of defect struc-
tures involving 3d transition-metal ions. Vaitheeswaran
et al. investigated the crystal structure and elastic con-
stants of CsCdF3 using X-ray diffraction and theoreti-
cally at equilibrium [7]. This family of perovskites fluo-
rides, CsXF3 shows a larger Cs–F distance than the X–F
one.

The preparation of perovskites CsXF3 followed the
procedure described in the literature [8]. CsF and XF2

were first mixed and ground in a molar ratio of 1:1. The
obtained powder was pressed into a pellet, closed in a gold
tube, and then sealed in a silica tube under argon. The sil-
ica tube was annealed, followed by a slow cooling of the
ampoule.
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The optical properties of perovskites are anisotropic,
show the phenomenon of birefringence and Their geom-
etry is related to the chemical composition, temperature
and pressure [9]. According to Lufaso and Woodward [10],
a cubic perovskite can transform into other crystal struc-
tures. This perovskite fluoride not exhibit structural phase
transition as function of temperature and pressure.

The use of first principles calculations offers one of the
most powerful tools for carrying out theoretical studies
of an important number of physical and chemical proper-
ties of the condensed matter with great accuracy [11,12].
In this work, we will contribute to the study of the per-
ovskite fluoride CsCdF3 by performing a first principles
investigation of their structural, elastic, electronic, optical
and thermal properties under pressure. The reason be-
hind the variation of properties with pressure is the lattice
constant, which varies under pressure and the structural
phase transition. A number of basics properties of this
compound are still unknown. To the best of our knowl-
edge, there are no experimental or theoretical works ex-
ploring the thermal properties and the related elastic con-
stants under pressure effect.

The letter is organized as follows: in Section 2, we
briefly described the computational techniques used in
this work. Results and discussions of our study will be
presented in Section 3. Finally, conclusions and remarks
are given in Section 4.
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2 Computational method

The first-principles calculations were performed using
the CASTEP code, in which the plane-wave pseudo-
potential total energy method was used [13]. Interac-
tions of electrons with ion cores were represented by
the Vanderbilt-type ultrasoft pseudo-potential for Cs,
Cd and F atoms [14]. The exchange-correlation poten-
tial was calculated within the local density approxima-
tion (LDA) developed by Ceperly and Alder [15] and
parameterized by Perdew and Zunger [16] as well as
the generalized gradient approximation (GGA) of Perdew
et al. [17]. The plane-wave basis set cut-off was set as
350 eV for all cases. The special points sampling inte-
gration over the Brillouin zone was employed by using
the Monkhorst-Pack method with an 8 × 8 × 8 special
k-point mesh [18]. These parameters were sufficient in
leading to well converged total energy, geometrical con-
figurations and elastic moduli. The structural parameters
were determined using the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) minimization technique [19], with the fol-
lowing thresholds for converged structures, energy change
per atom less than 5 × 10−6 eV, residual force less than
0.01 eV/ ´̊A, stress below 0.03 GPa and the displacement
of atoms during the geometry optimization less than
0.0005 ´̊A.

The study of thermal effects was done within the quasi-
harmonic Debye model implemented in the Gibbs pro-
gram [20]. For a solid described by an energy-volume
(E-V ) relationship in the static approximations, the Gibbs
program allows us to evaluate Debye temperature, to ob-
tain the Gibbs free energy G(V , P , T ) and to mini-
mize G for deriving the thermal equation of state (EOS)
V (P , T ). The detailed description of the quasi-harmonic
Debye model was found in [20–24].

3 Results and discussions

3.1 Crystal structure

The cubic unit cell of CsCdF3 contains one molecule with
the Cs sitting at the origin (0, 0, 0), the Cd at the body
center (0.5, 0.5, 0.5) and the three fluorine atoms at the
face centers (0.5, 0.5, 0), (0.5, 0, 0.5) and (0, 0.5, 0.5).
The calculated lattice parameter within GGA and LDA
are summarized in Table 1. Also shown for comparison
are the experimental and theoretical data reported by
Moreira and Dias [25] and Jiang et al. [26]. The theoretical
equilibrium lattice constant a0, the bulk modulus B0 and
its pressure derivative B′ are determined by fitting the
total energy versus the volume to the Murnaghan equa-
tion of state [27]. The lattice constant obtained within the
LDA is 1.4% lower than the experimental value. A better
theoretical description is also obtained with the LDA for
KMgF3 [28]. The LDA bulk modulus obtained from the
present calculation agrees well with the experimental one
cited in reference [7]. The computed lattice constant us-
ing GGA deviates from the experimental one within 1.8%.

Table 1. Calculated lattice constants a0 (in Å), bulk modulus
B0 (in GPa) and its pressure derivative B′ for CsCdF3 com-
pound compared with the experiment and other theoretical
calculations.

Present work Experiment Other

GGA (PBE) LDA (CA-PZ) calculations

a0 4.5558 4.4062 a 4.47 a 4.43, b 4.475

B0 53.6955 75.0457 a 79 c 53.3

B′ 4.92 4.979 – c 3.8

a [25], b [26], c [7].

Table 2. Calculated zero-pressure elastic constants (C11,
C12 and C44), bulk modulus B (calculated from the elastic
constants as B = (C11 + 2C12)/3) and anisotropy factor for
CsCdF3 compound.

C11 C12 C44 B A

LDA 136.48 44.12 21.78 74.91 0.47

GGA 96.62 35.36 20.53 50.238 0.67

Exp a 107.8 ± 0.2 a 40.5 ± 0.5 a 25 ± 0.2 c 0.74

Other

LDA c 150.2 c 27 c 27.7 c 0.49

GGA c 105.8 c 38.3 c 27.5 c 0.7

a [25], c [7].

The obtained B0 and B′ values are listed in Table 1. The
bulk modulus is a measure of the crystal rigidity, thus a
large compressibility is for high crystal rigidity.

3.2 Stability of CsCdF3

The elastic constants of CsCdF3 calculated within LDA
and GGA are depicted in Table 2, where they are also
compared to experimental results [29] as well as earlier
calculations [7]. The LDA overestimates C11 and C12 and
underestimates C44 between 21, 8.2 and 14.7% compared
to experiment values. The C11 obtained within GGA is
much closer to the experimental value; while, C12 and C44

values given by LDA are closer to the experimental ones.
For KMgF3, the elastic constants obtained within GGA
are much closer to the experimental values than are the
LDA results [28]. We can notice that all GGA elastic con-
stants are within the experimental spread. Of course, the
elastic constants also depend sensitively on the volume,
and, therefore, the same argument as for the bulk modulus
can be applied here. Using the calculated elastic constants,
we calculated the anisotropy factor A = 2C44/(C11−C12).
For an isotropic crystal, A is equal to 1, while any value
smaller or larger than 1 indicates anisotropy. The mag-
nitude of the deviation from 1 is a measure of the de-
gree of elastic anisotropy possessed by the crystal. We
find an A = 0.47 for LDA and A = 0.67 for GGA.
The experimental value calculated from the elastic con-
stants is 0.74 [7], which is strong within LDA compared to
GGA. The anisotropy is strong within GGA compared to
LDA, then the anisotropy factor is sensitive to exchange-
correlation functional.
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Fig. 1. (Color online) Elastic moduli C11, C12, C44 and B as
a function of pressure.

A simple relationship, which empirically links the plas-
tic properties of materials with their elastic moduli was
proposed by Pugh [30]. The shear modulus G represents
the resistance to plastic deformation, while the bulk mod-
ulus B represents the resistance to fracture. A high B/G
ratio is associated with ductility, whereas a low value cor-
responds to brittle nature. The critical value which sep-
arates ductile and brittle materials is around 1.75, i.e. if
B/G > 1.75 the material behaves in a ductile manner;
otherwise the material behaves in a brittle manner.

In the case of CsCdF3 the calculated B/G value is
2.53 within LDA and 2.08 within GGA, hence classi-
fying this material as ductile. The consequence of duc-
tility is the less sensitivity for thermal shocks, as the
material can efficiently dissipate thermal stress via plas-
tic deformations. Thus, a ductile solid can support large
thermal shocks. Pettifor [31] suggested that the angular
character of atomic bonding in metals and compounds,
which also relates to the ductility, could be described
by the Cauchy pressure C12–C44. For metallic bonding
the Cauchy pressure is typically positive. On the other
hand, for directional bonding with angular character, the
Cauchy pressure is negative, with larger negative pressure
representing a more directional character. These correla-
tions have been verified for ductile materials such as Ni
and Al that have typical metallic bonding, as well as for
brittle semiconductors such as Si with directional bond-
ing [31]. In the CsCdF3 compound, the calculated Cauchy
pressure is 22.34 GPa within LDA and 14.83 GPa within
GGA, in good agreement with the metallic characteristics
of CsCdF3 [32].

The calculated bulk modulus value from elastic con-
stants has nearly the same one obtained from the EOS
fitting. This may be an estimate of the reliability and
accuracy of our calculated elastic constants. The depen-
dence of the elastic constants on pressure assumes particu-
lar structural stability. The variation of the elastic moduli
as a function of pressure is displayed in Figure 1. We ob-
serve that all these parameters increase monotonically and
linearly with increasing pressure. We can notice that the

Table 3. Elastic wave velocities (in m/s) for different propa-
gation directions for CsCdF3 compound.

100 110 111

vl vT1 vT2 vL vT1 vT2 vL vT1 vT2

LDA 4822 1926 1926 4370 3967 1926 4208 2546 2546

GGA 4270 1968 1968 4040 3400 1968 3961 2268 2268

Table 4. Calculated shear modulus G, Young’s modulus E,
Poisson’s ratio σ and Lamé’s constants (λ and μ) and B/G for
polycrystalline CsCdF3 compound.

G E σ λ μ B/G
LDA 29.57 78.41 0.32 55.18 29.57 2.53
GGA 24.10 63.22 0.31 39.70 24.10 2.08

increase in C44 is weaker. For a cubic crystal under pres-
sure P , the generalized elastic stability criteria [33,34] are:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
3
(C11 + 2C12 + P ) > 0

(C44 − P ) > 0
1
2
(C11 − C12 − 2P ) > 0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (1)

These criteria are satisfied in the studied pressure range,
suggesting that the pure cubic CsCdF3 is very stable un-
der high compression.

From the theoretical elastic constants, we have com-
puted the elastic wave velocities. The single-crystal elastic
wave velocities in different directions are given by the res-
olution of the Christoffel equation [35]:

(Cijklnjnk − ρv2δil)ul = 0 (2)

Cijkl, n, ρ, u and v are the single-crystal elastic constant
tensor, the wave propagation direction, the density of ma-
terial, the wave polarization and the wave velocity. The
solutions of this equation are of two types: a longitudinal
wave with polarization parallel to the direction of propa-
gation (vL) and two shear waves (vT1 and vT2) with po-
larization perpendicular to n. The calculated elastic wave
velocities along [100], [110] and [111] directions are listed
in Table 3. Longitudinal and shear waves calculated within
GGA and LDA are fastest along [100] and slowest along
[100] and [110].

The main isotropic mechanical parameters for the cu-
bic CsCdF3, namely shear modulus G, Young’s modulus
E, Poisson’s ratio σ, Lamé’s constants (λ and μ) and
B/G ratio which are the important elastic moduli for
applications, are calculated from the elastic constants of
the single-crystals. Table 4 gives the calculated values of
the mentioned elastic moduli for polycrystalline CsCdF3

aggregate.

3.3 Debye temperature

The Debye temperature is an important fundamental pa-
rameter closely related to many physical properties such

30101-p3
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Table 5. Calculated density ρ (in g/cm3), longitudinal, trans-
verse and average sound velocity (υl, υt and υm, respectively,
in m/s), calculated from polycrystalline elastic moduli, and
Debye temperature (θD in K), calculated from the average
sound velocity.

ρ vl vt vm ΘD

LDA 5.8680 4414 2245 2516 306
GGA 5.2991 4073 2133 2385 280

as specific heat and melting temperature. At low tempera-
ture, the vibrational excitations arise solely from acoustic
vibrations. Hence, at low temperature, Debye temperature
calculated from elastic constants is the same as that deter-
mined from specific heat measurements. One of the stan-
dard methods to calculate Debye temperature θD is from
elastic constants data, since θD may be estimated from the
average sound velocity, vm, by the following equation [36]:

θD =
h

kB

[
3

4πVa

] 1
3

vm (3)

where h, kB and Va are the Planck’s constant, the
Boltzmann’s constant and the average atomic volume. The
average sound velocity in the polycrystalline material is
given by [37]:

vm =
[
1
3

(
2
v3

t

+
1
v3

l

)]− 1
3

(4)

where vl and vt are the longitudinal and transverse sound
velocities in an isotropic material. These can be obtained
from the shear modulus G and the bulk modulus B, by
the use of the Navier’s equation [36]:

vl =
(

3B + 4G

3ρ

) 1
2

and vt =
(

G

ρ

) 1
2

. (5)

The calculated sound velocities and Debye temperature as
well as the density of CsCdF3 are given in Table 5. Un-
fortunately, as far as we know, there are no data available
in the literature on these properties for this compound.
Future experimental work will test our calculated results.
The average wave velocities in CsCdF3 are smaller com-
pared with those of KMgF3.

3.4 Electronic properties

The calculated energy band structure for the equilibrium
geometry of CsCdF3 along the higher symmetry directions
in the Brillouin zone is shown in Figure 2. The zero of
energy is chosen to coincide with the valence band max-
imum (VBM), which occurs at R point, while the con-
duction band minimum (CBM) occurs at Γ point; thus,
CsCdF3 compound is an indirect energy band gap insu-
lator. Calculated values of the main direct and indirect
band gaps at zero pressure are given in Table 6. It is well
known that the LDA and GGA calculations underestimate
the fundamental gap of semiconductors and insulators; so

Fig. 2. (Color online) Band structure of CsCdF3. The Fermi
level is located at 0 eV.

Table 6. The calculated Γ-R, X-R, M-R and R-R gap en-
ergies and their first- and second-order pressure coefficients
α (eV/GPa) and β (eV/GPa2).

Γ-R X-R M-R R-R

Eg(0)

LDA 3.14 5.77 6.45 6.97

GGA 3.34 5.57 6.40 7.48

α

LDA 0.02 0.05 0.02 –0.02

GGA 0.03 0.06 0.04 –0.02

β

LDA –1.64 –5.0 –3.28 0.9

GGA –3.00 –6.5 –6.5 0.7

our calculated band gap at equilibrium 3.34 eV (3.14 eV)
using GGA (LDA) are in good agreement compared to
those given by Vaitheeswarn et al. [7] 3.67 eV (3.16 eV).
However, the underestimation of the gap between the va-
lence and conduction bands is accurately calculated in the
GGA (LDA) and do not depends on the type of func-
tional form of the exchange-correlation potential [38]. To
this end, the variation of main direct and indirect energy
band gaps of CsCdF3 as a function of pressure is plotted
in Figure 3. As one can see, that all band-gaps have an
increase quadratic when the pressure is enhanced except
R-R, which decreases linearly. However, the Γ-R funda-
mental gap in KMgH3 increases almost linearly with com-
pression [28]. These curves correspond to the best fit of
the energy gap-pressure data to the following expression:

Eg(P ) = Eg(0) + αP + βP 2 (6)

Eg is the energy gap, P is the pressure, and α and β are
the first- and second-order pressure derivatives, respec-
tively. The calculated values of α and β for the studied
band gaps of CsCdF3 are given in Table 6. One can notice
that band gaps calculated by GGA are slightly sensitive to
pressure than those computed by LDA. As we know, there
are no data available in the literature on the experiment
gap value.

The calculated atomic site-projected l-decomposed
densities of states (PDOS) of this compound are displayed

30101-p4
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Fig. 3. (Color online) Direct R-R and indirect M-R, X-R
and Γ-R band gap energies as a function of pressure.

Fig. 4. (Color online) Calculated partial density of states
(PDOS) of CsCdF3.

in Figure 4. From the PDOS we are able to identify the
angular momentum character of the different structures.
The examination of PDOS reveals that the upper valence
bands are dominantly consisted of F–p states; there are
small contribution from Cs–p and Cd–d states. There is
hybridization between Cd–d and F–p states. The top of the
valence band reflects the p electronic character. The first
conduction bands is mainly Cd–s and Cs–s. This demon-
strates that valence electrons are transferred from Cd or
Cs sites to F sites [39].

Fig. 5. (Color online) Valence charge density plots for the
cubic perovskite-type CsCdF3 in the (110) plane.

Figure 5 shows the charge density contour in the (110)
plane for cubic perovskite CsCdF3. Charge density maps
serve as a complementary tool for achieving a proper un-
derstanding of the electronic structure of the system being
studied. One can see that the highest charge density re-
sides in the immediate vicinity of the nuclei. The near
spherical charge distribution around the Cs indicates that
the bonding between Cs and F is predominantly ionic.
The figure reveals a sharing of charge between Cd and F
due to the Cd–d and F–p hybridization; thus, there is a
mixture of covalent-ionic bonding between Cd and F.

3.5 Optical properties

We display the real (ε1) and imaginary (ε2) parts of the
dielectric function at zero pressure as a function of photon
energy in Figure 6. The identification of interband transi-
tions responsible for the structures of ε2 requires the use
of the band structure. The threshold energy of the dielec-
tric function occurs at E0 = 3.29 eV, which corresponds
to the fundamental gap at equilibrium. The main peaks in
the spectra are located at E1 = 6.46 eV and E2 = 9.35 eV,
which correspond to the transition from the occupied state
F–p (valence band) to the unoccupied states Cd–s and
Cs–s (conduction band) [40]. The first peak coincides with
the M-R transition. For the interpretation of the optical
spectra, it seems not realistic to attribute the transitions
only to the present peaks in spectra, because many transi-
tions can be observed in the band structure with an energy
corresponding to the same peak. The static dielectric con-
stant ε1(0) is 2.029. The computed refractive index and
extinction coefficient spectrum are displayed in Figure 7.
The static refractive index is found to have the value 1.42
and it increases with energy in the transparency region
reaching a peak in the ultra violet at about 5.38 eV. All
peaks of the refractive index and extinction coefficient co-
incide with a slightly shift.

The calculated linear absorption (α) and the real part
of conductivity (σ) in (Ω−1 cm−1) spectrum of the optical
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Fig. 6. (Color online) Real and imaginary part ε1 and ε2

of the dielectric function as a function of photon energy.

Fig. 7. (Color online) Refractive index and extinction
coefficient as a function of photon energy.

conductivity of our compound are displayed in Figure 8.
One can see that all details and peaks of the real part
of the optical conductivity coincide with peaks of the ab-
sorption spectrum in the considered photon energy range.
Probably, the optical conductivity in this compound is due
mainly to the absorption in the high symmetry points in
the first Brillouin zone. The absorption and conductivity
edge start at 2.23 eV and their maximum are located at
14.95 eV.

Figure 9 shows the variation of the static dielectric con-
stant and static refractive index within GGA and LDA as
a function of pressure. These parameters increase mono-
tonically with increasing pressure. We remark that the
static dielectric constant and the static refractive index are
proportional to the fundamental indirect band gap Γ-R.
The pressure dependence of the static dielectric constant
and static refractive index were determined by quadratic

Fig. 8. (Color online) The calculated linear absorption and
real part of the optical conductivity as a function of photon
energy.

Fig. 9. (Color online) The static dielectric constant and
static refractive index as a function of pressure within GGA
and LDA.

polynomial fit giving the following relations:

GGA
{

ε1 = 2.03 + 0.0035P − 1.14 × 10−5P 2

n = 1.424 + 0.001P − 4.3 × 10−6P 2

}
(7)

LDA
{

ε1 = 2.05 + 0.004P − 2.33 × 10−5P 2

n = 1.432 + 0.001P − 8.4 × 10−6P 2

}
. (8)

3.6 Thermal properties

To investigate the thermal properties of CsCdF3 com-
pound under high temperature and high pressure, we have
applied the quasi-harmonic Debye approximation. As a
first step, a set of total energy calculation versus primi-
tive cell volume (E-V ), in the static approximation, was
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Fig. 10. (Color online) Variation of the volume as a function
of temperature.

Fig. 11. (Color online) Variation of the bulk modulus
as a function of temperature.

carried out and fitted with a numerical EOS in order to de-
termine its structural parameters at P = 0 and T = 0, and
then derive the macroscopic properties as function of P
and T from standard thermodynamic relations. The ther-
mal properties are determined in the temperature range
from 0 to 900 K, where the quasi-harmonic model remains
fully valid. The pressure effect is studied in the 0–40 GPa
range.

In Figure 10, we present the volume-temperature di-
agram at several pressures. The volume increases lin-
early with increasing temperature, except at equilibrium,
where the variation is quadratic. On the other side, as the
pressure P increases the volume decreases at a given tem-
perature. The rate of increase in volume with temperature
decreases with increasing pressure.

Figures 11 and 12 show respectively the variation of
bulk modulus and Debye temperature versus temperature
at a various pressure. One can notice that the bulk mod-
ulus and Debye temperature are nearly constant from 0
to 100 K and then decrease with increasing temperature.

Fig. 12. (Color online) Variation of Debye temperature
as a function of temperature.

Fig. 13. (Color online) Variation of the heat capacities CV

and CP versus temperature at various pressures.

They increase with increasing pressure at a given temper-
ature. These results are due to the fact that the effect
of increasing pressure on the material is the same as the
decreasing temperature. Our calculated θD at zero pres-
sure and ambient temperature is 243 K, which is in good
agreement with the value of 280 K computed accurately in
terms of the elastic constants (Tab. 5). This might be an
indication that the quasi-harmonic Debye model is a very
reasonable alternative to account for the thermal effects
with no expensive task in terms of computational time.

The knowledge of the heat capacity of a substance
provides essential insight into its vibrational properties
and is also mandatory for many applications. Two famous
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limiting cases are correctly predicted by the standard elas-
tic continuum theory [41]. At high temperature, the con-
stant volume heat capacity CV tends to the Dulong-Petit
limit [42]. At sufficiently low temperature, CV is propor-
tional to T 3 [41]. At intermediate temperatures, the de-
pendence of CV on temperature is governed by the details
of vibrations of the atoms and for a long time could only
be determined from experiments. Figure 13 represents the
variation of the heat capacities CV and CP as a function of
temperature for various pressures. It is shown that when
T < 500 K, CV and CP are depending on both temper-
ature and pressure and increase exponentially. When the
temperature is constant, CV and CP decrease with the ap-
plied pressures. At high temperature (T > 500 K), CV and
CP tend to the Dulong-Petit limit and a linear increase
respectively. At high temperature CV tends to approach
123 J mol−1 K−1. At zero pressure and 300 K, CV and CP

are 120.7 and 126 Jmol−1 K−1.

4 Conclusion

The ideal perovskite CsCdF3 was studied using the PP-
PW method based on the density functional theory with
both LDA and GGA. A linear pressure dependence of
the elastic stiffnesses and bulk modulus were found. A
set of isotropic parameters (bulk modulus, shear modulus,
Young’s modulus, Poisson’s ration, average sound velocity
and Debye temperature) are estimated for ideal polycrys-
talline CsCdF3 aggregate. The analysis of the PDOS and
charge density reveals that bonds between the constitut-
ing elements of this compound are mainly ionic. Through
the quasi-harmonic Debye model, the dependences of the
volume, bulk modulus, heat capacities and Debye tem-
perature on temperature and pressure have been obtained
successfully. To the author’s knowledge, most of the stud-
ied properties are reported for the first time.
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