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This article is devoted to the adaptive control with robust reference model based on a 
vector control applied to a dual-star asynchronous machine; this study is based on the 
Landau stability theorem. The adaptive control is designed for the speed loop. The 
identification techniques using closed-loop output error algorithm and MRAC (Model 
Rerferance Adaptive Control) were reviewed. All these techniques have one thing in 
common: they place in principle the link between robust control, closed-loop 
identification and adaptive control. The reference model based on the Landau stability 
theorem makes it possible to improve the performance of the adaptive control and 
maintains the robust control with respect to the parametric change of the DSIM (Doubly 
Star Induction Motor). The main is to ensure a minimum level of performance of the drive 
system that is malfunctioning. The simulation results clearly show the robustness of the 
proposed MRAC command against parametric variations of DSIM. 
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1. INTRODUCTION

The parameters of the machine generally depend on the
operating point and vary with either the temperature (resistors) 
or the magnetic state of the machine (inductors), besides the 
load can be variable. That poses a problem of design of the 
control systems in the presence of uncertainties on the model 
of the process to be controlled in this situation. Indeed, 
automation engineers offer adaptive control. Thus, this 
command is established by sets of techniques used for the real-
time automatic adjustment of the controllers of the control 
loops and this in order to achieve or maintain a certain level of 
performance when the parameters of the process to be 
controlled are unknown or vary in the time [1-3].

Recent developments indicate that robust adaptive control 
is provided by the enhancement performed in the closed loop 
process identification part. This leads to the calculation of a 
robust regulator in the presence of uncertainties on the model 
of the process. These uncertainties cover the variations of the 
parameters. There is therefore a strong interaction between 
robust adaptive control, closed-loop identification and robust 
controller calculation [3].  

The rest of the article is organized as follows: Section 2 
reviews the MRAC design. Then the closed-loop identification 
and its relation with the robust control are discussed in section 
3. Section 4 presents a vector control strategy of the dual-star
asynchronous machine with recalculate the RST regulator and
explains the link with the MRAC adaptive control, then
deduce a robust control law. Section 5 presents the simulation
of the machine and testing the robustness of the regulators.

2. ADAPTIVE CONTROL TO REFERENCE MODEL

Adaptive Reference Model Control (MRAC) is a set of
techniques for the automatic adjustment of control system 
controller parameters when system characteristics are 
unknown or variable over time. This is to eliminate the error 
between the desired performances (reference model) and those 
produced by the real system. 

The interest in adaptive reference-model control over 
conventional control systems has some advantages: 

- It provides stability and control quality for fairly large
variations in the characteristics of the system to be controlled. 

- It makes it possible to simplify the internal loop by
simplifying the correction devices.

- It is simple to achieve. As a result, the reliability of the
MRAC command is relatively high compared to conventional 
systems [3-4]. 

To overcome some of the disadvantages of the programmed 
gain control, (the classic adaptive method), Whitaker (in 1958) 
proposed a reference model control system largely developed 
by several specialists [5]. Such systems are composed of two 
closed loops; one main internal loop and the other external 
(Figure 1). The internal loop includes the system to be 
controlled and the R-S-T regulator that remains the most used 
because of its robustness [6]. The reference model must 
generate the desired instantaneous response ωm(k)  of the 
system to be controlled. The signals from the output of the 
internal loop and the reference model are compared and their 
difference is used to design the regulator adjustment law. This 
adjustment is done in the sense that minimizes the difference 
between the system response and that of the reference model 
[7]. The reference model can be variable or stationary. In the 
latter case, the system is intended to stabilize the adjusted 
quantities. 
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Figure 1. Scheme of Adaptive Control to Indirect Reference 
Model 

 
 

3. CLOSED-LOOP IDENTIFICATION AND ROBUST 
CONTROL 

 
As discussed in the introduction about the strong iterative 

between robust control and closed-loop identification and 
adaptive control, this iterative forces the automation engineer 
to create new identification algorithms [6-7]. New algorithms 
were developed in the nineties in the context of the iterative 
approach for closed-loop identification and recalculate the 
regulator. In fact, closed-loop identification can not be 
dissociated from the regulator and robustness considerations. 
The basic scheme of a digital control loop is shown in Figure 
2, the model of the machine is characterized by a transfer 
operator (where z−1 is the unit delay operator).   

 
G(z−1) = z−d B�z

−1�
A(z−1)

 (Karimi Model)  
B(z−1) = b1 ∗ z−1 + ⋯ bnBz−np  

 = z−1B∗(z−1) 
A(z−1) = 1 + a1 ∗ z−1 + ⋯ anAz−nA 

= 1 + z−1A∗(z−1) 

(1) 

 
with d the deley. 

 

 
 

Figure 2. Closed loop system with R-S-T controller 
 
The closed-loop system uses a digital R-S-T controller. The 

output of the machine (process), in closed loop, is given by: 
 

y(t + 1)  = −A∗y(t) + B∗u(t − d) + A ∗ ξ(t + 1) 
= θTφ(t) + Aξ(t + 1) (2) 

 
With u(t) is the input of the process, y(t) is the output of 

the process, ξ(t) is the disturbance (Load) and: 

θT = �a1 … anAb1 … bnb� (3) 
 
φT = [−y(t) …− y(t − nA + 1)u(t − d) … u(t − nB

+ 1 − d)] (4) 

 

u(t) = −
R(z−1)
S(z−1) y(t) + ru′ (t) (5) 

 
With ru′  is the equivalent external excitation superimposed 

on the output of the regulator. In general:  
 

ru′ =
T(z−1)
S(z−1) r + ru (6) 

 
where r is the reference signal and ru is an external signal 
added to the output of the regulator. In Gonzalez [7], 
robustness and closed-loop identification for regulator design 
is achieved by the sensitivity functions as follows: 

The disturbance-output sensitivity function is given by: 
 

Syp(z−1) =
A(z−1)S(z−1)

C(z−1)  (7) 

 
The disturbance-input sensitivity function is given by: 
 

Sup(z−1) = −
A(z−1)R(z−1)

C(z−1)  (8) 

 
And C(z−1) is the characteristic polynomial of the closed loop 
whose roots are the poles of the closed loop:  

 
C(z−1) = A(z−1)S(z−1) + z−dB(z−1)R(z−1) (9) 

 
Techniques to combine the achievement of nominal 

performance with the calibration of sensitivity functions have 
been developed and applied in practice [4,8], where the 
fundamental purpose of closed-loop identification is to obtain 
a process model that leads to a better prediction of the behavior 
of the real closed loop. This principle is illustrated in Fig.3 
where the parametric adaptation algorithm will modify the 
model parameters to minimize the closed-loop output error. By 
following this approach consisting of algorithm families called 
"Closed loop output error (CLOE)" it was developed by Gang 
et al. [9-10], their common feature is the structure of the 
adjustable predicator shown in Figure 3 and given by: 
y�(t + 1) = θ�

T(t)φ(t). 
 

 
 

Figure 3. Identification by the method of closed loop output 
error 
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𝜃𝜃�(𝑡𝑡) = �𝑎𝑎�1(𝑡𝑡) …𝑎𝑎�𝑛𝑛𝐴𝐴(𝑡𝑡) 𝑏𝑏�1(𝑡𝑡) … 𝑏𝑏�𝑛𝑛𝐵𝐵(𝑡𝑡)�, 
𝜑𝜑𝑇𝑇(𝑡𝑡) = [−𝑦𝑦�(𝑡𝑡) …− 𝑦𝑦�(𝑡𝑡 − 𝑛𝑛𝐴𝐴 + 1) 𝑢𝑢�(𝑡𝑡 − 𝑑𝑑) … 𝑢𝑢�(𝑡𝑡 −

𝑛𝑛𝐵𝐵 + 1 − 𝑑𝑑)], 
𝑦𝑦�(𝑡𝑡) = 𝜃𝜃�𝑇𝑇(𝑡𝑡)𝜑𝜑(𝑡𝑡 − 1),  
𝑢𝑢�(t) = −R�z−1�

S(z−1)
y�(t) + ru′ (t), ru′ = T�z−1�

S(z−1)
r + ru. 

The output error in closed loop is given by: 
𝜖𝜖(𝑡𝑡 + 1) = 𝑦𝑦(𝑡𝑡 + 1) − 𝑦𝑦�(𝑡𝑡 + 1)  

= S
P
�θ(t) − θ�(t + 1)�

T
φ(t) + ω′(t + 1), 

with: ω′(t + 1) = AS
P
ω(t + 1) = Sypω(t + 1). 

According to [15], all algorithms use the following 
parametric adaptation algorithm: 

 
θ�(t + 1) = θ�(t) + F(t)φ(t)ϵCL(t + 1) (10) 

 
F(t + 1)−1 = λ1(t)F−1 + λ2(t)φ(t)φ(t)T (11) 

 
0 < λ1 ≤ 1;   0 ≤ λ2 < 2; (12) 

 
ϵCL(t + 1) = y(t + 1) − y�(t + 1) 

= y(t+1)−y�(t+1)
1+φT(t)F(t)φ(t)

  (13) 

 
 

4. ADAPTATION OF REGULATOR PARAMETERS 
AND CONTROL LAW 

 
The objective of MRAC is to obtain an adaptation 

mechanism that ensures the convergence  
of the error of the models trial to zero regardless of the initial 
error of the parameters. The command must be such that the 
output of the process that verified the equation of the model 
[7,10] is: C1(z−1)y(k) = z−1D(z−1)r(k). 
where: C1(z−1) = 1 + c1z−1 + ⋯ znc1 , D(z−1) = d0 +
d1z−1 + ⋯ dndznd. 

In regulation we put: 𝑟𝑟 = 0. 
The control must reject a disturbance with the dynamics 

defined by: C2(z−1)y(k) = 0 
where: C2(z−1) = 1 + c2z−1 + ⋯ c2nznc2 . 

The structure of the correction, based on the pole placement 
method, uses the explicit reference model described by: 
C1(z−1)ym(k) = z−dD(z−1)r(k). 

With ym and  𝑟𝑟 are respectively the output and the input of 
the reference model. 

The error process of the model is defined by the equation 
(16) replacing  y�  by  ym it gives:    
ε(k) = y(k) − ym(k) and since: 𝑟𝑟 = 0, so ε(k) = y(k). 
The objectives of the control can be specified by: 

C2(z−1) ε(k + d) = 0. 
In the case where (d> 1), in order to obtain a corrector, it is 

necessary to rewrite the preceding equation in the more 
general form: 

 
C2(z−1)ε(k + d) = f[y(k + d − 1) y(k

− 2). u(k) u(k − 1) … ] 
C2(z−1)ε(k + d) = B(z−1)S(z−1)u(k)

+ R(z−1)y(k) − C2(z−1)ym(k) 

(14) 

 
Such a form can be obtained by using the following 

polynomial identity: 
 

C2(z−1) = A(z−1)S(z−1) + z−dR(z−1) 
 

S(z−1) = 1 + s1z−1 + ⋯ snsz−ns 
 

R(z−1) = r0 + r1z−1 + ⋯ rnrz−nr 
 
This equation has a unique solution when: 𝑛𝑛𝑠𝑠 = 𝑑𝑑 − 1 ; 

𝑛𝑛𝑅𝑅 = 𝑚𝑚𝑎𝑎𝑚𝑚�𝑛𝑛𝐴𝐴 − 1,𝑛𝑛𝐶𝐶2 − 1�. 
The command which makes it possible to obtain the servo 

and regulation objective is obtained  
by canceling (14), is:  

 
u(k) =  

1
b0

[C2(z−1)y(k + d) − R(z−1)y(k) − B∗(z−1)u(k)]  
u(k) =  

1
B(z−1)S(z−1)

[C2(z−1)y(k + d) − R(z−1)y(k) −
B∗(z−1)u(k)]  

(15) 

 
with: 

 
B∗(z−1) = 𝐵𝐵(𝑧𝑧−1)𝑆𝑆(𝑧𝑧−1) − 𝑏𝑏0; 𝑏𝑏0 ≠ 0. 

 
 

5. APPLICATION OF ROBUST ADAPTIVE CONTROL 
BY MRAC TO ASYNCHRONOUS DUAL STATOR 
MACHINE 

 
The difficulty in controlling a dual stator asynchronous 

machine lies in the fact that there is a strong coupling between 
the input and output variables and the internal variables of the 
machine such as flux, torque and speed [3,11]. Conventional 
control methods such as torque control by frequency slip and 
flux by the ratio of voltage to frequency, this type of control 
can not ensure significant dynamic performance [3,12], the 
development of electronics in the use of static and semi-
conductive converters, allowed the application of new control 
algorithms such as the control identical to that of the MCC. 

Vector control is based on the decoupling of flux and torque 
in AC machines [1]. The vector control leads to high industrial 
performance of asynchronous drives if the rotor flow coincides 
with the axis (d) of the reference linked to the rotating field. 
And after the rotor flow orientation by: φrd = φd, φrq = 0, 
so:  

 

Cem = p
Lm

Lm + Lr
�iqs1 + iqs2�φr (16) 

 
The main objective according to Hellali et al. [1,13], is to 

produce reference voltages for the static voltage converters 
supplying the DSIM. Note X∗ for reference quantities (torque, 
flux, voltages and currents). The application of the orientation 
of the rotor flux on the system of equations of the machine 
leads to [5-20-1]: 𝑇𝑇𝑟𝑟 = 𝐿𝐿𝑟𝑟

𝑅𝑅𝑟𝑟
, ωs

∗ = ωsr
∗ + ωr, 𝜔𝜔𝑠𝑠𝑟𝑟∗  

 
𝜑𝜑𝑟𝑟 = 𝐿𝐿𝑚𝑚(𝐼𝐼𝑠𝑠1𝑑𝑑 + 𝐼𝐼𝑠𝑠2𝑑𝑑) (17) 

 

 𝐶𝐶𝑒𝑒𝑚𝑚∗ = 𝑃𝑃
𝐿𝐿𝑚𝑚

𝐿𝐿𝑚𝑚 + 𝐿𝐿𝑟𝑟
𝜑𝜑𝑟𝑟∗�𝐼𝐼𝑠𝑠𝑠𝑠1 + 𝐼𝐼𝑠𝑠𝑠𝑠2� (18) 
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𝜔𝜔𝑠𝑠𝑟𝑟∗ =
𝑅𝑅𝑟𝑟𝐿𝐿𝑚𝑚

(𝐿𝐿𝑚𝑚 + 𝐿𝐿𝑟𝑟)𝜑𝜑𝑟𝑟∗
�𝐼𝐼𝑠𝑠𝑠𝑠1∗ + 𝐼𝐼𝑠𝑠𝑠𝑠2∗ � (19) 

 
 𝑉𝑉𝑠𝑠1𝑑𝑑∗ = 𝑅𝑅𝑠𝑠1𝐼𝐼𝑠𝑠1𝑑𝑑 + 𝐿𝐿𝑠𝑠1

𝑑𝑑
𝑑𝑑𝑑𝑑
𝐼𝐼𝑑𝑑𝑠𝑠1 − 𝜔𝜔𝑠𝑠∗�𝐿𝐿𝑠𝑠1𝐼𝐼𝑠𝑠1𝑠𝑠 +

𝑇𝑇𝑟𝑟𝜑𝜑𝑟𝑟∗𝜔𝜔𝑠𝑠𝑟𝑟∗ � 
(20) 

 

𝑉𝑉𝑠𝑠2𝑑𝑑∗ = 𝑅𝑅𝑠𝑠2𝐼𝐼𝑠𝑠2𝑑𝑑 + 𝐿𝐿𝑠𝑠1
𝑑𝑑
𝑑𝑑𝑡𝑡
𝐼𝐼𝑑𝑑𝑠𝑠2

− 𝜔𝜔𝑠𝑠∗�𝐿𝐿𝑠𝑠1𝐼𝐼𝑠𝑠2𝑠𝑠 + 𝑇𝑇𝑟𝑟𝜑𝜑𝑟𝑟∗𝜔𝜔𝑠𝑠𝑟𝑟∗ � 
(21) 

 

Vs1q∗ = Rs1Is1q + Ls1
d
dt

Iqs1 + ωs∗�Ls1Is1d + φr
∗� (22) 

 

Vs2q∗ = Rs2𝐼𝐼𝑠𝑠2𝑠𝑠 + 𝐿𝐿𝑠𝑠2
𝑑𝑑
𝑑𝑑𝑡𝑡
𝐼𝐼𝑠𝑠𝑠𝑠2 + 𝜔𝜔𝑠𝑠∗(𝐿𝐿𝑠𝑠2𝐼𝐼𝑠𝑠2𝑑𝑑 + 𝜑𝜑𝑟𝑟∗) (23) 

 
The current regulators have been made by the classical PI 

regulator in order to ensure a better robustness with respect to 
internal or external disturbances. Figure 4 shows the robust 
MRAC speed control scheme where the machine associated 
with two identical voltage inverters. 

 

 
 

Figure 4. Scheme of the decoupled control by flux orientation applied to the DSIM 
 

5.1 Simulation results 
 
The robust regulator developed in Section 3 is evaluated in 

simulation, using a 4.5 kW double-stator asynchronous motor, 
whose characteristics are summarized in APPENDIX B, fed 
by two identical inverters. The robust MRAC regulator 
performance is illustrated by forcing the machine to operate 
under different conditions: forward and reverse speed, loaded 
and unloaded motor. For robust identification, the parameters 
of the regulators are given the following values which have 
proved to be suitable: θT(0) = [0   0.01] , so: ω(t) =
z−2 b

1+az−1
Cem∗ (t). 

According to the Youb et al. [13-14], to avoid the 
convergence toward zero of adaptation gain, we pose: λ1(k) =
1  and, 0 < λ2(k) < 2  , with the initial adaptation gain is 
F(0) = I2, Kp=100, ki=50. Figure.5 shows that robust MRAC 
controllers have ensured a perfect speed reference tracking 
since the rotor speed reaches the reference speed after t = 0.45s 
and has an overshoot of less than 1%. The application of the 
load generates a weak attenuation of the speed during a short 
time 0.05s then it resumes the value of speed of reference 2860 
rpm (one applies a load of 14N.m to the (1:2) s), The two rotor 
axis component d and q shown in Figure 7, according to the 
values imposed in fully established regime and regardless of 
the applied load. So we say that the decoupling of FOC is 
perfect. 

Figure 8.a shows that the electromagnetic torque has a 
damped sinusoidal shape in the transient regime, with a 
starting value of 75N.m. When the speed reaches the setpoint, 
the torque oscillates zero and after the insertion of the load, the 
electromagnetic torque compensates the load torque and 
friction. 

In steady state the current iqs1 has the same pace as that of 
the electromagnetic torque therefore the speed regulation of 
the DSIM is similar to that of the MCC with separate 
excitation (Cem = K ∗ I), (Figure 8b). From the curve of the 
stator current Ias1, we see that its value at startup touches a 
peak value, and in the presence of the load (zoom), the current 
reaches a value max = 10A. The current is sinusoidal and has 
harmonics due to the two voltage inverters. 

 

 
 

Figure 5. Simulation result of speed 
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Figure 6. Output error of Speed (ωr − ωm) 

 
 

Figure 7. Rotor flux component d and q (phidr, phiqr) 
 

 

 
 

Figure 8. Presentation of electromagnetic Torque, current (Ids1 Iqs1) and stator current 
 

5.2 Test de robustness 
 
The robustness of a robust MRAC command is made by the 

behavior test of the regulation with respect to the variations of 
the parameters of the DSIM. Since the operation of electrical 
machines is sensitive to variations in the rotor time constant. 
We will increase the rotor resistance Rr of the DSIM compared 
to its nominal value Rr=2* Rn at t=[0.8-1.5] s. With the 
reversal of the load speed, Cr=14N.m applied to t=[1-2]. 

During the transient regime and before the reversal of the 
speed (from t = 0s to 1.2s), the curves  evolve in a way identical 
to that observed previously (Figure 8.a, b, c), from t = 1.2s, the 
speed reverses and reaches its negative setpoint after t = 0.48s 
without any overtaking. This creates an increase in current 
Ias1 which is equal to the value recorded during start-up, 
which stabilizes after 0.48s, to give back to the shape of the 
steady state, the electromagnetic torque reaches (-55Nm) at 
moment of the inversion of the speed, which stabilizes at its 
negative setpoint (-2500 rpm), the quadrature current Iqs1 
progresses in a manner consistent with the electromagnetic 
torque, the curves of the rotor flux components observe a slight 
variation during the reversal of the speed. The robustness test 
shows the insensitivity of the speed control by the robust 

MRAC regulator to the parametric variations due to the 
increase of Rr to [0.8-1.5] s of the machine. 

 
 

6. CONCLUSION 
 
In order to improve the speed adjustment, the adaptive 

control technique to the reference model based on the Landau 
stability theorem has been applied. The adaptation of the 
controller parameters over time by the closed-loop output error 
algorithm, which makes the control of the DSIM robust with 
respect to variations in the parameters of the machine.  

The simulation results clearly show that the speed control 
of the DSIM by robust MRAC is satisfactory in terms of speed 
and tracking of the reference speed (the response time and the 
time for reversing speed), note the absence of peaks at the level 
of electromagnetic torque, the disturbance rejection time (load) 
is low when applying an external disturbance (load). The 
robustness tests (variation of the rotor resistance) show that the 
robust adaptive control gives good responses of speed, and 
electromagnetic torque. It can be concluded that the MRAC-
based control based on the Landau stability theorem of the 
DSIM is robust and efficient during normal operation or under 
severe operating conditions. 
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Figure 9. Simulation results of robustness tests, Rr =2*R at t = [0.8-1.5] s, and speed inversion in laod 
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APPENDIX A  
 
Nomenclature of the parameters DSIM model 
 

DSIM  Doubly Star Induction Motor 
FOC  Field Oriented Control 
IFOC  Indirect Field Oriented Control 
DFOC  Direct Field Oriented Control 
PI  Proportional and Integral 
MRAC Model Rerferance Adaptive Control 
FLC  Fuzzy Logic Controller 
Vds, Vqs, Vdr, Vqr Stator and rotor voltages d-q axis 

components 
Ids, Iqs, Idr, Iqr Stator and rotor currents d-q axis 

components 
φs, φr stator - rotor flux 
φd, φq Stator flux d- q axis components 
ωs, ωr, ωsr∗  Stator and Rotor pulsation respectively and 

Speed sleep Reference 
φr
∗ Rotor flux control reference 

Rs, Rr Stator- Rotor Resistance 
Cr Load torque 
ω Mechanical speed 

Cem Electromagnetic torque 
Ls, Lr Stator- and Rotor inductance respectively 
Lm Mutual inductance 
J Total inertia 
P Number of pole pairs 
Kf Friction coefficient 
θs Angle between stator and rotor flux 

 
 
APPENDIX B  
 
DSIM motor parameters 
 

DSIM Mechanical Power 
Nominal Voltage 
Stators resistances 
Rotor resistance 
Stator self inductances 
Rotor self inductance 
Mutual inductance 
Moment of inertia 
Viscous friction coefficient 
Nominal frequency 
Number of pole pairs 

Pw 
Vn 
Rs1 = Rs2 
Rr 
Ls1 = Ls2 
Lr 
Lm 
J 
Kf 
f 
P 

4.5 Kw 
220 V 
3.72 Ω 
3.72 Ω 
0.022 H 
0.006 H 
0.3672 H 
0.0662 Kg.m² 
0.001 N.m/rd 
50 Hz 
1 
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