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Introduction

The Orlicz spaces were introduced by Z.W.Birnbaum and W.Orlicz (1931)(see [3]) as

a natural generalization of the classical Lebesgue spaces Lp , 1 < p < +∞. For this

generalization the function xp entering in the definition of Lp space is replaced by a

more general convex function Φ , which is called an N-function and he studied on the

Orlicz space associated to N-function. The first detailed study on Orlicz spaces was

given by Krasnosel’skii and Rutickii (1961) ( see [9] ) and they considered the function

Φ as an N-function that is based on the integral representation of the real valued

convex function.
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N-function and Young function are defined on R and Φ is taken an even function in

Krasnosel’skii and Rutuckii (1961), Rao and Ren (1991) ( see [17] ) respectively. But

in this memory we take the domain of the Φ as [0,+∞) for the convenience with the

other definitions. Also, we recall that an N-function Φ is finite real valued convex

function defined on [0,+∞) , so this implies that Φ is necessarily continuous.

However, a Young function can have infinite value at a point, and hence may be

discontinuous at such a point.
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Moreover, recently, in several studies about Orlicz spaces especially on the composition

operators (Arora and et al. (2007)( see [1] ), Kumar (1997) ( see [8] ), Raj and Khosla

(2009)( see [16] )), the function Φ is defined differently from the Young function used

in Rao and Ren’s works but again they called this new function Φ as a Young function.

We know that there are four different type of spaces : classical Lebesgue spaces Lp ,

Orlicz spaces, variable exponent Lebesgue spaces Lp(·) and generalized Orlicz spaces.

Naturally, Lp-spaces are Orlicz spaces and Lp(·)-spaces, and Orlicz and Lp(·)-spaces are

generalized Orlicz spaces. Orlicz spaces and Lp(·)-spaces have different nature, and

neither of them is a subset of the other.
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As generalized Orlicz spaces have been an area of growing interest recently. so, the

main topic treated in this memory is the representation of some definitions and basic

properties of Φ-function and we use them to study some properties of generalized

Orlicz spaces as convergence, completeness, separability, uniform convexity, reflexivity

and density of smooth functions. The reader can find a lot of information about in the

excellent monograph [4] and [6]

Generalized Orlicz spaces has become part of the mainstream research fields in

contemporary functional analysis. so, In this memory, we study some definitions and

basic properties of Φ-function and we use them to study some properties of generalized

Orlicz spaces (also known as Musielak-Orlicz spaces) as convergence, completeness,

separability, uniform convexity, reflexivity and density of smooth functions.
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Preliminary notions

Preliminary notions
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Some results about integration that everyone must know

Theorem

Monotone convergence theorem, Beppo Levi(H. Brezis 2010 [2])
Let (fn) be a sequence of functions in L1 that satisfy

(a) f1 ≤ f2 ≤ ... ≤ fn ≤ fn+1 ≤ ... a.e. on Ω,

(b) supn

∫
fn <∞.

Then fn(x) converges a.e. on Ω to a finite limit, which we denote by f (x) ; the
function f belongs to L1 and ‖fn − f ‖1 → 0.Let (fn) be a sequence of functions in L1

that satisfy

(a) f1 ≤ f2 ≤ ... ≤ fn ≤ fn+1 ≤ ... a.e. on Ω,

(b) supn

∫
fn <∞.

Then fn(x) converges a.e. on Ω to a finite limit, which we denote by f (x) ; the
function f belongs to L1 and ‖fn − f ‖1 → 0.
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Some results about integration that everyone must know

Theorem

Dominated convergence theorem, Lebesgue(H. Brezis 2010 [2])
Let (fn) be a sequence of functions in L1 that satisfy

(a) fn(x)→ f (x) a.e. on Ω

(b) there is a function g ∈ L1 such that for all n, |fn(x)| ≤ g(x) a.e. on
Ω. Then f ∈ L1 and ‖fn − f ‖1 → 0.

Fatou’s lemma(H. Brezis 2010 [2])

Let (fn) be a sequence of functions in L1 that satisfy

(a) for all n, fn ≥ 0 a.e.

(b) supn

∫
fn <∞.

For almost all x ∈ Ω we set f (x) = lim infn→∞ fn(x) ≤ +∞. Then f ∈ L1 and∫
f ≤ lim inf

n→∞

∫
fn.

A basic example is the case in which Ω = RN ,M consists of the Lebesgue measurable
sets, and µ is the Lebesgue measure on RN .
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Definition (C.P. Niculescu and...(2006))[12]

[Convex Functions]
A function f : I → R is called convex if

(1) f ((1− λ)x + λy) ≤ (1− λ)f (x) + λf (y)

for all points x and y in I and all λ ∈ [0, 1].

Definition(C.P. Niculescu and...(2006))[12]

Let V be a real vector space. We say that function ‖·‖ from V to [0,∞] is a
quasinorm if :

(a) ‖f ‖ = 0 if and only if f = 0.

(b) ‖af ‖ = |a| ‖f ‖ for all f ∈ V and a ∈ R.
(c) There exists λ > 0 such that ‖f + g‖ ≤ λ(‖f ‖+ ‖g‖) for all

f , g ∈ V .

If λ = 1 in (c), then ‖·‖ is called a norm. A (quasi)Banach space (V , ‖·‖V ) is a
(quasi)normed vector space which is complete with respect the (quasi)norm ‖·‖V .
The dual space V ∗ of a (quasi)Banach space V consists of all bounded, linear
functionals F : V → R. The duality pairing between V ∗ and V is defined by
〈F , x〉V∗,V = 〈F , x〉 := F (x) for F ∈ V , x ∈ V . The dual space is equipped with
the dual quasinorm ‖f ‖V∗ := sup‖x‖V≤1〈F , x〉, which makes V ∗ a quasi-Banach
space.
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A space is called separable if it contains a dense, countable subset. We denote the
bidual space by V ∗∗ := (V ∗). A quasi-Banach space V is called reflexive if the
natural injection ι : V → V ∗∗, given by 〈ιx ,F 〉V∗∗,V∗ := 〈F , x〉V∗,V , is
surjective. A norm ‖·‖ on a space V is called uniformly convex if for every ε > 0
there exists δ(ε) > 0 such that for allx , y ∈ V satisfying ‖x‖ , ‖y‖ ≤ 1 the
inequality ‖x − y‖ > ε implies

∥∥ x+y
2

∥∥ < 1− δ(ε). A quasi-Banach space V is
called uniformly convex, if there exists a uniformly convex norm ‖·‖′, which is
equivalent to the original norm of V .

Proposition

(C.P. Niculescu and...(2006))[12] Let V be a Banach space and let W ⊂ V be closed.
Then :

(a) W is a Banach space.

(b) If V is reflexive, then V is reflexive.

(c) If V is separable, then W is separable.

(d) If V is uniformly convex, then V is reflexive.

(e) If V is uniformly convex, then W is uniformly convex.
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History of generalized Orlicz spaces
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History of generalized Orlicz spaces

Variable exponent Lebesgue spaces appeared in the

literature for the first time already in a 1931 article by W.

Orlicz [14].Variable exponent spaces have been studied in

more than a thousand papers in the past 15 years so we

only cite a few monographs on the topic which can be

consulted for additional references ([5]).

In 2011, Lars Diening, Petteri Harjulehto, Peter Hästö and

Michael Ruzicka [4] have written a book on variable

exponent spaces. Recently, in 2019 Petteri Harjulehto and

Peter Hasto [6] have presented a systematic treatment of

Orlicz and generalized Orlicz spaces (also known as

Musielak-Orlicz spaces) in a general framework.

(Władysław Orlicz)
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Φ-Functions
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Equivalent Φ-functions [4] [7]

Definition

A function h : (0,∞) −→ R is almost increasing if there exists a constant δ ≥ 1 such
that h(x) ≤ δh(t) for all 0 < x < y . Almost decreasing is defined analogously.
Increasing and decreasing functions are included in the previous definition as the
special case δ = 1.

Definition

Let f : (0,∞) −→ R and p, q > 0. We say that h satisfies

(2) if
f (y)

yp
is increasing;

(3) if
f (t)

yp
is almost increasing;

(4) if
f (y)

yq
is decreasing;

(5) if
f (y)

yq
is almost decreasing;
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Equivalent Φ-functions

We say that f satisfies (2)p>1, (3)p>1, (4)q<∞ or (5)q<∞ if there exist p > 1 or
q <∞ such that f satisfies (2),(3), (4) or (5), respectively.

Definition

Let f : [0,∞) −→ [0,∞) be increasing with limx−→0+ f (x) = 0, limx−→∞ f (x) =∞
and f (0) = 0. Such f is called a Φ-prefunction.
We say that a Φ-prefunction f is a

(weak) Φ-function, if it satisfies (3) with p = 1 on (0,∞) ;

(convex) Φ-function if it is left-continuous and convex ;

(strong) Φ-function if it is continuous in the topology of [0,∞] and convex.

The sets of weak, convex and strong Φ-function are denoted by Φw , Φc and Φs

respectively.
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Equivalent Φ-functions

Lemma

If f ∈ Φw is left-continuous, then f (x) ≤ lim infxk→x f (xk ),
i.e. f is lower semicontinuous.

Definition

Two functions f and g are equivalent, f ' g , if there exists η ≥ 1 such that
f ( x
η

) ≤ g(x) ≤ f (ηx) for all x ≥ 0.

Lemma

Let f , g : [0,∞)→ [0,∞] be increasing with f ' g .
(a) If f is a Φ-prefunction, then g is a Φ-prefunction.
(b) If f satisfies (3), then g satisfies (3).
(c) If f satisfies (5), then g satisfies (5).
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Equivalent Φ-functions

Example [6]

we consider an example shows that (2) without the
"almost" is not invariant under equivalence of
Φ-functions.
Assume that f (y) := y2 and
g(y) := y2 + max{y − 1, 0} for y ≥ 0, see Figure 1.
Then f (y) ≤ g(y) ≤ f (2y) so that f ' g .
Clearly f satisfies (2) with p = 2. Suppose that g
satisfies (2) for p ≥ 1. We write the condition at
points y = 2 and x = 3 :

4 + 1
2p

=
g(2)

2p
≤

g(3)

3p
=

9 + 2
3p

i.e.( 3
2 )p ≤ 11

5 .This means that p < 2, hence g does
not satisfy (2) with p = 2

Figure 1 – Functions f (solid) and
g (dashed) from Example 18

Lemma

Let f , g : [0,∞)→ [0,∞].
(a) If f satisfies (3) with p = 1 and f ≈ g , then f ' g and g satisfies (3) with p = 1.
(b) If f satisfies (5)q<∞, then f ' g implies f ≈ g .
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Upgrading Φ-functions

Lemma

If f ∈ ΦW satisfies (3) with p ≥ 1, then there exists g ∈ Φc equivalent to f such that
g1/p is convex. In particular, g satisfies (2).

Corollary

If f ∈ Φw , then there exists a constant λ > 0 such that

f
(
λ

∞∑
k=1

αkξk

)
≤
∞∑
k=1

f (αk )ξk

for all αk , ξk ≥ 0 with
∑
ξk = 1.

theorem

Every weak Φ-function is equivalent to a strong Φ-function
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Upgrading Φ-functions

Definition

We say that a function f : [0,∞)→ [0,∞] satisfies ∆2, or is doubling if there exists a
constant θ ≥ 2 such that .

f (2y) ≤ θf (y) for all y ≥ 0.

Lemma

(a) If f ∈ ΦW , then ∆2 is equivalent to (5)q<∞,
(b) If f ∈ Φc , then ∆2 is equivalent to (4)q<∞.

Proposition

If f ∈ Φw satisfies (5), then there exists g ∈ Φs with g ≈ f which is a strictly
increasing bijection.
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Inverse Φ-Functions

Definition

By f −1 : [0,∞]→ [0,∞] we denote the left-inverse of

f : [0,∞]→ [0,∞],

f −1(η) := inf{y ≥ 0 : f (y) ≥ η}.

In the Lebesgue case, the inverse of y 7→ yp is y 7→ y
1
p . As a more general intuition,

this means that we flip (mirror) the function over the line y = x , and choose the value
of the discontinuities so as to make the function left-continuous.
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Inverse Φ-Functions

Example[6]

We define f : [0,∞]→ [0,∞] by

f (y) :=


0 if y ∈ [0, 2]

y − 2 if y ∈ (2, 4]

3 if y ∈ (4, 6]

y − 3 if y ∈ (6,∞]

see Figure 02 . Then f ∈ ΦW \Φc and the left-inverse
is given by

f −1(y) :=


0 if y = 0
y + 2 if y ∈ (0, 2]

4 if y ∈ (2, 3]

y + 3 if y ∈ (3,∞]
Figure 2 – A weak Φ-function
(solid) and its left-inverse (dashed)
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Inverse Φ-Functions

With these expressions we can calculate the
compositions fo f −1 and f −1o f :

f (f −1(y)) :=


y if y ∈ [0, 2]

2 if y ∈ (2, 3]

y if y ∈ (3,∞]

f −1(f (y)) :=


0 if y ∈ [0, 2]

y if y ∈ (2, 4]

4 if y ∈ (4, 6]

y if y ∈ (6,∞]

We next investigate when the composition of f and
f −1 is the identity. Note that the following result
holds only for convex Φ-functions. In the set ΦW \Φc

the behaviour of the composition is more complicated,
as indicated by the previous example.
In the proof we use y0 := sup{y : f (y) = 0} and
y∞ := inf{y : f (y) =∞} which are illustrated in
figure 03.

Figure 3 – y0 and y∞
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Inverse Φ-Functions

Lemma

Let f ∈ Φc , y0 := sup{y : f (y) = 0} and y∞ := inf{y : f (y) =∞}. Then

f −1(f (y)) =


0, y ≤ y0,

t, y0 < y ≤ y∞ and f (f −1(η)) = min{η, f (y∞)}.

y∞, y > y∞.

In particular, if f ∈ Φs , then f (f −1(x)) ≡ x .
Note that the last property means that f −1 is in fact the right-inverse of f in the
sense of abstract algebra when f ∈ Φs .

Corollary

Let f ∈ Φc . If f (x) ∈ (0,∞), then f −1(f (x)) = x .
Indeed, if f ∈ Φc satisfies (5)q<∞, then f is bijective and f −1 is just the regular
inverse.
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Inverse Φ-Functions

Theorem

Let f , g ∈ Φw . Then f ' g if and only if f −1 ≈ g−1.

Proposition

Let f ∈ Φw and p, q > 0. Then
(a) f satisfies (3) if and only if f −1 satisfies (5) with q = 1

p
.

(b) f satisfies (5) if and only if f −1 satisfies (3) with p = 1
q
.

Lemma

Let f : [0,∞]→ [0,∞], η, y ≥ 0 and ν > 0.

(a) Then f −1 is increasing, f −1(0) = 0, f −1(f (y)) ≤ y and
f (f −1(η)− ν) < η when f −1(η) ≥ ν.

(b) If f is left-continuous with f (0) = 0, then f (f −1(η)) ≤ η.
(c) If f is increasing, then f −1 is left-continuous, y ≤ f −1(f (y) + ν) and

η ≤ f (f −1(η) + ν).

(d) If f satisfies (3) with p = ν, then f −1(f (y)) ≈ y , when
f (y) ∈ (0,∞).

(e) If f with limy→0+ f (y) = 0 satisfies (5)q<∞, then f (f −1(η)) ≈ η.

Lemma

Let f , g : [0,∞]→ [0,∞] be increasing. Then the following implications hold :

f ≤ g ⇒ g−1 ≤ f −1

f −1 < g−1 ⇒ g < f
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Inverse Φ-Functions

Lemma

Let f : [0,∞]→ [0,∞]. Then f is increasing and left-continuous if and only if
(f −1)−1 = f .

Definition

We say that π : [0,∞]→ [0,∞] belongs to Φ−1
w if it is increasing, left-continuous,

satisfies (5) with q = 1, π(y) = 0 if and only if y = 0, and, π(y) =∞ if and only if
y =∞.
Let us denote be Φw+ the set of left-continuous weak Φ-functions. We next show that
Φ−1

w characterizes inverses of Φw+ -functions and that Φ−1
w is an involution in Φw+ .

Proposition

The transformation f 7→ f −1 is a bijection from ΦW+ to Φ−1
W ,

(a) If f ∈ ΦW+ , then f −1 ∈ Φ−1
W and (f −1)−1 = f .

(b) If π ∈ Φ−1
W , then π−1 ∈ ΦW+ and (π−1)−1 = π.
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Conjugate Φ-Functions [4],[6]

Definition

Let f : [0,∞)→ [0,∞]. We denote by f ∗ the conjugate function of f which is
defined, for v ≥ 0, by

f ∗(v) := sup
y≥0

(
yv − f (y)

)
.

In the Lebesgue case y 7→ 1
p
yp , the conjugate is given by y 7→ 1

p′ y
p′ , where p′ is the

Hölder conjugate exponent. By definition of f ∗,

(6) yv ≤ f (y) + f ∗(v)

for every y , v ≥ 0. This is called Young’s inequality.

Lemma

If f ∈ Φw , then f ∗ ∈ Φc .
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Conjugate Φ-Functions

Lemma

Let f , g : [0,∞)→ [0,∞] and δ, γ > 0.

(a) If f ≤ g , then g∗ ≤ f ∗.

(b) If g(y) = δf (γy) for all y ≥ 0, then g∗(v) = δf ∗( v
δγ

) for all v ≥ 0.

(c) If f ' g , then f ∗ ' g∗.

Lemma

Let f ∈ Φc and γ := limy→0+
f (y)
y

= f ′(0). Then f ∗(x) = 0 if and only if x ≤ γ.
Here f ′(0) is the right derivative of a convex function at the origin.

Proposition

Let f ∈ ΦW . Then f ∗∗ ' f and f ∗∗ is the greatest convex minorant of f .
In particular, if f ∈ Φc , then f ∗∗ = f and

f (y) = sup
v≥0

(yv − f ∗(v)) for all y ≥ 0
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Conjugate Φ-Functions

Corollary

Let f , g ∈ Φc . Then f ≤ g if and only if g∗ ≤ f ∗.

Lemma

Let f ∈ Φc and γ := limy→0+
f (y)
y

= f ′(0). Then f ∗(x) = 0 if and only if x ≤ γ.
Here f ′(0) is the right derivative of a convex function at the origin.

Theorem

If f ∈ Φw , then f −1(y)(f ∗)−1(y) ≈ y .

Proposition

Let f ∈ ΦW . Then f satisfies (3) or (5) if and only if f ∗ satisfies (5) with q = p′ or
(3) with p = q′ , respectively.

Definition

We say that f ∈ Φw satisfies ∇2, if f ∗ satisfies ∆2.
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Generalized Φ-Functions

Definition

Let f : M × [0,∞)→ R and p, q > 0. We say that f satisfies (3) or (5), if there exists
δ ≥ 1 such that the function y 7→ f (x , y) satisfies (3) or (5) with a constant δ,
respectively, for µ-almost every x ∈ M. When δ = 1, we use the notation (2) and (4).

Definition

Let (M, Γ, µ) be a σ-finite, complete measure space. A function
f : M × [0,∞)→ [0,∞] is said to be a (generalized) Φ-prefunction on (M, Γ, µ) if
x 7→ f (x , |h(x)|) is measurable for every h ∈ L0(M, µ) and f (x , ·) is a Φ- prefunction
for µ-almost every x ∈ M. We say that the Φ-prefunction f is

a(generalized weak) Φ-function if f satisfies (3) with p = 1 ;

a(generalized convex) Φ-function if f (x , ·) ∈ Φc for µ-almost all x ∈ M ;

a(generalized) strong) Φ-function if f (x , ·) ∈ Φs for µ-almost all x ∈ M.

If f is a generalized weak Φ-function on (M, Γ, µ),we write f ∈ Φw (M, µ) and similarly
we define f ∈ Φc (M, µ) and f ∈ Φs(M, µ). If Ω is an open subset of Rn and µ is the
n-dimensional Lebesgue measure we omit µ and abbreviate Φw (Ω), Φc (Ω) or Φs(Ω).
Or we say that f is a generalized (weak/convex/strong)Φ-function on Ω. Unless there
is danger of confusion, we will omit the word "generalized".
Clearly Φs(M, µ) ⊂ Φc (M, µ) ⊂ Φw (M, µ). Every Φ-function is a generalized
Φ-function if we set f (x , y) := f (y) for x ∈ M and y ∈ [0,∞).
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Generalized Φ-Functions

Example

Let φ : M → [1,∞] be a measurable function and define φ∞ := lim sup|x|−→∞ φ(x).
Let us interpret y∞ :=∞χ(1,∞](y). Let ψ : M → (0,∞) be a measurable function
and 1 ≤ x < y <∞. Let us define, for y ≥ 0,

f1(x , y) := yφ(x)ψ(x)

f2(x , y) := yφ(x) log(e + y)

f3(x , y) := min{yφ(x), yφ∞}

f4(x , y) := yφ(x) + sin(y)

g1(x , y) := yφ + ψ(x)y t

g2(x , y) := (y − 1)s+ + ψ(x)(y − 1)t+

Observe that

f3 ∈ ΦW (M, µ)\Φc (M, µ) when φ is non-constant,

f4 ∈ ΦW (M, µ)\Φc (M, µ) when infx∈M φ(x) ≤ 3
2 ,

f1, f2 ∈ Φc (M, µ)\Φs(M, µ) when φ =∞ in a set of positive
measure, and

g1, g2 ∈ Φs(M, µ) when φ, t ∈ [1,∞).

Moreover, if φ(x) <∞ for µ-almost every x , then f1, f2 ∈ Φs(M, µ).
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Measurability

Theorem

Let f : M × [0,∞)→ [0,∞], x 7→ f (x , y) be measurable for every y ≥ 0 and
y 7→ f (x , y) be increasing and left-continuous for µ-almost every x . If h ∈ L0(M, µ) is
measurable, then x 7→ f (x , |h(x)|) is measurable.

Definition

We say that f , g : M × [0,∞)→ [0,∞] are equivalent, f ' g , if there exist τ > 1
such that for all y ≥ 0 and µ-almost all x ∈ M we have

g(x ,
y

τ
) ≤ f (x , y) ≤ g(x , τy).
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Measurability

Lemma

Let f , g : M × [0,∞)→ [0,∞], f ' g , be increasing with respect to the second
variable, and x 7→ f (x , |h(x)|) and x 7→ g(x , |h(x)|) be measurable for every
measurable f .

(a) If f is a generalized Φ-prefunction, then g is a generalized
Φ-prefunction.

(b) If f satisfies (3), then g satisfies (3).

(c) If f satisfies (5), then g satisfies (5).

Lemma

If f ∈ ΦW (M, µ), then f ∗ ∈ Φc (M, µ).

Lemma

If f ∈ ΦW (M, µ) satisfies (3) with p ≥ 1, then there exists g ∈ Φc (M, µ) equivalent
to f such that g1/p is convex. In particular, g satisfies (2).
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Measurability

Theorem

Every weak Φ-function is equivalent to a strong Φ-function

Proposition

If f ∈ ΦW (M, µ) satisfies (5)q<∞, then there exists g ∈ Φs(M, µ) with g ≈ f such
that y 7→ g(x , y) is a strictly increasing bijection for µ-almost every x ∈ M.

Lemma

Let f : M × [0,∞)→ [0,∞]. If y 7→ f (x , y) is increasing for µ-almost every x and if
x 7→ f (x , y) is measurable for every y ≥ 0, then x 7→ f −1(x , |h(x)|) is measurable for
every measurable h .
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Measurability

Definition

We say that π : M × [0,∞]→ [0,∞] belongs to Φ−1
W (M, µ) if it satisfies (3) with

p = 1, x 7→ ξ(x , y) is measurable for all y and if for µ-almost every x ∈ A the function
y 7→ π(x , y) is increasing, left-continuous, and π(x , y) = 0 if and only if y = 0 and
π(x , y) =∞ if and only if y =∞.

Proposition

The transformation f 7→ f −1 is a bijection from ΦW+ to Φ−1
W :

(a) If f ∈ ΦW+ (M, µ), then f −1 ∈ Φ−1
W (M, µ) and (f −1)−1 = f .

(b) If π ∈ Φ−1
W (M, µ), then π−1 ∈ ΦW+ (M, µ)) and (π−1)−1 = π.
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Weak Equivalence and Weak Doubling

Definition

We say that f , g : M × [0,∞)→ [0,∞] are weakly equivalent, f ∼ g , if there exist
τ > 1 and h ∈ L1(M, µ) such that

ϕ(x , y) ≤ ψ(x , τy) + h(x) and g(x , y) ≤ f (x , τy) + h(x)

for all y ≥ 0 and µ-almost all x ∈ M.
An easy calculation shows that ∼ is an equivalence relation.It clear from the
definitions that f ' g implies f ∼ g (with h = 0).

Lemma

Let f , g : M × [0,∞)→ [0,∞]. If f ∼ g , then f ∗ ∼ g∗.
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Weak Equivalence and Weak Doubling

Definition

We say that f : M × [0,∞)→ [0,∞] satisfies the weak doubling condition ∆W
2 if

there exist a constant θ ≥ 2 and h ∈ L1(M, µ) such that

f (x , 2y) ≤ θf (x , y) + h(x)

for µ-almost every x ∈ M and all y ≥ 0. We say that f satisfies condition ∇W
2 if f ∗

satisfies ∆W
2

If h ≡ 0, then we say that the (strong) ∆2 and ∇2 conditions hold.

Lemma

Let f , g : M × [0,∞)→ [0,∞] with f ∼ g .

(a) If f satisfies ∆W
2 , then g satisfies ∆W

2

(b) If f satisfies ∇W
2 , then g satisfies ∇W

2

Theorem

If f ∈ ΦW (M, µ) satisfies ∆W
2 and/or ∇W

2 , then there exists g ∈ ΦW (M, µ) with
f ∼ g satisfying ∆2 and/or ∇2.
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Generalized Orlicz Spaces

Generalized Orlicz Spaces
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Modulars [6] [10] [11]

Definition

Let f ∈ ΦW (M, µ) and let ρf be given by

ρf (h) :=

∫
M
f (x , |h(x)|)dµ(x)

for all h ∈ L0(M, µ). The function ρf . is called a modular. The set

Lf (M, µ) := {h ∈ L0(M, µ) : ρf (λh) <∞ for some λ > 0}

is called a generalized Orlicz space. If the set and measure are obvious from the
context we abbreviate Lf (M, µ) = Lf .

Lemma

Let f ∈ ΦW (M, µ).

(a) Then Lf (M, µ) = {h ∈ L0(M, µ) : limβ→0+ ρf (βh) = 0}.
(b) If, additionally,f satisfies (5)q<∞, then

Lf (M, µ) = {h ∈ L0(M, µ) : ρf (h) <∞}.
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Modulars

Lemma

Let f ∈ ΦW (M, µ) and hn, h, r ∈ L0(M, µ). In (a) and (b), we assume also that f is
left-continuous.

(a) If hn → h µ-almost everywhere, then ρf (h) ≤ lim infn→∞ ρf (hn).

(b) If |hn| ↗ |h| µ-almost everywhere, then ρf (h) = limn→∞ ρf (hn)

(c) If hn → h µ-almost everywhere, |hn| ≤ |r | µ-almost everywhere, and
ρf (βr) <∞ for every β > 0, then limn→∞ ρf (β |h − hk |) = 0 for
every β > 0.

Lemma

Let f ∈ ΦW (M, µ) satisfy (4)q<∞. Let hi , ri ∈ Lf (Rn) for i = 1, 2, ... with (ρf (hi ))∞i=1
bounded. If ρf (hi − ri )→ 0 as i →∞, the

|ρf (hi )− ρf (ri )| → 0 as i →∞.
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Quasinorm and the Unit Ball Property

Definition

Let f ∈ ΦW (M, µ). For h ∈ L0(M, µ) we denote

‖h‖Lf (M,µ) := inf

{
β > 0, ρf

( h
β

)
≤ 1
}
.

We abbreviate ‖h‖Lf (M,µ) = ‖h‖f if the set and measure are clear from the context.

Remark

Observe that we can write the space Lf with this functional as follows :

Lf (M, µ) = {h ∈ L0(M, µ) : ‖h‖Lf (M,µ) <∞}.

As is the case for Lebesgue spaces, we identify functions which coincide µ-almost
everywhere, since ‖f ‖f = 0 only implies that f = 0 a.e.
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Quasinorm and the Unit Ball Property

Lemma

(a) If f ∈ ΦW (M, µ), then ‖·‖f is a quasinorm.

(b) If f ∈ Φc (M, µ), then ‖·‖f is a norm.

Lemma

Unit Ball Property
Let f ∈ ΦW (M, µ). Then

‖h‖f < 1 ⇒ ρf (h) ≤ 1 ⇒ ‖h‖f ≤ 1

If f is left-continuous, then ρf (h) ≤ 1⇔ ‖h‖f ≤ 1.
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Quasinorm and the Unit Ball Property

Example

we can show that ‖h‖f = 1 does not imply ρf (h) ≤ 1 if the Φ-function is not
left-continuous.
Let f (y) :=∞χ[1,∞)(y) and h ≡ 1. Then f ∈ ΦW and ρf (h) =∞. Since
ρf (h/β) ≤ 1 if and only if β > 1, we have ‖h‖f = 1.

Proposition

Let f , g ∈ ΦW (M, µ). If f ' g , then Lf (M, µ) = Lg (M, µ) and the norms are
comparable.

Corollary

Let f ∈ ΦW (M, µ). Then ∥∥∥∥∥∥
∞∑
j=1

hi

∥∥∥∥∥∥
f

.
∞∑
j=1

∥∥hj∥∥f
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Quasinorm and the Unit Ball Property

Theorem

Let f , g ∈ ΦW (M, µ) and let the measure µ be atom − less. Then
Lf (M, µ) ↪→ Lg (M, µ) if and only if there exist θ > 0 and ϕ ∈ L1(M, µ) with
‖ϕ‖1 ≤ 1 such that

g
(
x ,

y

θ

)
≤ f (x , y) + ϕ(x)

for µ-almost all x ∈ M and all y ≥ 0.

Corollary

Let f , g ∈ ΦW (M, µ), f ∼ g . Then Lf (M, µ) = Lg (M, µ) and the norms are
comparable.

Corollary

Let f ∈ ΦW (M, µ) and f ∈ Lf (M, µ) and let a be the constant from (3) with p = 1.

(a) If ‖h‖f < 1, then ρf (h) ≤ δ ‖h‖f .
(b) If ‖h‖f > 1, then ‖h‖f ≤ δρf (h).

(c) In any case,‖h‖f ≤ δρf (h) + 1.
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Quasinorm and the Unit Ball Property

Lemma

Let f ∈ ΦW (M, µ) satisfy (3) and (5), 1 ≤ p ≤ q <∞. Then

min
{

(
1
δ
ρf (h))

1
p , (

1
δ
ρf (h))

1
q

}
≤ ‖h‖f ≤ max

{
(δρf (h))

1
p , (δρf (h))

1
q

}
for h ∈ L0(M, µ), where δ is the maximum of the constants from (3) and (5).

Corollary

Let f ∈ ΦW (M, µ) satisfy (3), 1 ≤ p <∞.Then

min
{

(
1
δ
ρf (h))

1
p , 1
}
≤ ‖h‖f ≤ max

{
(δρf (δ))

1
p , 1
}

for h ∈ L0(M, µ), where δ is the constant from (3).
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Quasinorm and the Unit Ball Property

Lemma

[Hölder’s Inequality]
Let f ∈ ΦW (M, µ).Then ∫

M
|ϕ| |ψ| dµ ≤ ‖ϕ‖f ‖ψ‖f ∗

for all ϕ ∈ Lf (M, µ) and ψ ∈ Lf
∗

(M, µ). Moreover, the constant 2 cannot in general
be replaced by any smaller number.

Example

We consider an example shows that the extra constant 2 in Hölder’s inequality cannot
be omitted.
Let f (y) = 1

2 y
2. Then a short calculation gives that

f ∗(y) = supv≥0(vy − 1
2 v

2) = 1
2 y

2. Let ϕ ≡ ψ ≡ 1. Then
∫ 1
0 ϕψdt = 1. On the other

hand,

inf
{
β > 0 :

∫ 1

0

1
2

( 1
β

)2
dt ≤ 1

}
=

1
√
2

and thus ‖ϕ‖Lf (0,1) = ‖ψ‖Lf ∗ (0,1) = 1√
2
and ‖ϕ‖Lf (0,1) ‖ψ‖Lf ∗ (0,1) = 1

2 .
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Convergence and Completeness

Lemma

Let f ∈ ΦW (M, µ).Then ‖hn‖f → 0 as k →∞ if and only if limn→∞ ρf (βhn) = 0 for
all β > 0.

Definition

Let f ∈ ΦW (M, µ) and hn, h ∈ Lf (M).We say that hθ is modular convergent
(ρf -convergent) to h if ρ(β(hn − h))→ 0 as n→∞ for some β > 0.

Lemma

Let f ∈ ΦW (M, µ).Modular convergence and norm convergence are equivalent if and
only if ρ(hn)→ 0 implies ρ(2hn)→ 0.

corollary

Let f ∈ ΦW satisfy (5)q<∞. Then modular convergence and norm convergence are
equivalent.
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Convergence and Completeness

lemma

Let f ∈ ΦW (M, µ) and µ(M) <∞. Then every ‖·‖f -Cauchy sequence is also a
Cauchy sequence with respect to convergence in measure.

Lemma

Let f ∈ ΦW (M, µ). Then every ‖·‖f -Cauchy sequence (hn) ⊂ Lf has a subsequence
which converges µ-a.e. to a measurable function h .

Theorem

(a) If f ∈ ΦW (M, µ), then Lf (M, µ) is a quasi-Banach space.

(b) If f ∈ Φc (M, µ), then Lf (M, µ) is a Banach space.

Lemma

Let f ∈ ΦW (M, µ) be left-continuous and h, hn ∈ L0(M, µ).

(a) If hn → h µ-almost everywhere, then ‖h‖f ≤ lim infn→∞ ‖hn‖f .
(b) If |hn| ↗ |h| µ-almost everywhere with hn ∈ Lf (M, µ) and

supn ‖h‖f <∞, then h ∈ Lf (M, µ) and ‖hn‖f ↗ ‖h‖f .
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Associate Spaces

Definition

Let f ∈ ΦW (M, µ). Then by (Lf (M, µ))∗ we denote the dual space of Lf (M, µ).
Furthermore, we define φf : (Lf (M, µ))∗ → [0,∞] by

φf (G) := sup
h∈Lf (M,µ)

(
|G(h)| − ρf (h)

)
.

Remark

Note the difference between the spaces (Lf (M, µ))∗ and Lf
∗

(M, µ) : the former is the
dual space of Lf (M, µ), whereas the latter is the generalized Orlicz space defined by
the conjugate modular f ∗.
By definition of the functional φf we have

(7) |G(h)| ≤ ρf (h)− φf (G)

for all h ∈ Lf (M, µ) and G ∈ (Lf (M, µ))∗.This is a generalized version of the classical
Young inequality.
The function φf is actually a semimodular on the dual space. We refer to [4] for
details.
In the definition of φf the supremum is taken over all Lf (M, µ). However, it is possible
to restrict this to the closed unit ball when G is in the unit ball and f is convex.
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Associate Spaces

Lemma

Let f ∈ Φc (M, µ). If G ∈ (Lf (M, µ))∗ with ‖G‖(Lf )∗ ≤ 1, then

φf (G) = sup
h∈Lf ,‖h‖f≤1

(
G |(h)| − ρ(h)

)
= sup

h∈Lf ,ρf≤1

(
|G(h)| − ρ(h)

)
.

Lemma

Let f ∈ ΦW (M, µ). There exist a sequence of positive functions hn ∈ Lf (M, µ), n ∈ N,
such that hn ↗ 1 and {hn = 1} ↗ M.
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Associate Spaces

Definition

We define the associate space of Lf (M, µ) as the space
(Lf )′(M, µ) := {h ∈ L0(M, µ) : ‖h‖(Lf )′ <∞} with the norm

‖h‖(Lf )′ := sup
‖ψ‖f≤1

∫
M
hψdµ

Theorem

[Norm Conjugate Formula]
If f ∈ ΦW (M, µ), then

(Lf )′ = Lf
∗

and the norms are comparable. Moreover, for all h ∈ L0(M, µ)

‖h‖f ≈ sup
‖ψ‖f ∗≤1

∫
M
|hψ| dµ.
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Separability

Proposition

Let f ∈ ΦW (M, µ) satisfy the assumption (5)q<∞. Then the sets S(M, µ) ∩ Lf (M, µ)
and L∞(M, µ) ∩ Lf (M, µ) are dense in Lf (M, µ).

Theorem

Let f ∈ ΦW (M, µ) satisfy (5)q<∞, and let µ be separable. Then Lf (M, µ) is separable.
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Uniform Convexity and Reflexivity [6]

Definition

We say that f ∈ Φc (M, µ) is uniformly convex if for every ν > 0 there exists d ∈ (0, 1)
such that

f
(
x ,

y + z

2

)
≤ (1− d)

f (x , y) + f (x , z)

2
for µ-almost every x ∈ M whenever y , z ≥ 0 and |z − y | ≥ ν max{|z| , |y |}

Proposition

The function f ∈ ΦW (M, µ) is equivalent to a uniformly convex Φ-function if and only
it satisfies (5)p>1.

Definition

A vector space V is uniformly convex if it has a norm ‖·‖ such that for every ν > 0
there exists δ > 0 with

‖u − v‖ ≥ ν or ‖u + v‖ ≤ 2(1− d)

for all u, v ∈ X with ‖u‖ = ‖v‖ = 1.
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Uniform Convexity and Reflexivity

Lemma

Let f ∈ Φc (M, µ) be uniformly convex. Then for every ν > 0 there exists d2 > 0 such
that

f
(
x ,

∣∣∣∣ z + y

2

∣∣∣∣ ) ≤ (1− d2)
f (x , |z|) + f (x , |y |)

2

for all z, y ∈ R with |z − y | > ν max{|z| , |y |} and every x ∈ M.

Lemma

Let f ∈ Φc (M, µ) be uniformly convex. Then for every ν > 0 there exists d > 0 such
that

ρf

(ϕ− ψ
2

)
< ν

ρf (ϕ) + ρf (ψ)

2
or ρf

(ϕ+ ψ

2

)
≤ (1− d)

ρf (ϕ) + ρf (ψ)

2

for all ϕ,ψ ∈ L0(M, µ).
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Uniform Convexity and Reflexivity

Theorem

Let f ∈ Φc (M, µ) be uniformly convex and satisfy (5)q<∞.Then Lf (M, µ) is uniformly
convex with norm ‖·‖f .
In particular, if f satisfies (3)p>1 and (5)q<∞, then Lf (M, µ) is uniformly convex and
reflexive.

Corollary

Let f ∈ ΦW (M, µ).If f satisfies ∆W
2 and ∇W

2 ,then Lf (M, µ) is uniformly convex and
reflexive.
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The Weight Condition (C0) and Density of Smooth Functions

Definition

We say that f ∈ ΦW (M, µ) satisfies (C0),if there exists a constant λ ∈ (0, 1] such
that λ ≤ f −1(x , 1) ≤ 1

λ
for µ-almost every x ∈ M.

Example

Let f (x , y) = 1
p(x)

yp(x) where p : M → [1,∞) is measurable, and
g(x , y) = yp + ψ(x)yq where 1 ≤ p < q <∞ and g : M → [0,∞) is measurable.
Then f , g ∈ Φs(M, µ). Since f −1(x , y) = (p(x)y)1/p(x), we see that f satisfies (C0)
(without assumptions for p). By Corollary 57, g satisfies (C0) if and only if
g ∈ L∞(M, µ).

Lemma

Let f ∈ ΦW (M, µ) satisfy (C0). Then there exists g ∈ Φs(M, µ) with f ' g and
g(x , 1) = g−1(x , 1) = 1 for µ-almost every x ∈ M.
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The Weight Condition (C0) and Density of Smooth Functions

Corollary

Let f ∈ ΦW (M, µ) . Then f satisfies (C0) if and only if there exists λ ∈ (0, 1] such
that f (x , λ) ≤ 1 ≤ f (x , 1/λ) for µ-almost every x ∈ M.

Lemma

If f ∈ ΦW (M, µ) satisfies (C0), then f ∗ satisfies (C0)

Lemma

Let f ∈ ΦW (M, µ) satisfy (C0), (3) and (5), p ∈ [1,∞) and q ∈ [1,∞].Then

Lp(M, µ) ∩ Lq(M, µ) ↪→ Lf (M, µ) ↪→ Lp(M, µ) + Lq(M, µ)

and the embedding constants depend only on (C0), (3) and (5).
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The Weight Condition (C0) and Density of Smooth Functions

Corollary

Let M have finite measure and let f ∈ ΦW (M, µ) satisfy (C0) and (3).Then
Lf (M, µ) ↪→ Lp(M, µ) and there exists λ such that∫

M
|h|p dµ .

∫
M
f (x , |h|)dµ+ µ

(
{0 < |h| <

1
λ
}
)
.

Corollary

Let M have finite measure and let f ∈ ΦW (M, µ) satisfy (C0).Then
L∞(M, µ) ↪→ Lf (M, µ).

Definition

A normed space (V , ‖·‖V ) with V ⊂ L0(M, µ) is called a Banach function space, if

(a) (V , ‖·‖V ) is circular, solid and satisfies the Fatou property.

(b) If µ(A) <∞, then χA ∈ X .

(c) If µ(A) <∞, then χA ∈ V ′,i.e.
∫
A |h| dµ ≤ c(A) ‖f ‖V for all f ∈ V .
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The Weight Condition (C0) and Density of Smooth Functions

Theorem

Let f ∈ ΦW (M, µ) satisfy (C0).Then Lf (M, µ) is a Banach function space.

Lemma

Let f ∈ ΦW (Ω) satisfy (5)q<∞.Then Lf0(Ω) is dense in Lf (Ω).

Theorem

If f ∈ ΦW (Ω) satisfies (C0) and (5)q<∞, then C∞0 (Ω) is dense in Lf (Ω).
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Conclusion
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Conclusion

In this memory, we presented a study on generalized Orlicz spaces and and their basic
properties. This work raises a number of questions that deserve to be addressed.
subsequently melted. For example, it would be wise to think in perspective of
following :

Does the next theorem hold for all Φ-prefunctions ?
Assume that f , g ∈ ΦW . Then f ' g if and only if f −1 ≈ g−1.

Is the next lemma true if we assume (5)q<∞ instead of (4)q<∞ ?
Let f ∈ ΦW (M, µ) satisfy (4)q<∞. Let hi , ri ∈ Lf (Rn) for i = 1, 2, ... with
(ρf (hi ))∞i=1 bounded. If ρf (hi − ri )→ 0 as i →∞, then

|ρf (hi )− ρf (ri )| → 0 as i →∞.

Does the next theorem hold without the assumption (C0) ?
If f ∈ ΦW (Ω) satisfies (C0) and (5)q<∞, then C∞0 (Ω) is dense in Lf (Ω).

For this reason we think that the memory will be useful also for researchers interested
in the Orlicz case only.
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