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Abstract

Recently, generalized Orlicz spaces has become part of the mainstream research
fields in contemporary functional analysis. so, In this memory, we study some
definitions and basic properties of Φ-function and we use them to study some
properties of generalized Orlicz spaces (also known as Musielak-Orlicz spaces) as
convergence, completeness, separability, uniform convexity, reflexivity and density
of smooth functions.

keywords: Φ-function, Variable exponent Lebesgue spaces Lp(·), Orlicz spaces,
Generalized Orlicz spaces.

Résumé
Récemment, les espaces d’Orlicz généralisés sont devenus une partie dans les
domaines principaux de recherche en analyse fonctionnelle moderne. Alors, dans
cette mémoire, nous étudions quelques définitions et propriétès de base de la
fonction Φ et nous utilisons pour étudier certaines propriétés des espaces d’Orlicz
généralisés ( aussi connu comme les espaces de Musielak-Orlicz ) comme conver-
gence, complétude, séparabilité, convexité uniforme, réflexivité et la densité des
fonctions indéfiniment dérivables à support compact.

mots-clés: Φ-fonction, Espaces de Lebesgue à exposant variable Lp(·), Espaces
d’Orlicz, Espaces d’Orlicz généralisés.
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List of Symbols

In what follows, we will use the following notations.

Rn Euclidean, n-dimensional space,

x Vecteur de Rn, x = (x1, x2, ..., xn), xi ∈ R, 1 ≤ i ≤ n

dµ or dx Lebesgue measure N -dimensional

|M | or mes (M) Measure of Lebesgue of a set M

|Ω| Measure of the set Ω

p.p. almost everywhere,

p
′

= p
p−1

, The Hölder conjugate exponent of p,

↗ Limit of an increasing sequence,

χA Characteristic function of the set A,

Ω Open set in RN

∂Ω The border of Ω

B Open ball,

B(x, r) Open ball with center x and radius r > 0,

(M,µ) Measure space,

C∞ Smooth functions, i.e. it consists of functions which are continuously

differentiable arbitrarily many times.

C∞
0 ⊂ C∞ Smooth functions with compact support,

δ Usually the constant from the (2.2)p>1 and (2.4)q<∞ conditions,

f+
B Essential supremum of f in B,

f−B Essential infimum of f in B,

f, g (Generalized) Φ-function,

f ∗ Conjugate Φ-function of f with f ∗∗ 6= f ,

Φc Set of convex Φ-functions,

Φc(M,µ) Set of generalized convex Φ-functions,
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f−1 Left-inverse of f ,

Φs Set of strong Φ-functions,

Φs(M,µ) Set of generalized strong Φ-functions,

ΦW Set of weak Φ-functions„

ΦW (M,µ) Set of generalized weak Φ-functions,

ΦW+ Set of left-continuous weak Φ-function,

∆2 The doubling function,

(M,Γ, µ) a σ-finite, complete measure space,

' is similar or equal to,

ρf Modular function,

ρf :=

∫
M

f(x, |h(x)|)dµ(x)

Lf Generalized Orlicz space,

L0(M,µ) Set of measurable functions,

(Lf )
′ Associate space of Lf ,

(Lf )∗ Dual space of Lf ,

Lf0 Generalized Orlicz functions with compact support,

L0 Set of measurable functions,

Ls Classical Lebesgue space,

S Simple functions,

| · |f Norm with respect to f ,

‖h‖Lf (M,µ) = inf{β > 0 : ρf

(
h
β

)
≤ 1}

‖·‖ϕ Luxemburg norm.

∆W
2 The weak doubling condition,

∇W
2 The weak doubling condition with f ∗,

y0 sup{y : f(y) = 0},
y∞ inf{y : f(y) = ∞},
[0,∞] Compactification of [0,∞),

(Lf (M,µ))′ := {h ∈ L0(M,µ) : ‖h‖(Lf )′ <∞}

‖h‖(Lf )′ = sup‖r‖ϕ≤1

∫
M

hrdµ

‖h‖V ∗ = sup‖h‖V
|G(h)|

V ∗ The dual space of V

φh = suph∈Lf (M,µ)

(
|G(h)| − ρf (h)

)
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Introduction

The Orlicz spaces were introduced by Z.W.Birnbaum and W.Orlicz (1931)(see [4]) as

a natural generalization of the classical Lebesgue spaces Lp, 1 < p < +∞. For this

generalization the function xp entering in the definition of Lp space is replaced by

a more general convex function Φ , which is called an N-function and he studied on

the Orlicz space associated to N-function. The first detailed study on Orlicz spaces

was given by Krasnosel’skii and Rutickii (1961) ( see [18] ) and they considered the

function Φ as an N-function that is based on the integral representation of the real

valued convex function.

N-function and Young function are defined on R and Φ is taken an even function

in Krasnosel’skii and Rutuckii (1961), Rao and Ren (1991) ( see [27] ) respectively.

But in this memory we take the domain of the Φ as [0,+∞) for the convenience

with the other definitions. Also, we recall that an N-function Φ is finite real valued

convex function defined on [0,+∞) , so this implies that Φ is necessarily continuous.

However, a Young function can have infinite value at a point, and hence may be

discontinuous at such a point. Moreover, recently, in several studies about Orlicz

spaces especially on the composition operators (Arora and et al. (2007)( see [2] ),

Kumar (1997) ( see [16] ), Raj and Khosla (2009)( see [25] )), the function Φ is

defined differently from the Young function used in Rao and Ren’s works but again

they called this new function Φ as a Young function.

We know that there are four different type of spaces: classical Lebesgue spaces

Lp , Orlicz spaces, variable exponent Lebesgue spaces Lp(·) and generalized Orlicz

spaces. Naturally, Lp-spaces are Orlicz spaces and Lp(·)-spaces, and Orlicz and Lp(·)-

spaces are generalized Orlicz spaces. Orlicz spaces and Lp(·)-spaces have different

nature, and neither of them is a subset of the other.

As generalized Orlicz spaces have been an area of growing interest recently. so,

the main topic treated in this memory is the representation of some definitions and
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basic properties of Φ-function and we use them to study some properties of gener-

alized Orlicz spaces as convergence, completeness, separability, uniform convexity,

reflexivity and density of smooth functions. The reader can find a lot of information

about in the excellent monograph [10] and [14].

The memory consists of three chapters. In the preliminaries (Chapter 1) we

establish the notation of the memory. We introduce some important results on

some definitions, examples of Banach spaces and some results about Integration

that everyone must know. Also, we recall the most important results about the

history of Non-standard growth phenomena.

In Chapter 2 of this memory as indicated in [10] and [14], we introduce the study

of some definitions and basic properties of Φ-function. so, we start by studying the

properties of almost increasing and almost decreasing, which will be used through-

out the memory and we consider two notions of the equivalence of Φ-functions and

prove relations between them. As Φ-functions have much better invariance proper-

ties than convex or strong F-functions. However, in many cases it is nicer to work

with Φ-functions of the latter classes. This can often be achieved by upgrading the

F-function that we obtain from some process. The tools for doing so are developed

in this chapter. An alternative approach to upgrading is to use the conjugate func-

tion. Since the weak Φ-functions are not bijections, they are not strictly speaking

invertible. However, we can define a left-continuous function with many properties

of the inverse, which we call for simplicity left-inverse. Note that this is not the left-

inverse in the sense of abstract algebra. For the elegance of our study, we extend

in this chapter all Φ-functions to the interval [0,∞] by φ(∞) := ∞. Finally, we

study the generalize Φ-functions in such a way that they may depend on the space

variable.

In the last chapter (Chapter 3) we use the properties of Φ-functions to study and

derive results for function spaces defined by means of Φ-functions. we first study

and define the spaces, then see that they are quasi-Banach spaces. after that, we

study associate spaces, separability and uniform convexity require some restrictions

on the Φ-function. Finally, we will study the density of smooth functions.
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Chapter 1

Preliminary notions

In this chapter we present the concepts and results used throughout the memory

on some definitions, examples of Banach spaces and some results about Integration

that everyone must know. see, e.g. the monographs [1], [3],[13] and [24].

1.1 Introducton to Banach spaces

Definition 1.1.1. Let V be a K-vector space. A functional ϕ : V → [0;∞) is called

a seminorm, if

(a) ϕ(λx) = |λ|ϕ(x),∀λ ∈ K;x ∈ V ,

(b) ϕ(x+ y) ≤ ϕ(x) + ϕ(y),∀x, y ∈ V .

Definition 1.1.2. Let ϕ be a seminorm such that ϕ(x) = 0 ⇒ x = 0. Then, ϕ is a

norm (denoted by ‖·‖).

Definition 1.1.3. A pair (V, ‖·‖) is called a normed linear space.

Lemma 1.1.4. Each normed space (V, ‖·‖) is a metric space (V, d) with a metric

given by d(x, y) = ‖x− y‖.

Definition 1.1.5. A sequence {xn}n∈N in a normed space (V, ‖·‖) is called a Cauchy

sequence, if

∀ν > 0 ∃N(ν) ∈ N ∀n,m ≥ N(ν) ⇒ ‖xn − xm‖ ≤ ν.
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Definition 1.1.6. A sequence {xn}n∈N converges to x (which is denoted by

limn→∞xn = x), if

∀ν > 0 ∃N(ν) ∈ N ∀n ≥ N(ν) ⇒ ‖xn − x‖ < ν.

Definition 1.1.7. If every Cauchy sequence {xn}n∈N converges in V , then (V, ‖·‖)

is called a complete space.

Definition 1.1.8. A normed linear space (V, ‖·‖) which is complete is called a

Banach space.

Lemma 1.1.9. Let (V, ‖·‖) be a Banach space and U be a closed linear subspace of

V . Then, (U, ‖·‖) is a Banach space as well.

Examples of Banach spaces

Example 1.1.10. Let B(T ) be a space consisting of all bounded maps f : T → K.

For each f ∈ B(T ) we set

‖f‖∞ = sup
t∈T

|f(t)| .

Then, (B(T ); ‖·‖∞) is a Banach space. To prove the assertion we need to show that

(a) ‖·‖∞ is a norm,

(b) each Cauchy sequence converges to an element from B(T ).

Concerning claim (a), let λ ∈ K and f ∈ B(T ). Then,

‖λf‖∞ = sup
t∈T

|λf(t)| = |λ| sup
t∈T

|f(t)| = λ ‖f‖∞ (1.1)

Let t0 ∈ T and f, g ∈ B(T ). Then,

|f(t0) + g(t0)| ≤ |f(t0)|+ |g(t0)| ≤ sup
t∈T

|f(t)|+ sup
t∈T

|g(t)| = ‖f‖∞ + ‖g‖∞ .
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The right hand side of the inequality above is independent on t. Therefore, taking

supremum of both sides of the inequality over t ∈ T yields

‖f + g‖∞ ≤ ‖f‖∞ + ‖g‖∞ . (1.2)

Finally, let f be such that ‖f‖∞ = 0, which is equivalent to supt∈T |f(t)| = 0. This

implies that |f(t)| = 0 for each t. Thus, f = 0.

Now, we shall prove the statement (b). Let {fn} be a Cauchy sequence. Then,

for every ν > 0 there exists N = N(ν) such that for all n,m ≥ N it holds that

‖fn − gm‖∞ < ν. In particular,

|fn(t)− gm(t)| < ν, ∀t ∈ T.

Thus, for any t ∈ T the sequence {fn(t)}n∈N converges to some f(t), due to the com-

pleteness of K (real and complex numbers are complete spaces). Define a candidate

for a limit of the sequence {fn}n∈N , that is, f : T → K as

f(t) = lim
n→∞

fn(t).

If follows from the statement above that there exists N0 = N0(ν, t) such that

|fn(t)− f(t)| < ν, ∀n ≥ N0. (1.3)

Without loss of generality we can assume that N0(ν, t) ≥ N(ν) for each t ∈ T .

Then, for n ≥ N it holds that

|fn(t)− f(t)| ≤
∣∣fn(t)− fN0(ν,t)(t)

∣∣ +
∣∣fN0(ν,t)(t)− f(t)

∣∣
≤

∥∥fn − fN0(ν,t)

∥∥
∞ + ν < 2ν,

where we used the fact that {fn}n∈N is a Cauchy sequence and (1.3). Moreover, for

each t ∈ T and N = N(ν) we have

|f(t)| ≤ |fN(t)|+ |fN(t)− f(t)| ≤ ‖fN‖∞ + 2ν,

which implies ‖f‖∞ ≤ ‖fN‖∞ + 2ν, and so forth f ∈ B(T ).
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Example 1.1.11. Let T be a metric space and Cb(T ) be a space of bounded con-

tinuous functions on T . Then, (Cb; ‖·‖∞) is a Banach space.

To prove the assertion, it is sufficient to show that Cb(T ) is a closed subspace of

B(T ) (due to the Lemma 1.9), that is, to show that every sequence in Cb(T ) which

converges in B(T ) converges to a point from Cb(T ). Let {xn}n∈N be a sequence

of bounded, continuous functions convergent to x ∈ B(T ). We need to show that

x is a continuous function. For any ν > 0 there exists N = N(ν) ∈ N, such that

‖xN − x‖∞ < ν/3, since the sequence is convergent. Now, let t0 ∈ T . By the

continuity of xN , there exists δ = δ(ν, t0) > 0 such that

d(t, t0) < δ ⇒ |xN(t)− xN(t0)| < ν/3.

Therefore, for all t such that d(t, t0) < δ it holds that

|x(t)− x(t0)| ≤ |x(t)− xN(t)|+ |xN(t)− xN(t0)|+ |xN(t0)− xN(t0)|

≤ 2 ‖x− xN‖∞ + |xN(t)− xN(t0)| ≤ 2ν/3 + ν/3 = ν,

which ends the proof.

Example 1.1.12. A space of continuous functions vanishing at infinity

C0(Rn) =
{
f ∈ Cb(Rn) : lim

|t|→∞
|f(t)| = 0

}
with a ‖·‖∞ norm is a Banach space.

Example 1.1.13. The following spaces

c0 =
{
{tn}n∈N : tn ∈ K, lim

n→∞
tn = 0

}
,

c =
{
{tn}n∈N : tn ∈ K, lim

n→∞
tn exists

}
with a ‖·‖∞ norm are Banach spaces.

Remark 1.1.14. B(N) is often denoted by l∞.
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lp spaces

Definition 1.1.15. Let 1 ≤ p <∞. We define

lp =
{
f ∈ l∞ :

∞∑
n=1

|fn|p <∞
}

and ‖f‖p = p

√√√√ ∞∑
n=1

|fn|p.

Lemma 1.1.16 (Hölder inequality for sequences). Let 1 ≤ p, q ≤ ∞ be such

that 1
p

+ 1
q

= 1. Then, for f ∈ lp and g ∈ lq it holds that

(a) f · g ∈ l1,

(b) ‖f · g‖1 ≤ ‖f‖p · ‖g‖q .

Lemma 1.1.17 (Minkowski inequality for sequences). Let 1 ≤ p ≤ ∞ and

f, g ∈ lp. Then

‖f + g‖p ≤ ‖f‖p + ‖g‖p .

Example 1.1.18. Spaces (lp, ‖·‖p) are Banach spaces for 1 ≤ p ≤ ∞.

Space (l∞, ‖·‖∞) coincides with (B(N), ‖·‖∞), therefore we assume that p <∞.

Similarly as in the Example 1, to prove the assertion we need to show that

(a) ‖·‖∞ is a norm,

(b) each Cauchy sequence converges to an element from lp.

Claim (a) is straightforward, when one uses the Minkowski inequality for the proof

of the triangle inequality. For the proof of completness, consider a Cauchy sequence

{fn}n∈N. Each element fn ∈ lp is a sequence given by fn = (fn1 , f
n
2 , ......). Note that

lp ⊂ l∞, what holds due to the following estimate

‖f‖p = p

√√√√ ∞∑
k=1

|fk|p ≥ p

√
sup
k∈K

|fk|p = sup
k∈K

|fk| = ‖f‖∞ ,

for f = (f1; f2; ....). Thus, if we consider the sequence {fn}n∈N as a sequence of

elements of l∞ space, we conclude that there exists exactly one f ∈ l∞ such that

13



limn→∞ ‖fn − f‖∞ = 0 (this follows from the completeness of (l∞, ‖·‖∞).

In particular,

lim
n→∞

fnk = fk for each k ∈ N. (1.4)

We shall show that f = {fk}k∈N is an element of lp space and that {fn}n∈N converges

to f in lp. For any ν > 0 there exists N = N(ν), such that for all n,m ∈ N it holds

that

‖fn − fm‖p < ν.

In particular, for every K ∈ N

p

√√√√ K∑
k=1

|fnk − fmk |
p ≤ ‖fn − fm‖p < ν.

Using (1.4) and passing to the limit with fmk we obtain

p

√√√√ K∑
k=1

|fnk − fk|p < ν.

Since the estimate is valid for all K and the right hand side of the inequality is

independent on K, it holds also that

p

√√√√ ∞∑
k=1

|fnk − fk|p < ν.

Therefore ‖fn − f‖p < ν, which proves that x is a limit of the sequence in lp.

Moreover,

‖f‖p ≤
∥∥f − fN

∥∥
p
+

∥∥fN∥∥
p
≤ ν +

∥∥fN∥∥
p
< +∞.

1.2 Minkowski functional

Definition 1.2.1. Set A is called an absorbing set if for each x ∈ V there exists

t ∈ K, such that t · x ∈ A.

Definition 1.2.2. Set A is called a balanced set if x ∈ A⇒ −x ∈ A.

14



Definition 1.2.3. Let A be a convex, absorbing and balanced set. A functional

µA : V → [0,∞) defined by

µA(x) = inf
{
t ∈ (0,∞) :

x

t
∈ A

}
(1.5)

is called Minkowski functional.

Lemma 1.2.4. Minkowski functional generates a seminorm on V . If additionally A

is bounded in each direction, that is, for each x ∈ V a set (A∩ lin{x}) is a bounded

set, then it is a norm.

Proof. We shall concentrate on the essential part of the proof, that is, showing that

µA fulfills the triangle inequality. Fix ν > 0 and let t = µA(x) + ν, s = µA(y) + ν.

Then, t−1x; s−1y ∈ A, what follows from the definition of the Minkowski functional.

Set A is convex, therefore

t

t+ s
· x
t

+
s

t+ s
· y
s

=
x+ y

t+ s
∈ A,

which implies that

µA(x+ y) = inf
{
z ∈ (0,∞) :

x+ y

z
∈ A

}
≤ t+ s = µA(x) + µA(y) + 2ν.

Due to a freedom in the choice of ν the assertion is proved.

Examples of normed spaces with a norm introduced by the
Minkowski functional

Let F = F (Ω) be a space of real valued, Lebesgue measurable functions on Ω.

Example 1.2.5. Orlicz spaces Lρ(Ω).

Let ρ be a non-negative convex function on [0;∞), such that

ρ(0) = 0 and lim
t→∞

ρ′(t) = ∞.

15



Define a set

A =
{
f ∈ F :

∫
Ω

ρ(|f(x)|)dx ≤ 1
}
. (1.6)

Orlicz space Lρ(Ω) is the smallest linear space containing A. It can be checked that

Minkowski functional µA defines a norm on Lρ(Ω).

Example 1.2.6. Lebesgue spaces

Lp(Ω) =
{
f ∈ F :

∫
Ω

|f(x)|p dx <∞
}
.

The most important class of Orlicz spaces arises when we set ρ(x) = xp, where

1 < p < ∞. In this case we obtain Lebesgue spaces Lp(Ω). Analogously as in the

example above,

A =
{
f ∈ F :

∫
Ω

|f(x)|p dx ≤ 1
}
.

It turns out that Minkowski functional µA is given by the following formula

µA(f) = p

√∫
Ω

|f(x)|p dx.

Note that A is a convex, absorbing and balanced set, therefore µA is a seminorm

on Lp(Ω). Moreover, if µA(f) = 0, then
∫

Ω

|f(x)|p dx = 0, which implies f = 0 a.e.

Thus, µA defines a norm on Lp(Ω).

Example 1.2.7. Generalized Lebesgue spaces

Lp(·)(Ω) =
{
f ∈ F :

∫
Ω

|f(x)|p(x) dx <∞
}
.

The next important class of Orlicz spaces is created when one sets ρ(x) = xp(x),

where p(x) fulfills 1 < p1 ≤ p(x) ≤ p2 < ∞ for some p1, p2. In this case we obtain

generalized Lebesgue spaces Lp(·)(Ω). Similarly as before,

A =
{
f ∈ F :

∫
Ω

|f(x)|p(x) dx ≤ 1
}
.
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1.3 Lp spaces

Definition 1.3.1. Let 1 ≤ p <∞. The space Lp(Ω) consists of equivalence classes

of Lebesgue measurable functions f : Ω → R such that∫
Ω

|f(x)| dx <∞,

where two measurable functions are equivalent if they are equal a.e. The Lp norm

of f ∈ Lp(Ω) is defined by

‖·‖Lp = p

√∫
Ω

|f(x)|p dx.

For p = +∞ the definition is slightly different. We say that a function f is essentially

bounded, if

ess sup |f | = inf
N/|N |=0

sup
(Ω N)

|f(x)| <∞.

The space L∞(Ω) consists of equivalence classes (two functions are equivalent if they

are equal a.e.) of measurable, essentially bounded functions f : Ω → R with a norm

‖·‖L∞ = ess sup |f | .

Remark 1.3.2. The reason to regard functions that are equal a.e. as equivalent is

so that ‖f‖Lp = 0 implies that f = 0 and thus ‖·‖Lp is a norm. For example, the

characteristic function of the rational numbers Q is equivalent to 0 in Lp(R), for

1 ≤ p ≤ ∞.

Lemma 1.3.3 (Hölder inequality for integrals). Let 1 ≤ p ≤ ∞ and 1
p
+ 1

q
= 1.

Let f ∈ Lp(Ω), g ∈ Lq(Ω). Then, f · g ∈ L1(Ω) and

‖f · g‖L1 ≤ ‖f‖Lp · ‖g‖Lq .

Theorem 1.3.4. Orlicz spaces Lρ(Ω), Lebesgue spaces Lp(Ω), and generalized

Lebesgue spaces Lp(·)(Ω), are Banach spaces.
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We prove the theorem only for the Lebesgue spaces. In the proof we shall use the

following lemma.

Lemma 1.3.5. For any normed space (V, ‖·‖) the following conditions are equivalent

(a) (V, ‖·‖) is a complete space.

(b) If {xn}n∈N is a sequence in V , such that
∑+∞

n=1 ‖xn‖ < +∞, then there exists

x ∈ V such that

lim
N→+∞

∥∥∥∥∥
N∑
n=1

xn − x

∥∥∥∥∥ = 0.

The condition (b) simply states that any absolutely convergent series is convergent.

Proof. (a) ⇒ (b) The implication follows from the fact that SN =
∑N

n=1 xn is a

Cauchy sequence.

(b) ⇒ (a) Let {xn}n∈N be a Cauchy sequence. For each k ∈ N there exists Nk,

such that

‖xm − xn‖ < 2−k, ∀n,m ∈ Nk.

We choose a subsequence {xnk
}k∈N such that

∥∥xnk+1
− xnk

∥∥ < 2−k, ∀k ∈ N.

and denote y1 = xn1 , yk = (xnk+1
− xnk

) for k > 1. Therefore
∑+∞

i=1 ‖yi‖ < +∞.

From assumptions it follows that there exists y ∈ V , such that

lim
N→+∞

∥∥∥∥∥
N∑
n=1

yn − y

∥∥∥∥∥ = lim
N→+∞

∥∥xnN+1
− y

∥∥ = 0.

Therefore, the subsequence {xnk
}k∈N converges in X. A Cauchy sequence, which

has a convergent subsequence, converges as well, which ends the proof.
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Proof. Checking that ‖·‖Lp is a norm, when one uses Minkowski inequality, is

straightforward. Note that we have proved the assertion in an alternative way for

1 < p < +∞ in the Example 1.2.6.

For the proof of completeness we shall use claim (b) from Lemma 1.1.9. Let {fn}n∈N

be a sequence in Lp(Ω) such that ρ =
∑+∞

n=1 ‖fn‖Lp < +∞. We need to con-

struct a function f ∈ Lp(Ω), such that limN→+∞

∥∥∥∑N
n=1 fn − f

∥∥∥
Lp
< +∞. Define

ĝn, ĝ : Ω → R as following

ĝn(x) =
n∑
i=1

|fi(x)| and ĝ(x) =
+∞∑
n=1

|fn(x)| .

From Minkowski inequality we obtain

‖ĝn‖Lp =

∥∥∥∥∥
n∑
i=1

|fi|

∥∥∥∥∥
Lp

≤
n∑
i=1

‖fi‖Lp ≤
+∞∑
n=1

‖fn‖Lp = M < +∞,

By construction, ĝn converges monotonically to ĝ. Therefore, from the monotone

convergence theorem and the inequality above it follows that∫
Ω

(ĝ(x))pdx =

∫
Ω

lim
n→∞

(ĝn(x))
pdx = lim

n→∞

∫
Ω

(ĝn(x))
pdx < Mp.

which implies that ĝ ∈ Lp(Ω) and in particular ĝ is finite a.e. From the latter fact

we conclude that

f(x) :=
+∞∑
n=1

fn(x)

is finite a.e. and f ∈ Lp(Ω) with ‖f‖Lp ≤ ‖ĝ‖Lp . Note that

0 ≤

∣∣∣∣∣f(x)−
n∑
i=1

fi(x)

∣∣∣∣∣
p

=

∣∣∣∣∣
+∞∑
i=n+1

fi(x)

∣∣∣∣∣
p

=
( +∞∑
i=n+1

|fi(x)|
)p
≤ (ĝ(x))p < Mp.

Thus, by the Lebesgue dominated convergence theorem

lim
n→∞

∫
Ω

∣∣∣∣∣f(x)−
n∑
i=1

fi(x)

∣∣∣∣∣
p

dx = 0.

which ends the proof due to the Lemma 1.3
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1.4 Convex Functions

Definition 1.4.1. [22]

A function f : I ⊂ R → R is called convex if

f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y)

for all points x and y in I and all λ ∈ [0, 1].

Remark 1.4.2.

Suppose that f : [0,∞) → [0,∞] is convex and f(0) = 0. Choosing x = 0 in the

previous definition and λ = β or λ = 1
β
, we find

f(βy) ≤ βf(y), for y ∈ [0, 1],

f(βy) ≥ βf(y), for y ≥ 1.

Definition 1.4.3. [1]

Let V be a real vector space. We say that function ‖·‖ from V to [0,∞] is a

quasinorm if:

(a) ‖f‖ = 0 if and only if f = 0.

(b) ‖af‖ = |a| ‖f‖ for all f ∈ V and a ∈ R.

(c) There exists λ > 0 such that ‖f + g‖ ≤ λ(‖f‖+ ‖g‖) for all f, g ∈ V .

• If λ = 1 in (c), then ‖·‖ is called a norm. A (quasi)Banach space (V, ‖·‖V ) is

a (quasi)normed vector space which is complete with respect the (quasi)norm

‖·‖V .
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• The dual space V ∗ of a (quasi)Banach space V consists of all bounded, linear

functionals F : V → R. The duality pairing between V ∗ and V is defined by

〈F, x〉V ∗,V = 〈F, x〉 := F (x) for F ∈ V, x ∈ V . The dual space is equipped with

the dual quasinorm ‖f‖V ∗ := sup‖x‖V ≤1〈F, x〉, which makes V ∗ a quasi-Banach

space.

Remark 1.4.4. [1]

• A space is called separable if it contains a dense, countable subset. We denote

the bidual space by V ∗∗ := (V ∗). A quasi-Banach space V is called reflexive

if the natural injection ι : V → V ∗∗, given by 〈ιx, F 〉V ∗∗,V ∗ := 〈F, x〉V ∗,V , is

surjective. A norm ‖·‖ on a space V is called uniformly convex if for every

ε > 0 there exists δ(ε) > 0 such that for allx, y ∈ V satisfying ‖x‖ , ‖y‖ ≤ 1

the inequality ‖x− y‖ > ε implies
∥∥x+y

2

∥∥ < 1− δ(ε).

• A quasi-Banach space V is called uniformly convex, if there exists a uniformly

convex norm ‖·‖′, which is equivalent to the original norm of V .

Proposition 1.4.5. [1]

Let V be a Banach space and let W ⊂ V be closed. Then:

(a) W is a Banach space.

(b) If V is reflexive, then V is reflexive.

(c) If V is separable, then W is separable.

(d) If V is uniformly convex, then V is reflexive.

(e) If V is uniformly convex, then W is uniformly convex.
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Remark 1.4.6.

We say that a (quasi-)Banach space V is continuously embedded into a (quasi-

)Banach space W , V ↪→ W , if V ⊂ W and there exists a constant C > 0 such that

‖x‖W ≤ C‖x‖V for all x ∈ V .

The embedding of V into W is called compact, V ↪→↪→ W , if V ↪→ W and bounded

sets in V are precompact in W .

A sequence {xk}k∈N ⊂ V is called (strongly) convergent to x ∈ V , if

limk→+∞ ‖xk − x‖V = 0. It is called weakly convergent if limk→+∞〈F, xk〉 = 0

for all F ∈ V ∗.

Let (V, ‖ · ‖V ) be a Banach space and A ⊂ V a set. The closure of A with respect

to the norm ‖ · ‖V , A‖·‖V is the smallest closed set that contains A.

1.5 Some results about Integration

Theorem 1.5.1 (monotone convergence theorem, Beppo Levi). [3]

Let (hn) be a sequence of functions in L1 that satisfy

(a) h1 ≤ h2 ≤ ... ≤ hn ≤ hn+1 ≤ ... a.e. on Ω,

(b) supn

∫
hn <∞.

Then hn(x) converges a.e. on Ω to a finite limit, which we denote by h(x); the

function h belongs to L1 and ‖hn − h‖1 → 0.

Theorem 1.5.2 (dominated convergence theorem, Lebesgue). [3]

Let (hn) be a sequence of functions in L1 that satisfy

(a) hn(x) → h(x) a.e. on Ω

(b) there is a function ψ ∈ L1 such that for all n, |hn(x)| ≤ ψ(x) a.e. on Ω. Then

h ∈ L1 and ‖hn − h‖1 → 0.
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Lemma 1.5.3 (Fatou’s lemma). [3]

Let (hn) be a sequence of functions in L1 that satisfy

(a) for all n, hn ≥ 0 a.e.

(b) supn

∫
hn <∞.

For almost all x ∈ Ω we set h(x) = lim infn→∞ hn(x) ≤ +∞. Then h ∈ L1 and∫
h ≤ lim inf

n→∞

∫
hn.

A basic example is the case in which Ω = RN , M consists of the Lebesgue

measurable sets, and µ is the Lebesgue measure on RN .

1.6 History of generalized Orlicz spaces

Variable exponent Lebesgue spaces appeared in the literature for the first time al-

ready in a 1931 article by W. Orlicz [23]. In this article the following question is

considered: let (pi), with pi > 1, and (fi), fi ≥ 0 be real-valued sequences. What

is the necessary and sufficient condition on (gi) for
∑

i figi to converge whenever∑
i f

pi
i converges ? It turns out that the answer is that

∑
i(βgi)

p′i should converge

for some β > 0 and p′i = pi

pi−1
. This is essentially Hölder’s inequality in the space

`p(·). Orlicz also considered the variable exponent function space Lp(·) on the real

line, and proved the Hölder inequality in this setting.

Variable exponent spaces have been studied in more than a thousand papers

in the past 15 years so we only cite a few monographs on the topic which can be

consulted for additional references ([7], [8], [11], [26]).

After this one paper [23], Orlicz abandoned the study of variable exponent spaces,

to concentrate on the theory of the function spaces that now bear his name (but see

also [20]). In the theory of Orlicz spaces, one defines the space Lf in an open set
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Ω ∩ Rn to consist of those measurable functions ψ : Ω → R for which

ρ(βψ) =

∫
Ω

f(β |ψ(x)|)dx <∞

for some β > 0 (f has to satisfy certain conditions, see Definition 2.1.4). Abstracting

certain central properties of %,one is led to a more general class of so-called modular

function spaces which were first systematically studied by H. Nakano [21].

Following the work of Nakano, modular spaces were investigated by several peo-

ple, most importantly by the groups at Sapporo (Japan), Voronezh (USSR),and

Leiden (Netherlands). Somewhat later, a more explicit version of these spaces,

modular function spaces, were investigated by Polish mathematicians, for instance

by H.Hudzik, A. Kaminska and J.Musielak.

For a comprehensive presentation of modular function spaces and generalized Orlicz

spaces, see the monograph [19] by Musielak.

Harmonic analysis in generalized Orlicz spaces has only recently been studied.

In 2005, Lars Diening [9] investigated the boundedness of the maximal operator on

Lf and gave abstract conditions on the Φ-function for the boundedness to hold. In

the variable exponent case it led to the result that the maximal operator is bounded

on Lp(·)(Rn) if and only if it is bounded on Lp
′(·)(Rn)(provided 1 < p− ≤ p+ <

∞). Unfortunately,this result has still not been successfully extended to generalized

Orlicz spaces.

In 2011, Lars Diening, Petteri Harjulehto, Peter Hästö and Michael Ruzicka [10] have

written a book on variable exponent spaces. Recently, in 2019 Petteri Harjulehto

and Peter Hasto [14] have presented a systematic treatment of Orlicz and generalized

Orlicz spaces (also known as Musielak-Orlicz spaces) in a general framework.
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Chapter 2

Φ-Functions

In this chapter, we will study some definitions and basic properties of Φ-function

as almost increasing, almost decreasing, equivalent Φ -Functions, upgrading Φ-

functions, inverse Φ-Functions, conjugate Φ-Functions and generalized Φ-Functions.

this chapter is based on the monographs [10, 14, 18, 27].

2.1 Equivalent Φ-Functions

We begin by studying the properties of almost increasing and almost decreasing,

which will be used throughout the memory. Finally, we consider two notions of the

equivalence of Φ-functions and study relations between them.

Definition 2.1.1. A function h : (0,∞) −→ R is almost increasing if there exists

a constant δ ≥ 1 such that h(x) ≤ δh(y) for all 0 < x < y. Almost decreasing is

defined analogously.

Increasing and decreasing functions are included in the previous definition as the

special case a = 1.

Definition 2.1.2. Let f : (0,∞) −→ R and p, q > 0. We say that f satisfies

f(x)

xp
is increasing; (2.1)

f(x)

xp
is almost increasing; (2.2)
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f(x)

xq
is decreasing; (2.3)

f(x)

xq
is almost decreasing; (2.4)

We say that f satisfies (2.1)p>1, (2.2)p>1, (2.3)q<∞ or (2.4)q<∞ if there exist p > 1

or q <∞ such that f satisfies (2.1),(2.2), (2.3) or (2.4), respectively.

Remark 2.1.3. If f satisfies (2.2) in respect to p1. Then it satisfies (2.2) in respect

to p2 for p2 < p1 and it does not satisfy (2.4) for q < p1. Likewise, if f satisfies (2.4)

in respect of q1 then it satisfies (2.4) in respect to q2 for q2 < q1 and it does not

satisfy (2.2) for p > q1.

Definition 2.1.4. Let f : [0,∞) −→ [0,∞] be increasing with limx−→0+ f(x) = 0,

limx−→∞ f(x) = ∞ and f(0) = 0. Such f is called a Φ-prefunction.

We say that a Φ-prefunction f is a

• (weak) Φ-function, if it satisfies (2.2) with p = 1 on (0,∞);

• convex Φ-function if it is left-continuous and convex;

• strong Φ-function if it is continuous in the topology of [0,∞] and convex.

The sets of weak, convex and strong Φ-function are denoted by ΦW , Φc and Φs

respectively.

Remark 2.1.5. Note that when we speak about Φ-functions, we mean the weak

Φ-functions of the previous definition.

Continuity in the topology of C([0,∞); [0,∞]) means that

lim
x−→y

h(x) = h(y)

for every point y ∈ [0,∞) regadless of whether h(y) is finite or infinite.

If f is convex and f(0) = 0, then we obtain for 0 < x < y that

f(x) = f
(x
y
y + 0

)
≤ x

y
f(y) +

(
1− x

y

)
f(0) =

x

y
f(y), (2.5)
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i.e. (2.1) with p = 1, holds. Therefore, it follows from the definition that Φs ⊂ Φc ⊂

ΦW .

As a convex function, f is continuous in [0,∞) if and only if it is finite on [0,∞).

Let us show that if f ∈ Φc satisfies (2.4)q<∞, then f ∈ Φs. Since lim
x−→0+

f(x) = 0, we

can find x > 0 with f(x) <∞. By (2.4)q<∞ we obtain f(y) ≤ δ y
q

xq f(x) for y > x.

Hence f <∞ in [0,∞) and thus it is continuous.

Example 2.1.6. [14]

For x ≥ 0, we define (see Fig. 2.1.6)

fp(x) :=
1

p
xp, p ∈ (0,∞),

fmax(x) := (max{0, x− 1})2,

fsin(x) := x+ sin(x),

fexp(x) := exp(x)− 1,

f∞(x) := ∞χ(1,∞)(x),

f∞,2(x) := f∞(x) +
2x− 1

1− x
χ(1/2,1)(x).

Observe that fp ∈ Φs if and only if p ≥ 1. Furthermore, fmax ,fexp , f∞,2 ∈ Φs

,f∞ ∈ Φc\Φs and fsin ∈ ΦW\Φc.

• Observe that f 1 ' fsin and f∞ ' f∞,2 but f∞ � f∞,2, as f ≈ g means that

C1f(t) ≤ g(t) ≤ C2f(t) for all relevant values of t.

Therefore, neither Φc nor Φs is invariant under equivalence of Φ-functions.

For the equivalence ' see Definition (2.1.9)

• Observe that fp → f∞ and 1
p
f∞,2 → f∞ point-wise as p→∞. Therefore, Φs

is not invariant under point-wise limits of Φ-functions.

• Note that min{f 1, f2} ∈ ΦW\Φc, so Φc is not preserved under point-wise

minimum.
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Figure 2.1: Functions from Example 2.1.6.Left: f 3 (solid) and fmax

(dashed). Right: fsin (solid) and fexp (dashed)

Lemma 2.1.7. If f ∈ ΦW is left-continuous, then f(x) ≤ lim infxk→x f(xk),

i.e. f is lower semicontinuous.

Proof. Suppose that xk −→ x and x′k := min{x, xk}. we have x′k → x−, since f is

left-continuous and increasing, we get f(x) = limxk→x f(x′k) ≤ lim infxk→x f(xk)

Remark 2.1.8. [14]

Assume that D := (1,∞), f∞(x) := ∞χ(1,∞)(x), since f is not continuous, we have

0 = f∞(1) < infx∈A f
∞(x) = ∞.

but, in general, if f a Φ-prefunction then

f(infD) ≤ inf
x∈D

f(x)

for every non-empty set D ⊂ [0,∞)

However although, if f a Φ-prefunction then, for every σ > 1 we have

inf f(D) ≤ f(σ infD)
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In fact, if infD = 0, then inf f(D) ≤ f(0) = 0 as well as limx→0+ f(x) = 0,

If infD > 0, then infD < σ infD, by characterizations of the infimum, there exists

x ∈ D such that x < σ infD.

Consequently, using the monotonicity of f , we get inf f(D) ≤ f(σ infD).

Moreover, if f satisfy (2.2) with p = 1 and constant δ. we can show that

• f(βx) ≤ δβf(x) for all β ∈ [0, 1] and x ≥ 0; and

• f(γx) ≥ γ
δ
f(x) for all γ ∈ [1,∞) and x ≥ 0

For x = 0, previous inequalities are true,

For x > 0, since f satisfies (2.2) with p = 1 and βx ≤ x ≤ γx, we deduce that

1

δ

f(βx)

βx
≤ f(x)

x
≤ δ

f(γx)

γx

Then previous inequalities are true.

Definition 2.1.9. Two functions f and g are equivalent, f ' g, if there exists η ≥ 1

such that f(x
η
) ≤ g(x) ≤ f(ηx) for all x ≥ 0.

Remark 2.1.10. Observe that ' is an equivalence relation in a set of functions

from [0,∞) to [0,∞] :

• f ' f for every f . (reflexivity);

• f ' g implies g ' f (symmetry);

• f1 ' f2 and f2 ' f3 imply f1 ' f3 (transitivity).

Lemma 2.1.11. Let f, g : [0,∞) → [0,∞] be increasing with f ' g.

(a) If f is a Φ-prefunction, then g is a Φ-prefunction.

(b) If f satisfies (2.2), then g satisfies (2.2).

(c) If f satisfies (2.4), then g satisfies (2.4).
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Proof. For (a), suppose that f is a Φ-prefunction. Let η ≥ 1 be such that f(x
η
) ≤

g(x) ≤ f(ηx). we find,

0 ≤ lim
x→0+

g(x) ≤ lim
x→0+

f(ηx) = lim
x→0+

g(x) = 0

and

lim
x→∞

g(x) ≥ lim
x→∞

f(
x

η
) = lim

x→∞
f(x) = ∞

when x = 0, we get g(0) = 0.

For (b), Let 0 < x < y and assume first that η2x < y, where η is the constant from

the equivalence. By (2.2) of f with constant δ, we get

g(x)

xp
≤ f(ηx)

xp
= ηp

f(ηx)

(ηx)p
≤ δηp

f(y
η
)

(y
η
)p
≤ δη2p g(y)

yp

Assume then that y ∈ (x, η2x]. since g is increasing, we get

g(x)

xp
≤ g(y)

xp
=
yp

xp
g(y)

yp
≤ η2p g(y)

yp

we have shown that g satisfies (2.2) with constant δη2p.

The proof of (c) is similar to (b).

Example 2.1.12. [14]

we consider an example shows that (2.1) without the "almost" is not invariant under

equivalence of Φ-functions.

Assume that f(y) := y2 and g(y) := y2 + max{y − 1, 0} for y ≥ 0. Then f(y) ≤

g(y) ≤ f(2y) so that f ' g. (see Fig.2.1.12)

Clearly f satisfies (2.1) with p = 2. Suppose that g satisfies (2.1) for p ≥ 1. we

write the condition at points y = 2 and x = 3:

4 + 1

2p
=
g(2)

2p
≤ g(3)

3p
=

9 + 2

3p
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Figure 2.2: Functions f (solid) and g (dashed) from Example 2.1.12

i.e.(3
2
)p ≤ 11

5
. this means that p < 2, hence g does not satisfy (2.1) with p = 2.

Lemma 2.1.13. Let f , g : [0,∞) → [0,∞].

(a) If f satisfies (2.2) with p = 1 and f ≈ g , then f ' g and g satisfies (2.2) with

p = 1.

(b) If f satisfies (2.4)q<∞, then f ' g implies f ≈ g.

Proof. Suppose that f ≈ g with constant η ≥ 1. Then g(y) ≤ ηf(y) ≤ f(δηy) by

(2.2) with p = 1. The lower bound is similar, and thus f(y) ' g(y) . As (2.2) with

p = 1 gives as follows :

g(x)

x
≤ η

f(x)

x
≤ δη

f(x)

x
≤ δη2 g(y)

y
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for 0 < x < y.

Note that here we do not need the function to be increasing, in contrast to Lemma

(2.1.11).

Assume next that f ' gand f satisfies (2.4). Then g(y) ≤ f(ηy) ≤ δηqf(y) by (2.4).

The lower bound is similar, and thus f(y) ≈ g(y).

2.2 Upgrading Φ-Functions

Recall that, we can always estimate a weak Φ-functions as follows:

f(x+ y) ≤ f(2 max{x, y}) ≤ f(2x) + f(2y)

So, we will show some convexity-type properties.

Lemma 2.2.1. If f ∈ ΦW satisfies (2.2) with p ≥ 1, then there exists g ∈ Φc

equivalent to f such that g1/p is convex. In particular, g satisfies (2.1).

Proof. see [14].

Corollary 2.2.2. If f ∈ ΦW , then there exists a constant λ > 0 such that

f
(
λ

∞∑
k=1

αkξk

)
≤

∞∑
k=1

f(αk)ξk

for all αk, ξk ≥ 0 with
∑
ξk = 1.

Proof. Assume first that g ∈ Φc. denote ξ′m+1 :=
∑∞

k=m+1 ξω and α′m+1 = 0. Then

by convexity

g
( m∑
k=1

αkξk

)
= f

( m∑
k=1

αkξk+α
′
m+1ξ

′
m+1

)
≤

m∑
k=1

g(αk)ξk+g(α
′
m+1)ξ

′
m+1 ≤

∞∑
k=1

g(αk)ξk.

The inequality follows with λ = 1 by left-continuity as m→∞.

Let then f ∈ ΦW . By Lemma (2.2.1), there exists g ∈ Φc such that f ' g with

constant η ≥ 1. Choose λ := η−2. Then

f
(
λ

∞∑
k=1

αkξk

)
≤ g

(1

η

∞∑
k=1

αkξk

)
≤

∞∑
k=1

g
(1

η
αk

)
ξk ≤

∞∑
k=1

f(αk)ξk

.
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Theorem 2.2.3. Every weak Φ-function is equivalent to a strong Φ-function

Proof.

Assume that f ∈ ΦW satisfies (2.2) with p = 1. By Lemma (2.2.1) there exists

fc ∈ Φc with fc ' f . since fc convex then fc is continuous in the set {fc <∞}.

If {fc <∞} = [0,∞) we are done.

Otherwise, denote y∞ := inf{y : fc(y) = ∞} ∈ (0,∞) and define

fx(y) := fc(y) +
2y − y∞
y∞ − y

χ( 1
2
y∞,y∞)(y) +∞χ[y∞,∞)(y)

As the sum of three convex functions, fx is convex. Furthermore, fx = fc in

[0, 1
2
y∞]

⋃
[y∞,∞). Hence fx(y2) ≤ fc(y) ≤ fx(y), so that fx ' fc ' f . since fx

is increasing we obtain by Lemma (2.1.11)(a) that fx is a Φ-prefunction. Since also

limy→y∞ fx(y) = ∞ , we conclude that fx ∈ Φs.

Remark 2.2.4. Observe that theorem 2.2.3 is not true with the ≈-equivalence.

Indeed, from Example (2.1.6), if g ≈ f∞, then necessarily g = f∞.

Definition 2.2.5. We say that a function f : [0,∞) → [0,∞] satisfies ∆2, or is

doubling if there exists a constant θ ≥ 2 such that .

f(2y) ≤ θf(y) for all y ≥ 0.

Next we show that (2.4)q<∞ is a quantitative version of doubling.

Lemma 2.2.6. .

(a) If f ∈ ΦW , then ∆2 is equivalent to (2.4)q<∞,

(b) If f ∈ Φc, then ∆2 is equivalent to (2.3)q<∞.

Proof. Assume that f satisfies ∆2 and let 0 < x < y. Choose an integer n ≥ 1 such

that 2n−1x < y ≤ 2nx. we have

f(y) ≤ f(2nx) ≤ θf(2n−1x) ≤ ... ≤ θnf(x)
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We define q := log2(θ) ≥ 1. Then the previous inequality and y > 2n−1x yield that

f(y)

yq
≤ θn

f(x)

yq
≤ θn

f(x)

2q(n−1)xq
= θ

f(x)

xq

Thus f satisfies (2.4).

Assume then (2.4)q<∞ holds. Then there exists q > 1 such that

f(2y)

(2y)q
≤ δ

f(y)

yq

so f(2y) ≤ δ2qf(y). Thus (2.4)q<∞ implies ∆2 with θ = δ2q. Hence (a) is proved.

For (b) we are left to show that convexity and ∆2 yield (2.3)q<∞ for some q ≥ 1.

Let y ≥ 2x and q be the exponent defined in (a). By case (a),

f(y)

f(x)
≤ θ

(y
x

)q
≤

(y
x

)2q

and (2.3)q<∞ holds for y ≥ 2s with any exponent that is at least 2q. Suppose next

that y ∈ (x, 2x). Choose ε := y
x
− 1 ∈ (0, 1) and note that y = (1 − ε)x + ε2x. By

convexity and ∆2, we find that

f(y) ≤ (1− ε)f(x) + εf(2x) ≤ (1− ε+ θε)f(x),

. Therefore by the generalized Bernoulli inequality in the second step we obtain

f(y)

f(x)
≤ 1 + (θ − 1)ε ≤ (1 + ε)θ−1 = (

y

x
)θ−1,

Combining the two cases, we see that (2.3) with q = q2 := max{2q, θ−1} holds.

Proposition 2.2.7. If f ∈ ΦW satisfies (2.4)q<∞, then there exists g ∈ Φs with

g ≈ f which is a strictly increasing bijection.

Proof. see [14].
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2.3 Inverse Φ-Functions

we will extend in this section all Φ-functions to the interval [0,∞] by f(∞) := ∞

and define a left-continuous function with many properties of the inverse, which we

call for simplicity left-inverse because weak Φ-functions are not bijections, they are

not strictly speaking invertible.

Definition 2.3.1. By f−1 : [0,∞] → [0,∞], we denote the left-inverse of

f : [0,∞] → [0,∞],

f−1(η) := inf{y ≥ 0 : f(y) ≥ η}.

Example 2.3.2.

We define f : [0,∞] → [0,∞] by

Figure 2.3: A weak Φ-function (solid) and its left-inverse (dashed)
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f(y) :=


0 if y ∈ [0, 2]

y − 2 if y ∈ (2, 4]

3 if y ∈ (4, 6]

y − 3 if y ∈ (6,∞]

see Fig. 2.3. Then f ∈ ΦW\Φc and the left-inverse is given by

f−1(y) :=


0 if y = 0

y + 2 if y ∈ (0, 2]

4 if y ∈ (2, 3]

y + 3 if y ∈ (3,∞]

With these expressions we can calculate the compositions fo f−1 and f−1o f :

f(f−1(y)) :=


y if y ∈ [0, 2]

2 if y ∈ (2, 3]

y if y ∈ (3,∞]

f−1(f(y)) :=


0 if y ∈ [0, 2]

y if y ∈ (2, 4]

4 if y ∈ (4, 6]

y if y ∈ (6,∞]

see Fig. 2.4.

Figure 2.4: y0 and y∞

Note that the following result holds only for convex Φ-functions.
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Lemma 2.3.3. Let f ∈ Φc, y0 := sup{y : f(y) = 0} and y∞ := inf{y : f(y) = ∞}.

Then

f−1(f(y)) =


0, y ≤ y0,

t, y0 < y ≤ y∞ and f(f−1(η)) = min{η, f(y∞)}.

y∞, y > y∞.

In particular, if f ∈ Φs, then f(f−1(x)) ≡ x.

Proof. see [14].

Remark 2.3.4. In the proof ( see [14]) we used the fact that every convex Φ-function

is strictly increasing on f−1(0,∞) = (y0, y∞). This also yields the following result.

Corollary 2.3.5. Let f ∈ Φc. If f(x) ∈ (0,∞), then f−1(f(x)) = x.

Indeed, if f ∈ Φc satisfies (2.4)q<∞, then f is bijective and f−1 is just the regular

inverse.

Theorem 2.3.6. Let f, g ∈ ΦW . Then f ' g if and only if f−1 ≈ g−1.

Proof. Suppose first that f ' g, i.e. f
(
y
η

)
≤ g(y) ≤ f

(
ηy

)
for all y ≥ 0. Then

g−1(η) = inf{y ≥ 0 : g(y) ≥ η} ≥ inf{y ≥ 0 : f(ηy) ≥ η} =
1

η
f−1(η)

and

g−1(η) = inf{y ≥ 0 : g(y) ≥ η} ≤ inf{y ≥ 0 : f
(y
η

)
≥ η} = ηf−1(η)

Thus f ' g implies f−1 ≈ g−1.

Suppose then that f−1 ≈ g−1. By Theorem (2.2.3) there exist fx, gx ∈ Φs such that

fx ' f and gx ' g. By the first part of the proof, f−1
x ≈ f−1 and g−1

x ≈ g−1 so that

f−1
x ≈ g−1

x by transitivity of ≈. If we show that this implies fx ' gx, then the claim

follows, since ” ' ” is an equivalence relation.
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Let y0 := sup{y : fx(y) = 0} and y∞ := inf{y : fx(y) = ∞}. Let us first assume

that y ∈ (y0, y∞). We obtain by Corollary (2.3.5) and f−1
x ≈ g−1

x that

1

η
y =

1

η
f−1
x (fx(y)) ≤ g−1

x (fx(y)) ≤ ηf−1
x (fx(y)) = ηy.

Then we take gs of both sides and use Lemma (2.3.3) to obtain that gx( 1
η
y) ≤

gx(g
−1
x (fx(y))) = fx(y) ≤ gx(ηy). We have shown the claim for y ∈ (y0, y∞). By

continuity, gx( 1
η
y0) = limy→y+0

gx(
1
η
y) ≤ limy→y+0

fx(y) = fx(y0) = 0 and hence

gx(
1
η
y) = 0 for y ∈ (0, y0]. The inequality f(y) ≤ g(ηy) is clear, since f(y) = 0 when

y ≤ y0. Similarly, we prove that gx( 1
η
y) ≤ ∞ ≤ gx(ηy) when y ≥ y∞.

Proposition 2.3.7. Let f ∈ ΦW and p, q > 0. Then

(a) f satisfies (2.2) if and only if f−1 satisfies (2.4) with q = 1
p
.

(b) f satisfies (2.4) if and only if f−1 satisfies (2.2) with p = 1
q

.

Proof. Suppose first that f ∈ Φs. Let η ∈ (0,∞) and y∞ := inf{y : f(y) = ∞}.

Since f is surjection, there exists y ∈ (0, y∞) such that f(y) = η.

We obtain by Corollary 2.3.5 that

f−1(η)

η
1
p

=
f−1(f(y))

f(y)
1
p

=
(f(y)

yp

)−1
p

Hence the fraction on the left-hand side is almost decreasing if and only if the

fraction on the right-hand side is almost increasing, and vice versa.

This proves the claim for f restricted to (y0, y∞]. If y ≤ y0 or y > y∞, then f(y) = 0

or f(y) = ∞, and the claim is vacuous.

Consider then the general case f ∈ ΦW . By Theorem 2.2.3 there exists g ∈ Φs with

g ' f . By Theorem 2.3.6, g−1 ≈ f−1, so the claim follows from the first part of the

proof, by Lemma 2.1.11.

Lemma 2.3.8. Let f, g : [0,∞] → [0,∞] be increasing. Then the following impli-

cations hold:

f ≤ g ⇒ g−1 ≤ f−1
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f−1 < g−1 ⇒ g < f

Proof. Suppose that f ≤ g and η ≥ 0. Then

{y ≥ 0 : f(y) ≥ η} ⊂ {y ≥ 0 : g(y) ≥ η}

and so f−1(η) ≤ g−1(η).

Lemma 2.3.9. Let f : [0,∞] → [0,∞], η, y ≥ 0 and ν > 0.

(a) Then f−1 is increasing, f−1(0) = 0, f−1(f(y)) ≤ y and f(f−1(η)−ν) < η when

f−1(η) ≥ ν.

(b) If f is left-continuous with f(0) = 0, then f(f−1(η)) ≤ η.

(c) If f is increasing, then f−1 is left-continuous, y ≤ f−1(f(y) + ν) and η ≤

f(f−1(η) + ν).

(d) If f satisfies (2.2) with p = ν, then f−1(f(y)) ≈ y, when f(y) ∈ (0,∞).

(e) If f with limy→0+ f(y) = 0 satisfies (2.4)q<∞, then f(f−1(η)) ≈ η.

Proof. see [14]

Example 2.3.10. we consider an example shows that the left-continuity is crucial

in Lemma 2.3.9(b).If

f(y) :=

{
2y if y ∈ [0, 1);

y + 2 if y ∈ [1,∞],

then

f−1(y) :=


1
2
y if y ∈ [0, 2)

1 if y ∈ [2, 3)

y − 2 if y ∈ [3,∞],

and thus f(f−1(2)) = f(1) = 3.

Let f∞(y) := ∞χ(1,∞)(y). Then (f∞)−1 = χ(0,∞] and thus

(f∞)−1(f∞(
1

2
)) = (f∞)−1(0) = 0 <

1

2

and f∞((f∞)−1(1)) = f∞(1) = 0 < 1.

39



Lemma 2.3.11. Let f : [0,∞] → [0,∞]. Then f is increasing and left-continuous

if and only if (f−1)−1 = f .

Proof. Suppose first that f is increasing and left-continuous. Let 0 < ν < y. Lemma

2.3.9(a) yields that f−1(η) ≤ f−1(f(y − ν)) ≤ y − ν for 0 ≤ η ≤ f(y − ν). so we

obtain that

(f−1)−1(y) = inf{η ≥ 0 : f−1(η) ≥ t} ≥ f(y − ν)

Since f is left-continuous, this yields (f−1)−1(y) ≥ f(y) as ν → 0+.

If y = 0, the inequality also holds.

By Lemma 2.3.9(c), f−1(f(y) + ν) ≥ y and hence (f−1)−1(y) ≤ f(y) + ν. while

ν → 0+ we obtain (f−1)−1(y) ≤ f(y). hence (f−1)−1 = f .

Assume then conversely that (f−1)−1 = f . By Lemma 2.3.9(a), f−1 is increasing.

Hence Lemma 2.3.9(c) implies that (f−1)−1 is left-continuous. Furthermore, it is

increasing by Lemma 2.3.9(a). Since f = (f−1)−1, also f is increasing and left-

continuous.

Definition 2.3.12. We say that π : [0,∞] → [0,∞] belongs to Φ−1
W if it is increasing,

left-continuous, satisfies (2.4) with q = 1, π(y) = 0 if and only if y = 0, and,

π(y) = ∞ if and only if y = ∞.

Proposition 2.3.13. The transformation f 7→ f−1 is a bijection from ΦW+ to Φ−1
W ,

(a) If f ∈ ΦW+, then f−1 ∈ Φ−1
W and (f−1)−1 = f .

(b) If π ∈ Φ−1
W , then π−1 ∈ ΦW+ and (π−1)−1 = π.

Proof. see [14].

such as ΦW+ the set of left-continuous weak Φ-functions and Φ−1
W characterizes in-

verses of ΦW+-functions.
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2.4 Conjugate Φ-Functions

This section is based on [10],[14]

Definition 2.4.1. Let f : [0,∞) → [0,∞]. We denote by f ∗ the conjugate function

of f which is defined, for v ≥ 0, by

f ∗(v) := sup
y≥0

(
yv − f(y)

)
.

In the Lebesgue case y 7→ 1
p
yp, the conjugate is given by y 7→ 1

p′
yp

′ , where p′ is the

Hölder conjugate exponent. By definition of f ∗,

yv ≤ f(y) + f ∗(v) (2.6)

for every y, v ≥ 0. This is called Young’s inequality.

Lemma 2.4.2. If f ∈ ΦW , then f ∗ ∈ Φc.

Proof. For v = 0, we have f ∗(0) = supy≥0

(
− f(y)

)
= f(0) = 0.

f ∗ is increasing ?

Let v < w, we have

f ∗(v) = sup
y≥0

(
yv − f(y)

)
≤ sup

y≥0

(
y(w − v) + yv − f(y)

)
= f ∗(w)

So f ∗(y) ≥ f ∗(0) = 0 for all y > 0. Since limy→0 f(y) = 0, there exists y1 > 0 with

f(y1) < ∞. Then f ∗(v) ≥ vy1 − f(y1), so that limv→∞ f ∗(v) = ∞. In addition,

there exists y2 > 0 with f(y2) > 0. from (2.2) with p = 1 we get f(y) ≥ f(y2)
δy2

y when

y ≥ y2. Hence

f ∗(v) ≤ max
{
y2v, sup

y>y2

(yv − f(y2)y

δy2

)
}

When v < f(y2)
δy2

we find limv→0+ f ∗(v) = 0. Hence f ∗ is a Φ-prefunction.
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f ∗ is convex ?. let σ ∈ (0, 1) and v, w ≥ 0. we obtain

f ∗(σv + (1− σ)w) = sup
y≥0

(
y(σv + (1− σ)w)− f(y)

)
= sup

y≥0

(
σ(yv − f(y)) + (1− σ)(yw − f(y))

)
≤ σ sup

y≥0
(yv − f(y)) + (1− σ) sup

y≥0
(yw − f(y))

= σf ∗(v) + (1− σ)f ∗(w)

Let v∗∞ := inf{v > 0 : f ∗(v) = ∞}. Convexity implies continuity in [0, v∗∞) and

continuity is clear in (v∗∞,∞). So we are left to show left-continuity at v∗∞.

For every β ∈ (0, 1) we have f ∗(βv∗∞) ≤ f ∗(v∗∞) and hence lim supβ→1− f
∗(βv∗∞) ≤

f ∗(v∗∞). Let k < f ∗(v∗∞) and y1 be such that y1v
∗
∞ − f(y1) ≥ k. Then

lim inf
β→1−

f ∗(βv∗∞) ≥ lim inf
β→1−

(
y1βv

∗
∞ − f(y1)

)
= y1v

∗
∞ − f(y1) ≥ k

when k → f ∗(v∗∞)−, we find lim infβ→1− f
∗(βv∗∞) ≥ f ∗(v∗∞) and thus f ∗ is left-

continuous.

Remark 2.4.3. Observe that f ∗ is convex and left-continuous even if f is not. The

previous lemma does not extend to strong Φ-functions:

Indeed, if f(y) := y, then f ∈ Φs but f ∗(y) = ∞χ(1,∞)(y) belongs to Φc \ Φs.

Lemma 2.4.4. Let f, g : [0,∞) → [0,∞] and δ, γ > 0.

(a) If f ≤ g, then g∗ ≤ f ∗.

(b) If g(y) = δf(γy) for all y ≥ 0, then g∗(v) = δf ∗( v
δγ

) for all v ≥ 0.

(c) If f ' g, then f ∗ ' g∗.

Proof. For (a). letting f(y) ≤ g(y) for all y ≥ 0. we obtain

g∗(v) = sup
y≥0

(
yv − g(y)

)
≤ sup

y≥0

(
yv − f(y)

)
= f ∗(v)
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for all v ≥ 0.

For (b), assume that δ, γ > 0 and g(y) = δf(γy) for all y ≥ 0. we find

g∗(v) = sup
y≥0

(
yv − g(y)

)
= sup

y≥0

(
yv − δf(γy)

)
= sup

y≥0
δ
(
γy

v

δγ
− f(γy)

)
= δf ∗

( v

δγ

)
for all v ≥ 0.

For (c), suppose that f( y
τ
) ≤ g(y) ≤ f(τy). using (a), we get

f ∗(τy) ≤ g∗(y) ≤ f ∗(
y

τ
)

by (b), we obtain

f ∗(τy) = (f(
y

τ
))∗ ≤ g∗(y) ≤ (f(τy))∗ = f ∗(

y

τ
)

Remark 2.4.5. In (c) of the previous lemma is false for ≈.

Indeed, we consider f(y) = y and g(y) = 2y. Then f ≈ g and f ' g. However,

f ∗ = ∞χ(1,∞) and g∗ = ∞χ(2,∞), so that f ∗ � g∗.

If f ∈ ΦW \ Φc then f ∗∗ 6= f , with f ∗∗ = (f ∗)∗.

Proposition 2.4.6.

Let f ∈ ΦW . Then f ∗∗ ' f and f ∗∗ is the greatest convex minorant of f .

In particular, if f ∈ Φc, then f ∗∗ = f and

f(y) = sup
v≥0

(yv − f ∗(v)) for all y ≥ 0

Proof. Let us first assume that f ∈ Φc and prove the latter part of the proposition.

By Lemma 2.4.2 we have f ∗∗ ∈ Φc. By definition of f ∗∗ and Young’s inequality

(2.4.1) we obtain

f ∗∗(y) = sup
v≥0

(yv − f ∗(v)) ≤ sup
v≥0

(f(y) + f ∗(v)− f ∗(v)) = f(y), (2.7)
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Figure 2.5: Sketch of the case f ∗∗(y0) < f(y0)

It remains to show f ∗∗(y) ≥ f(y). We prove this by contradiction. Assume to the

contrary that there exists y0 ≥ 0 with f ∗∗(y0) < f(y0), see Fig. 2.6.

Suppose first that f(y0) < ∞. Since f is left-continuous, there exists y1 < y0 with

f(y1) >
1
2
(f(y0) + f ∗∗(y0)). Let ρ := f(y0)−f(y1)

y0−y1 . Since f is increasing, it follows by

convexity that

f(y) ≥ ρ(y − y0) +
1

2
(f(y0) + f ∗∗(y0)).

Therefore, by Young’s inequality for f ∗,

f ∗(ρ) = sup
y≥0

(ρy − f(y)) ≤ ρy0 −
1

2
(f(y0) + f ∗∗(y0)

≤ f ∗(ρ) + f ∗∗(y0)−
1

2
(f(y0) + f ∗∗(y0)) < f ∗(ρ)
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a contradiction.

The case f(y0) = ∞ is handled similarly, with the estimate f(y) ≥ ρ(y − y∞) +

2f ∗∗(y0) for suitably big ρ.

We next consider the general case f ∈ ΦW . By Theorem 2.2.3, there exists

g ∈ Φs with f ' g. Using Lemma 2.4.4(c) twice we obtain f ∗∗ ' g∗∗.

By the first part of the proof, g = g∗∗ and thus f ∗∗ ' g ' f .

We already know by (2.7) that f ∗∗ is a convex minorant of f . Suppose that g is also

a convex minorant of f . By taking max{g, 0} we may assume that g is non-negative.

By Lemma 2.4.4(a), used twice, we have g∗∗ ≤ f ∗∗. But since g is convex, the first

part of the proof implies that g∗∗ = g so that g ≤ f ∗∗. Hence f ∗∗ is the greatest

convex minorant.
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Corollary 2.4.7. Let f, g ∈ Φc. Then f ≤ g if and only if g∗ ≤ f ∗.

Proof. Lemma 2.4.4(a) yields the implication from Φ-functions to conjugate func-

tions. The reverse implication follows using Lemma 2.4.4(a) for f ∗ and g∗ and

Proposition 2.4.6 that gives f ∗∗ = f and g∗∗ = g.

Lemma 2.4.8. Let f ∈ Φc and γ := limy→0+
f(y)
y

= f ′(0). Then f ∗(x) = 0 if and

only if x ≤ γ.

Here f ′(0) is the right derivative of a convex function at the origin.

Proof. Since f is convex, it satisfies (2.1) with p = 1. In particular, f(y)
y
≥ f ′(0) = γ.

We observe that

f ∗(x) = sup
y≥0

(
x− f(y)

y

)
.

If x ≤ γ, then the parenthesis is non-positive, so f ∗(x) = 0. If x > γ, then the

parenthesis is positive for some sufficiently small y > 0, and so f ∗(x) > 0.

The following theorem gives a simple formula for approximating the inverse of

f ∗. This results was previously shown for N-functions in [[10], Lemma 2.6.11] and for

generalized Φ-functions in [[6], Lemma 2.3] but the later proof includes a mistake.

Theorem 2.4.9. If f ∈ ΦW , then f−1(y)(f ∗)−1(y) ≈ y.

Proof. see [14].

Proposition 2.4.10. Let f ∈ ΦW . Then f satisfies (2.2) or (2.4) if and only if f ∗

satisfies (2.4) with q = p′ or (2.2) with p = q′ , respectively.

Proof. We start with the special cases (2.1) and (2.3). We have that f satisfies (2.1)

if and only if f(y1/p)
y

is increasing, similarly for f ∗ and (2.3). From the definition of

the conjugate function,

f ∗(x
1
p )

x
=

1

x
sup
y≥0

(
yx

1
p − f(y)

)
= sup

w≥0
w

(
w− 1

p − f((xw)
1
p′ )

xw

)
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where we used the change of variables y =: (xw)
1
p′ . From this expression, we see

that f ∗ satisfies (2.3) and (2.1) if satisfies (2.1) with p = q′ and (2.3) with q = p′,

respectively. For the opposite implication, we use (f ∗)∗ ' f from Proposition 2.4.6.

Suppose now that f satisfies (2.2). Then g(x) := xp infy≥x y
−pf(y) satisfies (2.1).

A short calculation shows that f ≈ g : by (2.2)p>1 we obtain

1

δ
f(x) =

1

δ
xp
f(x)

xp
≤ g(x) ≤ xp

f(x)

xp
= f(x)

By the above argument, g∗ satisfies (2.3) and by Lemma 2.4.4(c),f ∗ ' g∗. For (2.4),

we can argue in the same way with the auxiliary function g(x) := xq supy≤x y
−qf(y).

Definition 2.4.11. We say that f ∈ ΦW satisfies ∇2, if f ∗ satisfies ∆2.

We can now connect this concept from the theory of Orlicz spaces to the as-

sumptions as Proposition 2.4.10 and Lemma 2.2.6 yield the following result.

Corollary 2.4.12. A function f ∈ ΦW satisfies ∇2 if and only if it satisfies (2.2).

2.5 Generalized Φ-Functions

we will generalize Φ-functions in such a way that they may depend on the space

variable. Let (M,Γ, µ) be a σ-finite, complete measure space. In what follows we

always make the natural assumption that the measure µ is not identically zero.

Definition 2.5.1. Let f : M × [0,∞) → R and p, q > 0. We say that f satisfies

(2.2) or (2.4), if there exists δ ≥ 1 such that the function y 7→ f(x, y) satisfies (2.2)

or (2.4) with a constant δ, respectively, for µ-almost every x ∈M . When δ = 1, we

use the notation (2.1) and (2.3).

Remark 2.5.2. Observe that in the almost increasing and decreasing conditions

we require that the same constant applies to almost every point. Furthermore, if we
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define f(x, y) = g(y) for every x, then f satisfies (2.2) in the sense of the previous

definition if and only if g satisfies (2.2) in the sense of Definition 2.1.2. The same

applies to the other terms. Therefore, there is no need to distinguish between the

conditions based on whether there is an x-dependence of the function or not.

Definition 2.5.3. Let (M,Γ, µ) be a σ-finite, complete measure space. A function

f : M × [0,∞) → [0,∞] is said to be a (generalized) Φ-prefunction on (M,Γ, µ) if

x 7→ f(x, |f(x)|) is measurable for every f ∈ L0(M,µ) and f(x, ·) is a Φ- prefunction

for µ-almost every x ∈M . We say that the Φ-prefunction f is

• a(generalized weak) Φ-function if f satisfies (2.2) with p = 1;

• a(generalized) convex Φ-function if f(x, ·) ∈ Φc for µ-almost all x ∈ A;

• a(generalized) strong Φ-function if f(x, ·) ∈ Φs for µ-almost all x ∈ A.

If f is a generalized weak Φ-function on (M,Γ, µ),we write f ∈ ΦW (M,µ) and

similarly we define f ∈ Φc(M,µ) and f ∈ Φs(M,µ). If Ω is an open subset of Rn

and µ is the n-dimensional Lebesgue measure we omit µ and abbreviate ΦW (Ω),

Φc(Ω) or Φs(Ω). Or we say that f is a generalized (weak/convex/strong)Φ-function

on Ω. Unless there is danger of confusion, we will omit the word "generalized".

Clearly Φs(M,µ) ⊂ Φc(M,µ) ⊂ ΦW (M,µ). Every Φ-function is a generalized

Φ-function if we set f(x, y) := f(y) for x ∈ M and y ∈ [0,∞). Next we give some

examples of non-trivial generalized Φ-functions.

Example 2.5.4. Let φ : M → [1,∞] be a measurable function and define φ∞ :=

lim sup|x|−→∞ φ(x). Let us interpret y∞ := ∞χ(1,∞](y). Let ψ : M → (0,∞) be a
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measurable function and 1 ≤ x < y <∞. Let us define, for y ≥ 0,

f1(x, y) := yφ(x)ψ(x)

f2(x, y) := yφ(x) log(e+ y)

f3(x, y) := min{yφ(x), yφ∞}

f4(x, y) := yφ(x) + sin(y)

g1(x, y) := yφ + ψ(x)yt

g2(x, y) := (y − 1)s+ + ψ(x)(y − 1)t+

Observe that

f3 ∈ ΦW (M,µ)\Φc(M,µ) when φ is non-constant,

f4 ∈ ΦW (M,µ)\Φc(M,µ) when infx∈M φ(x) ≤ 3
2
,

f1, f2 ∈ Φc(M,µ)\Φs(M,µ) when φ = ∞ in a set of positive measure, and

g1, g2 ∈ Φs(M,µ) when φ, t ∈ [1,∞).

Moreover, if φ(x) <∞ for µ-almost every x, then f1, f2 ∈ Φs(M,µ).

Measurability

Observe that in the definition of generalized Φ-functions we have directly assumed

that x 7→ f(x, |h(x)|) is measurable. If f is left-continuous, then this assumption

can be replaced with the conditions from the next theorem.

Theorem 2.5.5. Let f : M × [0,∞) → [0,∞], x 7→ f(x, y) be measurable for every

y ≥ 0 and y 7→ f(x, y) be increasing and left-continuous for µ-almost every x. If

h ∈ L0(M,µ) is measurable, then x 7→ f(x, |h(x)|) is measurable.

Proof. We have to show that Dα := {x ∈ M : f(x, |h(x)|) > α} is measurable for

every α ∈ R. Let us write Tα(y) := {x ∈ M : f(x, t) > α} ∩ {x ∈ M : |f(x)| ≥ y},
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for y ≥ 0. Then for each y we have Tα(y) ⊂ Dα since f is increasing. Assume then

that x ∈ Dα. Let (yi) be a sequence of non-negative rational numbers converging to

|f(x)| from below. By the left-continuity of f , we have limi→∞ f(x, yi) = f(x, |h(x)|).

Thus there exists i0 such that f(x, yi0) > α and 0 ≤ yi0 ≤ |f(x)|. This yields that

x ∈ Tα(yi0). We have shownDα =
⋃
y∈Q∩[0,∞) Tα(y). Since each Tα(y) is measurable

by assumption and the union is countable, the set Dα is measurable.

The next example shows that x 7→ f(x, |h(x)|) need not to be measurable if we

omit left-continuity of f .

Example 2.5.6. Consider the Lebesgue measure on [1, 2] and let T ⊂ [1, 2] be a

non-measurable set. We define f : [1, 2]× [0,∞) → [0,∞] by

f(x, y) := χT (y)χ{x}(y) +∞χ(x,∞)(y).

For constant y ≥ 0, x 7→ f(x, y) is decreasing and hence measurable.For each x ∈

[1, 2], y 7→ f(x, y) belongs to ΦW , but it is left-continuous only when χT (x) = 0

i.e. when x /∈ T . Let h : [1, 2] → R, h(x) := x. Then f is continuous, and hence

measurable. But f(x, |h(x)|) = f(x, x) = χT (x) is not a measurable function.

Properties of Φ-functions are generalized point-wise uniformly to the generalized

Φ-function case. For instance we define equivalence as follows.

Definition 2.5.7. We say that f, g : M × [0,∞) → [0,∞] are equivalent, f ' g, if

there exist τ > 1 such that for all y ≥ 0 and µ-almost all x ∈M we have

g(x,
y

τ
) ≤ f(x, y) ≤ g(x, τy).

Lemma 2.5.8. Let f, g : M × [0,∞) → [0,∞], f ' g, be increasing with respect

to the second variable, and x 7→ f(x, |h(x)|) and x 7→ g(x, |h(x)|) be measurable for

every measurable f .

(a) If f is a generalized Φ-prefunction, then g is a generalized Φ-prefunction.
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(b) If f satisfies (2.2), then g satisfies (2.2).

(c) If f satisfies (2.4), then g satisfies (2.4).

Let us here show how the upgrading results can be conveniently obtained by

means of the conjugate function. We first show that f ∗ is measurable, i.e. we

generalize Lemma 2.4.2.

Lemma 2.5.9. If f ∈ ΦW (M,µ), then f ∗ ∈ Φc(M,µ).

Proof. By Lemma 2.4.2 and Theorem 2.5.5, it is enough to show that x 7→ f ∗(x, y)

is measurable for every y ≥ 0. We first show that

sup
v≥0

(vy − f(x, v)) = sup
v∈Q∩[0,∞)

(vy − f(x, v))

The inequality "≥" is obvious. Suppose that v ∈ (0,∞)\Q and let vj ∈ (v− 1
j
, v)∩Q.

Since f is increasing, we obtain vy − f(x, v) ≤ vy − f(x, vj) ≤ vjy − f(x, vj) + y
j
.

When j →∞ Ą, we obtain the inequality "≤".

Let c ≥ 0. Then f ∗(x, y) ≤ c if and only if vy− (x, v) ≤ c for all v ∈ Q∩ [0,∞).

Thus

{x : f ∗(x, y) ≤ c} =
⋂

v∈Q∩[0,∞)

{x : vy − f(x, v) ≤ c}

is measurable as a countable intersection of measurable sets, and hence x 7→ f ∗(x, y)

is measurable.

Let us then consider Lemma 2.2.1 and Theorem 2.2.3 which show that every

weak Φ-function is equivalent to a strong Φ-function.

Lemma 2.5.10. If f ∈ ΦW (M,µ) satisfies (2.2) with p ≥ 1, then there exists

g ∈ Φc(M,µ) equivalent to f such that g1/p is convex. In particular, g satisfies

(2.1).
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Proof. We first observe that π := f
1
p ∈ ΦW (M,µ). It follows by Lemma 2.5.9 that

π∗∗ ∈ Φc(M,µ) and by Proposition 2.4.6 that π ' π∗∗. Then g := (π∗∗)p is the

required convex Φ-function.

Theorem 2.5.11. Every weak Φ-function is equivalent to a strong Φ-function

Proof. Let fc be from Lemma 2.5.10 . By the proof of Theorem 2.2.3 we need only

to show that the functions in the proof satisfy the measurability property. There

we defined y∞(x) := inf{y : fc(x, y) = ∞} ∈ (0,∞) and

fs(x, y) := fc(x, y) +
2y − y∞(x)

y∞(x)− y
χ( 1

2
y∞(x),y∞(x))(y) +∞χ[y∞(x),∞)(y).

Then fs is left-continuous and hence by Theorem 2.5.5 we need to show that x 7→

fs(x, y) is measurable for every y ≥ 0.

This is clear if x 7→ y∞(x) is measurable. Let e ≥ 0. Then inf{y : fc(x, y) =

∞} ≤ e if and only if fc(x, e + ε) = ∞ for all ε > 0. The later implies that

fc(x, e+ κ) = ∞ for all κ ∈ Q ∩ (0,∞). We obtain that

{x : y∞(x) ≤ e} =
⋂

κ∈Q∩(0,∞)

{x : f(x, e+ κ) = ∞}

is measurable as a countable intersection of measurable sets, and hence y∞ is mea-

surable.

The proof of following proposition is the same as the proof of Proposition 2.2.7

except that it is based on Lemma 2.5.10, not its preliminary version Lemma 2.2.1.

Proposition 2.5.12. If f ∈ ΦW (M,µ) satisfies (2.4)q<∞, then there exists g ∈

Φs(M,µ) with g ≈ f such that y 7→ g(x, y) is a strictly increasing bijection for

µ-almost every x ∈M .

Then we consider the inverse of a generalized Φ-function. For that we prove an

extra lemma.
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Lemma 2.5.13. Let f : M × [0,∞) → [0,∞]. If y 7→ f(x, y) is increasing for

µ-almost every x and if x 7→ f(x, y) is measurable for every y ≥ 0, then x 7→

f−1(x, |f(x)|) is measurable for every measurable f .

Proof. By Lemma 2.3.9(c), f−1 is left-continuous and hence by Theorem 2.5.5 we

need to show that x 7→ f−1(x, η) is measurable for every η ≥ 0.

Let b, η ≥ 0. Then f−1(x, η) = inf{y : f(x, y) ≥ η} > b if and only if there exists

ν > 0 such that f(x, b + ν) < η. Since f is increasing with respect to the second

variable, the later implies that f(x, b+ κ) < η for all κ ∈ Q ∩ (0, ν]. Thus

{x : f−1(x, η) > b} =
⋃

κ∈Q∩(0,∞)

{x : f(x, b+ κ) < η}

is measurable as a countable union of measurable sets, and hence x 7→ f−1(x, η) is

measurable.

Next we generalize Definition 2.3.12 to ΦW (M,µ)-functions

Definition 2.5.14. We say that π : M × [0,∞] → [0,∞] belongs to Φ−1
W (M,µ) if

it satisfies (2.2) with p = 1, x 7→ ξ(x, y) is measurable for all y and if for µ-almost

every x ∈ A the function y 7→ π(x, y) is increasing, left-continuous, and π(x, y) = 0

if and only if y = 0 and π(x, y) = ∞ if and only if y = ∞.

We denote ΦW + (M,µ) the set of left-continuous generalized weak Φ-functions.

Proposition 2.5.15. The transformation f 7→ f−1 is a bijection from ΦW+ to Φ−1
W

:

(a) If f ∈ ΦW+(M,µ), then f−1 ∈ Φ−1
W (M,µ) and (f−1)−1 = f .

(b) If π ∈ Φ−1
W (M,µ), then π−1 ∈ ΦW+(M,µ)) and (π−1)−1 = π.

Weak equivalence and weak Doubling

We can also define some properties which are properly generalized in the sense that

they have no analogue in the case that does not depend on the space variable.
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Definition 2.5.16. We say that f, g : M × [0,∞) → [0,∞] are weakly equivalent,

f ∼ g, if there exist τ > 1 and g ∈ L1(M,µ) such that

f(x, y) ≤ g(x, τy) + g(x) and g(x, y) ≤ f(x, τy) + g(x)

for all y ≥ 0 and µ-almost all x ∈M .

An easy calculation shows that ∼ is an equivalence relation.It clear from the defini-

tions that f ' g implies f ∼ g (with g = 0). Later in Theorem 3.2.9 we show that

f ∼ g if and only if Lf (M,µ) = Lg(M,µ). Also weak equivalence is preserved under

conjugation:

Lemma 2.5.17. Let f, g : M × [0,∞) → [0,∞]. If f ∼ g , then f ∗ ∼ g∗.

Proof. Let f ∼ g. Then we obtain

f ∗(x, τv) = sup
y≥0

(yτy − f(x, y)) ≥ sup
y≥0

(yτv − g(x, τy)− g(x))

= sup
y≥0

(yτv − g(x, τy))− g(x) = g∗(x, τv)− g(x)

and similarly f ∗(x, v) ≤ g∗(x, τv) + g(x).

Definition 2.5.18. We say that f : M× [0,∞) → [0,∞] satisfies the weak doubling

condition ∆W
2 if there exist a constant θ ≥ 2 and ψ ∈ L1(M,µ) such that

f(x, 2y) ≤ θf(x, y) + ψ(x)

for µ-almost every x ∈M and all y ≥ 0. We say that f satisfies condition ∇W
2 if f ∗

satisfies ∆W
2

If ψ ≡ 0, then we say that the (strong) ∆2 and ∇2 conditions hold.

Remark 2.5.19. Note that the ∆2 and ∇2-conditions for x-independent Φ-

prefunctions have been defined in Definition 2.2.5. By writing f(x, y) := f(y) we

see that the definitions are equivalent. Since the constant θ in Definition 2.5.22 is

the same for µ-almost every x ∈ M , we see by Lemma 2.2.6 that ∆2 is equivalent

to (2.4)q<∞ and by Corollary 2.4.12 that ∇2 is equivalent to (2.2)p>1.
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Lemma 2.5.20. Let f, g : M × [0,∞) → [0,∞] with f ∼ g.

(a) If f satisfies ∆W
2 , then g satisfies ∆W

2

(b) If f satisfies ∇W
2 , then g satisfies ∇W

2

Proof. (a) Choose an integer n ≥ 1 such that 2n−1 < 2τ 2 ≤ 2n. Then, by iterating

the ∆W
2 assumption, we conclude that

f(x, 2τy) ≤ f(x, 2n
y

τ
) ≤ θf(x, 2n−1 y

τ
) + ψ(x) ≤ ... . f(x, yτ) + ψ(x).

Denote by ψ2 the function from ∼ . We find that

g(x, 2y) ≤ f(x, 2τy) + ψ2(x) . f(x,
y

τ
) + ψ(x) + ψ2(x)

≤ g(x, y) + ψ(x) + 2ψ2(x).

(b) Since f ∼ g, Lemma 2.5.17 yields f ∗ ∼ g∗. Since f ∗ satisfies ∆W
2 so does g∗

by (a). This means that g satisfies ∇W
2 .

Next we show that weak doubling can be upgraded to strong doubling via weak

equivalence of Φ-functions.

Theorem 2.5.21. If f ∈ ΦW (M,µ) satisfies ∆W
2 and/or ∇W

2 , then there exists

g ∈ ΦW (M,µ) with f ∼ g satisfying ∆2 and/or ∇2.

Proof. By Theorem 2.5.11 and Lemmas 2.5.17 and 2.5.20, we may assume without

loss of generality that f ∈ Φs(M,µ).By the assumptions,

f(x, 2y) ≤ θf(x, y) + ψ(x) and/or f ∗(x, 2y) ≤ θf∗(x, y) + ψ(x)

for some θ > 2, ψ ∈ L1, y ≥ 0 and µ-almost all x ∈ M . Using f = f ∗∗ (Proposition

2.4.6), the definition of the conjugate Φ-function and Lemma 2.4.4(b), we rewrite
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the second inequality as

f(x, 2y) = sup
v≥0

(
2yv − f ∗(x, v)

)
≤ sup

v≥0

(
2yv − 1

θ
(f ∗(x, 2v)− ψ(x))

)
= sup

v≥0

(
2yv − 1

θ
f ∗(x, 2v)

)
+

1

θ
ψ(x)

=
1

θ
f ∗∗(x, θy) +

1

θ
ψ(x) =

1

θ
f(x, θy) +

1

θ
ψ(x).

Define yx := f−1(x, ψ(x)) and suppose that y > yx so that ψ(x) ≤ f(x, y) by

Lemma 2.3.3. By (2.1) with p = 1, we conclude that θψ(x) ≤ θf(x, y) ≤ f(x, θy).

Hence in the case y > yx we have

f(x, 2y) ≤ (θ + 1)f(x, y) and/or f(x, 2y) ≤ θ + 1

θ2
f(x, θy).

Let q := log2(θ + 1) and p := log(θ2/(θ+1))
log(θ/2)

.Note that p > 1 since θ2

θ+1
> θ

2
and θ > 2.

Divide the first inequality by (2y)q and the second one by (2y)p:

f(x, 2y)

(2y)q
≤ θ + 1

2q
f(x, y)

yq
=
f(x, y)

yq
and/or

f(x, 2y)

(2y)p
≤ (θ + 1)θp

θ22p
f(x, θy)

θyp
=
f(x, θy)

θyp
.

Let l > y ≥ yx.Then there exists n ∈ N such that 2ny < l ≤ 2n+1y, Hence

f(x, l)

lq
≤ f(x, 2n+1y)

(2ny)q
= 2q

f(x, 2n+1y)

(2n+1y)q
≤ 2q

f(x, 2ny)

(2ny)q
≤ ... ≤ 2q

f(x, y)

yq
,

so f satisfies (2.4) for y ≥ yx. Similarly, we find that f satisfies (2.2) for y ≥ yx.

Define

g(x, y) :=

{
f(x, y), for y ≥ yx;
cxy

p otherwise,

where cx is chosen so that the g is continuous at yx.Then g satisfies (2.2) and/or

(2.4) on [0, yx] and [yx,∞), hence on the whole real axis.

Furthermore, f(x, y) = g(x, y) when y ≥ yx ,and so it follows that

|f(x, y)− g(x, y)| ≤ f(x, yx) ≤ ψ(x) (Lemma 2.3.3). Since ψ ∈ L1,this means

that f ∼ g, so g is the required function.
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Finally we show that g ∈ Φw(M,µ). The function x 7→ cx = f(x,yx)
yp

x
is measurable

since yx = f−1(x, ψ(x)) is measurable (Lemma 2.5.13), thus we obtain that x 7→

g(x, y) is measurable. It is clear that y 7→ g(x, y) is a left-continuous Φ-prefunction

for µ-almost every x and hence the measurability property follows from Theorem

2.5.5. Since g satisfies (2.2) with p = 1 on [0, yx] and [yx,∞) for µ-almost every x,

it satisfies (2.2) with p = 1.
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Chapter 3

Generalized Orlicz Spaces

In the previous chapter, we studied the properties of Φ-functions. In this chapter,

we use them to study and derive results for function spaces defined by means of

Φ-functions.

3.1 Modulars

see, e.g., the monographs [5, 14, 17, 19].

Definition 3.1.1. Let f ∈ ΦW (M,µ) and let ρf be given by

ρf (h) :=

∫
A

f(x, |h(x)|)dµ(x), for all h ∈ L0(M,µ).

The function ρf is called a modular.

The set Lf (M,µ) := {h ∈ L0(A, µ) : ρf (λh) <∞ for some λ > 0}

is called a generalized Orlicz space. we denote Lf (M,µ) = Lf .

Remark 3.1.2.

Generalized Orlicz spaces are also called Musielak-Orlicz spaces,

If limβ→1− ρ(βh) = ρ(h) then ρ is left-continuous.

If f ∈ Φc(M,µ) is strictly increasing, then ρf to be called a modular.
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Example 3.1.3. As in example 2.1.6, we consider the following Φ-functions:

fp(y) :=
1

p
yp, p ∈ (0,∞)

fmax(y) := (max{0, y − 1})2,

fsin(y) := y + sin(y),

fexp(y) := exp(y)− 1,

f∞(y) := ∞χ(1,∞)(y),

f∞,2(y) := f∞(y) +
2y − 1

1− y
χ(1/2,1)(y).

which generate Orlicz spaces

Lf
p

= Lp, Lfmax = L2 + L∞, Lfsin = L1, Lfexp = expL, Lf
∞

= Lf
∞,2

= L∞.

Lemma 3.1.4. Let f ∈ ΦW (M,µ).

(a) Then Lf (M,µ) = {h ∈ L0(M,µ) : limβ→0+ ρf (βh) = 0}.

(b) If, additionally,f satisfies (2.4)q<∞, then

Lf (M,µ) = {h ∈ L0(M,µ) : ρf (h) <∞}.

Proof. (a) First inclusion, suppose there exists β > 0 such that ρf (βf) < ∞. by

(2.2) with p = 1 we get

f(x, yβ |h(x)|) ≤ δyf(x, β |h(x)|)

for y ∈ (0, 1) and µ-almost all x ∈M . This gives that∫
M

f(x, yβ |h(x)|)dµ(x) ≤ δy

∫
M

f(x, β |h(x)|)dµ(x)

and hence limβ→0+ ρf (βh) = 0.

Second inclusion, if limβ→0+ ρf (βh) = 0, then there exists β > 0 such that

ρf (βh) <∞. Hence

{h ∈ L0(M,µ) : lim
β→0+

ρf (βh) = 0} ⊂ Lf (M,µ).
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(b) For the first direction, suppose there exists β ∈ (0, 1) such that ρf (βh) < ∞

(the case β ≥ 1 is clear). Then (2.4) gives

ρf (h) ≤
∫
M

δβ−qf(x, β |h|)dµ(x) = δβ−qρf (βh) <∞

The inclusion {h ∈ L0(M,µ) : ρf (h) <∞} ⊂ Lf (M,µ) is obvious.

We will show some properties are called Fatou’s lemma, monotone convergence

and dominated convergence for the modular, respectively.

Lemma 3.1.5. Let f ∈ ΦW (M,µ) and hn, h, r ∈ L0(M,µ). In (a) and (b), we

assume also that f is left-continuous.

(a) If hn → h µ-almost everywhere, then ρf (h) ≤ lim infn→∞ ρf (hn).

(b) If |hn| ↗ |h| µ-almost everywhere, then ρf (h) = limn→∞ ρf (hn)

(c) If hn → h µ-almost everywhere, |hn| ≤ |r| µ-almost everywhere, and ρf (βr) <

∞ for every β > 0, then limn→∞ ρf (β |h− hk|) = 0 for every β > 0.

Proof. To prove (a). Using Lemma 2.1.7 and f is left-continuous, then the mapping

f(x, ·) is lower semicontinuous. we can use Fatou’s lemma to conclude that

ρf (h) =

∫
M

f(x, lim
n→∞

|hn|)dµ ≤
∫
M

lim inf
n→∞

f(x, |hn|)dµ

= lim inf
n→∞

∫
M

f(x, |hn|)dµ = lim inf
n→∞

ρf (hn)

To prove (b), Assume that |hn| ↗ |h|, if ρf (h) = ∞, then by (a) we get

limn→∞ρf (hn) = ∞, So if ρf (h) < ∞. by the left-continuity and monotonicity

of f(x, ·), we have 0 ≤ f(x, |hn|) ↗ f(x, |h|) µ-almost everywhere. hence, monotone

convergence implies

ρf (h) =

∫
M

f(x, lim
n→∞

|hn|)dµ =

∫
M

lim
n→∞

f(x, |hn|)dµ

= lim
n→∞

∫
M

f(x, |hn|)dµ = lim
n→∞

ρf (hn)
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To prove (c), suppose that hn → h µ-almost everywhere, |hn| ≤ |r|, and ρf (βr) <∞

for every β > 0. then |hn − h| → 0 µ-almost everywhere, |h| ≤ |r| and λ |hn − h| ≤

2β |r|. since ρf (2βr) <∞, we can use dominated convergence to conclude that

lim
n→∞

ρf (β |h− hn|) =

∫
M

f(x, lim
n→∞

β |h− hn|)dµ = 0

Lemma 3.1.6. Let f ∈ ΦW (M,µ) satisfy (2.3)q<∞. Let hi, ri ∈ Lf (Rn) for i =

1, 2, ... with (ρf (hi))
∞
i=1 bounded. If ρf (hi − ri) → 0 as i→∞, then

|ρf (hi)− ρf (ri)| → 0 as i→∞.

Proof. Since f is increasing and satisfies (2.3), this yields

f(x, ri) ≤ f(x, |ri − hi|+ |hi|) ≤ f(x, 2 |ri − hi|) + f(x, 2 |hi|)

≤ 2qf(x, |ri − hi|) + 2qf(x, |hi|)

and hence (ρf (hi))
∞
i=1 is bounded. choosing C > 0 such that ρf (hi) ≤ C and

ρf (ri) ≤ C. let β > 0 and note that |hi| ≤ |hi − ri|+ |ri|.

if |hi − ri| ≤ β |ri|, then by (2.3) we find

f(x, |hi|) ≤ f(x, (1 + β) |ri|) ≤ (1 + β)qf(x, |ri|).

If, on the other hand, |hi − ri| > β |ri|, then we estimate by (2.3)

f(x, |hi|) ≤ f(x, (1 +
1

β
) |hi − ri|) ≤ (1 +

1

β
)qf(x, |hi − ri|)

we integrate over x ∈M , we obtain

ρf (hi)− ρf (ri) =

∫
M

f(x, |hi − ri + ri|)− f(x, |ri|)dµ(x)

≤ (1 +
1

β
)qρf (hi − ri) + ((1 + β)q − 1)ρf (ri).
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By combining the inequalities gives,

|ρf (hi)− ρf (ri)| ≤ (1 +
1

β
)qρf (hi − ri) + ((1 + β)q − 1)(ρf (hi)− ρf (ri)).

Let ν > 0 be given. since ρf (fj)− ρf (ri) ≤ 2C, we can choose β so small that

((1 + β)q − 1)(ρf (hi)− ρf (ri)) ≤
ν

2
.

we can then choose i0 so large that

(1 +
1

β
)qρf (hi − ri) ≤

ν

2
.

when i ≥ i0 and it follows that |ρf (hi)− ρf (ri)| ≤ ν.

3.2 Quasinorm and the unit ball property

Definition 3.2.1. Let f ∈ ΦW (M,µ). for h ∈ L0(M,µ), we denote

‖h‖Lf (M,µ) := inf

{
β > 0, ρf

(h
β

)
≤ 1

}
.

we abbreviate ‖h‖Lf (M,µ) = ‖h‖f .

Remark 3.2.2. Lf can appear as follows:

Lf (M,µ) = {h ∈ L0(M,µ) : ‖h‖Lf (M,µ) <∞}.

Lemma 3.2.3.

(a) If f ∈ ΦW (M,µ), then ‖·‖f is a quasinorm.

(b) If f ∈ Φc(M,µ), then ‖·‖f is a norm.

Proof. To prove (a), suppose first that f ∈ ΦW (M,µ). if h = 0 a.e., then ‖h‖f = 0.

If ‖h‖f = 0, then ρf
(h
β

)
≤ 1 for all β > 0. when h(x) 6= 0, we have |h(x)|

β
→∞ when

β → 0+. since limy→∞ f(x, y) = ∞ for µ-almost every x, we obtain that h(x) = 0

for µ- almost every x ∈M .
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Let f ∈ Lf (M,µ) and e ∈ R. by definition, ρf (h) = ρf (|h|). with the change of

variables β′ := β/ |e|, we find

‖eh‖f = inf

{
β > 0, ρf

(eh
β

)
≤ 1

}
= inf

{
β > 0, ρf

( h

β/ |e|

)
≤ 1

}
= |e| inf

{
β′ > 0, ρf

( h
β′

)
≤ 1

}
= |e| ‖h‖f .

Hence ‖·‖f is homogeneous.

Let h, r ∈ Lf (M,µ) and v > ‖h‖f . and w > ‖r‖f . then ρf (h/v) ≤ 1 and

ρf (r/w) ≤ 1 by the definition of the norm. using (2.2) with p = 1, we get

f
(
x,
|h|
2δv

)
≤ 1

2
f
(
x,
|h|
v

)
and f

(
x,

|r|
2δw

)
≤ 1

2
f
(
x,
|r|
w

)
.

Thus we obtain that∫
M

f
(
x,

|h+ r|
4δ(v + w)

)
dµ ≤

∫
M

f
(
x,
|2h|
4δv

)
+ f

(
x,
|2r|
4δw

)
dµ

≤ 1

2

∫
M

f
(
x,
|h|
v

)
+ f

(
x,
|r|
w

)
dµ

≤ 1

2
+

1

2
= 1

and hence ‖h+ r‖f ≤ 4δv + 4δw which yields that ‖h+ r‖f ≤ 4δ ‖h‖f + 4δ ‖r‖f .

This completes the proof of (a).

To prove (b), suppose that f is convex. Let v > ‖h‖f and w > ‖r‖f . using the

convexity of f , we obtain∫
M

f
(
x,
|h+ r|
v + w

)
dµ ≤

∫
M

f
(
x,

v

v + w

|h|
v

+
w

v + w

|r|
w

)
dµ

≤
∫
M

v

v + w
f
(
x,
|h|
v

)
+

w

v + w
f
(
x,
|r|
w

)
dµ

≤ v

v + w
+

w

v + w
= 1

Thus ‖h+ r‖f ≤ v+w, which yields ‖h+ r‖f ≤ ‖h‖f+‖r‖f , as required for (b).

We will show a fundamental relation between the norm and the modular.
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Lemma 3.2.4 (Unit ball property). Let f ∈ ΦW (M,µ). Then

‖h‖f < 1 ⇒ ρf (h) ≤ 1 ⇒ ‖h‖f ≤ 1

If f is left-continuous, then ρf (h) ≤ 1 ⇔ ‖h‖f ≤ 1.

Proof. Assume that ρf (h) ≤ 1, by definition of ‖·‖f , we get ‖h‖f ≤ 1. Furthermore,

if ‖h‖f < 1, then ρf (h/β) ≤ 1 for some β < 1, since ρ is increasing, it follows that

ρf (h) ≤ 1.

If ‖h‖f ≤ 1, then ρf (h/β) ≤ 1 for all β > 1. when ρ is left-continuous it follows

that ρf (h) ≤ 1.

Example 3.2.5. Let f(y) := ∞χ[1,∞)(y) and h ≡ 1, then f ∈ ΦW and ρf (h) = ∞,

since ρf (h/β) ≤ 1 if and only if β > 1, we have ‖h‖f = 1.

we have shown that if the Φ-function is not left-continuous, then ‖h‖f = 1 does not

imply ρf (h) ≤ 1.

Proposition 3.2.6. Let f, g ∈ ΦW (M,µ). If f ' g, then Lf (M,µ) = Lg(M,µ) and

the norms are comparable.

Proof. Assume that g(x, y
τ
) ≤ f(x, y) ≤ g(x, τy) and h ∈ Lf (M,µ), then there exists

β > 0 such that ρg(βτ h) ≤ ρf (βh) < ∞. thus h ∈ Lg(M,µ). the other direction is

similar and hence Lf (M,µ) = Lg(M,µ) as sets.

Let ν > 0 and β = ‖h‖f + ν. then

ρg

( h

τβ

)
≤ ρf

(h
β

)
≤ 1

and hence ‖f‖g ≤ τβ = τ(‖h‖f +ν). Letting ν → 0+ we obtain that ‖h‖g ≤ τ ‖h‖f .

the other direction is similar and so the norms are comparable.

Corollary 3.2.7. Let f ∈ ΦW (M,µ). Then∥∥∥∥∥
∞∑
j=1

hi

∥∥∥∥∥
f

.
∞∑
j=1

‖hj‖f
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Proof. see [14].

Remark 3.2.8. Recall that, a measure µ is called atom− less if for any measurable

set A with µ(A) > 0 there exists a measurable subset A′ of A such that µ(A) >

µ(A′) > 0.

Theorem 3.2.9. Let f, g ∈ ΦW (M,µ) and let the measure µ be atom− less. Then

Lf (M,µ) ↪→ Lg(M,µ) if and only if there exist θ > 0 and ϕ ∈ L1(M,µ) with

‖ϕ‖1 ≤ 1 such that

g
(
x,
y

θ

)
≤ f(x, y) + ϕ(x)

for µ-almost all x ∈M and all y ≥ 0.

Proof. see [14].

Corollary 3.2.10. Let f, g ∈ ΦW (M,µ), f ∼ g. Then Lf (M,µ) = Lg(M,µ) and

the norms are comparable.

Corollary 3.2.11. Let f ∈ ΦW (M,µ) and h ∈ Lf (M,µ) and let δ be the constant

from (2.2) with p = 1.

(a) If ‖h‖f < 1, then ρf (h) ≤ δ ‖h‖f .

(b) If ‖h‖f > 1, then ‖h‖f ≤ δρf (h).

(c) In any case, ‖h‖f ≤ δρf (h) + 1.

Proof. For (a), if h = 0 is trivial case, otherwise suppose that 0 < ‖h‖f < 1. Let

β > 1 be so small that β ‖h‖f < 1. By unit ball property (Lemma 3.2.4) and∥∥∥ h
β‖h‖f

∥∥∥
f
< 1, it follows that ρf ( h

β‖h‖f
) ≤ 1. since β ‖h‖f ≤ 1, by (2.2) with p = 1

we have
1

δβ ‖h‖f
ρf (h) ≤ ρf

( h

β ‖h‖f

)
≤ 1

as β → 1+ we find that ρf (h) ≤ δ ‖h‖f .
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For (b), suppose that ‖h‖f > 1. then ρf (
h
β
) > 1 for 1 < β < ‖h‖f and by (2.2)

with p = 1 we obtain
δ

β
ρf (h) ≥ ρf (

h

β
) > 1

as β → ‖h‖−f we get that δρf (h) ≥ ‖h‖f .

For (c), using (b), we get the claim (c).

Remark 3.2.12. we consider h ≡ 1, f(x, y) := ∞χ(1,∞)(y) and g(x, y) :=

∞χ[1,∞)(y). then f and g are Φ-functions and ‖h‖f = ‖h‖g = 1 but ρf (h) = 0

and ρg(h) = ∞. so we have shown that in Corollary 3.2.11(a) and (b) the case

‖h‖f = 1 is excluded.

Lemma 3.2.13. Let f ∈ ΦW (M,µ) satisfy (2.2) and (2.4), 1 ≤ p ≤ q <∞. Then

min
{

(
1

δ
ρf (h))

1
p , (

1

δ
ρf (h))

1
q

}
≤ ‖h‖f ≤ max

{
(δρf (δ))

1
p , (δρf (h))

1
q

}
for h ∈ L0(M,µ), where δ is the maximum of the constants from (2.2) and (2.4).

Proof. we begin with the proof of the first inequality. let v ∈ (0, ρf (h)) and assume

first that v
δ
≤ 1. then (2.2) gives that

f
(
x,
|h(x)|
(v/δ)

1
p

)
≥ δ

δv
f(x, |h(x)|) =

1

v
f(x, |h(x)|).

Integrating over M , we find that ρf (h/(v/δ)1/p) > 1, which yields ‖h‖f ≥ (v/δ)
1
p .

If v
δ
> 1, we similarly use (2.4) to conclude that ‖h‖f ≥ (v

δ
)

1
q .

The first inequality follows as v → ρf (h)
−.

For the second inequality. let v > ρf (h) and assume first that δv ≤ 1. then (2.4)

gives that

f
(
x,
|h(x)|
(δv)

1
q

)
≤ δ

δv
f(x, |h(x)|) =

1

v
f(x, |h(x)|).
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Integrating over M , we find that ρf (h/(δv)1/q) ≤ 1, which yields ‖h‖f ≤ (δv)
1
q .

If δv > 1, we similarly use (2.2) to conclude that ‖h‖f ≤ (δv)
1
p .

The second inequality follows as v → ρf (h)
+.

If q = ∞, we get the following corollary.

Corollary 3.2.14. Let f ∈ ΦW (M,µ) satisfy (2.2), 1 ≤ p <∞.Then

min
{

(
1

δ
ρf (h))

1
p , 1

}
≤ ‖h‖f ≤ max

{
(δρf (δ))

1
p , 1

}
for h ∈ L0(M,µ), where δ is the constant from (2.2).

Let us next show the generalization of the classical Hölder inequality∫
|ϕ| |ψ| dµ ≤ ‖ϕ‖p ‖ψ‖p′ to generalized Orlicz spaces.

Lemma 3.2.15 (Hölder’s Inequality). Let f ∈ ΦW (M,µ).Then∫
M

|ϕ| |ψ| dµ ≤ 2 ‖ϕ‖f ‖ψ‖f∗

for all ϕ ∈ Lf (M,µ) and ψ ∈ Lf∗(M,µ). Moreover, the constant 2 cannot in general

be replaced by any smaller number.

Proof. Let ϕ ∈ Lf and ψ ∈ Lf
∗ with v > ‖ϕ‖f and w > ‖ψ‖f∗ . By the unit ball

property, ρf (ϕ/v) ≤ 1 and ρf∗(ψ/w) ≤ 1. thus, using Young’s inequality (2.6), we

obtain∫
M

|ϕ|
v

|ψ|
w
dµ ≤

∫
M

f
(
x,
|ϕ|
v

)
+ f ∗

(
x,
|ψ|
w

)
dµ = ρf

(ϕ
v

)
+ ρf∗

(ψ
w

)
≤ 2.

Multiplying by vw, we get the inequality as v → ‖ϕ‖+
f and w → ‖ψ‖+

f∗ .

Example 3.2.16. Suppose that f(y) = 1
2
y2. then f ∗(y) = supv≥0(vy − 1

2
v2) = 1

2
y2.

let ϕ ≡ ψ ≡ 1. then
∫ 1

0

ϕψdt = 1. otherwise,

inf
{
β > 0 :

∫ 1

0

1

2

( 1

β

)2

dt ≤ 1
}

=
1√
2

and thus ‖ϕ‖Lf (0,1) = ‖ψ‖Lf∗ (0,1) = 1√
2

and ‖ϕ‖Lf (0,1) ‖ψ‖Lf∗ (0,1) = 1
2
.

so we have shown that the extra constant 2 in Hölder’s inequality cannot be omitted.
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3.3 Convergence and completeness

Lemma 3.3.1. Let f ∈ ΦW (M,µ).Then ‖hn‖f → 0 as n → ∞ if and only if

limn→∞ ρf (βhn) = 0 for all β > 0.

Proof. Assume first thatρf (βhn) → 0 for all β > 0. then ρf (βhn) ≤ 1 for large k.

by unit ball property (Lemma 3.2.4), ‖hn‖f ≤ 1/β for the same n. since β > 0 was

arbitrary, we get ‖hn‖f → 0.

Assume now that ‖hn‖f → 0. Let θ > 1 and β > 0. then ‖θβhn‖f < 1 for large

n. thus ρf (θβhn) ≤ 1 for large n, by unit ball property (Lemma 3.2.4). Hence by

(2.2) with p = 1

ρf (βhn) =

∫
M

f(x, β |hn|)dµ ≤
∫
M

δ

θ
f(x, θ |βhn|)dµ

=
δ

θ
ρf (θβhn) ≤

δ

θ

for all θ > 1 and all large n. this implies ρf (βhn) → 0.

Definition 3.3.2. Let f ∈ ΦW (M,µ) and hn, h ∈ Lf (M). We say that hn is

modular convergent (ρf -convergent) to f if ρ(β(hn − h)) → 0 as n → ∞ for some

β > 0.

Remark 3.3.3. Lemma 3.3.1 gives that for norm convergence we have

limn→∞ ρ(β(yn − y)) = 0 for all β > 0, while for modular convergence this only

has to hold for some β > 0. so we have shown that modular convergence is weaker

than norm convergence.

Lemma 3.3.4. Let f ∈ ΦW (M,µ). Modular convergence and norm convergence are

equivalent if and only if ρ(hn) → 0 implies ρ(2hn) → 0.
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Proof. Assume first that ρf (hn) → 0 implies ρf (2hn) → 0. Let hn ∈ Lf with

ρf (β0hn) → 0 for some β0 > 0. We have to show that ρf (βhn) → 0 for all β > 0.

For fixed β > 0 choose m ∈ N such that 2mβ0 ≥ β. then by repeated application

of the assumption we get limk→∞ ρ(2mβ0hn) = 0. since f is increasing we obtain

0 ≤ limk→∞ ρf (βhn) ≤ limk→∞ ρf (2
mβ0hn) = 0. by Lemma 3.3.1 we get hn → 0.

Assume then modular convergence and norm convergence be equivalent and let

ρ(hn) → 0 with hn ∈ Lf . then hn → 0 (norm convergence) and by Lemma 3.3.1 it

follows that ρ(2hn) → 0.

Corollary 3.3.5. Let f ∈ ΦW satisfy (2.4)q<∞. Then modular convergence and

norm convergence are equivalent.

Lemma 3.3.6. Let f ∈ ΦW (M,µ) and µ(M) < ∞. Then every ‖·‖f -Cauchy se-

quence is also a Cauchy sequence with respect to convergence in measure.

Proof. Fix ν > 0 and let Ey := {x ∈ M : f(x, y) = 0} for y > 0. Then Ey is

measurable. For µ-almost all x ∈ M the function y 7→ f(x, y) is increasing, so

Ey ⊂ Ez ∪ G for all y > z with µ(G) = 0 and G independent of z and y. Since

limy→∞ f(x, y) = ∞ for µ-almost every x ∈ M and µ(M) < ∞, we obtain that

limn→∞ µ(En) = 0. Thus, there exists θ ∈ N such that µ(En) < ν.

For a µ-measurable set F ⊂M define

νn(F ) := ρf (θχF ) =

∫
F

f(x, θ)dµ

If F is µ-measurable with νθ(F ) = 0, then f(x, θ) = 0 for µ-almost every x ∈ F .

Thus µ(F\Eθ) = 0 by the definition of Eθ. Hence, F is a µ|M\Eθ
-null set, which

means that the measure µ|M\Eθ
is absolutely continuous with respect to νθ.

Since µ(M \Eθ) ≤ µ(M) <∞ and µ|M\Eθ
is absolutely continuous with respect

to νθ, there exists α ∈ (0, 1) such that νθ(F ) ≤ α implies µ(F \ Eθ) ≤ ν.

Since hn is a ‖·‖f -Cauchy sequence, there exists n0 ∈ N such that
∥∥ θδ
αν

(hm − hn)
∥∥
f
<
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1 for all m,n ≥ n0, with δ from (2.2) with p = 1. Assume in the following that

m, k ≥ k0. Then (2.2) with p = 1 and the unit ball property (Lemma 3.2.4) imply

ρf

(θ
ν
(hm − hn)

)
≤ αρf

( θδ
να

(hm − hn)
)
≤ α

Let us write Fm,n,ν := {x ∈M : |hm(x)− hn(x)| ≥ ν}. Then

νθ(Fm,n,ν) =

∫
Fm,n,ν

f(x, θ)dµ(x) ≤ ρf

(θ
ν
(hm − hn)

)
≤ α.

By the choice of α, this implies that µ(Fm,n,ν \ Eθ) ≤ ν. With µ(Eθ) < ν we have

µ(Fm,n,ν) ≤ 2ν. Since ν > 0 was arbitrary, this proves that hn is a Cauchy sequence

with respect to convergence in measure.

Lemma 3.3.7. Let f ∈ ΦW (M,µ). Then every ‖·‖f -Cauchy sequence (hn) ⊂ Lf

has a subsequence which converges µ-a.e. to a measurable function h .

Proof. Recall that µ is σ-finite. Let M :=
⋃∞
i=1Mi with Mi pairwise disjoint and

µ(Mi) < ∞ for all i ∈ N . Then, by Lemma 3.3.6, (hn) is a Cauchy sequence

with respect to convergence in measure on M1. Therefore there exists a measurable

function f : M1 → R and a subsequence of (hn) which converges to h µ-almost

everywhere. Repeating this argument for every Mi and passing to the diagonal

sequence, we get a subsequence (hnj
) and a µ-measurable function h : M → R such

that hnj
→ f µ-almost everywhere.

Now, we study the completeness of Lf .

Theorem 3.3.8.

(a) If f ∈ ΦW (M,µ), then Lf (M,µ) is a quasi-Banach space.

(b) If f ∈ Φc(M,µ), then Lf (M,µ) is a Banach space.

70



Proof. By Lemma 3.2.3, ‖·‖f is a quasinorm if f ∈ ΦW (M,µ) and a norm if f ∈

Φc(M,µ). It remains to prove completeness.

Let (hn) be a Cauchy sequence. By Lemma 3.3.7, there exists a subsequence

hni
and a µ-measurable function f : M → R such that hni

→ f for µ-almost every

x ∈ M . This implies f(x, c |hni
(x)− h(x)|) → 0 µ-almost everywhere for every

c > 0. Let β > 0 and 0 < ν < 1. Since (hn) is a Cauchy sequence, there exists

N = N(β, ν) ∈ N such that ‖β(hm − hn)‖f < ν/δ, for all m,n ≥ N , with a from

(2.2) with p = 1. By Corollary 3.2.11(a) this implies ρf (β(hm − hn)) ≤ ν for all

m,n ≥ N .

Since f is increasing, we obtain

f(x, lim
i→∞

β

2
|hm − hni

|) ≤ lim inf
i→∞

f(x, β |hm − hni
|)

. Hence Fatou’s lemma yields that

ρf (
β

2
(hm − hn)) =

∫
M

f(x, lim
i→∞

β

2
|hm − hni

|)dµ

≤
∫
M

lim inf
i→∞

f(x, β |hm − hni
|)dµ

≤ lim inf
i→∞

∫
M

f(x, β |hm − hni
|)dµ ≤ ν

Thus ρf (β2 (hm − hn)) → 0 for m→∞ and every β > 0, so that ‖hm − h‖f → 0 by

Lemma 3.3.1. therefore every Cauchy sequence converges in Lf .

Remark 3.3.9. Let f ∈ ΦW (M,µ). Then Lf (M,µ) is circular, i.e.

‖h‖f = ‖|h|‖f for all h ∈ Lf . (3.1)

If ϕ ∈ Lf , ψ ∈ L0(M,µ), and 0 ≤ |ψ| ≤ |ϕ| µ-almost everywhere, then Lf (M,µ) is

solid, i.e.

ψ ∈ Lf and ‖ψ‖f ≤ ‖ϕ‖f . (3.2)

Lemma 3.3.10. Let f ∈ ΦW (M,µ) be left-continuous and h, hn ∈ L0(M,µ).
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(a) If hn → h µ-almost everywhere, then ‖h‖f ≤ lim infn→∞ ‖hn‖f .

(b) If |hn| ↗ |f | µ-almost everywhere with hn ∈ Lf (M,µ) and supn ‖h‖f < ∞,

then h ∈ Lf (M,µ) and ‖hn‖f ↗ ‖h‖f .

Proof. For (a) let If hn → f µ-almost everywhere. There is nothing to prove for

lim infn→∞ ‖hn‖f = ∞. Otherwise, let β > lim infn→∞ ‖hn‖f . Then ‖hn‖f < β for

some large n. Thus by the unit ball property (Lemma 3.2.4), ρf (hn/β) ≤ 1 for large

n. Now Fatou’s lemma for the modular (Lemma 3.1.5) implies ρf (h/β) ≤ 1. So

‖h‖f ≤ β again by the unit ball property. Thus we have ‖h‖f ≤ lim infn→∞ ‖hn‖f .

It remains to prove (b). So let |hn| ↗ |h| µ-almost everywhere with supn ‖h‖f <

∞. By (a) we obtain ‖h‖f ≤ lim infn→∞ ‖hn‖f ≤ supn ‖hn‖f < ∞, which also

proves f ∈ Lf . On the other hand, |hn| ↗ |f | and solidity (3.2) implies that

‖hn‖f ↗ lim supn→∞ ‖hn‖f ≤ ‖h‖f . It follows that limn→∞ ‖hn‖f = ‖f‖f and

‖hn‖f ↗ ‖f‖f .

3.4 Associate spaces

First, recall that the dual space V ∗ of a normed space V consists of all bounded

linear functions from V to R. Equipped with the norm

‖h‖V ∗ := sup
‖h‖V ≤1

|G(h)| ,

V ∗ is a Banach space, see for example [24].

second, we will show that the second associate space is always isomorphic to the

space itself, whereas the second dual space is only isomorphic under certain addi-

tional conditions.

Definition 3.4.1. Let f ∈ ΦW (M,µ). Then by (Lf (M,µ))∗ we denote the dual

space of Lf (M,µ). Furthermore, we define φf : (Lf (M,µ))∗ → [0,∞] by

φf (G) := sup
h∈Lf (M,µ)

(
|G(h)| − ρf (h)

)
.
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Remark 3.4.2. Note the difference between the spaces (Lf (M,µ))∗ and Lf∗(M,µ):

the former is the dual space of Lf (M,µ), whereas the latter is the generalized Orlicz

space defined by the conjugate modular f ∗.

By definition of the functional φf we have

|G(h)| ≤ ρf (h)− φf (G) (3.3)

for all h ∈ Lf (M,µ) and G ∈ (Lf (M,µ))∗.This is a generalized version of the

classical Young inequality.

The function φf is actually a semimodular on the dual space. We refer to [10]

for details.

In the definition of φf the supremum is taken over all Lf (M,µ). However, it is

possible to restrict this to the closed unit ball when G is in the unit ball and f is

convex.

Lemma 3.4.3. Let f ∈ Φc(M,µ). If G ∈ (Lf (M,µ))∗ with ‖G‖(Lf )∗ ≤ 1, then

φf (G) = sup
h∈Lf ,‖h‖f≤1

(
|G(h)| − ρ(h)

)
= sup

h∈Lf ,ρf (h)≤1

(
|G(h)| − ρ(h)

)
.

Proof. The equivalence of the suprema follows from the unit ball property (Lemma

3.2.4). Let ‖G‖(Lf )∗ ≤ 1. By the definition of the dual norm we have

sup
‖h‖f>1

(
|G(h)| − ρ(f)

)
≤ sup

‖h‖f>1

(
‖G‖(Lf )∗ ‖h‖f − ρf (h)

)
≤ sup

‖h‖f>1

(
‖h‖f − ρf (h)

)
.

If ‖h‖f > 1, then ρf (h) ≥ ‖h‖f by Corollary 3.2.11, and so the right-hand side of

the previous inequality is non-positive. Since ρ∗ is defined as a supremum, and is

always non-negative, we see that f with ‖h‖f > 1 does not affect the supremum, and

so the claim follows.

The next lemma shows that we can approximate the function 1 with a mono-

tonically increasing sequence of functions in the generalized Orlicz space. This will
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allow us to generalize several results from ( [10], Chapter 2 ) without the extraneous

assumption L∞ ⊂ Lf that was used there.

Lemma 3.4.4. Let f ∈ ΦW (M,µ). There exist a sequence of positive functions

ϕn ∈ Lf (M,µ), n ∈ N, such that ϕn ↗ 1 and {ϕn = 1} ↗M .

Proof. We set ϕ(x) := f−1(x, 1). Then ϕ is measurable by Lemma 2.5.13 and

f(x, ϕ(x)) ≤ 1 by Lemma 2.3.9(b). Let us define ϕn := min{nϕχB(0,n)∩M , 1}. Then

ρf (
1

n
ϕn) ≤

∫
B(0,n)∩M

f(x,min{ϕ, 1/n})dx ≤ |B(0, n)| <∞,

so that ϕn ∈ Lf (M).By limy→0+ f(x, y) = 0 we have ϕ > 0. It follows that

nϕχB(0,n)∩M ↗∞ for µ-almost every x ∈M , and so {ϕn = 1} ↗M \ F, µ(F ) = 0.

By modifying hk in a set of measure zero, we obtain the claim.

Definition 3.4.5. We define the associate space of Lf (M,µ) as the space

(Lf )′(M,µ) := {h ∈ L0(M,µ) : ‖h‖(Lf )′ <∞} with the norm

‖h‖(Lf )′ := sup
‖ψ‖f≤1

∫
M

hψdµ

If ψ ∈ (Lf )′ and h ∈ Lf , then hψ ∈ L1 by the definition of the associate space.

In particular, the integral
∫
M

hψdµ is well defined and∣∣∣∣∫
M

hψdµ

∣∣∣∣ ≤ ‖ψ‖(Lf )′ ‖h‖Lf .

By Jh we denote the functional ψ 7→
∫
M

hψdµ. Clearly Jh ∈ (Lf )∗ when h ∈

(Lf )′ so J· : (Lf )′ → (Lf )∗. The next result shows that the associate space of Lf is

always given by Lf∗ . In this sense the associate space is much nicer than the general

dual space.

Theorem 3.4.6 (Norm conjugate formula). If f ∈ ΦW (M,µ), then

(Lf )′ = Lf
∗
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and the norms are comparable. Moreover, for all h ∈ L0(M,µ)

‖h‖f ≈ sup
‖ψ‖f∗≤1

∫
M

|hψ| dµ.

Proof. By Theorem 2.5.11 there exists g ∈ Φs(M,µ) such that f ' g. Then Lf = Lg

and ‖f‖f ≈ ‖f‖g by Proposition 3.2.6.

Let h ∈ (Lg)′ with ‖h‖(Lg)′ ≤ 1 and ν > 0. Let {ε1, ε2, ...} be an enumeration of

non-negative rational numbers with ε1 = 0. For n ∈ N and x ∈M define

sn(x) := max
i∈{1,...n}

{εi |h(x)| − g(x, εi)}.

The special choice ε1 = 0 implies that sn(x) ≥ 0 for all x ≥ 0. Since Q is dense in

[0,∞) and g(x, ·) is left-continuous, sn(x) ↗ g∗(x, |h(x)|) for µ-almost every x ∈M

as n→∞.

Since h and g(·, y) are measurable functions, the sets

Tj,n :=
{
x ∈M : εj |h(x)| − g(x, εj) = max

i=1,...n
(εi |h(x)| − g(x, εi))

}
are measurable.

Let Pj,n := Tj,n \ (T1,n ∪ ... ∪ Tj−1,n) and define

ζn :=
n∑
j=1

εjχPj,n
.

Then ζn is measurable and bounded and

sn(x) = ζn(x) |h(x)| − g(x, ζk(x))

for all x ∈M .

Let ψn ∈ Lg(M,µ) be as in Lemma 3.4.4. Since ζn is bounded and ψn ∈ Lg(M,µ),

it follows that r := sgn(h)ψnζn ∈ Lg(M,µ).

Since φg is defined in Definition 3.4.1 as a supremum over functions in Lg, we

75



get a lower bound by using the particular function rχT . Thus

φg(Jh) ≥
∣∣Jh(rχ{ψn=1})

∣∣− ρg(rχ{ψn=1}) =

∫
{ψn=1}

hr − g(x, |r|)dµ

≥
∫
{ψn=1}

ζn |h| − g(x, |ζn|)dµ =

∫
M

snχ{ψn=1}dµ.

Since snχ{ψn=1} ↗ g∗(x, |h|) µ-almost everywhere, it follows by monotone conver-

gence that φg(Jh) ≥ ρg∗(h). From the definitions of φg and ρg∗ we conclude by

Young’s inequality (2.6) that

φg(Jh) = sup
ϕ∈Lg

∫
M

hϕ− g(x, ϕ)dµ ≤ sup
ϕ∈Lg

∫
M

g∗(x, h)dµ = ρg∗(h).

Hence φg(Jh) = ρg∗(h).

Recall that we are assuming ‖h‖(Lg)′ ≤ 1 and denote G := {ϕ ∈ Lg : ‖ϕ‖g ≤ 1}.

Then Lemma 3.4.3 and the definition of the associate space yield

φg(Jh) = sup
ϕ∈G

(
|Jh(ϕ)| − ρg(ϕ)

)
≤ sup

ϕ∈G

(
‖ϕ‖g − ρg(ϕ)

)
≤ sup

ϕ∈G
‖ϕ‖g ≤ 1.

Hence also ρg∗(h) = φg(Jh) ≤ 1 and it follows from the unit-ball property that

‖h‖g∗ ≤ 1. By a scaling argument, we obtain ‖h‖g∗ ≤ ‖h‖(Lg)′ .

Hölder’s inequality (Lemma 3.2.15) implies that ‖h‖(Lg)′ ≤ 2 ‖h‖g∗ . In view of the

previous paragraph, ‖h‖(Lg)′ ≈ ‖h‖g∗ .

Taking into account that g∗∗ ' g (Proposition 2.4.6), we have shown that Lf =

Lg = (Lg
∗
)′. By the definition of the associate space norm, this means that

‖h‖f ≈ ‖h‖g ≈ sup
‖ϕ‖g∗≤1

∫
M

|h| |ϕ| dµ

for h ∈ Lg. By Lemma 2.4.4, g∗ ' f ∗ and hence ‖ϕ‖g∗ ≈ ‖ϕ‖f∗ (Proposition 2.4.4).

By 1
τ
‖ϕ‖g∗ ≤ ‖ϕ‖f∗ ≤ τ ‖ϕ‖g∗ we obtain

sup
‖ϕ‖g∗≤1

∫
M

|h| |ϕ| dµ ≥ sup
τ‖ϕ‖g∗≤1

∫
M

|h| |ϕ| dµ ≥ 1

τ
sup

‖τϕ‖g∗≤1

∫
M

|h| |τϕ| dµ

and similarly for the other direction. Thus the claim is proved in the case f ∈ Lf .
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In the case h ∈ L0 \ Lg, we can approximate ψn min{|h| , n} ↗ |h| as before.

Since ψn min{|h| , n} ∈ Lg, the previous result implies that the formula holds, in the

form ∞ = ∞, when h ∈ L0 \ Lg.

3.5 Separability

Recall that a (quasi-)Banach space is separable if it contains a dense, countable

subset so, we will study separability and other density results.

Remark 3.5.1. We say that a function is simple if it is a linear combination of

characteristic functions of measurable sets,
∑n

j=1 sjχFj
(x) with µ(F1), ..., µ(Fn) <∞

and s1, ..., sn ∈ R.

We denote the set of simple functions by S(M,µ), or, when M and µ are clear, by

S.

Proposition 3.5.2. Let f ∈ ΦW (M,µ) satisfy the assumption (2.4)q<∞. Then the

sets S(M,µ) ∩ Lf (M,µ) and L∞(M,µ) ∩ Lf (M,µ) are dense in Lf (M,µ).

Proof. Let h ∈ Lf (M,µ) with h ≥ 0. Since h is measurable, there exist ψn :=∑n
j=1 sjχFj

(x) with measurable sets Fj and 0 ≤ hn ↗ h µ-almost everywhere. Note

that it does not necessary hold that µ(Fj) < ∞. Since µ is σ-finite, there exist

sets (Mj) such that M =
⋃∞
j=1Mj and µ(Mj) < ∞ for every j.We define h̃n :=∑n

j=1 sjχFj
(x)χ∪n

i=1
Mi(x). Then h̃n ∈ S and 0 ≤ h̃n ↗ h µ-almost everywhere.

Since 0 ≤ h̃n ≤ h we find that h̃n ∈ Lf (M,µ). Since f satisfies (2.4)q<∞, norm

and modular convergence are equivalent by Corollary 3.3.5. Let β > 0 be such that

ρf (βh) <∞.Then β
∣∣∣h− h̃n

∣∣∣ ≤ β |h| and hence by dominated convergence

ρf

(
β

∣∣∣h− h̃n

∣∣∣ )
→ 0 as n→∞. Since norm and modular convergence are equivalent

this yields that h̃n → h in Lf (M,µ). Thus, h is in the closure of S ∩ Lf (M,µ). If

we drop the assumption h ≥ 0, then we obtain the same result by considering the

positive and negative parts of h separately.
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Since every simple function is bounded, it follows that the larger set L∞ ∩ Lf is

also dense in Lf .

We say that a measure µ is separable if there exists a sequence (Fn) ⊂ Γ with

the following properties:

(a) µ(Fn) <∞ for all n ∈ N,

(b) for every F ∈ Γ with µ(F ) < ∞ and every ν > 0 there exists an index n such

that µ(F 4 Fn) < ν, where 4 denotes the symmetric difference defined as

F 4 Fn := (F \ Fn) ∪ (Fn \ F ).

For instance the Lebesgue measure on Rn and the counting measure on Zn are

separable. Under (2.4)q<∞, the separability of the measure implies separability of

the space. Since L∞ is not separable, the assumption (2.4)q<∞ is reasonable.

Theorem 3.5.3. Let f ∈ ΦW (M,µ) satisfy (2.4)q<∞, and let µ be separable. Then

Lf (M,µ) is separable.

Proof. Let S0 be the set of all simple functions of the form
∑n

j=1 αjχFj
with αj ∈ Q

and Fj is as in the definition of a separable measure, so that S0 is countable.

By Proposition 3.5.2 it suffices to prove that S0 is dense in S.

Let h ∈ S ∩ Lf be non-negative. Then we can write h in the form
∑n

j=1 γjχGj
with

γj ∈ (0,∞), Gj ∈ Γ pairwise disjoint and µ(Gj) < ∞ for all j. Let ψn be as in

Lemma 3.4.4.

Fix ν ∈ (0, 1). Let β ∈ (0, 1] be such that ρf (βh) <∞. By (2.4)q<∞, we obtain

ρf (6hχE) =

∫
E

f(x, 6h)dµ ≤ δ6q

βq
≤

∫
E

f(x, βh)dµ

and similarly ρf (h) <∞. By the absolute continuity of the integral we may choose

ε1 > 0 such that

ρf (6hχE) < ν
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for every measurable set E with µ(E) < nε1.

Next choose j0 ∈ N such that µ(
⋃
Gj \ {ψj0 = 1}) < 1

2
ε1. By (2.4) and absolute

continuity of the integral, we can choose ε2 > 0 such that

ρf (6γψj0χE) < ν

for every measurable set E with µ(E) < nε2, where γ := max{γj}. Then choose

rational numbers α1, ..., αn ∈ (0,∞) such that |γj − αj| < νγj for j = 1, ..., n.

Furthermore, for each j we find lj such that µ(Gj4Flj) < min{1
2
ε1, ε2}.

Let ϕ := ψj0
∑n

j=1 αjχFlj
. Then

|h− ϕ| =

∣∣∣∣∣
n∑
j=1

(γj − αj)χGj

∣∣∣∣∣ +

∣∣∣∣∣
n∑
j=1

αj(χGj
− ψj0χFlj

)

∣∣∣∣∣
≤

∣∣∣∣∣
n∑
j=1

|γj − αj|χGj

∣∣∣∣∣ +
n∑
j=1

(αjχGj\(Flj
∩ψj0

=1}) + ψj0αjχFlj
\Gj

)

≤ νh+ 2
n∑
j=1

(γjχGj\(Flj
∩ψj0

=1}) + γψj0χFlj
\Gj

).

Denote E :=
⋃
j Gj \ (Flj ∩ ψj0 = 1}) and E ′ :=

⋃
j Flj \ Gj. Then µ(E) ≤∑n

j=1(µ(Gj \Flj) + µ(Gj \ψj0 = 1})) ≤ n
2
ε1 + n

2
ε1 = nε1 and µ(E ′) ≤ nε2. Taking f

of both sides of the previous estimate for |h− ϕ|, and integrating over M , we find

by (2.4)q<∞ that

ρf (h− ϕ) ≤ ρf (νh+ 2hχE + 2γψj0χE′)

≤ ρf (3νh) + ρf (6hχE) + ρf (6γψj0χE′))

. νρf (h) + 2ν.

It follows that ρf (h− ϕ) → 0 as ν → 0+. Since norm and modular convergence are

equivalent (Corollary 3.3.5), this implies the claim.
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3.6 Uniform convexity and reflexivity

The section is based on [14] and [15] so, we will study the reflexivity of Lf by means

of uniform convexity, since it is well known that the latter implies the former.

Definition 3.6.1. We say that f ∈ Φc(M,µ) is uniformly convex if for every ν > 0

there exists d ∈ (0, 1) such that

f
(
x,
y + z

2

)
≤ (1− d)

f(x, z) + f(x, y)

2

for µ-almost every x ∈M whenever y, z ≥ 0 and |z − y| ≥ νmax{|z| , |y|}.

Uniformly convex Φ-functions can be very neatly described in terms of equivalent

Φ-functions and (2.2)p>1.

Proposition 3.6.2. The function f ∈ ΦW (M,µ) is equivalent to a uniformly convex

Φ-function if and only it satisfies (2.2)p>1.

Proof. Assume first that f satisfies (2.2) with p > 1. By Lemma 2.5.10, there exists

g ∈ Φc(M,µ) such that f ' g and g
1
p is convex. The claim follows once we show

that g is uniformly convex. Let ν ∈ (0, 1) and z − y ≥ νz, with z > y > 0.

Since g
1
p is convex,

f
(
x,
z + y

2

) 1
p ≤ f(x, z)

1
p + g(x, y)

1
p

2

Since y ≤ (1− ν)z and g is convex, we find that

g(x, y) ≤ g(x, (1− ν)z) ≤ (1− ν)g(x, z)

. Therefore, g(x, y)
1
p ≤ (1− ν ′)g(x, z)

1
p for some ν ′ > 0 depending only on ν and p.

Since y 7→ yp is uniformly convex, we obtain that

(g(x, z) 1
p + g(x, y)

1
p

2

)p
≤ (1− d)

f(x, z) + f(x, y)

2

Combined with the previous estimate, this shows that g is uniformly convex.
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Assume now conversely, that f ' g and g is uniformly convex. Choose ν = 1
2

and y = 0 in the definition of uniform convexity:

g(x,
z

2
) ≤ 1

2
(1− d)g(x, z).

Divide this equation with (z/2)p where p > 1 is given by 2p−1(1− d) = 1:

g(x, z
2
)

(z/2)p
≤ 2p−1(1− d)

g(x, z)

sp
=
g(x, z)

zp

The previous inequality holds for every z > 0. If 0 < y < z, then we can choose

n ∈ N such that 2ny ≤ z < 2n+1y. Then by the previous inequality and monotonicity

of g,
g(x, y)

yp
≤ g(x, 2y)

(2y)p
≤ ... ≤ g(x, 2ny)

(2ny)p
≤ 2p

g(x, z)

zp
.

Hence g satisfies (2.2) with p > 1. Since this property is invariant under equivalence

(Lemma 2.1.11), it holds for f as well.

Definition 3.6.3. A vector space V is uniformly convex if it has a norm ‖·‖ such

that for every ν > 0 there exists d > 0 with

‖u− v‖ ≥ ν or ‖u+ v‖ ≤ 2(1− d)

for all u, v ∈ V with ‖u‖ = ‖v‖ = 1.

Remark 3.6.4. In the Orlicz case, it is well known that the space Lf is reflexive

and uniformly convex if and only if f and f ∗ are doubling.

Lemma 3.6.5. Let f ∈ Φc(M,µ) be uniformly convex. Then for every ν > 0 there

exists d2 > 0 such that

f
(
x,

∣∣∣∣z + y

2

∣∣∣∣ )
≤ (1− d2)

f(x, |z|) + f(x, |y|)
2

for all z, y ∈ R with |z − y| > νmax{|z| , |y|} and every x ∈M .
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Proof. Fix ν ∈ (0, 1) and let d > 0 be as in Definition 3.6.1. Let |z − y| >

νmax{|z| , |y|}. If ||z| − |y|| > νmax{|z| , |y|}, then the claim follows by uniform

convexity of f , |z + y| ≤ |z|+ |y| and the choice d2 := d. So assume in the following

||z| − |y|| ≤ νmax{|z| , |y|}. Since |z − y| > νmax{|z| , |y|}, it follows that z and y

have opposite signs, and that∣∣∣∣z + y

2

∣∣∣∣ =

∣∣∣∣ |z|+ |y|
2

∣∣∣∣ ≤ ν

2
max{|z| , |y|}.

Then it follows from convexity that

f
(
x,

∣∣∣∣z + y

2

∣∣∣∣ )
≤ ν

2
f(x,max{|z| , |y|}) ≤ ν

f(x, |z|) + f(x, |y|)
2

.

Therefore the claim holds with d2 := min{d, 1− ν}.

Lemma 3.6.6. Let f ∈ Φc(M,µ) be uniformly convex. Then for every ν > 0 there

exists d > 0 such that

ρf

(ϕ− ψ

2

)
< ν

ρf (ϕ) + ρf (ψ)

2
or ρf

(ϕ+ ψ

2

)
≤ (1− d)

ρf (ϕ) + ρf (ψ)

2

for all ϕ, ψ ∈ L0(M,µ).

Proof. Fix ν > 0. Let d2 > 0 be as in Lemma 3.6.5 for ν/4. There is nothing to

show if ρf (ϕ) = ∞ or ρf (ψ) = ∞. So in the following let ρf (ϕ), ρf (ψ) <∞, which

imply by convexity that ρf
(
ϕ+ψ

2

)
, ρf

(
ϕ−ψ

2

)
<∞.

Assume that ρf
(
ϕ−ψ

2

)
≥ ν

ρf (ϕ)+ρf (ψ)

2
. We show that the second inequality in

the statement of the lemma holds with d = d2ν
2

. Define

F :=
{
x ∈M : |ϕ(x)− ψ(x)| > ν

2
max{|ϕ(x)| , |ψ(x)|}

}
.

By (2.1) with p = 1, for µ-almost all x ∈M \ F , we have

f
(
x,
|ϕ(x)− ψ(x)|

2

)
≤ ν

4
f(x,max{|ϕ(x)| , |ψ(x)|})

≤ ν

2

f(x, |ϕ(x)|) + f(x, |ψ(x)|)
2

.
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It follows that

ρf

(
χM\F

ϕ− ψ

2

)
≤ ν

2

ρf (χM\Fϕ) + ρf (χM\Fψ)

2
≤ ν

2

ρf (ϕ) + ρf (ψ)

2
.

This and ρf
(
ϕ−ψ

2

)
≥ ν

ρf (ϕ)+ρf (ψ)

2
imply

ρf

(
χF

ϕ− ψ

2

)
= ρf

(ϕ− ψ

2

)
− ρf

(
χM\F

ϕ− ψ

2

)
≥ ν

2

ρf (ϕ) + ρf (ψ)

2
. (3.4)

On the other hand it follows by the definition of F and the choice of d2 in Lemma

3.6.5 that

ρf

(
χF

ϕ+ ψ

2

)
≤ (1− d2)

ρf (χFϕ) + ρf (χFψ)

2
. (3.5)

Since 1
2
(f(x, ϕ) + f(x, ψ))− f(x, ϕ+ψ

2
) ≥ 0 on M \ F (by convexity), we obtain

ρf (ϕ) + ρf (ψ)

2
− ρf

(ϕ+ ψ

2

)
≥ ρf (χFϕ) + ρf (χFψ)

2
− ρf

(
χF

ϕ+ ψ

2

)
.

This, (3.5), convexity and (3.4) imply

ρf (ϕ) + ρf (ψ)

2
− ρf

(ϕ+ ψ

2

)
≥ d2

ρf (χFϕ) + ρf (χFψ)

2

≥ d2ρf

(
χF

ϕ− ψ

2

)
≥ d2ν

2

ρf (ϕ) + ρf (ψ)

2
.

Theorem 3.6.7. Let f ∈ Φc(M,µ) be uniformly convex and satisfy (2.4)q<∞. Then

Lf (M,µ) is uniformly convex with norm ‖·‖f .

In particular, if f satisfies (2.2)p>1 and (2.4)q<∞, then Lf (M,µ) is uniformly

convex and reflexive.

Proof. Fix ν > 0. Let ϕ, ψ ∈ Lf (M,µ) with ‖ϕ‖f , ‖ψ‖f ≤ 1 and ‖ϕ− ψ‖f > ν.

Then
∥∥ϕ−ψ

2

∥∥
f
> ν

2
and by Lemma 3.2.13 there exists β = β(ν) > 0 such that

ρf (
ϕ−ψ

2
) > β. By the unit ball property (Lemma 3.2.4) we have ρf (ϕ), ρf (ψ) ≤ 1,

so ρf (ϕ−ψ2
) > β

ρf (ϕ)+ρf (ψ)

2
. By Lemma 3.6.6, there exists γ = γ(α) > 0 such that

ρf (
ϕ−ψ

2
) ≤ (1 − γ)

ρf (ϕ)+ρf (ψψ)

2
≤ 1 − γ. Since f is a convex Φ-function, it satisfies
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(2.1)p>1 and by Lemma 2.2.6 (2.4)q<∞ implies (2.3)q<∞. Now Lemma 3.2.13 implies

the existence of d = d(γ) > 0 with
∥∥ϕ−ψ

2

∥∥
f
≤ 1 − d. This proves the uniform

convexity of the norm ‖·‖f .

Remark 3.6.8. If f satisfies(2.2)p>1 and (2.4)q<∞, then it is equivalent to some

g ∈ Φc(M,µ) which is uniformly convex and satisfies (2.4)q<∞, by Proposition 3.6.2.

Hence by the first part Lg is uniformly convex and by Proposition 1.3.5 ( [?] )it is

reflexive. Since Lf = Lg by Proposition 3.2.6, the same holds for Lf .

The conditions (2.2)p>1 and (2.4)q<∞ can be generalized further.

Corollary 3.6.9. Let f ∈ ΦW (M,µ). If f satisfies ∆W
2 and ∇W

2 , then Lf (M,µ) is

uniformly convex and reflexive.

Proof. By Theorem 2.5.21, Lemma 2.2.6 and Corollary 2.4.12, there exists g ∈

ΦW (M,µ) which satisfies (2.4)q<∞, (2.2)p>1 and f ∼ g. Hence by Theorem 3.6.7,

Lg is uniformly convex and reflexive. Since f ∼ g, Corollary 3.2.10 and Proposition

3.2.6 imply that Lf = Lg, and hence we have proved that Lf is uniformly convex

and reflexive.

3.7 Density of smooth functions and the weight con-
dition (C0)

Definition 3.7.1. We say that f ∈ ΦW (M,µ) satisfies (C0), if there exists a con-

stant λ ∈ (0, 1] such that λ ≤ f−1(x, 1) ≤ 1
λ

for µ-almost every x ∈M .

Equivalently, this means that there exists λ ∈ (0, 1] such that f(x, λ) ≤ 1 ≤

f(x, 1/λ) for µ-almost every x ∈M (cf. Corollary 3.7.5).

Example 3.7.2. Let f(x, y) = 1
p(x)

yp(x) where p : M → [1,∞) is measurable, and

g(x, y) = yp + ψ(x)yq where 1 ≤ p < q < ∞ and ψ : M → [0,∞) is measurable.

Then f, g ∈ Φs(M,µ). Since f−1(x, y) = (p(x)y)1/p(x), we see that f satisfies (C0)
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(without assumptions for p). By Corollary 3.7.5, g satisfies (C0) if and only if

ψ ∈ L∞(M,µ).

Remark 3.7.3. By Theorem 2.3.6 we have f ' g if and only if f−1 ≈ g−1 and thus

(C0) is invariant under equivalence of weak Φ-functions.

Note that if f satisfies (C0), then it is not necessary that f(x, 1) ≈ 1. For instance,

for f∞(y) = ∞χ(1,∞), we have f−1
∞ (x, 1) = 1 whereas f∞ only takes values 0 and ∞.

However there exists an equivalent weak Φ-function for which also f(x, 1) is con-

trolled.

Lemma 3.7.4. Let f ∈ ΦW (M,µ) satisfy (C0). Then there exists g ∈ Φs(M,µ)

with f ' g and g(x, 1) = g−1(x, 1) = 1 for µ-almost every x ∈M .

Proof. By Theorem 2.5.11 there exists g1 ∈ Φs(M,µ) with f ' g1. Since f satisfies

(C0) so does g1. We set

g2(x, t) := g1(x, g
−1
1 (x, 1)t).

By Lemma 2.5.13, x 7→ g−1
1 (x, y) is measurable. Thus x 7→ g2(x, y) is measurable

for fixed y by the definition of generalized Φ-prefunction. Then f2 satisfies the

measurability condition of Φs(M,µ) by Theorem 2.5.5.

We show that g2 ∈ Φs(M,µ). The function g2 is increasing since g1 is increasing.

By Lemma 2.5.8, g2 is a Φ-prefunction. Since y 7→ g1(x, y) is convex we obtain that

g2(x, ay + (1− a)z) = g1(x, ag
−1
1 (x, 1)y + (1− a)g−1

1 (x, 1)z)

= ag1(x, g
−1
1 (x, 1)y) + (1− a)g1(x, g

−1
1 (x, 1)z)

= ag2(x, y) + (1− a)g2(x, y)

for every a ∈ [0, 1] and y, z ≥ 0. Since y 7→ g1(x, y) is continuous into the compacti-

fication [0,∞] for µ-almost every x and g−1
1 (x, 1) is independent of y, we obtain that
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y 7→ g2(x, y) is continuous for µ-almost every x.

Since g1 satisfies (C0), we have g1 ' g2. By Lemma 2.3.3,

g2(x, 1) = g1(x, g
−1
1 (x, 1)) = 1

for µ-almost every x ∈M . By Corollary 2.3.5, this implies g−1
2 (x, 1) = 1 for µ-almost

every x ∈M .

Corollary 3.7.5. Let f ∈ ΦW (M,µ) . Then f satisfies (C0) if and only if there

exists λ ∈ (0, 1] such that f(x, λ) ≤ 1 ≤ f(x, 1/λ) for µ-almost every x ∈M .

Proof. Assume first that (C0) holds. By Lemma 3.7.4, there exists g ∈ Φs(M,µ)

with g(x, 1) = 1 and g ' f . This implies the inequality.

Assume then that the inequality holds. By the definition of f−1, the inequality

f(x, 1
λ
) ≥ 1 yields f−1(x, 1) ≤ 1

λ
. By (2.2) with p = 1 and f(x, λ) ≤ 1, we obtain

f(x, λ/(2δ))

λ/(2δ)
≤ δ

f(x, λ)

λ
≤ δ

λ

so that f(x, λ
2δ

) ≤ 1
2
. This yields that f−1(x, 1) ≥ λ

2δ
.

Corollary 3.7.6. Let f ∈ ΦW (M,µ) .If there exists T > 0 such that f(x, T ) ≈ 1,

then f satisfies (C0).

Proof. Let s ≤ f(x, T ) ≤ t. We may assume that s ∈ (0, 1] and t ≥ 1. By (2.2)

with p = 1 we obtain

f(x, T/(tδ))

T/(tδ)
≤ δ

f(x, T )

T
≤ tδ

T
and

s

T
≤ f(x, T )

T
≤ δ

f(x, δT/s)

δT/s

Thus f(x, T/(tδ)) ≤ 1 and f(x, δT/s) ≥ 1 and the claim follows from Corollary

3.7.5.

Lemma 3.7.7. If f ∈ ΦW (M,µ) satisfies (C0), then f ∗ satisfies (C0).
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Proof. By Theorem 2.4.9 and (C0) of f we obtain

(f ∗)−1(x, 1) ≈ 1

f−1(x, 1)
≤ 1

λ
and (f ∗)−1(x, 1) ≈ 1

f−1(x, 1)
≥ λ

for µ-almost every x ∈M .

Remark 3.7.8. We next characterize the embeddings of the sum and the intersec-

tion of generalized Orlicz spaces.

Let us introduce the usual notation. Recall that for two normed spaces V and W (

which are both subsets of a vector spaces Z) we equip the intersection V ∩W and

the sum V +W := {ϕ+ ψ : ϕ ∈ V, ψ ∈ W} with the norms

‖φ‖V ∩W := max{‖φ‖V , ‖φ‖W} and ‖φ‖V+W := inf
φ=ϕ+ψ,ϕ∈V,ψ∈W

(‖ϕ‖V + ‖ψ‖W ).

In the next lemma we use the convention that every f ∈ ΦW (M,µ) satisfies (2.4)

with q = ∞ and constant 1. Hence we always have L1 ∩ L∞ ↪→ Lf ↪→ L1 + L∞.

Notice that the first embedding requires only f(x, 1
λ
) ≥ 1 whereas the second requires

only f(x, λ) ≤ 1.

Lemma 3.7.9. Let f ∈ ΦW (M,µ) satisfy (C0), (2.2) and (2.2), p ∈ [1,∞) and

q ∈ [1,∞]. Then

Lp(M,µ) ∩ Lq(M,µ) ↪→ Lf (M,µ) ↪→ Lp(M,µ) + Lq(M,µ)

and the embedding constants depend only on (C0), (2.2) and (2.4).

Proof. Let λ ∈ (0, 1] be the constant from Corollary 3.7.5 and a be the maximum

of the constant from (2.4)q<∞ and (2.2)p>1.

Let us first study Lf (M,µ) ↪→ Lp(M,µ) + Lq(M,µ). Let h ∈ Lf with ‖h‖f < 1

so that ρf (h) ≤ 1 by the unit ball property (Lemma 3.2.4). We may assume that

h ≥ 0 since otherwise we may study |h|. We assume that p, q ∈ [1,∞). The cases

q = ∞ follows by simple modifications.
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Define h1 := hχ{0≤h≤ 1
λ
} and h2 := hχ{h> 1

λ
}. By Corollary 3.7.5, (2.2) and (2.4),

we have

λp ≤ f(x, 1/λ)

1/λp
≤ δ

f(x, y)

yp
and λq ≤ f(x, 1/λ)

1/λq
≤ δ

f(x, z)

zp

for z ≤ 1
λ
≤ y. Using these we obtain that

λp

δ

∫
M

hp1dx ≤
∫
M

f(x, h1)dx ≤ 1 and
λq

δ

∫
M

hq2dx ≤
∫
M

f(x, h2)dx ≤ 1.

Thus we have ‖h‖Lp+Lq ≤ δ1/p

λ
+ δ1/g

λ
and claims follows by the scaling argument,i.e.

by using this result for h/(‖h‖f + ν) and then letting ν → 0+.

Then we consider the embedding Lp(M,µ) ∩ Lq(M,µ) ↪→ Lf (M,µ) and assume

that ‖h‖Lp∩Lq ≤ 1
δ
min{λp, λq}.

Define h1 := hχ{0≤h≤λ} and h2 := hχ{h>λ}. By Corollary 3.7.5, (2.2) and (2.4) we

have
f(x, y)

yp
≤ δ

f(x, λ)

λp
≤ δ

λp
and

f(x, z)

zq
≤ δ

f(x, λ)

λq
≤ δ

λq

for y ≤ β ≤ z. Using these we obtain that∫
M

f(x, h1)dx ≤
δ

λp

∫
M

hp1dx ≤ 1 and
∫
M

f(x, h2)dx ≤
δ

λq

∫
M

hq2dx ≤ 1

Thus we have ‖h‖f ≤ 1 and claims follows by the scaling argument.

Next we give an example which shows that assumption (C0) is not redundant in

Lemma 3.7.9.

Example 3.7.10. Let f(x, y) = y2 |x|2. Then f ∈ Φs(R) satisfies (2.1) with p = 2

and (2.3) q = 2 but not (C0).

First we show that Lf (R) ↪→ L2(R) + L∞(R) does not hold.

For that let h(x) := 1√
|x|
χ(−1,1). Then

∫
R
f(x, h)dx =

∫
(−1,1)

1

|x|
|x|2 dx ≈ 1
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and thus h ∈ Lf (R). Let h1 ∈ L2(R) and h2 ∈ L∞(R) be such that h = h1 + h2.

Then we find t > 0 such that h(x) = h1(x) for all x ∈ (−t, t) and obtain∫
(−t,t)

h2
1dx =

∫
(−t,t)

1

|x|
dx = ∞

and thus such a decomposition does not exist.

Next we show that L1(R) ∩ L2(R) ↪→ Lf (R) does not hold.

Let ψ(x) := min{1, |x|−5/4}. A short calculation shows that ψ ∈ L1(R). Since

0 < ψ ≤ 1 this yields that ψ ∈ L2(R). On the other hand for every λ > 0 we have∫
R
f(x, λψ)dx ≥

∫
R\(−1,1)

(λ |x|−5/4)2 |x|2 dx ≈ λ2

∫ ∞

1

|x|
−1
2 dx = ∞

and thus ψ /∈ Lf (R).

When the set M has finite measure, the previous result simplifies and we get the

following corollaries.

Corollary 3.7.11. Let M have finite measure and let f ∈ ΦW (M,µ) satisfy (C0)

and (2.2). Then Lf (M,µ) ↪→ Lp(M,µ) and there exists λ such that

∫
M

|h|p dµ .
∫
M

f(x, |h|)dµ+ µ
(
{0 < |h| < 1

λ
}
)
.

Proof. Let λ ∈ (0, 1] be from Corollary 3.7.5. Then by (2.2) and (C0)

δ
f(x, y)

yp
≥ f(x, 1/λ)

1/λp
≥ λp

for all y ≥ 1
λ
,so that δf(x, y) ≥ λpyp.Thus

λpyp ≤ δf(x, y) + χ{0<y< 1
λ
},

which yields the claim for the modulars when we set y := |f(x)| and integrate over

x ∈M .

The embedding follows from Lemma 3.7.9 since Lp(M,µ) + L∞(M,µ) = Lp(M,µ).

Similarly, since L∞(M,µ) = Lp(M,µ) ∩ L∞(M,µ) when µ(M) < ∞, Lemma 3.7.9

also implies the following result.
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Corollary 3.7.12. Let M have finite measure and let f ∈ ΦW (M,µ) satisfy (C0).

Then L∞(M,µ) ↪→ Lf (M,µ).

The next example shows that the previous result need not hold if f does not

satisfy (C0).

Example 3.7.13. Let (0, 1) ⊂ R and f(x, y) := y
|x| . Then f ∈ Φs(0, 1) and f does

not satisfy (C0). Let h ≡ 2 ∈ L∞(M,µ). We obtain∫ 1

0

f(x, β |h|)dx ≤
∫ 1

0

2β

x
dx = ∞

for all β > 0 and hence h /∈ Lf (0, 1).

Next we show that Lf (M,µ) is a Banach function space provided that f satisfies

(C0).

Definition 3.7.14. A normed space (V, ‖·‖V ) with V ⊂ L0(M,µ) is called a Banach

function space, if

(a) (V, ‖·‖V ) is circular, solid and satisfies the Fatou property ( see remark 3.3.9).

(b) If µ(A) <∞, then χA ∈ V .

(c) If µ(A) <∞, then χA ∈ V ′, i.e.
∫
A

|h| dµ ≤ c(A) ‖h‖V for all h ∈ V .

We have seen that the properties in (a) always hold. The next theorem shows

that (C0) implies the other two.

Theorem 3.7.15. Let f ∈ ΦW (M,µ) satisfy (C0). Then Lf (M,µ) is a Banach

function space.

Proof. Circularity and solidity hold by (3.1) and (3.2). The Fatou property holds

by Lemma 3.3.10. So we only check (b) and (c).
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For (b), let µ(A) <∞. By Corollary 3.7.5 there exists λ > 0 such that f(x, λ) ≤

1 and hence ∫
M

f(x, λχA)dµ =

∫
A

f(x, λ)dµ ≤ µ(A)

so that χA ∈ Lf (M,µ). By Theorem 3.4.6, (Lf )′ = Lf
∗ , and by Lemma 3.7.7, f ∗

satisfies (C0). Therefore (c) follows from (b) of f ∗.

Remark 3.7.16. At the end of this section we give some basic density results in

Ω ⊂ Rn with the Lebesgue measure.

Note that the assumption (2.4)q<∞ is not redundant, since the results do not hold

in L∞. Let us denote by Lf0(Ω) the set of functions from Lf (Ω) whose support is

compactly in Ω.

Lemma 3.7.17. Let f ∈ ΦW (Ω) satisfy (2.4)q<∞. Then Lf0(Ω) is dense in Lf (Ω).

Proof. Let h ∈ Lf (Ω) and let β > 0 be such that
∫

Ω

f(x, βh)dx <∞.

Define hj := hχB(0,j). Then∫
Ω

f(x, β |h− hj|)dx =

∫
Ω\B(0,j)

f(x, β |h|)dx→ 0

as j →∞ by the absolute continuity of the integral. Hence (hi) is modular conver-

gent to h and thus the claim follows by Corollary 3.3.5.

If we also have (C0), then a stronger result holds.

Theorem 3.7.18. If f ∈ ΦW (Ω) satisfies (C0) and (2.4)q<∞, then C∞
0 (Ω) is dense

in Lf (Ω).

Proof. Let f satisfy (2.4) and note that simple functions are dense in Lf (Ω) by

Proposition 3.5.2. Since every simple function belongs to L1(Ω) ∩ Lq(Ω), it can be

approximated by a sequence of C∞
0 (Ω) functions in the same space.

By Lemma 3.7.9, L1(Ω) ∩ Lq(Ω) ↪→ Lf (Ω) so the claim follows.
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Conclusion

In this memory, we presented a study on generalized Orlicz spaces and and their basic

properties. This work raises a number of questions that deserve to be addressed.

subsequently melted. For example, it would be wise to think in perspective of

following:

• Does the next theorem hold for all Φ-prefunctions ?

Assume that f, g ∈ ΦW . Then f ' g if and only if f−1 ≈ g−1.

• Is the next lemma true if we assume (2.4)q<∞ instead of (2.3)q<∞ ?

Let f ∈ ΦW (M,µ) satisfy (2.3)q<∞. Let hi, ri ∈ Lf (Rn) for i = 1, 2, ... with

(ρf (hi))
∞
i=1 bounded. If ρf (hi − ri) → 0 as i→∞, then

|ρf (hi)− ρf (ri)| → 0 as i→∞.

• Does the next theorem hold without the assumption (C0) ?

If f ∈ ΦW (Ω) satisfies (C0) and (2.4)q<∞, then C∞
0 (Ω) is dense in Lf (Ω).

For this reason we think that the memory will be useful also for researchers interested

in the Orlicz case only.
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