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Automated detection of diabetic retinopathy
using SVM

Enrique V. Carrera
Dept. de Eléctrica y Electrénica
Univ. de las Fuerzas Armadas ESPE
Sangolqui, Ecuador
evcarrera@espe.edu.ec

Abstract—Diabetic retinopathy is a common eye disease in
diabetic patients and is the main cause of blindness in the pop-
ulation. Early detection of diabetic retinopathy protects patients
from losing their vision. Thus, this paper proposes a computer-
assisted diagnosis based on the digital processing of retinal
images in order to help people detecting diabetic retinopathy
in advance. The main goal is to automatically classify the grade
of non-proliferative diabetic retinopathy at any retinal image.
For that, an initial image processing stage isolates blood vessels,
microaneurysms and hard exudates in order to extract features
that can be used by a support vector machine to figure out the
retinopathy grade of each retinal image. This proposal has been
tested on a database of 400 retinal images labeled according
to a 4-grade scale of non-proliferative diabetic retinopathy. As
a result, we obtained a maximum sensitivity of 95% and a
predictive capacity of 94%. Robustness with respect to changes
in the parameters of the algorithm has also been evaluated.

Index Terms—Diabetic retinopathy, digital image processing,
machine learning, support vector machines.

I. INTRODUCTION

Diabetic retinopathy is a severe and widely spread eye
disease. It is the commonest cause of legal blindness in the
working-age population of developed countries [1]. Diabetic
retinopathy occurs when diabetes damages the blood vessels
inside the retina, leaking blood and fluids into the surrounding
tissue. This fluid leakage produces microaneurysms, hemor-
rhages, hard exudates, and cotton wool spots (a.k.a., soft
exudates) [2], [3]. Diabetic retinopathy is a silent disease and
may only be recognized by patients when changes in the retina
have progressed to a level where treatment becomes difficult
or even impossible.

The increasing number of diabetic retinopathy cases world-
wide requires to intensify efforts in developing tools to assist
in the diagnosis of diabetic retinopathy. Automatic detection
of diabetic retinopathy will lead to a large amount of savings
of time and effort. Thus, Wu ef al. [1] proposed a method for
automatic detection of microaneurysms in retinal fundus im-
ages. In [4], Maher et al. already evaluated a decision support
system for automatic screening of non-proliferative diabetic
retinopathy. In fact, support vector machines were used by
Mabher ef al. [5] in the automated diagnosis of non-proliferative
diabetic retinopathy. Several image pre-processing techniques
have also been proposed in order to detect diabetic retinopathy
[6]-[9]. However, despite all these previous works, automated
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detection of diabetic retinopathy still remains a field for
improvement [2].

Thus, this paper proposes a new computer assisted diagnosis
based on the digital processing of retinal images in order to
help people detecting diabetic retinopathy in advance. The
main goal is to automatically classify the non-proliferative
diabetic retinopathy grade of any retinal image. For that, an
initial image processing stage isolates blood vessels, microa-
neurysms and hard exudates in order to extract features that
can be used by a support vector machine (SVM) to figure
out the retinopathy grade of each retinal image. The image
database used in this study is the Messidor database [10].
A decision tree classifier is also implemented to contrast the
results obtained with our SVM classifier.

Our proposal has been tested on a database of 400 reti-
nal images labeled according to a 4-grade scale of non-
proliferative diabetic retinopathy. As a result, we obtained
a maximum sensitivity of 94.6% and a predictive capacity
value of 93.8%. Robustness with respect to changes in the
parameters of the algorithm has also been evaluated.

II. METHODOLOGY

There are two types of diabetic retinopathy: non-
proliferative diabetic retinopathy (NPDR) and proliferative
diabetic retinopathy, where the NPDR can be subdivided into
mild, moderate and severe [3]. In fact, NPDR is the most
common diabetic retinopathy, representing 80% of all cases.

The retinopathy grade diagnoses is normally provided by
medical experts based on:

0. Normal (uA=0) and (H=0)

1. Mild NPDR (0<pA<LS) and (H=0)

2. Moderate NPDR (5<puA<15 or 0<H<S) and (NV=0)

3. Severe NPDR (uA>15) or (H>5) or (NV=1)
where pA is the number of microaneurysms, H the number of
hemorrhages and NV the presence of neovascularization.

A. Image database

The Messidor database [10] consists of 1200 eye fundus
color numerical images of the posterior pole acquired by 3
ophthalmologic departments using a color video 3CCD camera
on a Topcon TRC NW6 non-mydriatic retinograph with a 45
degree field of view. The images were captured using 8 bits per
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Fig. 1. Blood vessel detection: (a) Original image, (b) Magenta component,
(c) Morphological processed image, (d) Difference between b and ¢ images,
(e) Binarized image, (f) Noise-reduced image.

color plane at 1440x960, 2240x 1488 or 2304 x 1536 pixels.
800 images were acquired with pupil dilation (one drop of
Tropicamide at 0.5%) and 400 without dilation.

The 1200 images are packaged in 3 sets, one per ophthal-
mologic department, using the TIFF format. In addition, an
Excel file with medical diagnoses for each image is provided.
In this work, we use the images of just one ophthalmologic
department containing 152 images without retinopathy (grade
0), 30 with mild NPDR (grade 1), 69 with moderate NPDR
(grade 2), and 149 with severe NPDR (grade 3).

B. Extracted features

In order to automatically detect NPDR we have imple-
mented three main processes to extract some important fea-
tures. Additionally, the retina edge was previously segmented
from the rest of the image using the red component of each
retinal image.

1) Blood vessels: The aim of this initial process is to
determine the blood-vessel density in a retinal image. For
that, the RGB image is transformed to its CMY representation
and the magenta component is isolated. On the magenta
component, morphological operations (i.e., erosion, opening,
and dilation) hide blood vessels. The difference between the
magenta component and the resulting image of the morpho-
logical processing is binarized after a histogram matching that
increases its contrast. The noise existing in the binarized image
is reduced through dilation and erosion operations. At the end,
the density of white pixels (i.e., blood vessels) in the last image
is computed. Fig. 1 shows the resulting images at each stage
of this process.

2) Microaneurysms: Microaneurysms are small lumps in
the blood vessels, appearing as small and round shape dots
near to tiny blood vessels. In order to determine the number
of microaneurysms, the green component is extracted and

(a)
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Fig. 2. Detection of microaneurysms (uA)—blue stars highlight final posi-
tions: (a) Green component, (b) Blood-vessel concealment, (c) Dilated image,
(d) Edge detection and hole filling, e) Pre-selected pA, (f) Selected pA.

the blood vessels are hidden using the noise-reduced image
of the previous process. Basically, the pixels corresponding
to blood vessels are painted with the average retina color.
Next, a disc-based dilation operation is applied to highlight the
microaneurysms. This image is then treated by edge-detection
and hole filling algorithms to knit together the possible mi-
croaneurysms. It is important to find the difference between
the resulting image and the image of edges to finally remove
those edges. At the end, the possible microaneurysms are
filtered by form and size using morphological operations and a
maximum number of pixels to get the actual microaneurysms.
The resulting images of this process are shown in Fig. 2.

3) Hard exudates: Detection of exudates is an important
characteristic for diagnosis, and the clear color of them helps
us to recognize them. In order to detect hard exudates, the
magenta component is extracted from the CMY image and
a threshold-based binarization depending on the standard de-
viation of the magenta component is applied. The binarized
image is improved changing the retina contour to white
color and adding the optical-disc mask. How to extract the
optical-disc mask is explained in the next paragraph. Then, a
dilation operation is applied to the resulting image and large
continuous regions are removed. Finally, a erosion operation is
executed before computing the density of hard exudates. The
whole process is graphically summarized in Fig. 3.

The optical-disc mask mentioned in the previous paragraph
is extracted using the green and cyan components. A graphical
synopsis of the procedure is presented in Fig. 4. Both com-
ponents are pre-processed by a histogram matching in order
to highlight the optical disc. After that, the image resulting
from the difference of both components is binarized and a
disc-based dilation operation is applied. Using the Hough
transform, the geometry of the optical disc is recovered and
an optic-disc mask is created to match that geometry.
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Fig. 3. Detection of hard exudates (hE)—a blue oval highlights region of
interest: (a) Original image, (b) Color segmentation, (c) Background removal
and optical-disc mask is added, (d) Dilated image, (e) Pre-selected hE (f)
Finally selected hE.

4) Summary of features: In summary, the 8 quantitative
features used by our classifier are:

1) Standard deviation of the red component.
2) Standard deviation of the green component.
3) Standard deviation of the blue component.
4) Blood vessel density.

5) Possible number of microaneurysms.

6) Actual number of microaneurysms.

7) Density of hard exudates.

8) Green component entropy.

III. RESULTS

The evaluation of our proposal was implemented in the
software Matlab® and has been split in two subsections:
NPDR detection and NPDR grade classification.

A. NPDR Detection

The main idea of this first set of results is to detect any grade
of NPDR. For that, we used 301 retinal images, 152 with grade
0 and 149 with grade 3. We trained a SVM classifier with all
the features of these images and then tested it through a 10-fold
cross-validation process. The performance was also optimized
selecting the most relevant features and SVM parameters.

Thus, the best accuracy of our detector was obtained using a
linear kernel function in the SVM algorithm. In this case, SVM
only requires the possible number of microaneurysms and
the actual number of microaneurysms as input features. The
confusion matrix of the best detector is shown in Table I. In
order to contrast our SVM results, we have also implemented a
decision-tree (DT) classifier based on the Gini-index. The best
performance for the DT was obtained when the actual number
of microaneurysms is the only used input. Table I summarizes
the accuracy, sensibility, specificity and area under the ROC

(d) (e) H

Fig. 4. Optical disc detection: (a) Equalized green component, (b) Equalized
cyan component, (c) Difference between a and b images, (d) Binarized and
dilated image, (e) Hough transform: blue circumference is its result, (f)
Optical-disc mask.

curve (AUC) results. Note that the AUC value estimates the
predictive capacity of the classifier.

Since this kind of applications normally requires optimizing
sensibility rather than accuracy, Table III shows results under
this new constraint. The best sensibility was obtained with
SVM and a Gaussian kernel function with gamma equals to
0.71. On the other hand, DT showed the best sensibility with
a depth of 9. These last SVM and DT detectors require all 8
extracted features to improve their sensibility.

B. NPDR Grade Classification

Besides the detection of NPDR, we are also interested in
classifying the NPDR grade. For that, we used all the 400
retinal images. A multi-class SVM (one-to-one) classifier was
trained with all the features and then tested using a 10-
fold cross validation. The final performance was optimized
selecting the most relevant features and SVM parameters.

TABLE I
CONFUSION MATRIX FOR THE ACCURACY-OPTIMIZED NPDR DETECTOR.
B Predicted | Predicted
n=3011""No YES
Actual
NO 148 4
Actual
YES 19 130
TABLE II

ACCURACY-OPTIMIZED PERFORMANCE OF SVM AND DT DETECTORS.

Metric SVM Decision-tree
Accuracy 92.4% 92.0%
Sensibility | 87.3% 86.6%
Specificity | 97.4% 97.4%
AUC 93.8% 88.7%




TABLE III
SENSIBILITY-OPTIMIZED PERFORMANCE OF SVM AND DT DETECTORS.

Metric SVM | Decision-tree

Accuracy 80.4% 91.0%

Sensibility | 94.6% 94.0%

Specificity | 66.2% 88.1%

AUC 89.9% 90.8%
TABLE IV

CONFUSION MATRIX FOR THE ACCURACY-OPTIMIZED CLASSIFIER.

n =400 | Grade 0 | Grade 1 | Grade 2 | Grade 3
Grade 0 148 0 1 3
Grade 1 25 0 2 3
Grade 2 29 0 14 26
Grade 3 20 0 10 119

When the accuracy of the classifier was the main metric to
optimize, we obtained the confusion matrix showed in Table
IV. The best performance was acquired using a multi-class
SVM with a lineal kernel function. The selected features in this
case were the actual number of microaneurysms, blood vessel
density and standard deviation of the blue component. Table V
summarizes accuracy, sensibility, specificity and AUC results.
In the case of the DT classifier, it was necessary to set its maxi-
mum depth to 4 and to include 5 features: possible number of
microaneurysms, actual number of microaneurysms, density
of hard exudates, standard deviations of the red and green
components. Table VI shows a summary of these last results.

IV. DISCUSSION

Our results show that NPDR detection reaches an accuracy
of 92.4%, although the sensibility is reduces by the presentce
of 19 false negatives (Table I). A big challenge here is the non-
detection of microaneurysms in some retinal images. However,
when the aim is to optimize sensibility, the number of false
negatives is reduced to 8 and the sensibility reaches 94.6%.

In the case of NPDR grade classification the situation is a
little bit different. The asymmetry in the number of samples
for each class (e.g., 152 grade-0 samples, 30 grade-1 samples)
reduces the accuracy of the classifier. However, we can see
that the sensibility for NPDR grade O (i.e., no NPDR) can

TABLE V
PERFORMANCE OF THE SVM CLASSIFIER.
Metric Grade 0 | Grade 1 | Grade 2 | Grade 3 | Average
Accuracy 80.5% 92.5% 83.0% 84.5% 85.1%
Sensibility 97.4% 0.0% 20.3% 79.9% 49.4%
Specificity 70.2% 100.0% 96.1% 87.3% 88.4%
AUC 83.9% 62.6% 70.9% 90.7% 77.0%
TABLE VI
PERFORMANCE OF THE DECISION-TREE CLASSIFIER.
Metric Grade 0 | Grade 1 | Grade 2 | Grade 3 | Average
Accuracy 80.5% 92.5% 82.3% 85.3% 85.1%
Sensibility 96.7% 0.0% 18.8% 81.2% 49.2%
Specificity 70.6% 100.0% 95.5% 87.6% 88.4%
AUC 83.5% 62.6% 70.4% 92.7% 77.3%

reach 97%, while the accuracy for mild NPDR (i.e., grade 1)
is 92.5%. The average accuracy of the classifier reaches 85%.

All results from the SVM detector and classifier are consis-
tently better than the corresponding DT results. SVM results
are also similar to those published in previous works [2]. This
proves the robustness of our proposed SVM implementation.

V. CONCLUSIONS

Efficient algorithms for the detection of blood vessels,
microaneurysms, the optic-disc, and hard exudates have been
presented. The proposed features show a great potential for
NPDR detection and classification. SVM can detect NPDR
with a sensibility of almost 95%, while NPDR can be classified
with an average accuracy of 85%. SVM consistently shows
better results that other machine learning algorithms. We
can conclude that image processing of retinal images has
the potential to play a major role in diagnosis of diabetic
retinopathy. The results are encouraging and a future clinical
evaluation will integrate the presented algorithms in a tool
for diagnosis of diabetic retinopathy. Other future works are
the detection of soft exudates, besides hard exudates, and the
application of texture analysis in order to improve accuracy
and sensibility of our retinopathy detector.
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