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Introduction

The theory of fractional derivation is an almost old subject than classical calculus such as

we know it today, its origins date back to the end of the 17th century, the time where

Newton and Leibniz developed the foundations of differential and integral calculus. In partic-

ular, Leibniz introduced the symbol dnf
dtn

for denotes the nth derivative of a function f . When he

announced in a letter to the Hospital (apparently with the implicit assumption that 2 ∈ N ), The

hospital replied: What does dnf
dtn

mean? if n = 1/2?.

This letter from Hpital, written in 1695, is now accepted as the first incident of what we call

the fractional shunt, and the fact that Hpital asked for n = 1/2, i.e. a fraction (rational number)

actually gave rise to the name of this part mathematics.

Fractional differential equations, also known as extraordinary differential equations, are a

generalization of differential equations through the application of fractional calculus.

However, analytic solutions of the fractional partial differential equations either do not exist

or involve special functions, such as the Fox (H-function) function (Mathai and Saxena 1978)

and the Mittag-Leffter function (Podlubny 1998) which are diffcult to evaluate.

Consequently, numerical techniques are required to find the solution of fractional partial

differential equations.

This thesis is broken down into three chapters as follows: in the first chapter, which is di-

vided into four sections. In the first section,we will be devoted to a some preliminary concepts

will be introduced as the Euler Gamma function, Beta and Mittag-Leffler functions. In the sec-
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ond section, we are interested in elementary defenitions and basic notions relating to fractional

calculus: the fractional integrals, Riemann-Liouville, Caputo and Grnwald-Letnikov fractional

Derivatives, we also talked about some of their properties and the relationship between them.

In the last section of this chapter, will be devoted to Partial Fractional Derivatives.

In the second chapter, we will have to study the numerical ways of Approximations to

Riemann-Liouville Derivatives using serval ways of them the Grünwald-Letnikov, L1, L2 and

L2C approximation.

In the third chapter of our work, which is divided into three sections. In the first section, we

investigate the finite difference methods for the time-fractional equation in one spatial dimen-

sion. In the second section, we construct the finite difference methods for the space-fractional

equations in one spatial dimension. In the last section of this chapter, we derive the finite dif-

ference methods for time-space fractional equations in one space dimension .

vi



CHAPTER 1

BASIC CONCEPTS AND ELEMENTS OF
FRACTIONAL CALCULUS

T his chapter will be devoted to the primary definitions and basic concepts related to

fractional calculus such as the Euler gamma, Beta and Mittag-Leffler functions. In

addition to that, it will also present other elements of functional analysis, such as the fractional

integration, fractional derivation, relative definitions of operators of fractional order, among

others, which will all be at the core of this work.
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1.1 Historical Overview

Fractional calculus is not a new topic, in reality it has almost the same history as that of classical

calculus. It can be dated back to the Leibniz letter to L’Hpital, dated 30 September 1695, in

which the meaning of the one-half order derivative was first discussed with some remarks

about its possibility.

Following L’Hspital’s and Leibniz’s first inquisition, fractional calculus was primarily a

study reserved for the best minds in mathematics. Fourier, Euler and Laplace are among the

many who tackled the fractional calculus and the mathematical consequences [25]. Several

mathematicians used their own notation and methodology to introduce definitions that fit the

concept of an integral or derivative non-integral order. The most famous of these definitions of

fractional calculus are Riemann-Liouville, Caputo and Grnwald-Letnikov definitions.

Most of the mathematical theory applicable to the study of fractional calculus was devel-

oped prior to the turn of the twentieth century. However, it is only during the last century

that the most intriguing advances in engineering and scientific application have been achieved.

Mathematics had in some cases to change in order to meet the requirements of physical reality.

1.2 Special Functions of Fractional Calculus

In this section, we present the Euler gamma, Beta and Mittag-Leffler functions. These functions

play an important role in the theory of fractional calculus.

1.2.1 Euler Gamma Function

The simplest interpretation of the Euler gamma function is simply the generalization of the

factorial for all real numbers. The definition of the Euler gamma function is given as follows:

Definition 1. The Euler gamma function is defined by the so-called Euler integral of the second kind

and is given by:

Γ(z) =

∫ +∞

0

tz−1e−tdt, (1.1)
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where tz−1 = e(z−1)ln(t). This integral is converge for all complex z, (Re(z) > 0), with Γ(1) = 1,

Γ(0+) = +∞, Γ(z) is a monotonous and strictly decreasing function for 0 < z ≤ 1.

Property 1. An important property of the Euler gamma function Γ(z) is the following recurrence rela-

tion:

Γ(z + 1) = zΓ(z), Re(z) > 0. (1.2)

When we can demonstrate it by an integration by parts, as follows:

Γ(z + 1) =

∫ +∞

0

tze−tdt = [−tze−t]+∞
0 + z

∫ +∞

0

tz−1e−tdt = zΓ(z). (1.3)

Property 2. The Euler gamma function can be extended to the half-plane Re(z) ≤ 0 by:

Γ(z) =
Γ(z + n)

(z)n
, Re(z) > 0, for n ∈ N∗, Re(z) /∈ Z−

0 = {...,−3,−2,−1, 0} . (1.4)

Here (z)n is the Pochhammer symbol defined for complex z ∈ C and non-negative integer n ∈ N by:{
(z)0 = 1,

(z)n = z(z + 1)...(z + n− 1), n ∈ N∗.
(1.5)

For a better understanding, the graph of the Euler gamma function y = Γ(x) for real values of x is given

in (1.1). (1.1) demonstrates the Euler gamma function at and around zero. Note that at negative integer

values, the Euler gamma function goes to infinity.
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Figure 1.1: Graphe of the Euler gamma function
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Property 3. 1. The Euler gamma function generalizes the factorial:

Γ(n+ 1) = n!,∀n ∈ N. (1.6)

2.

Γ(n+
1

2
) =

2n!
√
π

4nn!
. (1.7)

1.2.2 Beta Function

Beta function, also known as the Euler integral of the first kind, is an important relationship in

fractional calculus. In many cases it is more convenient to use beta function instead of a certain

combination of values of the gamma function.

Definition 2. The Beta function is a type of Euler integral defined by:

B(p, q) =

∫ 1

0

tp−1(1− t)q−1dt, (p, q ∈ C, Re(p) > 0, Re(q) > 0), (1.8)

where p and q are complex numbers, with Re(p) > 0 and Re(q) > 0.

Property 4. For all p, q ∈ C, with Re(p) > 0, Re(q) > 0, we have:

B(p, q) =
Γ(p)Γ(q)

Γ(p+ q)
. (1.9)

Proof. Let D = (0,+∞)× (0,+∞), we have

Γ(p)Γ(q) =

(∫ +∞

0

xp−1e−xdx

)(∫ +∞

0

yq−1e−ydy

)
=

∫ ∫
D

xp−1yq−1e−(x+y)dxdy,

we put u = x+ y and v = x
x+y

then we have:

∂(x, y)

∂(x, y)
=

∣∣∣∣ v u
1− v −u

∣∣∣∣ = −uv − u(1− v) = −u,

and, D′
= {(u, v)/u ≥ 0, 0 ≤ v ≤ 1} then∫ ∫

D

xp−1yp−1e−(x+y)dxdy =

∫ ∫
D′
(uv)p−1(u(1− v))q−1e−u| − u|dudv

=

∫ ∫
D′

up+q−1vp−1(1− v)q−1e−ududv

=

∫ +∞

0

∫ 1

0

up+q−1vp−1(1− v)q−1e−ududv

=

(∫ +∞

0

up+q−1e−udu

)(∫ 1

0

vp−1(1− v)q−1dv

)
= Γ(p+ q)B(p, q),
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then

B(p, q) =
Γ(p)Γ(q)

Γ(p+ q)
.

Equation (1.9) provides the analytical continuation of the Beta function to the entire complex

plane via the analytical continuation of the Euler gamma function. It should also be mentioned

that Beta function is symmetric, i.e.,

B(p, q) = B(q, p), (∀p, q ∈ C, Re(p) > 0, Re(q) > 0). (1.10)

1.2.3 Mittag-Leffler Function

The Mittag-Leffler function is an important function that is widely used in the field of fractional

calculus. Just as the exponential naturally arises out of the solution to integer order differential

equations, the Mittag-Leffler function plays an analogous role in the solution of non-integer

order differential equations. The generalization of the single-parameter exponential function

has been introduced by G.M. Mittag-Leffler [23] and is designated by the following definition:

Definition 3. The standard definition of the Mittag-Leffler function is given by

Eα(t) =
+∞∑
k=0

tk

Γ(αk + 1)
, α > 0, (1.11)

it is also common to represent the Mittag-Leffler function in two arguments, α and β. Such that

Eα,β(t) =
+∞∑
k=0

tk

Γ(αk + β)
, α, β > 0. (1.12)

The last relation is the more generalized form of the function. For β = 1; we find the rela-

tionship (1.11).

Example 1. From the relation (1.12); we find that

E1,1(t) = E1(t) =
+∞∑
k=0

tk

Γ(k + 1)
=

+∞∑
k=0

tk

k!
= et.

E1,2(t) =
+∞∑
k=0

tk

Γ(k + 2)
=

+∞∑
k=0

tk

(k + 1)!
=

1

t

+∞∑
k=0

tk+1

(k + 1)!
=

1

t
(et − 1).
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1.3 Basic Fractional Integrals and Derivatives

In this section, we first introduce fractional calculus (i.e., fractional integration and fractional

differentiation). Generally speaking, the fractional integral mainly means (fractional) Riemann-

Liouville integral. The fractional derivatives consist of at least six kinds of definitions, but they

are not equivalent. Here, we present the most frequently used fractional integral and deriva-

tives. Then we study their important properties, some of which are easily confused. Following

that, we observe that - only - certain properties of classical derivatives can be generalized to the

fractional case.

1.3.1 Fractional Integrals

It is known that calculus means integration and differentiation. Fractional calculus, as its name

suggests, refers to fractional integration and fractional differentiation. Fractional integration

often means Riemann-Liouville integral. But for fractional differentiation, there are several

kinds of fractional derivatives.

1.3.1.1 The Riemann-Liouville Fractional Integrals

Definition 4. (The Left and Right Riemann-Liouville fractional integral [27]) The left and Right

fractional integral ( or the left and Right Riemann-Liouville integral) with order α > 0 of the given

function f(t), t ∈ (a, b) are defined as

Iαa,tf(t) =
1

Γ(α)

∫ t

a

(t− s)α−1f(s)ds, (1.13)

and

Iαt,bf(t) =
1

Γ(α)

∫ b

t

(s− t)α−1f(s)ds, (1.14)

where Γ(.) is the Euler’s gamma function.

It is natural to extend the equation (1.13) to the axes R and R+. Let us note these operators

Iα+ and Iα0+ respectively.

6



Definition 5. 1. The left Riemann-Liouville integral with order α > 0 of a continuous function

f : R → R is defined as

Iα+f(t) =
1

Γ(α)

∫ t

−∞
(t− s)α−1f(s)ds, ∀t ∈ R. (1.15)

2. The left Riemann-Liouville integral with order α > 0 of a continuous function f : R+ → R is

defined as

Iα0+f(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds,∀t ∈ R+. (1.16)

1.3.2 Fractional Derivatives

As previously mentioned in the previous section, there are several kinds of fractional deriva-

tives, but they are not equivalent. In the following, the most frequently used fractional deriva-

tives are introduced.

1.3.2.1 The Riemann-Liouville Fractional Derivatives

Definition 6. (Riemann-Liouville fractional derivatives [27]) The left and right Riemann-Liouville

derivatives with order α > 0 of the given function f(t), t ∈ (a, b) are defined as

RLDα
a,tf(t) =

dm

dtm
[Im−α

a,t f(t)] =
1

Γ(m− α)

dm

dtm

∫ t

a

(t− s)m−α−1f(s)ds, (1.17)

and

RLDα
t,bf(t) = (−1)m

dm

dtm
[Im−α

t,b f(t)] =
(−1)m

Γ(m− α)

dm

dtm

∫ b

t

(s− t)m−α−1f(s)ds, (1.18)

respectively, where m is a positive integer satisfying m− 1 ≤ α < m.

1.3.2.2 The Caputo Fractional Derivatives

Definition 7. (Caputo fractional derivatives [27]) The left and right Caputo derivatives with order

α > 0 of the given function f(t), t ∈ (a, b) are defined as

CDα
a,tf(t) = Im−α

a,t

[
f (m)(t)

]
=

1

Γ(m− α)

∫ t

a

(t− s)m−α−1f (m)(s)ds, (1.19)

and

CDα
t,bf(t) = (−1)mIm−α

a,t

[
f (m)(t)

]
=

(−1)m

Γ(m− α)

∫ b

t

(s− t)m−α−1f (m)(s)ds, (1.20)
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respectively, where m is a positive integer satisfying m− 1 < α ≤ m.

Property 5. ([27]) Let α ≥ 0 and m−1 < α < m if f ∈ Cm([a, b];R) The Riemann-Liouville derivative

and Caputo derivative of f(t) have following relation

CDα
a,tf(t) =

RL Dα
a,t

[
f(t)−

n−1∑
k=0

f (k)(a)

k!
(t− a)k

]
. (1.21)

Proof. By definition

RLDα
a,t

[
f(t)−

m−1∑
k=0

f (k)(a)

k!
(t− a)k

]
=

(
d

dt

)m

Im−α
a,t

[
f(t)−

m−1∑
k=0

f (k)(a)

k!
(t− a)k

]

=

(
d

dt

)m ∫ t

a

(t− s)m−α−1

Γ(m− α)

[
f(s)−

m−1∑
k=0

f (k)(a)

k!
(s− a)k

]
ds

By part integration

g(s) =

[
f(s)−

m−1∑
k=0

f (k)(a)

k!
(s− a)k

]
−→ d

ds

[
f(s)−

m−1∑
k=0

f (k)(a)

k!
(s− a)k

]

(t− s)m−α−1

Γ(m− α)
−→ − (t− s)m−α

Γ(m− α + 1)

We find

Im−α
a,t [g(t)] =

∫ t

a

(t− s)m−α−1

Γ(n− α)

[
f(s)−

m−1∑
k=0

f (k)(a)

k!
(s− a)k

]
ds

=

[
−(t− s)m−α

Γ(m− α− 1)
g(s)

]t
a

+

∫ t

a

(t− s)m−α

Γ(m− α + 1)

d

dt
g(s)ds

Where

Im−α
a,t [g(t)] = Im−α+1

a,t

d

dt
g(t)

Same way for n-times

8



Im−α
a,t [g(t)] = Im−α+m

a,t

dm

dtm
g(t)

= Ima,tI
m−α
a,t

dm

dtm
g(t)

= Ima,tI
m−α
a,t

dm

dtm

[
f(t)−

m−1∑
k=0

f (k)(a)

k!
(t− a)k

]

= Ima,tI
m−α
a,t

dm

dtm
f(t),

dm

dtm

[
m−1∑
k=0

f (k)(a)

k!
(t− a)k

]
= 0,

then

Dα
a,t

[
f(t)−

m−1∑
k=0

f (k)(a)

k!
(t− a)k

]
=

(
d

dt

)m

Im−α
a,t

[
f(t)−

m−1∑
k=0

f (k)(a)

k!
(t− a)k

]

=

(
d

dt

)m

Im−α
a,t [g(t)]

=

(
d

dt

)m

Ima,tI
m−α
a,t

dm

dtm
f(t)

= Im−α
a,t

dm

dtm
f(t)

= CDα
a,tf(t).

1.3.2.3 The Grünwald-Letnikov Fractional Derivatives

Definition 8. (Grünwald-Letnikov fractional derivatives [27]) The left and right Grünwald-Letnikov

derivatives with order α > 0 of the given function f(t), t ∈ (a, b) are defined as

GLDα
a,tf(t) = lim

h−→0
h−α

N∑
k=0

ωα
k f(t− kh), (1.22)

and

GLDα
t,bf(t) = lim

h−→0
h−α

N∑
k=0

ωα
k f(t+ kh), (1.23)

respectively, where h = t−a
N

and

ωα
k = (−1)k

Γ(α+ 1)

Γ(k + 1)Γ(α− k + 1)
=

Γ(k − α)

Γ(k + 1)Γ(−α)
. (1.24)

Property 6. let α ≥ 0 and m− 1 < α < m if f ∈ Cm([a, b];R) The Riemann-Liouville derivative and

the Grünwald-Letnikov derivative of f(t) have following relation

RLDα
a,tf(t) =

GL Dα
a,tf(t),

RL Dα
t,bf(t) =

GL Dα
t,bf(t). (1.25)

9



1.3.3 Fractional operators properties

Let us turn our attention to the properties of fractional-order integration and differentiation,

which are most frequently used in applications.

Property 7. ([27]) The fractional integrals and derivatives are linear operators

Dα(λf(t) + µg(t)) = λDαf(t) + µDαg(t). (1.26)

We prove property (7) for the Riemann-Liouville fractional Derivatives, and in similar way

we also can prove it for the other operators. So, we have

Dα
a,t(λf(t) + µg(t)) =

1

Γ(m− α)

dm

dtm

∫ t

a

(t− s)m−α−1(λf(s) + µg(s))ds

=
λ

Γ(m− α)

dm

dtm

∫ t

a

(t− s)m−α−1f(s)ds+
µ

Γ(m− α)

dm

dtm

∫ t

a

(t− s)m−α−1g(s)ds

= λDα
a,tf(t) + µDα

a,tg(t).

Remark[1]

We have remark the absence of generalization for the derivative of the product and of the com-

position of two functions.these characteristics of the classical derivative actually go badly to the

fractional. for all the definition used and even with restrictions on the functions:

Dα(fg) ̸= (Dαf)g + (Dαg)f

Dα(f/g) ̸= (Dαf)g − (Dαg)f

g2

Dα(f ◦ g) ̸= (Dαf)(g)(g)
′
.

1.4 Partial Fractional Derivatives

Similar to the classical partial derivatives, we can also define the partial fractional derivatives

[29]. For example,let 0 < α1, α2 < 1, the partial fractional derivative RLDα1+α2
xα1yα2u(x, y) is defined

10



by

RLDα1+α2
xα1yα2u(x, y) =

RL Dα2
0,y

[
RLDα2

0,xu(x, y)
]

=RL Dα2
0,y

[
1

Γ(1− α1)

d

dx

∫ x

0

(x− s)−α1u(s, y)ds

]
=

1

Γ(1− α1)Γ(1− α2)

d2

dx2

∫ x

0

∫ y

0

(x− s)−α1(y − τ)−α2u(s, τ)dτds,

then

RLDα1+α2
xα1yα2u(x, y) =

RL Dα2+α1
yα2xα1u(x, y). (1.27)

Definition 9. (The partial fractional derivative operator [29]) The partial fractional derivative

operator RLDα1+α2
xα1yα2u(x, y) with order α1 + α2 is defined by

RLDα1+α2
xα1yα2u(x, y) =

1

Γ(m− α1)Γ(n− α2)

dm+n

dxmdyn

∫ x

0

∫ y

0

(x− s)m−α1−1(y − τ)n−α2−1u(s, τ)dτds,

where m− 1 < α1 < m,n− 1 < α2 < n,m, n are positive integers.

Definition 10. [29] The partial fractional derivative operator RLDα1+α2+...+αl

x
α1
1 x

α2
2 ...x

αl
l

with order (α1 + α2 +

...+ αl) is defined by

RLDα1+α2+...+αl

x
α1
1 x

α2
2 ...x

αl
l

u(x1, ..., xl) =
1∏l

k=1 Γ(mk − αk)

∂m1+m2+...+ml

∂xm1
1 ∂xm2

2 ...∂xml
l

∫ x1

0

...

∫ xl

0

(xl − ϵl)
ml−αl−1...(x1 − ϵ1)

m1−α1−1u(ϵ1, ..., ϵl)dϵ1...dϵl,

where mk − 1 < αk < mk(k = 1, 2, , l),mk are positive integers.

Definition 11. [29] The partial fractional derivative operator CDα1+α2+...+αl

x
α1
1 x

α2
2 ...x

αl
l

with order (α1+α2+ ...+

αl) is defined by

CDα1+α2+...+αl

x
α1
1 x

α2
2 ...x

αl
l

u(x1, ..., xl) =
1∏l

k=1 Γ(mk − αk)

∫ x1

0

...

∫ xl

0

(xl − ϵl)
ml−αl−1...(x1 − ϵ1)

m1−α1−1 ∂m1+m2+...+ml

∂xm1
1 ∂xm2

2 ...∂xml
l

u(ϵ1, ..., ϵl)dϵ1...dϵl,

where mk − 1 < αk < mk(k = 1, 2, , l),mk are positive integers.

Fractional-order’s partial differential equations (FPDEs) are generalizations of classical par-

tial differential equations. They have been of considerable interest to the recent literature. A

11



considerable attention has been especially devoted to these topics in the fields of visco-elasticity

materials, electrochemical processes, dielectric polarization, among others. Increasingly, these

models are used in applications such as fluid flow and finance. The solutions of FPDEs play

an important role in the proper understanding of qualitative features of many phenomena and

processes in various areas of natural sciences. Furthermore, simple solutions are often used in

teaching many courses as specific examples which illustrate basic tenets of a theory that admits

mathematical formulation.

Definition 12. (Fractional Differential Equation [12]) A fractional differential equation (FDE) is a

relationship of the type

F (η, u(η), Dα1u(η), Dα2u(η), ...) = 0, α1, α2, ... > 0, (1.28)

between the variable η ∈ R, and the fractional derivatives of orders α1, α2, ... of the unknown function u

at the point η. Here Dαu presents a fractional differential operator of order α > 0.

Definition 13. A fractional-orders’s partial differential equation (FPDE) for the function u is a rela-

tionship between u; the independent variables (η1, η2, ..., ηn) ∈ Rn and one or more fractional derivatives

Dα1
η1
u,Dα2

η2
u, ..., Dα3

η3
Dα4

η4
u, ..., that we can write in the form:

F (u, η1, ..., D
α1
η1
u,Dα2

η2
u,Dα3

η3
, Dα4

η4
u, ...) = 0, α1, α2, ... > 0, (1.29)

the symbol Dα
ηi

presents a fractional differential operator of order α at ηi, i = 1, 2, ..., n.

12



CHAPTER 2

FINITE DIFFERENCE APPROXIMATIONS FOR
FRACTIONAL DERIVATIVES

I n this chapter, we consider approximation methods to evaluate fractional derivative numer-

ically. In particular we look for approximations for the Riemann-Liouville fractional deriva-

tive. The fractional derivative of f(t) in the definition of Riemann-Liouville fractional deriva-

tive, Equation (1.17), depends upon f(t) at the times [0;T ], which means that the fractional

derivative of function f(t) depends on the historical behaviour of f(t) [27]. One of the main ap-

proximations of the Riemann-Liouville fractional derivative is the Grnwald-Letnikov approx-

imation based upon the Grnwald-Letnikov definition, given by Equation (1.22) in Chapter 1.

Another methods to approximate the fractional derivatives L1,L2 and L2C schemes. Note that,

the Riemann-Liouville derivative and the Caputo derivative have the relation equation(1.21),

almost all the numerical methods for the RiemannLiouville derivative can be theoretically ex-

tended to the Caputo derivative if f ∈ Cm([a, b];R) conditions.

13



2.1 The Grünwald-Letnikov Approximation

As mentioned above, one method to approximate the fractional derivatives numerically is the

Grünwald-Letnikov approximation. Let t ∈ [0, T ], ∆t = T/N so that tn = n∆t, for 0 ≤ n ≤ N .

If f(t) ∈ C([0, T ]), the Grünwald-Letnikov derivative is equivalent to the Riemann-Liouville

derivative (property 6). Using The left Grünwald-Letnikov derivatives, the left Riemann-Liouville

derivative can be approximated with first order accuracy by [27, 17, 33]:

[
RLDα

0,tf(t)
]
t=tn

≈ 1

∆tα

n∑
k=0

ωα
k f(tn−k) +O(∆t). (2.1)

The Grünwald-Letnikov weights ωα
k = (−1)k

(
α
k

)
, with k ≥ 0, are the coefficients of the power

series of the generating function (1 − z)α =
∑∞

k=0 ω
α
k z

k. These weights satisfy the recursive

formula:

ωα
0 = 1;ωα

k = (1− α+ 1

k
)ωα

k−1. (2.2)

However, other formulas for the calculation of these weights exit, leading to higher order ap-

proximations [27, 17].

The estimate of the accuracy of the Grünwald-Letnikov scheme, using the weights ωα
k given

by Equation (2.2), was tested on the functions f(t) = sin(t), t ∈ [0; π] ,and f(t) = t2, t ∈ [0; 1].

0 0.5 1 1.5 2 2.5 3
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

← cos(t)

t

D
α f(

t)

α = 0.1

α = 0.2

α = 0.3

α = 0.4

α = 0.5

α = 0.6

α = 0.7

α = 0.8
α = 0.9
α = 1

Figure 2.1: Riemann-Liouville derivative with different values of order 0 < α ≤ 1 of sin(t)
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Figure 2.2: Riemann-Liouville derivative with different values of order 0 < α ≤ 1 of t2

2.2 L1 Approximation

The L1 method is another popular choice for the approximation of fractional derivatives. This

approximation is found in many unconditionally stable schemes and is suitable for (0 < α < 1)

[14, 16, 26, 30]. Nevertheless, similar methods exist for (1 < α < 2).

The L1 scheme was originally developed by Oldham and Spanier [26]. In this method the

function f(t) is defined as a piecewise linear, and the Riemann-Liouville derivative given in

Equation (1.17) with m = 1 is written as

RLDα
a,tf(t) =

1

Γ(1− α)

d

dt

∫ t

a

(t− s)−αf(s)ds. (2.3)

The L1 approximation scheme is found as

RLDα
0,tf(t) =

C Dα
0,tf(t) +

f(0)

Γ(1− α)
t−α. (2.4)
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Letting t = tn = n∆t and 0 < α < 1, one gets

[
cDα

0,tf(t)
]
t=tn

=
1

Γ(1− α)

∫ tn

t0

(tn − s)−αf ′(s)ds

=
1

Γ(1− α)

n−1∑
k=0

∫ tk+1

tk

(tn − s)−αf ′(s)ds

≈ 1

Γ(1− α)

n−1∑
k=0

∫ tk+1

tk

(tn − s)−αf(tk+1)− f(tk)

∆t
ds+ R̂n

=
n−1∑
k=0

(f(tk+1)− f(tk))

[
−(tn − s)1−α

∆tΓ(2− α)

]tk+1

tk

+ R̂n

=
n−1∑
k=0

(f(tk+1)− f(tk))

[
∆t−α((n− k)1−α − (n− k − 1)1−α)

Γ(2− α)

]
+ R̂n

=
n−1∑
k=0

bn−k−1(f(tk+1)− f(tk)) + R̂n,

where

bk =
∆t−α

Γ(2− α)

[
(k + 1)1−α − k1−α

]
. (2.5)

In each interval, k∆t ≤ s ≤ (k + 1)∆t the derivative is then assumed to be constant and is

approximated by a first order finite difference approximation. The approximation is then given

as [
RLDα

0,tf(t)
]
t=tn

≈ f(0)t−α
n

Γ(1− α)
+

n−1∑
k=0

bn−k−1(f(tk+1)− f(tk)) + R̂n. (2.6)

We tested by the functions f(t) = sin(t), t ∈ [0; π] ,and f(t) = et, t ∈ [0; 1].
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Figure 2.3: Riemann-Liouville derivative with different values of order 0 < α ≤ 1 of sin(t)
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Figure 2.4: Riemann-Liouville derivative with different values of order 0 < α ≤ 1 of et

Theorem 1. Let 0 < α < 1 and f(t) ∈ C2([0, T ]). Then∣∣∣R̂n
∣∣∣ = ∣∣∣∣∣

∫ tn

t0

(sn − s)−αf ′(s)ds+
n−1∑
k=0

ank+1(f(sk+1)− f(sk))

∣∣∣∣∣ ≤ C(τmax)
2−α max

0≤t≤T
|f ′′(t)|,

where C is only dependent on α and τmax/τmin.

2.3 L2 and L2C methods

The L2 method and its variant L2C method [26, 18] are used to discretise the Riemann-Liouville

derivative of order α(1 < α < 2), which can be obtained in a similar way to that of the L1

method.

The L2 approximation scheme is found as

RLDα
0,tf(t) =

C Dα
0,tf(t) +

f(0)

Γ(1− α)
t−α +

f ′(0)

Γ(2− α)
t1−α. (2.7)

For the Caputo derivative with order 1 < α < 2,we have

[
CDα

0,tf(t)
]
t=tn

=
1

Γ(2− α)

∫ tn

t0

(tn − s)1−αf ′′(s)ds

=
1

Γ(2− α)

n−1∑
k=0

∫ tk+1

tk

(tn − s)1−αf ′′(s)ds

=
1

Γ(2− α)

n−1∑
k=0

∫ tk+1

tk

s1−αf ′′(tn − s)ds,
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where in each interval k∆t ≤ s ≤ (k + 1)∆t, we have

[
cDα

0,tf(t)
]
t=tn

≈
n−1∑
k=0

1

Γ(2− α)∆t2
(f(tn−k−1)− 2f(tn−k) + f(tn−k+1))

∫ tk+1

tk

s1−αds+O(∆t3−α)

=
n∑

k=−1

Wkf(tn−k).

The L2 approximation scheme is given

[
RLDα

0,tf(t)
]
t=tn

=
n∑

k=−1

Wkf(tn−k) +
f(0)

Γ(1− α)
t−α +

f ′(0)

Γ(2− α)
t1−α, (2.8)

where Wk is defined by

Wk =
∆t−α

Γ(3− α)



1, k = −1,

22−α − 3, k = 0,

(k + 2)2−α − 3(k + 1)2−α + 3k2−α − (k − 1)2−α, 1 ≤ k ≤ n− 2,

−2n2−α + 3(n− 1)2−α − (n− 2)2−α, k = n− 1,

n2−α − (n− 1)2−α, k = n.

(2.9)

On the other hand, we have CDα
0,tf(t) =

C Dα−1
0,t f(t). The L1 method can be used to discretise

the (α− 1)-order Caputo derivative of f(t).

[
cDα

0,tf(t)
]
t=tn+1/2

= a0f
′(tn+1/2)−

n∑
j=1

an−j+1f
′(tj−1/2)− (an −Bn)f

′(t1/2)−Bnf
′(t0), (2.10)

where an and Bn are defined by

an =
∆t1−α

Γ(3− α)
[(n+ 1)2−α − n2−α], Bn =

2∆t1−α

Γ(3− α)
[(n+ 1/2)2−α − n2−α]. (2.11)

Where in each interval k∆t ≤ s ≤ (k + 1)∆t.∫ tk+1

tk

s1−αf ′′(tn − s)ds ≈ f(tn − tk+2)− f(tn − tk+1) + f(tn − tk−1)f(tn − tk)

2∆t2

∫ tk+1

tk

s1−αds,

(2.12)

so, the approximation of L2C method for Riemann-Liouville derivative is given as

[
RLDα

0,tf(t)
]
t=tn

≈
n+1∑
k=−1

Ŵkf(tn−k) +
f(0)t−α

n

Γ(1− α)
+

f ′(0)t1−α
n

Γ(2− α)
, (2.13)
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where Ŵk is defined as

Ŵk =
∆t−α

2Γ(3− α)



1, k = −1,

22−α − 2, k = 0,

32−α − 22−α, k = 1,

(k + 2)2−α − 2(k + 1)2−α + 2(k + 1)2−α − (k − 2)2−α, 2 ≤ k ≤ n− 2,

−n2−α − (n− 3)2−α + 2(n− 2)2−α, k = n− 1,

−n2−α + 2(n− 1)2−α − (n− 2)2−α, k = n,

n2−α − (n− 1)2−α, k = n+ 1.
(2.14)

The accuracy of the L2 and L2C methods depends on α. If α = 1, the L2 and L2C methods

reduce to the backward difference method and the central difference method for the first order

derivative, respectively. If α = 2, the L2 method reduces to the central difference method for

the second order derivative, and the L2C method reduces to

d2f(tk)

dt2
≈ f(tk+2) + f(tk)− f(tk−1)− f(tk+1)

2∆t2
. (2.15)

With accuracy of order 1. In fact, the L2 method converges with order O(∆t3−α). Experiments

show that the L2 method is more accurate than the L2C method for 1 < α < 1.5, while the

reverse happens for 1.5 < α < 2. Near α = 1.5, the two methods have almost similar results

([18]).

2.4 Finite difference approximations of integer order deriva-
tives

In addition to fractional derivatives, integer order derivative will also need to be approximated

throughout the coming chapter. First order time derivatives will appear in space fractional

PDEs and are approximated either by central or backward difference operators. On the other

hand, second order difference operators are used to approximate second order derivatives in

time fractional PDEs. Hence, this section introduces the operators used to approximate integer
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order derivatives, common to several of the coming schemes.

Denote by I = (a, b). Let be ∆t the time step size and N a positive integer with ∆t = T/N and

tn = n∆t for n = 0, 1, . . . , N . Denote by tn+ 1
2
= tn+tn+1

2
for n = 0, 1, . . . , n − 1. We can define

the space step size ∆x = (b− a)/M,M is a positive integer. The space grid point xi is given by

xi = a + i∆x, i = 0, 1, . . . ,M . Let xi+ 1
2
= xi+xi+1

2
. For the function u(x, t) ∈ C(I × [0, T ]), denote

by un = un(.) = u(., tn) and un
i = u(xi, tn).

Next, we introduce the following notations that will be used in the description of the numerical

schemes. At time level n+ 1/2 it holds that

[
∂u

∂t
]xi,tn+1

2

= δtu
n+ 1

2
i +O(∆t2), where δtu

n+ 1
2

i =
un+1
i −un

i

∆t
.

which holds a similar result, apart from the truncation error, to the approximation of the first

time derivative at time t = (n+ 1)∆t with backward differences

[
∂u

∂t
]xi,tn+1 = δtu

n+1
i +O(∆t), where δtu

n+1
i =

un+1
i −un

i

∆t
.

The first order space derivative can be approximated at x = (i+
1

2
)∆x with

[
∂u

∂x
]x

i+1
2
,tn = δtu

n
i+ 1

2

+O(∆x2), where δtu
n
i+ 1

2

=
un
i+1−un

i

∆x
.

The second order space derivative can be approximated at x = i∆x with

[
∂2u

∂x2
]xi,tn = δ2t u

n
i +O(∆x2), where δ2t u

n
i =

un
i−1−2un

i +un
i+1

∆t
.
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CHAPTER 3

FINITE DIFFERENCE METHODS FOR
FRACTIONAL PARTIAL DIFFERENTIAL

EQUATIONS

MMany researchers have investigated ways of finding the solution of fractional partial

differential equations (FPDEs) such as analytical solutions [11, 15, 22, 19, 32] and

numerical solutions [14, 3, 7, 6, 24, 5]. Some analytic solutions are known but they are difficult

to evaluate. Most fractional partial differential equations do not have exact solutions and so

consequently numerical techniques must be used to obtain their approximate solutions.

This chapter is divided into three sections. In the first section, we investigate the finite

difference methods for the time-fractional equation in one spatial dimension. In the second

section, we construct the finite difference methods for the space-fractional equations in one

spatial dimension. In the last section of this chapter,we derive the finite difference methods for

time-space fractional equations in one space dimension .
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3.1 One-Dimensional Time-Fractional Equations

Denote by I = (a, b). Let be ∆t the time step size and N a positive integer with ∆t = T/N and

tn = n∆t for n = 0, 1, . . . , N . Denote by tn+ 1
2
= tn+tn+1

2
for n = 0, 1, . . . , N − 1. We can define

the space step size ∆x = (b− a)/M,M is a positive integer. The space grid point xi is given by

xi = a + i∆x, i = 0, 1, . . . ,M . Let xi+ 1
2
= xi+xi+1

2
. For the function u(x, t) ∈ C(I × [0, T ]), denote

by un = un(.) = u(., tn) and un
i = u(xi, tn).

Next, we introduce the following notations that will be used in the description of the numerical

schemes.

δxu
n
i+ 1

2
=

un
i+1 − un

i

∆x
, δ2xu

n
i =

un
i+1 − 2un

i + un
i−1

∆x2
,

δtu
n+ 1

2
i =

un+1
i − un

i

∆t
.

3.1.1 Caputo Type Subdiffusion Equations

We consider the following Caputo type time-fractional diffusion equation [9, 22]
CDα

0,tu = Kα∂
2
xu+ g(x, t), (x, t) ∈ [a, b]× [0, T ],

u(x, 0) = ϕ0(x), a ≤ x ≤ b,
u(a, t) = ua(t), u(b, t) = ub(t), 0 ≤ t ≤ T,

(3.1)

where g(x, t) = Dα−1
0,t f(x, t).

If 0 < α < 1 and the solution u(x, t) ∈ Cm([0, T ];R), then CDα
0,tu(x, t) =

RL Dα
0,t(u(x, t)− u(x, 0)).

Hence, a natural way to discretize the Caputo derivative in (3.1) is to use the GrnwaldLetnikov

approximation, or the L1 method, ...etc., and the space is discretized by the classical methods

such as the central difference method or the compact difference method ([8],[9],[13],[37]).

3.1.1.1 Explicit Euler Type Methods

The explicit method is particularly of interest because of its simplicity, easy implementation,and

low cost in real computation. Like the explicit Euler method for the heat equation (α = 1 in

(3.1)), we can present the corresponding explicit method for the fractional sub-diffusion equa-

tion (3.1), which can be seen as an extension of the forward Euler method.
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Letting (x, t) = (xi, tn) in (3.1) leads to

CDα
0,tu(xi, tn) = Kα∂

2
xu(xi, tn) + g(xi, tn) = Kα∂

2
xu(xi, tn−1) + g(xi, tn) +O(∆t). (3.2)

The Caputo derivative in (3.2) can be discretized by the known methods, i.e., the Grnwald-

Letnikov formula or the L1 method, etc.; the space direction is discretized by the central differ-

ence method. We have

δ
(α)
t un

i = Kαδ
2
xu

n−1
i + gni +O(∆t+∆x2), (3.3)

Where δ
(α)
t is the approximate operator in time that is to be defined.

The Caputo derivative is discretized by the Grünwald-Letnikov formula and the space direction

is discretized by the central difference method, one can get the finite difference method for (3.1): δ
(α)
t (un

i − u0
i ) = Kαδ

2
xu

n−1
i + gni , i = 1, 2, . . . , N − 1,

u0
i = ϕ0(xi), i = 0, 1, . . . , N,

un
0 = Ua(t), u

n
N = Ub(t),

(3.4)

where

δ
(α)
t (un

i − u0
i ) =

1

∆tα

n∑
k=0

ωα
n−k(u

k
i − u0

i ), ω
α
k =

Γ(k − α)

Γ(k + 1)Γ(−α)
. (3.5)

The Caputo derivative is discretized by the L1 method with the space direction approximated

by the central difference scheme; we can derive the method for (3.1): δ
(α)
t un

i = Kαδ
2
xu

n−1
i + gni , i = 1, 2, . . . , N − 1,

u0
i = ϕ0(xi), i = 0, 1, . . . , N,

un
0 = Ua(t), u

n
N = Ub(t),

(3.6)

where

δ
(α)
t un

i =
1

∆tα

n−1∑
k=0

bαn−k−1(u
k+1
i − uk

i ) =
1

∆tα

[
b0u

n
i

n−1∑
k=0

(bαn−k−1 − bαn−k)u
k
i − bnu

0
i

]
, (3.7)

bαk =
1

Γ(2− α)
[(k + 1)1−α − k1−α], (3.8)

and

δ2xu
n−1
i =

un−1
i+1 − 2un−1

i + un−1
i−1

∆x2
. (3.9)

Now, we discuss the stability of the two methods (3.4) and (3.6).
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Theorem 2. Suppose that un
i (i = 1, 2, . . . , N − 1) is the solution to (3.4). Let µ = Kα∆tα/∆x2. if

µ ≤ α/2, then the method (3.4) is stable.

Proof. Suppose that un
i (i = 1, 2, . . . , N − 1) and gni (i = 1, 2, . . . , N − 1) have perturbations

ũn
i (i = 1, 2, . . . , N − 1) and g̃ni (i = 1, 2, . . . , N − 1). Denote by ũn = (ũn

1 , ũ
n
2 , . . . , ũ

n
N−1)

T , g̃n =

(g̃n1 , g̃
n
2 , . . . , g̃

n
N−1)

T ,and

A =



ωα
1 + 2µ −µ 0 . . . 0 0
−µ ωα

1 + 2µ −µ . . . 0 0
0 −µ ωα

1 + 2µ . . . 0 0
...

...
... . . . ...

...
0 0 0 . . . ωα

1 + 2µ −µ
0 0 0 . . . −µ ωα

1 + 2µ


(N−1)×(N−1)

, (3.10)

B =



1− 2µ µ 0 . . . 0 0
µ 1− 2µ µ . . . 0 0
0 µ 1− 2µ . . . 0 0
...

...
... . . . ...

...
0 0 0 . . . 1− 2µ µ
0 0 0 . . . µ 1− 2µ


(N−1)×(N−1)

. (3.11)

Expand the equation (3.4) in the following form

n∑
k=0

ωα
n−k(ũ

k
i − ũ0

i ) = µũn−1
i (ũn−1

i+1 − 2ũn−1
i + ũn−1

i−1 ) + ∆tαg̃ni . (3.12)

Then the matrix representation of the perturbation equation (3.12) can be expressed as{
ũ1 = Bũ0 +∆tαg̃1, n = 1,

ũn = −Aũn−1 −
∑n−2

k=1 ω
α
n−kũk +

∑n
k=1 ω

α
n−kũ0 +∆tαg̃1, n > 1.

(3.13)

Since 2µ ≤ α = −ωα
1 , it is easy to obtain ||A|| ≤ −ωα

1 and ||B|| ≤ 1. Here ||A|| denotes the

spectral norm (or 2-norm ) of the matrix A, which is equal to the absolute largest eigenvalue of

A when A is symmetric.

We also denote it by

bn−k =
n−1∑
k=0

ωα
k =

Γ(n− α)

Γ(1− α)Γ(n)
=

n−α

Γ(1− α)
+O(n−1−α). (3.14)

Then one can easily prove that ∆tα ≤ Cbn−1, C is a positive constant only dependent on α and

T . Next, we prove that

||ũn|| ≤ ||ũ0||+ C max
1≤n≤nT

||g̃n|| = E, (3.15)
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where ||.|| is the discrete L2 norm for the vector, which is defined by

||u|| =

(
n−1∑
i=1

u2
i

) 1
2

,u = (u1, u2, . . . , uN−1)
T ∈ RN−1. (3.16)

We use the mathematical induction method to prove (3.16). For n = 1, we have from (3.15)

||ũ1|| = ||Bũ0 +∆tγg̃1|| ≤ ||B||||ũ0||+ Cb0||g̃1|| ≤ ||ũ0||+ C||g̃1|| ≤ E.

Suppose that ||ũn|| ≤ E;n = 1, 2, . . . ,m− 1. For n = m, one has from (3.15)

||ũm|| ≤ ||Aũm−1|| −
n−2∑
k=1

ωα
n−k||ũ

k||+
n∑

k=1

ωα
n−k||ũ

0||+∆tα||g̃m||

≤ ||A||E −
n−2∑
k=1

ωα
n−kE + bm−1||ũ0||+∆tα||g̃m||

≤ −ωα
1E −

n−2∑
k=1

ωα
n−kE + bm−1E

= b0E −
n−1∑
k=1

ωα
1E + bm−1E = E.

We can similarly prove that the explicit method (3.6) is conditionally stable and convergent

with order O(∆t +∆x2) if Kα∆tα

∆x2 ≤ bα0−bα1
2

= 1−2−α

Γ(2−α)
.The convergence of the explicit method (3.4)

was also proved by Gorenflo and AbdelRehim ([10]) in the FourierLaplace domain.

3.1.1.2 Implicit Euler Type Methods

Next, we introduce the typical implicit methods. Let (x, t) = (xi, tn) in (3.1). Then we have

CDα
0,tu(xi, tn) = Kα∂

2
xu(xi, tn) + g(xi, tn). (3.17)

The time derivative in (3.17) is discretized by the Grünwald-Letnikov formula,and the space

derivative is discretized by the central difference method. We can obtain the following finite

difference method for (3.1), which is given by:
δαt (u

n
i − u0

i ) = Kαδ
2
xu

n
i + gni , i = 1, 2, . . . , N − 1,

u0
i = ϕ0(xi), i = 0, 1, . . . , N,

un
0 = Ua(t), u

n
N = Ub(t),

(3.18)

where δ
(α)
t (un

i − u0
i ) is defined by (3.5).
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The L1 method can be used to discretize the Caputo derivative in (3.1) or (3.18),and the

space derivative is discretized by the central difference. The corresponding method is given by: δ
(α)
t un

i = Kαδ
2
xu

n
i + gni , i = 1, 2, . . . , N − 1,

u0
i = ϕ0(xi), i = 0, 1, . . . , N,

un
0 = Ua(t), u

n
N = Ub(t),

(3.19)

where δ
(α)
t un

i is defined by (3.7) and bαk is defined by (3.8).

It is easy to prove that the two difference methods (3.19) and (3.7) are unconditionally stable

using the Fourier method , and are convergent of order O(∆t+∆x2) and O(∆t2−α +∆x2),

Next, we just give the stability and convergence analysis for (3.7); the stability and convergence

for (3.19) is very similar.

Theorem 3. The finite difference method (3.7) is unconditionally stable.

Proof. We use the Fourier method. Suppose that gni = 0 and un
i = ρne

iσj∆x(j2 = −1).

Inserting un
i into (3.7) yields

(bα0 + 4µ∗)ρn =
n−1∑
k=1

(bαn−k−1 − bαn−k)ρk + bαnρ0, (3.20)

where µ∗ = ∆tα

∆x2Kα sin
2(σ∆x

2
).

Next, we use the mathematical induction method to prove that |ρn| ≤ |ρ0|. It is easy to verify

that 0 ≤ bαk+1 ≤ bαk , k = 0, 1, · · · .

If n = 1, We can get

|ρ1| ≤
bα1

bα0 + 4µ∗ |ρ0| ≤ |ρ0|. (3.21)

Suppose that |ρk| ≤ |ρ0|, n = 1, 2, . . . ,m− 1. For n = m, we have

|ρm| ≤
1

bα0 + 4µ sin2(σ∆x
2
)

m−1∑
k=1

(bαm−k−1 − bαm−k)|ρk|+
bαm−k

bα0 + 4µ∗ |ρ0|

≤ 1

bα0 + 4µ

(
m−1∑
k=1

(bαm−k−1 − bαm−k) + bαm−1

)
|ρ0|

≤ bα0
bα0 + 4µ

|ρ0| ≤ |ρ0|.

Therefore,|ρm| ≤ |ρ0|, so that |ρn| ≤ |ρ0| for all 0 ≤ n ≤ nT .
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Lemma 1. Let uk = (uk
0, u

k
1, . . . , u

k
N) and gk = (gk0 , g

k
1 , . . . , g

k
N). The series bk satisfies b0 > 0,

∑∞
k=1 |bk| ≤

b0, bk = O(k−γ), Bn = O(n−γ), and ∆tγ ≤ Cbn, C is independent of n and ∆t. If

b0(un,un)N ≤
n−1∑
k=1

bn−k(uk,un)N +Bn(u0,un)N +∆tα(gn,un)N , (3.22)

then

||un||2N ≤ Cα||u0||2N + C1 max
0≤k≤nT

||gk||2N , (3.23)

where Cα is only dependent on α and C1 is independent of n,∆t.

Proof. Denote by µ = ∆tα/b
(α)
0 and ck = bk/b0 = O(k−α),so c0 = 1, |ck| ≤ 1 and

∑∞
k=1 |ck| ≤ 1.

From (49) and the Cauchy inequality, we have

||un||2N ≤ 1

2

n−1∑
k=1

|cn−k|(||uk||2N + ||un||2N) +
|cn|
4

||un||2N +
B2

n

b0|cn|
||u0||2N +

|cn|
4

||un||2N +
µ2

|cn|
||gn||2N .

For n = 1, 2, . . . ,m− 1.We get

||un||2N ≤
n−1∑
k=1

|cn−k|||uk||2N +
2B2

n

b0|cn|
||u0||2N +

2µ2

|cn|
||gn||2N

≤
n−1∑
k=1

|cn−k|||uk||2N + |cn|(C0||u0||2N + C1||gn||2N),

where we have used 2B2
n

b0|cn| ≤ Cα|cn| and µ2

c2n
≤ C here Cα is only dependent on α, and C1 is

independent of ∆t and n.

Now, we use the mathematical induction method to prove that

||u1||2N ≤ Cα||u0||2N + C1 max
0≤k≤nT

||gk||2N = E. (3.24)

For n = 1, we have

||u1||2N ≤ |c1|(C0||u0||2N + C1||g0||2N) ≤ E.

For n = m, we have

||un||2N ≤
n−1∑
k=1

|cn−k|||uk||2N + |cn|E ≤ E

n∑
k=1

|ck| ≤ c0E = E.

Therefore,||un||2N ≤ E holds for all n.

27



Theorem 4. Let U(xi, tn) and un
i (i = 0, 1, . . . , N ;n = 1, 2, . . . , nT ) are the solutions to the equations

(3.19). Denote by eni = U(xi, tn)−un
i and en = (en0 , e

n
1 , . . . , e

n
N)

T . Then there exists a positive constant

C independent of n,∆t and ∆x, such that

||en||N ≤ C(∆t2−α +∆x2).

Proof. We can get the error equation as follows

b
(α)
0 eni −

n−1∑
k=1

(b
(α)
n−k−1 − b

(α)
n−k)e

k
i − b

(α)
n−1e

0
i = Kα∆tαδ2xe

n
i +∆tαRn

i ,

where |Rn
i | ≤ C(∆t2−α +∆x2),and we have

||un||2N ≤ 2||u0||2N + C max
0≤k≤nT

||gn||2N . (3.25)

We get

||en||2N ≤ Cα||e0||2N + C max
0≤k≤nT

||Rn||2N ≤ C(∆t2−α +∆x2).

3.1.1.3 Crank-Nicolson Type Methods

We know that the Crank-Nicolson (CN) method for the classical equation has second-order

accuracy in time. The CN method for the classical diffusion equation can be constructed by the

following direct methods:

Let (x, t) = (xi, tn) in (3.1). Then we have

CDα
0,tu(xi, tn) = Kα∂

2
xu(xi, tn) + g(xi, tn). (3.26)

The space is discretized by the central difference scheme, i.e.,

∂2
xu(xi, tn) = ∂2

xu
n
i +O(∆x2) =

un
i+1 − 2un

i + un
i−1

∆x2
. (3.27)

We can get the following CN method for (3.1)
CDα

0,tu
n
i = Kα∂

2
xu

n
i + gni , i = 1, 2, . . . , N − 1, n = 0, 1, . . . , nt − 1,

u0
i = ϕ0(xi), i = 1, 2, . . . , N,

un
0 = Ua(tn), u

n
N = Ub(tn),

(3.28)

we have

CDα
0,tu

n
i =

n−1∑
k=0

bαn−k

(
uk+1
i − uk

i

)
, (3.29)
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where bαk is defined by (3.8).

We can obtain
n−1∑
k=0

bαn−k

(
uk+1
i − uk

i

)
= Kα

un
i+1 − 2un

i + un
i−1

∆x2
+ gni . (3.30)

Here we will show that the stability of the fractional numerical schemes can be analyzed very

easily and efficiently with a method close to the well-known Von Neumann (or Fourier) method

of non-fractional partial differential equations ([15], [20]).

Theorem 5. The fractional Crank-Nicolson discretization, applied to the time-fractional diffusion equa-

tion (3.1) and defined by (3.30) is unconditionally stable for 0 < α < 1.

Proof. Setting µ = 1
2∆x2 and bα1 = 1, we finally get for n = 1:

− µu1
i−1 + (Kαb

α
n + 2µ)u1

i − µu1
i+1 = (Kαb

α
n − 2µ)u0

i + µ
(
u0
i+1 + u0

i−1

)
, i = 1, 2, . . . , N − 1, (3.31)

for n ≥ 2, i = 1; 2; . . . ;N − 1 ,we have:

−µun
i−1+(Kαb

α
n+2µ)un

i −µun
i+1 = (Kαb

α
n−2µ)un−1

i +µ
(
un−1
i+1 + un−1

i−1

)
−Kαb

α
n

n−2∑
k=0

bαn−k

(
uk+1
i − uk

i

)
.

(3.32)

To study the stability of the method, we look for a solution of the form un
i = ρne

iωjh; j =
√
−1;ω

real.

−µρne
(i−1)ωjh + (Kαb

α
k + 2µ)ρne

iωjh − µρne
(i+1)ωjh = (Kαb

α
n − 2µ)ρn−1e

iωjh

+ µ
(
ρn−1e

(i+1)ωjh + ρn−1e
(i−1)ωjh

)
−Kαb

α
k

n−2∑
k=0

bαn−k

(
ρk+1e

iωjh − ρke
iωjh
)
. (3.33)

Simplifying and grouping like terms:(
1 +

2µ

Kαbαn
(1− cos(ωh))

)
ρn = (1− 2µ

Kαbαn
)ρn−1 +

2µ

Kαbαn
ρn−1 cos(ωh)−

n−2∑
k=0

bαn−k (ρk+1 − ρk) ,

(3.34)

this can be reduced to:

ρn =
(1− 2µ

Kαbαn
)ρn−1 +

2µ
Kαbαn

ρn−1 cos(ωh)−
∑n−2

k=0 b
α
n−k (ρk+1 − ρk)(

1 + 2µ
Kαbαn

(1− cos(ωh))
) . (3.35)
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We observe that from equation (3.35), since
(
1 + 2µ

Kαbαn
(1− cos(ωh))

)
≥ 1 for all α;n;ω;h and k;

it follows that:

ρ1 ≤ ρ0

(
1− 2µ

Kαbαn
(1− cos(ωh))

)
, (3.36)

and

ρn ≤ ρn−1

(
1− 2µ

Kαbαn
(1− cos(ωh))

)
−

n−2∑
k=0

bαn−k (ρk+1 − ρk) . (3.37)

Repeating the process until ρk ≤ ρk−1; k = 1; 2; . . . ;n− 1; we finally have:

ρn ≤ ρn−1

(
1− 2µ

Kαbαn
(1− cos(ωh))

)
−

n−2∑
k=0

bαn−k (ρk+1 − ρk) ≤ ρn−k, (3.38)

since each term in the summation is negative. This shows that the inequalities (3.37) and (3.38)

imply ρn ≤ ρn−1 ≤ ρk−2 ≤ . . . ρ1 ≤ ρ0.

Thus, ρn = |un
i | ≤ ρ0 = |u0

i | = |fi|; which entails ||un
i ||L2 ≤ ||fi||L2 and we have stability.

Remark 1. For α = 1; the numerical scheme is reduced to the well-known convergent fully CN al-

gorithm for the equation (3.30). Also, the proof of stability (and hence convergence) can be extended

to other types of boundary conditions and more general time fractional diffusion equations in one and

higher space dimensions.

The truncation error T (x, t) of the CN difference scheme is:

T (x, t) =
n−1∑
k=0

bαn−k

(
uk+1
i − uk

i

)
−Kα

un
i+1 − 2un

i + un
i−1

∆x2
− gni

=
n−1∑
k=0

bαn−k

[(
un
i + (∆t− 1)ut +

(∆t− 1)2

2
utt + · · ·

)
−
(
un
i +∆tut +

∆t2

2
utt + · · ·

)]
+O(∆t)

− Kα

∆x2

[(
un
i +∆xux +

∆x2

2
uxx + · · ·

)
− 2un

i +

(
un
i +∆xux +

∆x2

2
uxx + · · ·

)]
+O(∆x2)− gni

= O(∆t) +O(∆x2).

3.1.2 Riemann-Liouville Type Subdiffusion Equations

Consider the following type of time-fractional diffusion equation
∂tu =RL D1−α

0,t (Kα∂
2
xu) + f(x, t), (x, t) ∈ [a, b]× [0, T ],

u(x, 0) = ϕ0(x), a ≤ x ≤ b,
u(a, t) = ua(t), u(b, t) = ub(t), 0 ≤ t ≤ T,

(3.39)

where Kα > 0 and 0 < α < 1.

30



3.1.2.1 Explicit Euler Type Methods

Letting (x, t) = (xi, tn) in (3.39) leads to

∂tu(xi, tn) = Kα

(
RLD1−α

0,t ∂2
xu
)
(xi, tn) + f(xi, tn). (3.40)

The integer-order time derivative and fractional derivative in (3.40) are discretized by the for-

ward Euler method and the Grünwald-Letnikov formula, i.e.,

∂tu(xi, tn) =
u(xi, tn+1)− u(xi, tn)

∆t
+O(∆t) = δtu

n+ 1
2

i +O(∆t),

(
RLD1−α

0,t ∂2
xu
)
(xi, tn) =

GL δ
(1−α)
t (∂2

xu
n(xi)) +O(∆t).

The space is discretized by the central difference scheme, i.e.,

∂2
xu(xi, tn) = ∂2

xu
n(xi) = ∂2

xu
n
i +O(∆x2).

We can obtain

∂tu
n+ 1

2
i = KGL

α δ
(1−α)
t ∂2

xu
n
i + fn

i +O(∆t+∆x2). (3.41)

We can get the following explicit Euler method for (3.39) as: ∂tu
n+ 1

2
i = KGL

α δ
(1−α)
t (∂2

xu
n
i ) + fn

i , i = 1, 2, . . . , N − 1,
u0
i = ϕ0(xi), i = 1, 2, . . . , N,

un
0 = Ua(tn), u

n
N = Ub(tn),

(3.42)

where GLδ
(1−γ)
t is defined by

GLδ
(α)
t un =

1

∆tα

n∑
k=0

ωα
n−ku

k, ωα
k =

Γ(k − α)

Γ(k + 1)Γ(−α)
. (3.43)

If α −→ 1,the method (3.42) is reduced to the classical forward Euler method.

Let µ = Kα∆tα

∆x2 and we have

δtu
n+ 1

2
i =

un+1
i − un

i

∆t
,

δ2xu
n
i =

un
i+1 − 2un

i + un
i−1

∆x2
,

GLδ
(1−α)
t

(
∂2
xu

n
i

)
=

1

∆t1−α∆x2

n∑
k=0

ω1−α
n−k(u

k
i+1 − 2uk

i + uk
i−1),
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then
un+1
i − un

i

∆t
=

Kα

∆t1−α∆x2

n∑
k=0

ω1−α
n−k(u

k
i+1 − 2uk

i + uk
i−1) + fn

i .

Then method (3.42) can be written as

un+1
i = un

i + µ
n∑

k=0

ω1−α
n−k(u

k
i+1 − 2uk

i + uk
i−1) + ∆tfn

i . (3.44)

Therefore, the unknowns un+1
i can be solved if uk

i (k = 0, 1, , n) and fn
i are given.

The fractional Von Neumann analysis for the stability analysis of scheme (3.42) is illustrated

below.

Let fn
i = 0 and uk

i = ρke
ijσ∆x(j2 = −1). Inserting uk

i into (3.42) yields

ρn+1 = ρn − 4µ sin2

(
σ∆x

2

) n∑
k=0

ω1−α
n−kρk. (3.45)

According to the Von Neumann method([5],[34]),we can first assume that ρn+1 = ξ(σ)ρn and

ξ(σ) is independent of time. Then (3.42) implies a closed equation for the amplification factor ξ

as:

ξ = 1− 4µ sin2

(
σ∆x

2

) n∑
k=0

ω1−α
k ξ−k. (3.46)

If |ξ| > 1 for some σ, ρn grows to infinity and the method is unstable. Considering the extreme

value ξ = −1, we obtain from (3.46) the following stability bound on µ:

µ sin2

(
σ∆x

2

)
≤ 1

2
∑n

k=0 ω
1−α
k (−1)−k

≡ Sα,n. (3.47)

The bound defined by () depends on the number n of iterations. Nevertheless, this dependence

is weak: Sα,n approaches Sα = limn−→∞ Sα,n in the form of oscillations with small decaying

amplitudes([34]). Since
∑∞

k=0 ω
1−α
k z−k = (1 − z−1)1−α = w1−α

1 (z−1). We find that the explicit

method (3.42) is stable as long as

µ sin2

(
σ∆x

2

)
≤ Sα =

1

2w1−α
1 (−1)

. (3.48)

Since sin2
(
σ∆x
2

)
≤ 1, we can give a more conservative but simple bound: the explicit method

(3.42) is stable when

µ =
Kα∆tα

∆x2
≤ Sα =

1

2w1−α
1 (−1)

=
1

22−α
. (3.49)
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The stability bound in (3.49) is reduced to that of the forward Euler method if α −→ 1.

For p = 2 with w1−α
2 (z) = (3/2 − 2z + z2/2)1−α, We can obtain that the explicit method (3.42) is

stable when

µ =
Kα∆tα

∆x2
≤ Sα =

1

2w1−α
2 (−1)

=
1

43/2−α
. (3.50)

Next, we consider the convergence. Let eni = U(xi, tn) − un
i . Then one can derive the error

equation from (3.35) and (3.36) as

en+1
i = en + µ

n−1∑
k=0

ω1−α
n−k

(
eki+1 − 2eki + eki−1

)
+∆tRn

i .

Let eni = ηnejσi∆x, Rn
i = rnejσi∆x, and µ∗ = 4µ sin2

(
σ∆x
2

)
. Then one has

ηn+1 = ηn − µ∗
n∑

k=0

ω1−α
n−kηk +∆trn.

From (3.44), we find that the local truncation error of the method (3.42) is O(∆t(∆t+∆x2)). It is

a little difficult to prove the global truncation error. In the following sections, some techniques

will be introduced to prove the convergence of the numerical schemes for the subdiffusion

equation (3.42).

3.1.2.2 Implicit Euler Type Methods

In (3.39), if the integer time derivative, the Riemann-Liouville derivative, and the space deriva-

tive are approximated by the backward Euler formula, the Grünwald-Letnikov formula, and

the central difference method, respectively, i.e.,

∂tu(xi, tn) =
u(xi, tn)− u(xi, tn−1)

∆t
+O(∆t) = δtu

n− 1
2

i +O(∆t),

(
RLD1−α

0,T ∂2
xu
)
(xi, tn) =

GL δ
(1−α)
t (∂2

xu
n(xi)) +O(∆t).

We can obtain the backward Euler method for (3.39) as: ∂tu
n− 1

2
i = KGL

α δ
(1−α)
t (∂2

xu
n
i ) + fn

i , i = 1, 2, . . . , N − 1,
u0
i = ϕ0(xi), i = 0, 1, 2, . . . , N,

un
0 = Ua(tn), u

n
N = Ub(tn),

(3.51)
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where GLδ
(1−γ)
t is given by (3.43).

We give a simple implementation of the method (3.51). We have

δtu
n− 1

2
i =

un
i − un−1

i

∆t
,

δ2xu
n
i =

un
i+1 − 2un

i + un
i−1

∆x2
,

GLδ
(1−α)
t

(
∂2
xu

n
i

)
=

1

∆t1−α∆x2

n∑
k=0

ω1−α
n−k(u

k
i+1 − 2uk

i + uk
i−1),

then
un
i − un−1

i

∆t
=

Kα

∆t1−α∆x2

n∑
k=0

ω1−α
n−k(u

k
i+1 − 2uk

i + uk
i−1) + fn

i .

We first rewrite the scheme (3.39) as

un
i = un−1

i + µ
n∑

k=0

ω1−α
n−k(u

k
i+1 − 2uk

i + uk
i−1) + ∆tfn

i , (3.52)

where µ = Kα∆tα/∆x2.

We consider the stability of the finite difference scheme (3.51). The Fourier method is powerful

tool for the stability and convergence analysis of the numerical methods for fractional differ-

ential equations. We mainly focus on the stability analysis, and the convergence analysis is

somewhat equivalent to the stability analysis for the linear problems.

. Fourier method

We first use the Fourier method ([34],[2],[35]) for the stability analysis of the method (3.50).

Supposing that un
i has perturbation ũn

i , we can obtain the perturbation equation as follows

ũn
i = ũn−1

i + µ
n∑

k=0

ω1−α
n−k(ũ

k
i+1 − 2ũk

i + ũk
i−1). (3.53)

Let ũn
i = ρne

jσi∆x(j2 = −1) and inserting ũn
i into (3.51),

ρne
jσi∆x = ρn−1e

jσi∆x + µ

n∑
k=0

ω1−α
n−k(ρke

jσ(i+1)∆x − 2ρke
jσi∆x + ρke

jσ(i−1)∆x)

ρn = ρn−1 + µ
n∑

k=0

ω1−α
n−kρk(e

jσ∆x − 2 + e−jσ∆x)

= ρn−1 + 2µ
n∑

k=0

ω1−α
n−kρk(cos(σ∆x)− 1)

= ρn−1 − 4µ sin2

(
σ∆x

2

) n∑
k=0

ω1−α
n−kρk.
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We get (
1 + 4µ sin2

(
σ∆x

2

))
ρn = ρn−1 − 4µ sin2

(
σ∆x

2

) n∑
k=1

ω1−α
k ρn−k. (3.54)

Next, we prove that |ρn| ≤ |ρ0| from (3.54).

Theorem 6. The finite difference method (3.51) is unconditionally stable.

Proof. We use the mathematical induction to complete the proof.

Let µ∗ = 4µ sin2
(
σ∆x
2

)
. Then we have from (3.54)

ρn =
1

1 + µ∗ρn−1 −
µ∗

1 + µ∗

n∑
k=0

ω1−α
k ρn−k. (3.55)

For n = 1, it follows from (3.55) that

|ρ1| =
|1− µ∗ω1−α

1 |
1 + µ∗ |ρ0| =

|1− µ∗(1− α)|
1 + µ∗ |ρ0| ≤ |ρ0|.

Suppose that |ρk| ≤ |ρ0|(0 ≤ k ≤ n− 1). For k = n, we get from (3.54)

ρn ≤ 1

1 + µ∗ |ρn−1|+
µ∗

1 + µ∗

n∑
k=0

|ω1−α
n−k ||ρn−k|

≤ 1

1 + µ∗ |ρ0|+
µ∗

1 + µ∗

n∑
k=0

|ω1−α
n−k ||ρ0|

=
1

1 + µ∗ |ρ0|+
µ∗

1 + µ∗

(
−

n∑
k=0

ω1−α
n−k

)
|ρ0|

≤ 1

1 + µ∗ |ρ0|+
µ∗

1 + µ∗ |ρ0| = |ρ0|.

Therefore, |ρn| ≤ |ρ0|.

Remark 2. If ω(1−γ)
k satisfies ω(1−γ)

0 > 0 and
∑n

k=1 |ω
(1−γ)
k | ≤ ω

(1−γ)
0 , then the inequality (3.54) holds.

Theorem 7. Let be U(x, t) and un
i (i = 0, 1, 2, . . . , N ;n = 1, 2, . . . , nT ) solutions to equations (3.39)

and (3.51). Denote by eni = un
i − U(xi, tn) and en = (en0 , e

n
1 , . . . , e

n
N)

T . Then there exists a positive

constant C independent of n,∆t and ∆x, such that

||en||N ≤ C(∆t+∆x2).
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Proof. We can get the error equation as follows

eni = en−1
i +∆tγKγ

n∑
k=0

ω
(1−γ)
n−k δ2xe

k
i +∆tRn

i ,

in which Rn
i is the truncation error satisfying Rn

i = O(∆t+∆x2)

we only need to estimate

||e0||2N +∆tγKγ|e0|2N + C∆t max
0≤k≤nT

||Rk||2N .

To get the error bound, where Rn = (Rn
0 , R

n
1 , . . . , R

n
N)

T with Rn
i = O(∆t + ∆x2). ||e0||N =

|e0|1,N = 0,and ||Rk||N ≤ C(∆t+∆x2). Hence ||en||N ≤ C(∆t+∆x2).

3.1.2.3 Crank-Nicolson Type Methods

The CN method for the classical diffusion equation can be constructed by the following direct

methods:

1. Method I: Let t = tn+ 1
2

in (3.39) with α = 1 yields

∂tu(tn+ 1
2
) = µ∂2

xu(tn+ 1
2
) + f(tn+ 1

2
).

Note that ∂tu(tn+ 1
2
) = δtu

n+ 1
2 +O(∆t2) and u(tn+ 1

2
) = un+ 1

2 +O(∆t2). We have

δtu
n+ 1

2 = µ∂2
xu

n+ 1
2 + f(tn+ 1

2
) +O(∆t2).

Let x = xi and using ∂2
xu

n = δ2xu
n
i +O(∆x2),We have

δtu
n+ 1

2 = µδ2xu
n+ 1

2 + f(xi, tn+ 1
2
) +O(∆t2 +∆x2).

The classical CN method below:

δtu
n+ 1

2 = µδ2xu
n+ 1

2 + f(xi, tn+ 1
2
). (3.56)

2. Method II: Let x = xi, t = tk, k = n, n+ 1, in (3.39) with α = 1 gives

∂tu(xi, tn) = µ∂2
xu(xi, tn) + f(xi, tn),

∂tu(xi, tn+1) = µ∂2
xu(xi, tn+1) + f(xi, tn+1).
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Adding the two equations leads to

∂tu(xi, tn) + ∂tu(xi, tn+1) = µ
(
∂2
xU(xi, tn) + ∂2

xU(xi, tn+1)
)
+ f(xi, tn) + f(xi, tn+1).

Noting that

∂tu(xi, tn) + ∂tu(xi, tn+1) = 2δtu
n+ 1

2 +O(∆t2),

and

∂2
xu(xi, tn) = 2δ2xu

n+ 1
2 +O(∆x2).

We have

δtu
n+ 1

2
i = µδ2xu

n+ 1
2

i + f
n+ 1

2
i +O(∆t2 +∆x2).

Dropping the truncation error, the following CN method:

δtu
n+ 1

2
i = µδ2xu

n+ 1
2

i + f
n+ 1

2
i

Similar to (3.56), we first let (x, t) = (xi, tn− 1
2
) in (3.39), which gives

∂tu(xi, tn− 1
2
) = Kα

(
RLD1−α

0,t ∂2
xu
)
(xi, tn− 1

2
) + f(xi, tn− 1

2
), (3.57)

with (1 + α)th-order accuracy to approximate RLD1−α
0,t at t = tn− 1

2
. We have

δtu
n− 1

2
i = Kαδ

(1−α)
t u

n− 1
2

i + f(xi, tn− 1
2
) +O(∆t1+α +∆x2),

where

δ
(1−α)
t u

n− 1
2

i =
1

∆t1−α

[
b0u

n− 1
2

i −
n−1∑
k=1

(bn−k−1 − bn−k)u
k− 1

2
i − (bn−1 −Bn−1)u

1
2
i − An−1u

0
i

]
,

in which An = Bn − α(n+1/2)α−1

Γ(1+α)
,bn and Bn are defined by

bn =
(n+ 1)α − nα

Γ(1 + α)
, Bn =

2[(n+ 1/2)α − nα]

Γ(1 + α)
.

The first CN type method is given by: ∂tu
n− 1

2
i = Kαδ

(1−α)
t ∂2

xu
n
i + f

n− 1
2

i , i = 1, 2, . . . , N − 1,
u0
i = ϕ0(xi), i = 0, 1, 2, . . . , N,

un
0 = Ua(tn), u

n
N = Ub(tn).

(3.58)
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The CN type method (3.58) is reduced to the classical CN method (3.56) if α −→ 1. Of course,

we can also use
1

2

[(
RLD1−α

0,t ∂2
xu
)
(xi, tn) +

(
RLD1−α

0,t ∂2
xu
)
(xi, tn−1)

]
to replace

(
RLD1−α

0,t ∂2
xu
)
(xi, tn− 1

2
) in (3.57) as in the classical CN method (3.56). Then the appro-

priate discretization for the time fractional derivative operator RLD1α
0,t at t = tn, tn−1 is applied.

So we can derive the following CN type method
∂tu

n− 1
2

i = Kα

2

[
δ
(1−α)
t ∂2

xu
n−1
i + δ

(1−α)
t ∂2

xu
n
i

]
+ f

n+ 1
2

i , i = 1, 2, . . . , N − 1,

u0
i = ϕ0(xi), i = 0, 1, 2, . . . , N,

un
0 = Ua(tn), u

n
N = Ub(tn),

(3.59)

where δ
(1−α)
t is the approximate operator of the time fractional derivative operator RLD1−α

0,t .

It is known that 1
2

([
RLD1−α

0,t ∂2
xu(t)

]
t=tn−1

+
[
RLD1−α

0,t ∂2
xu(t)

]
t=tn

)
is not a good approximation to[

RLD1−α
0,t ∂2

xu(t)
]
t=t

n− 1
2

.

For example, u(t) = tν , ν ≥ 0, so we can derive

1

2

([
RLD1−α

0,t ∂2
xu(t)

]
t=tn−1

+
[
RLD1−α

0,t ∂2
xu(t)

]
t=tn

)
−
[
RLD1−α

0,t ∂2
xu(t)

]
t=t

n− 1
2

=
Γ(ν + 1)

2Γ(ν + α)

[
tν+α−1
n−1 + tν+α−1

n − 2tν+α−1
n− 1

2

)
= O(∆t2tν+α−3

n ).

Let (x, t) = (xi, tn) and (x, t) = (xi, tn−1) in (3.39)

∂tu(xi, tn) = Kα

(
RLD1−α

0,t ∂2
xu
)
(xi, tn) + f(xi, tn), (3.60)

∂tu(xi, tn−1) = Kα

(
RLD1−α

0,t ∂2
xU
)
(xi, tn−1) + f(xi, tn−1). (3.61)

Adding (3.60) and (3.61), we have

∂tu(xi, tn) + ∂tu(xi, tn−1)

= Kα

[(
RLD1−α

0,t ∂2
xu
)
(xi, tn) +

(
RLD1−α

0,t ∂2
xu
)
(xi, tn−1)

]
+ f(xi, tn) + f(xi, tn−1). (3.62)

One choice is to use L1 method to discretize RLD1−α
0,t ∂2

xU(x, t) at t = tn−1 and t = tn, which gives

∂tu
n− 1

2
i =

Kα

2

[
RL
L1 δ

(1−α)
t ∂2

xu
n
i +

RL
L1 δ

(1−α)
t ∂2

xu
n−1
i

]
+

1

2

(
fn
i + fn−1

i

)
+O(∆t1+α +∆x2), n > 1, (3.63)
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Where RL
L1 δ

(1−α)
t is defined by

L1
RLδ

(α)
t un =

1

∆tα

(
n−1∑
k=0

b
(α)
n−k−1(u

k+1 − uK) +
n−α

Γ(1− α)
u0

)
, b

(α)
k =

(K + 1)(1− α)− k(1− α)

Γ(2− α)
.

(3.64)

For n = 1,we can use the following relation

∂tu
1
2
i = Kα(

RL
L1 δ

(1−α)
t ∂2

xu
1
i ) + f 1

i +O(∆t+∆x2). (3.65)

We can get the following CN type method
∂tu

1
2
i = Kα

2
[δ

(1−α)
t ∂2

xu
1
i ] + f 1

i , i = 1, 2, . . . , N − 1,

∂tu
n− 1

2
i = Kα

2

[
RL
L1 δ

(1−α)
t ∂2

xu
n
i +

RL
L1 δ

(1−α)
t ∂2

xu
n−1
i

]
+ 1

2

(
fn
i + fn−1

i

)
, i = 1, 2, . . . , N − 1

u0
i = ϕ0(xi), i = 0, 1, 2, . . . , N,

un
0 = Ua(tn), u

n
N = Ub(tn).

(3.66)

Next, we consider the stability and convergence of the three CN methods

Theorem 8. Let be un = (un
0 , u

n
1 , . . . , u

n
N)

T the solutions to the finite difference scheme (3.59),un
0 =

un
N = 0,and fn−

1
2 = (0, f

n− 1
2

1 , . . . , f
n− 1

2
N−1 , 0)

T . Then

||un+1||2N ≤ 2||u0||2N + C1∆tγ|u0|21,N + C2∆t
n∑

j=0

||fk+
1
2 ||2N ,

where C1 is a positive constant independent of n, h, τ and T , and C2 is a positive constant independent

of n, h and τ .

Proof. Let δtun+ 1
2 = (δtu

n+ 1
2

0 , δtu
n+ 1

2
1 , . . . , δtu

n+ 1
2

N )T and un+ 1
2 = (u

n+ 1
2

0 , u
n+ 1

2
1 , . . . , u

n+ 1
2

N )T . Then

from (3.59) we have

(δtun+ 1
2 ,un+ 1

2 )N = µ[−b0(δxun+ 1
2 , δxun+ 1

2 )N +
n−1∑
j=2

(bn−j − bn+1−j)(δxuj− 1
2 , δxun+ 1

2 )N (3.67)

+(bn−1 −Bn)(δxu
1
2 , δxun+ 1

2 )N + An(δxu0, δxun+ 1
2 )N ] + (fn+

1
2 ,un+ 1

2 )N .
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Using Cauchy-Schwarz inequality

(δtun+ 1
2 ,un+ 1

2 )N

≤ µ

2
[−2b0|un+ 1

2 |21,N +
n−1∑
j=2

(bn−j − bn+1−j)(|uj− 1
2 |21,N + |un+ 1

2 |21,N)

+ (bn−1 −Bn)(|u
1
2 |21,N + |un+ 1

2 |21,N) + An(|u0|21,N + |un+ 1
2 |21,N)] + (fn+

1
2 ,un+ 1

2 )N

=
µ

2
[(−b0 −Bn + An)|un+ 1

2 |21,N +
n−1∑
j=2

(bn−j − bn+1−j)|uj− 1
2 |21,N + (bn−1 −Bn)|un+ 1

2 |21,N)

+ An|u0|21,N ] + (fn+
1
2 ,un+ 1

2 )N

≤ µ

2
[−b0|un+ 1

2 |21,N +
n−1∑
j=1

(bn−j − bn+1−j)|uj− 1
2 |21,N + An|u0|21,N ] + (fn+

1
2 ,un+ 1

2 )N .

Writing

||un+1||2N + µ∆t
n+1∑
j=1

bn+1−j|uj− 1
2 |21,N

≤ |un|21,N + µ∆t

n+1∑
j=1

bn−j|uj− 1
2 |21,N + µ∆tAn|u0|21,N + 2∆t(fn+

1
2 ,un+ 1

2 )N .

Denote by

En+1 = ||un+1||2N + µ∆t
n+1∑
j=1

bn+1−j|uj− 1
2 |21,N .

Then, we can obtain

En+1 ≤ En + µ∆tAn|u0|21,N + 2∆t(fn+
1
2 ,un+ 1

2 )N

≤ En−1 + µ∆t(An + An−1)|u0|21,N + 2∆t
[
(fn+

1
2 ,un+ 1

2 )N + (fn−
1
2 ,un− 1

2 )N

]
≤ E1 + µ∆t|u0|21,N

n∑
j=1

An + 2∆t
n∑

j=1

(fn+
1
2 ,uk+ 1

2 )N

≤ E1 + µ∆t|u0|21,N
n∑

j=1

An + ϵµ∆t

n+1∑
j=1

bn+1−j|uj− 1
2 |21,N +

n+1∑
j=1

∆t

ϵµbn+1−j

||fj−
1
2 ||2N ,

we have used the Cauchy-Schwarz inequality and ϵ||uj− 1
2 ||2N ≤ |uj− 1

2 |21,N . ϵ is a suitable positive

constant independent of j, h, τ and uj
h. we have

||un+ 1
2 ||2N ≤ E1 + µ∆tα||u0||2N

n∑
j=1

An + C∆t||fj−
1
2 ||2N ,
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where 1/bn ≤ Cαn
1−α∆t1−α ≤ CαT

1−α, Cα only depends on α. E1 can be estimated in the fol-

lowing way. Let n = 0 in (3.67) and using the Cauchy-Schwarz inequality gives

||u1||2N + µ∆tB0|u
1
2 |21,N = ||u0||2N + µ∆tA0(δxu

1
2 , δxu0)N + 2∆t(f

1
2 ,u

1
2 )N

≤ ||u0||2N + µ∆tA0

(
ϵ1|u

1
2 |21,N +

1

4ϵ1
|u0|21,N

)
+ 2∆t

(
1

4ϵ2
||f

1
2 ||2N + ϵ2||u

1
2 ||2N

)
,

where ϵ1, ϵ2 > 0 are suitable constants such that

µA0ϵ1|u
1
2 |21,N + 2ϵ2||u

1
2 ||2N ≤ 1

2
µB0|u

1
2 |21,N .

We obtain

E1 = ||u1||2N + µ∆tB0|u
1
2 |21,N

≤ 2||u1||2N + µ∆tB0|u
1
2 |21,N

≤ 2||u0||2N +
µ∆tA0

2ϵ1
|u0|21,N +

∆t

ϵ2
||f

1
2 ||2N .

Then

||un+1||2N ≤ 2||u0||2N + C1∆tα|u0|21,N +∆tC2

n∑
j=0

||fk+
1
2 ||2N ,

in which C1 is a positive constant independent of n, h, τ and T , and C2 is a positive constant

independent of n, h and τ .

Theorem 8 states that the CN type method is unconditionally stable.

Let eni = U(xi, tn)− un
i . Then

δte
n− 1

2
i = Kαδ

(1−α)
t δ2xe

n− 1
2

i +Rn
i , (3.68)

where Rn
i = O(∆t1+α + ∆x2) and en0 = enN = 0 and e0i = 0, i = 0, 1, . . . , N. Denote en =

(en0 , e
n
1 , . . . , e

n
N)

T and Rn = (Rn
0 , R

n
1 , . . . , R

n
N)

T . Then from (3.68) and Theorem 8, we can eas-

ily obtain

||en+1||2N ≤ 2||e0||2N + C1∆tα|e0|21,N +∆tC2

n∑
k=0

||Rk||2N ≤ C(∆t1+α +∆x2).
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The CN type method can be seen as a special case of the following weighted average finite

difference method
∂tu

n− 1
2

i = Kα

[
(1− θ)δ

(1−α)
t ∂2

xu
n
i + θδ

(1−α)
t ∂2

xu
n−1
i

]
+ f(xi, tn− 1

2
),

i = 1, 2, . . . , N − 1, n = 1, 2, . . . , nT ,
u0
i = ϕ0(xi), i = 0, 1, 2, . . . , N,

un
0 = Ua(tn), u

n
N = Ub(tn),

(3.69)

where 0 ≤ θ ≤ 1, and the operator δ(1−α)
t can be defined by any approximation operator to the

time fractional derivative operator RLD1−α
0,t .

3.2 One-Dimensional Space-Fractional Differential Equations

3.2.1 One-Sided Space-Fractional Diffusion Equation

We consider the following space-fractional diffusion equation with Dirichlet boundary conditions([21])
∂tu = d(x)RLDα

a,xu+ g(x, t), (x, t) ∈ [a, b]× [0, T ],
u(x, 0) = ϕ0(x), x ∈ [a, b],
u(a, t) = ua(t), u(b, t) = ub(t), t ∈ [0, T ],

(3.70)

where 1 < α ≤ 2 and d(x) > 0.

The Grünwald-Letnikov derivative of a given function is convergent to the Riemann-Liouville

derivative, a natural way to discretize the space-fractional Riemann-Liouville derivative is to

use the definition of the Grünwald-Letnikov formula

(RLDα
a,xu)(xi, t) =

1

∆xα

i∑
j=0

ωα
j u(t, xi−j) +O(∆x). (3.71)

The first-order time derivative in (3.70) can be discretized by the classical methods such as the

explicit Euler method, the implicit Euler method and the Crank-Nicolson method, etc. Unfor-

tunately, the explicit Euler method, the implicit Euler method, and the Crank-Nicolson method

based on the standard Grünwald-Letnikov formula for (3.70) are often unstable([20]).

3.2.1.1 The weighted Euler Type Methods

The weighted difference methods can be derived in the following way.

Let (x, t) = (xi, tn+ 1
2
) in (3.71)

∂tu(xi, tn+ 1
2
) = d(x)(RLDα

a,xu)(xi, tn+ 1
2
) + g(xi, tn+ 1

2
). (3.72)
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The explicit Euler method, the implicit Euler method and the Crank-Nicolson method can be

seen as the special cases of the following weighted difference methods
δtu

n+ 1
2

i = di

[
(1− θ)Lδ

(α)
x un+1

i+1 + θLδ
(α)
x un

i+1

]
+ (1− θ)g(xi, tn+1) + θg(xi, tn), i = 1, 2, . . . , N − 1,

u0
i = ϕ0(xi), i = 1, 2, . . . , N,

un
0 = Ua(tn), u

n
N = Ub(tn),

(3.73)

where 0 ≤ θ ≤ 1 and Lδ
(α)
x un

i+1 is defined by

Lδ
(α)
x un

i+1 =
1

∆xα

i+1∑
j=0

ωα
j u

n
i+1−j;ω

α
j =

Γ(k − α)

Γ(k + 1)Γ(−α)
. (3.74)

We have

∂tu
n+ 1

2
i = di

[
(1− θ)Lδ

(α)
x un+1

i+1 + θLδ
(α)
x un

i+1

]
+ (1− θ)g(xi, tn+1) + θg(xi, tn+1). (3.75)

The weighted finite difference method (3.75) is reduced to the explicit Euler method if θ = 1,

the implicit Euler method if θ = 0, and the Crank-Nicolson method if θ = 1/2.

1. Explicit Euler Type Methods

If θ = 1,solution to equation (3.75), based on the shifted (1shift) Grünwald-Letnikov ap-

proximation to the fractional derivative, is given by: δtu
n+ 1

2
i = diLδ

(α)
x un

i+1 + gni , i = 1, 2, . . . , N − 1,
u0
i = ϕ0(xi), i = 1, 2, . . . , N,

un
0 = Ua(tn), u

n
N = Ub(tn),

(3.76)

where Lδ
(α)
x un

i+1 is defined by (3.74).

2. Implicit Euler Type Methods

If θ = 0,solution to equation (3.75), based on the shifted (1shift) Grünwald-Letnikov ap-

proximation to the fractional derivative, is given by: δtu
n+ 1

2
i = diLδ

(α)
x un+1

i+1 + gn+1
i , i = 1, 2, . . . , N − 1,

u0
i = ϕ0(xi), i = 1, 2, . . . , N,

un
0 = Ua(tn), u

n
N = Ub(tn),

(3.77)

where Lδ
(α)
x un

i+1 is defined by (3.74).
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3. Crank-Nicolson Type Methods

If θ = 1
2
,solution to equation (3.75), based on the shifted (1shift) Grünwald-Letnikov ap-

proximation to the fractional derivative, is given by:
δtu

n+ 1
2

i = diLδ
(α)
x u

n+ 1
2

i+1 + g(xi, tn+ 1
2
), i = 1, 2, . . . , N − 1,

u0
i = ϕ0(xi), i = 1, 2, . . . , N,

un
0 = Ua(tn), u

n
N = Ub(tn),

(3.78)

where Lδ
(α)
x un

i+1 is defined by (3.74).

We can similarly prove that the weighted finite difference methods (3.73) are uncondition-

ally stable when 0 ≤ θ ≤ 1/2, conditionally stable when 1/2 ≤ θ ≤ 1 and ∆t
∆xα ≤ 1

αdmax(2θ−1)
.

Lemma 2. ([20]) Suppose that f(x) ∈ L1(R),RL Dα+2
−∞,xf(x) and its Fourier transform belong to L1(R),

and let

Lδ
α
∆x,pf(x) =

1

∆xα

∞∑
k=0

ωα
k f(x− (k − p)∆x), ωα

k =
Γ(k − α)

Γ(k + 1)Γ(−α)
,

where p is a non negative integer. Then

Lδ
α
∆x,pf(x) =

RL Dα
−∞,xf(x) + C(p− α

2
)∆x+O(∆x2), (3.79)

where C is a constant independent of p.

A more general second-order discretization of the left Riemann-Liouville operator was de-

veloped in ([31]), which can be given as

α− 2q

2(p− q)R
δα∆x,pf(x) +

2p− α

2(p− q)R
δα∆x,qf(x) =

RL Dα
x,∞f(x) +O(∆x2), (3.80)

where p and q are integers.

Let f(x) be well defined on the interval [a, b]. If f(a) = 0, then the left Riemann-Liouville

operator RLDα
a,x at x = xi can be discretized by the following formula

[
RLDα

a,xf(x)
]
x=xi

=
α− 2q

2(p− q)L
δαxfi+p +

2p− α

2(p− q)L
δαxfi+q +O(∆x2), (3.81)

where fj = f(xj) and the operator Lδ
α
xfi is defined by

Lδ
α
xfi =

1

∆xα

i∑
j=0

ω
(α)
j fi−j, ω

α
j =

Γ(k − α)

Γ(k + 1)Γ(−α)
.
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If f(b) = 0, then the right Riemann-Liouville operator RLDα
x,b at x = xi can be similarly dis-

cretized as

[
RLDα

x,bf(x)
]
x=xi

=
α− 2q

2(p− q)R
δαxfi−p +

2p− α

2(p− q)R
δαxfi−q +O(∆x2), (3.82)

where fj = f(xj) and the operator Rδ
α
xfi is defined by

Rδ
α
xfi =

1

∆xα

N−i∑
j=0

ω
(α)
j fi+j, ω

α
j =

Γ(k − α)

Γ(k + 1)Γ(−α)
.

We are interested in the two cases of (p, q), in which (3.81) and (3.82) are reduced to the central

difference when α = 2.

1. Case I: (p, q) = (1, 0), the left and right Riemann-Liouville derivatives RLDα
a,xf(x) and

RLDα
x,bf(x) at x = xi can be discretized by the following weighted shifted Grünwald for-

mulas

Lδ
(α,1)
x fi =

α

2 L
δ(α)x fi+1 +

2− α

2 L
δ(α)x fi =

i+1∑
j=0

gα,1j fi+1−j, (3.83)

and

Rδ
(α,1)
x fi =

α

2 R
δ(α)x fi−1 +

2− α

2 R
δ(α)x fi =

N−i+1∑
j=0

gα,1j fi−1+j, (3.84)

where

gα,10 =
α

2
, gα,1k =

α

2
ωα
k +

2− α

2
ωα
k−1, k ≥ 1. (3.85)

2. Case II: (p, q) = (1,−1), the left and right Riemann-Liouville derivatives RLDα
a,xf(x) and

RLDα
x,bf(x) at x = xi can be discretized by the following weighted shifted Grünwald for-

mulas

Lδ
(α,2)
x fi =

2 + α

4 L
δ(α)x fi+1 +

2− α

4 L
δ(α)x fi−1 =

i+1∑
j=0

gα,2j fi+1−j, (3.86)

and

Rδ
(α,2)
x fi =

2 + α

4 R
δ(α)x fi−1 +

2− α

4 R
δ(α)x fi+1 =

N−i+1∑
j=0

gα,1j fi−1+j, (3.87)

Where

gα,20 =
2 + α

4
, gα,21 =

2 + α

4
ωα
1 , g

α,2
k =

2 + α

4
ωα
k +

2− α

4
ωα
k−2, k ≥ 1. (3.88)
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Lemma 3. ([31]) Let g(α,1)k and g
(α,2)
k be defined by (3.85) and (3.88),1 < α ≤ 2, and

S
(m,α)
N−1 =


g
(α,m)
1 g

(α,m)
0 0 · · · 0

g
(α,m)
2 g

(α,m)
1 g

(α,m)
0 · · · 0

...
...

... . . . ...
g
(α,m)
N−2 g

(α,m)
N−3 g

(α,m)
N−4 · · · g

(α,m)
0

g
(α,m)
N−1 g

(α,m)
N−2 g

(α,m)
N−3 · · · g

(α,m)
1


(N−1)×(N−1)

. (3.89)

Then the real part of the eigenvalue λ of S(m,α)
N−1 is negative, and the eigenvalues of S(m,α)

N−1 + (S
(m,α)
N−1 )T are

negative.

From (3.83),(3.84)and (3.86), we can obtain the following finite difference methods for (3.70)
δtu

n+ 1
2

i = di

[
(1− θ)Lδ

(α,m)
x un+1

i + θLδ
(α,m)
x un

i

]
+ (1− θ)gn+1

i + θgni , i = 1, 2, . . . , N − 1,

u0
i = ϕ0(xi), i = 0, 1, . . . , N,

un
0 = Ua(tn), u

n
N = Ub(tn),

(3.90)

where 0 ≤ θ ≤ 1, and Lδ
(α,m)
x is defined by (3.83) for m = 1 or by (3.86) for m = 2.

If Ua(t) = Ub(t) = 0, then the method (3.90) has second-order accuracy in space, the matrix representa-

tion of which is given by

(E − µ(1− θ)S(m))un+1 = (E + θµSm)un +∆t((1− θ)gn + θgn+1), (3.91)

where µ = ∆t/∆xα,un = (un
1 , . . . , u

n
N−1)

T , gn = (gn1 , . . . , g
n
N−1)

T , E is an (N − 1)× (N − 1) identity

matrix, S(m) is given by

S(m) = diag(d1, d2, . . . , dN−1)S
(m,α)
N−1 .

In which S
(m,α)
N−1 is defined by (3.89).

One knows that g(α,1)0 +
∑n

k=2 g
(α,1)
k < −g

(α,1)
1 for

√
17−1
2

≤ α ≤ 2. In such a case, the matrix S(1)

has eigenvalues with negative parts. So we can easily prove that the method (3.70) with m = 1 is

unconditionally stable for 0 ≤ θ ≤ 1/2, and conditionally stable for 1/2 < θ ≤ 1.

Assume that di = d is a constant. We can easily prove that weighted finite difference method (3.90) is

unconditionally stable for 0 ≤ θ ≤ 1/2,and conditionally stable for 1/2 < θ ≤ 1 by the energy method.

For θ = 1/2, the method (3.90) has second order accuracy both in time and space([31]).
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3.2.2 Two-Sided Space-Fractional Diffusion Equation

On consider the finite difference methods for two-sided space fractional partial differential

equations. A class of two-sided space-fractional partial differential equations can be written

as 
∂tu = c(x, t)RLDα

a,xu(x, t) + d(x, t)RLDα
x,bu(x, t) + g(x, t), (x, t) ∈ [a, b]× [0, T ],

u(x, 0) = ϕ0(x), x ∈ [a, b],
u(a, t) = Ua(t), u(b, t) = Ub(t), t ∈ [0, T ],

(3.92)

Where 1 < α < 2 and c(x, t), d(x, t) ≥ 0.

Letting (x, t) = (xi, tn) in (3.92) leads to

∂tu(xi, tn) = c(xi, tn)
RLDα

a,xu(xi, tn) + d(xi, tn)
RLDα

x,bu(xi, tn) + g(xi, tn).

We have

∂tu(xi, tn) = δtu
n+ 1

2
i +O(∆t).

If the left and right Riemann-Liouville fractional derivative operators are respectively discretized

by the right and left shifted formulas with one shift, then the weighted average method for

(3.92) is given by:

cni (
RLDα

a,xu
n
i ) = (1− θ)cn+1

i (Lδ
(α)
x un+1

i+1 ) + θcni (Lδ
(α)
x un

i+1),

dni (
RLDα

x,bu
n
i ) = (1− θ)dn+1

i (Rδ
(α)
x un+1

i−1 ) + θdni (Rδ
(α)
x un

i−1).

We can get the weighted average method for (3.92) as
δtu

n+ 1
2

i =
[
(1− θ)cn+1

i (Lδ
(α)
x un+1

i+1 ) + θcni (Lδ
(α)
x un

i+1)
]

+
[
(1− θ)dn+1

i (Rδ
(α)
x un+1

i−1 ) + θdni (Rδ
(α)
x un

i−1)
]
+ (1− θ)gn+1

i + θgni , i = 1, 2, . . . , N − 1,

u0
i = ϕ0(xi), i = 0, 1, . . . , N,

un
0 = Ua(tn), u

n
N = Ub(tn),

(3.93)

where Lδ
(α)
x and Rδ

(α)
x are defined by

Lδ
(α)
x ui =

1

∆xα

i∑
j=0

ωα
j ui−j;ω

α
j =

Γ(k − α)

Γ(k + 1)Γ(−α)
, (3.94)

Rδ
(α)
x ui =

1

∆xα

N−i∑
j=0

ωα
j ui+j;ω

α
j =

Γ(k − α)

Γ(k + 1)Γ(−α)
. (3.95)
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1. Explicit Euler Type Methods

If θ = 1,solution to equation (3.93) is given by: δtu
n+ 1

2
i = cni (Lδ

(α)
x un

i+1) + dni (Rδ
(α)
x un

i−1) + gni , i = 1, 2, . . . , N − 1
u0
i = ϕ0(xi), i = 1, 2, . . . , N,

un
0 = Ua(tn), u

n
N = Ub(tn).

(3.96)

2. Implicit Euler Type Methods

If θ = 0,solution to equation(3.93) is given by: δtu
n+ 1

2
i = cn+1

i (Lδ
(α)
x un+1

i+1 ) + dn+1
i (Rδ

(α)
x un+1

i−1 ) + gn+1
i , i = 1, 2, . . . , N − 1

u0
i = ϕ0(xi), i = 1, 2, . . . , N,

un
0 = Ua(tn), u

n
N = Ub(tn).

(3.97)

3. Crank-Nicolson Type Methods

If θ = 1
2
,solution to equation (3.93) is given by:
δtu

n+ 1
2

i = c
n+ 1

2
i (Lδ

(α)
x u

n+ 1
2

i+1 ) + d
n+ 1

2
i (Rδ

(α)
x u

n+ 1
2

i−1 ) + g
n+ 1

2
i , i = 1, 2, . . . , N − 1

u0
i = ϕ0(xi), i = 1, 2, . . . , N,

u0
i = ϕ0(xi), i = 1, 2, . . . , N,

un
0 = Ua(tn), u

n
N = Ub(tn).

(3.98)

Let µ = ∆t
∆xα , µ

n
c,i = µcni ,and µn

d,i = µdni . Then (3.93) can be written as

un+1
i − (1− θ)

[
µn+1
c,i Lδ

(α)
x un+1

i + µn+1
d,i Rδ

(α)
x un+1

i

]
= un

i − θ
[
µn+1
c,i Lδ(α)x un

i + µn+1
d,i Rδ(α)x un

i

]
+∆t

[
(1− θ)gn+1

i + θgni
]
, i = 1, 2, . . . , N − 1. (3.99)

The matrix can be given below

[
E − (1− θ)µSn+1

]
un+1 = [E + θµSn]un +∆t

[
(1− θ)gn+1

i
+ θgn

i

]
, (3.100)

where E is an (N − 1)× (N − 1) identity matrix and

Sn = diag(cn1 , c
n
2 , . . . , c

n
N−1)S

(α)
n−1 + diag(cn1 , c

n
2 , . . . , c

n
N−1)(S

(α)
n−1)

T . (3.101)

Next, we consider the stability of the weighted finite difference methods (3.93). For simplic-

ity, we suppose that c(x, t) and d(x, t) are time independent. And we denote that by cmax =

max0≤i≤N c(xi), dmax = max0≤i≤N d(xi). The matrix Sn is independent of n, so we denote it by
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S = Sn.

We have

|λ− ω
(α)
1 (ci + di)| ≤ ci

i∑
j=0,j ̸=1

|ωα
j |+ di

N−i∑
j=0,j ̸=1

|ωα
j |,

Noticing that ωα
j > 0, j ̸= 1, and

∑∞
j=0 ω

α
j = 0, one has

∑N
j=0,j ̸=1 ω

α
j ≤ −ωα

1 .

|λ− ωα
1 (ci + di)| ≤ −ωα

1 (ci + di).

The eigenvalues λ of the matrix S satisfy

−2α(cmax + dmax) ≤ 2ωα
1 (ci + di) ≤ λ ≤ 0.

Next, we are in a position to estimate the eigenvalues of the following matrix

[E − µ(1− θ)A]−1(E + θµS).

Suppose that λ is the eigenvalue of the matrix S . Then the eigenvalue of [E −µ(1− θ)S]−1(E +

θµS) is 1+µθλ
1−µ(1−θ)λ

.

If 0 ≤ θ ≤ 1/2, then we always have | 1+µθλ
1−µ(1−θ)λ

| ≤ 1, so the weighted finite difference method

(3.93) is unconditionally stable.If 1/2 < θ ≤ 1, we deduce from −1 ≤ 1+µθλ
1−µ(1−θ)λ

≤ 1 that µ =

∆t
∆xα ≤ 1

α(cmax+dmax(2θ−1)
.The weighted finite difference method (3.93) is conditionally stable for

1/2 < θ ≤ 1 and ∆t
∆xα ≤ 1

α(cmax+dmax(2θ−1)
.The first-order method is used in the space discretization

in (3.93).

Replacing the operators Lδ
(α)
x and Rδ

(α)
x in (3.93) by Lδ

(α,m)
x and Rδ

(α,m)
x ,m = 1, 2,

We can get the following difference method:
δtu

n+ 1
2

i =
[
(1− θ)cn+1

i (Lδ
(α,m)
x un+1

i+1 ) + θcni (Lδ
(α,m)
x un

i+1)
]

+
[
(1− θ)dn+1

i (Rδ
(α,m)
x un+1

i−1 ) + θdni (Rδ
(α,m)
x un

i−1)
]
+ (1− θ)gn+1

i + θgni , i = 1, 2, . . . , N − 1,

u0
i = ϕ0(xi), i = 0, 1, . . . , N,

un
0 = Ua(tn), u

n
N = Ub(tn),

(3.102)

where 0 ≤ θ ≤ 1,L δ
(α,m)
x is defined by (3.83) for m = 1 or by (3.86) for m = 2, and Rδ

(α,m)
x is

defined by (3.84) for m = 1 or by (3.87) for m = 2.

As in method (3.90), we can easily obtain that for
√
17−1
2

≤ α ≤ 2, the method (3.102) with m = 1
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is unconditionally stable for 0 ≤ θ ≤ 1/2, and conditionally stable for 1/2 < θ ≤ 1.

If 0 ≤ θ ≤ 1/2 and c(x, t) = d(x, t) = K,K > 0, then method (3.102) is unconditionally

stable([31]).

3.3 One-Dimensional Time-Space Fractional Differential Equa-
tions

In this section, we numerically investigate the time-space fractional differential equations, where

the time derivative and the spatial derivative are both fractional.

3.3.1 Time-Space Fractional Diffusion Equation with Caputo Derivative in
Time

We consider the following time-space fractional diffusion equation
CDγ

0,tu = (Lαu)(x, t) + g(x, t), (x, t) ∈ [a, b]× [0, T ],
u(x, 0) = ϕ0(x), x ∈ [a, b],
u(a, t) = Ua(t), u(b, t) = Ub(t), t ∈ [0, T ],

(3.103)

where Lα = c(x, t)RLDα
a,x + d(x, t)RLDα

x,b, 0 < γ ≤ 1, 1 < α < 2 and c, d > 0.

We introduce the notation L
(α,n)
∆x,q defined by

L
(α,n)
∆x,q u

n
i =


dni (Lδ

(α)
x un

i+1) + cni (Rδ
(α)
x un

i−1), q = 1,

dni (Lδ
(α,1)
x un

i ) + cni (Lδ
(α,1)
x un

i ), q = 2,

dni (Lδ
(α,2)
x un

i ) + cni (Rδ
(α,2)
x un

i ), q = 3,

(3.104)

where Lδ
(α)
x ,R δ

(α)
x ,L δ

(α,1)
x ,L δ

(α,1)
x ,L δ

(α,2)
x and Rδ

(α,2)
x by (3.94),(3.95),(3.83),(3.86),(3.84) and (3.87).

It is known from the previous sections that

L
(α,n)
∆x,q u

n
i = (L(α)u)(xi, tn) +O(∆tp), (3.105)

where

p =

{
1, q = 1,
2, q = 2, 3.

(3.106)

1. The time fractional derivative is discretized by the Grünwald-Letnikov formula and the

space operator L(α) in (3.103) is discretized as in (3.105); the fully discrete finite difference
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method for (3.103) is given by: δ
(γ)
t (un

i − u0
i ) = L

(α,n)
∆x,q u

n
i + gni , i = 1, 2, . . . , N − 1,

u0
i = ϕ(xi), i = 0, 1, . . . , N,

un
0 = un

n = 0,

(3.107)

where δ
(γ)
t is defined as in (3.7) and L(α,n) is defined by (3.105).

2. The time fractional derivative is discretized and the space operator L(α) in (3.103) is dis-

cretized as in (3.105); the fully discrete finite difference method for (3.103) is given by:
L1
C δ

(γ)
t un

i = L
(α,n)
∆x,q u

n
i + gni , i = 1, 2, . . . , N − 1,

u0
i = ϕ(xi), i = 0, 1, . . . , N,

un
0 = un

n = 0,

(3.108)

where L(α,n) is defined by (3.105) and

L1
C δ

(γ)
t un =

1

∆tγ

(
n−1∑
k=0

b
(γ)
n−k−1(u

k+1 − uk)

)
, b

(γ)
k =

(k + 1)1−γ − k1−γ

Γ(2− γ)
. (3.109)

Next, we present the stability analysis for the methods (3.107)-(3.108). For simplicity, we sup-

pose that c(x, t) = d(x, t) = constant. We first focus on the stability for (3.108). The matrix

representation of (3.108) is given by:

(b
(γ)
0 E − µS)un =

n−1∑
k=1

(b
(γ)
n−k−1 − b

(γ)
n−k)u

k + b(γ)n u0 +∆tγgn, (3.110)

where µ = ∆tγ

∆xα ,E is an (N − 1)× (N − 1) identity matrix.un means

un = (un
0 , . . . , u

n
N)

T ,un = (un
1 , . . . , u

n
N−1)

T , n = 0, 1, · · · .

gn,gn, en, en,G and Rn with gn0 = gnN = en0 = enN = Rn
0 = Rn

N = 0 have the same meaning.It

is known that all the eigenvalues of the matrix S have negative real parts. For any vector

u ∈ RN−1, we have (Su,u) = uTSu ≤ 0. We have from un
0 = u0

N = 0 that

b
(γ)
0 ||un||2N ≤ b

(γ)
0 ||un||2N + µ∆x(−Sun,un)

=
n−1∑
k=1

(b
(γ)
n−k−1 − b

(γ)
n−k)(u

k,un)N + b(γ)n (u0,un)N +∆tγ(gn,un)N .

We get

||un||2N ≤ 2||u0||2N + C max
1≤n≤nt

||gn||2N . (3.111)
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For method (3.107), one can similarly obtain that the numerical solution of (3.107) satisfies

(3.111).

Next, we consider the convergence analysis. Let eni = U(xi, tn) − un
i . Then one gets the error

equation for (3.108) as

L1
C δ

(γ)
t eni = L

(α,n)
∆x,q e

n
i +Rn

i , (3.112)

where Rn
i is the truncation error satisfying |Rn

i | ≤ C(∆t2−γ +∆xp). We get

||en||2N ≤ 2||e0||2N + C max
1≤n≤nT

||Rn||2N ≤ C(∆t2−γ +∆xp). (3.113)

The error bounds for the method (3.107) can be similarly obtained,which is given by

||en||2N ≤ C(∆t+∆xp). (3.114)

3.3.2 Time-Space Fractional Diffusion Equation with Riemann-Liouville Deriva-
tive in Time

We consider the finite difference methods for the following time-space fractional diffusion

equation  ∂tu =RL D1−γ
0,t (Lαu) + g(x, t), (x, t) ∈ [a, b]× [0, T ],

u(x, 0) = ϕ0(x), x ∈ [a, b],
u(a, t) = Ua(t), u(b, t) = Ub(t), t ∈ [0, T ],

(3.115)

where Lα = c(x, t)RLDα
a,x + d(x, t)RLDα

x,b, 0 < γ ≤ 1, 1 < α < 2 and c, d > 0.

We directly list several finite difference methods for (3.115).

1. Explicit Euler type methods:

The time direction is discretized , the space operator L(α) at t = tn is approximated by

L
(α,n)
∆x,q which is defined as (3.105), and the fully discrete finite difference method for (3.115)

is given by: 
δtu

n+ 1
2

i =GL δ
(1−γ)
t (L

(α,n)
∆x,q u

n
i ) + fn

i , i = 1, 2, . . . , N − 1,
u0
i = ϕ(xi), i = 0, 1, . . . , N

un
0 = un

n = 0.

(3.116)

The time fractional derivative in (3.115) can be discretized by the L1 method or the frac-

tional backward difference formula; we just need to replace GLδ
(1−γ)
t in (3.116) by RL

L1 δ
(1−γ)
t

.
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2. Implicit Euler type methods:

The time direction is discretized , the space is discretized as in (3.116), the fully implicit

Euler type method for (3.115) is given by:
δtu

n− 1
2

i =GL δ
(1−γ)
t (L

(α,n)
∆x,q u

n
i ) + fn

i , i = 1, 2, . . . , N − 1,
u0
i = ϕ(xi), i = 0, 1, . . . , N,

un
0 = un

n = 0.

(3.117)

The operator GLδ
(1−γ)
t in (3.117) can be replaced by RL

L1 δ
(1−γ)
t or B

p δ
(1−γ)
t when the L1 method

is used in the discretization of the time fractional derivative, which yields various Euler

type methods.

3. Crank-Nicolson type methods:

The time direction is discretized as that in the CN, the space operator L(α) at t = tn is

approximated by L
(α,n− 1

2
)

∆x,q , the fully discrete Crank-Nicolson type method for (3.116) is

given by: 
δtu

n− 1
2

i =GL δ
(1−γ)
t (L

(α,n− 1
2
)

∆x,q u
n− 1

2
i ) + fn

i , i = 1, 2, . . . , N − 1,
u0
i = ϕ(xi), i = 0, 1, . . . , N,

un
0 = un

n = 0,

(3.118)

where GLδ
(1−γ)
t (L

(α,n− 1
2
)

∆x,q u
n− 1

2
i ) is defined by

GLδ
(1−γ)
t (L

(α,n− 1
2
)

∆x,q u
n− 1

2
i ) =

1

∆t1−γ
[b0L

(α,n− 1
2
)

∆x,q u
n− 1

2
i −

n−1∑
k=1

(bn−1−k − bn−k)L
(α,k− 1

2
)

∆x,q uk− 1
2

−(bn −Bn)L
(α, 1

2
)

∆x,q u
1
2
i − AnL

(α,0)
∆x,qu

0
i ].

In which An = Bn − γ(n+1/2)γ−1

Γ(1+γ)∆t1−γ , Bn = 2∆tγ−1

Γ(1+γ)
[(n + 1/2)γ − nγ], bl =

1
Γ(1+γ)

[(l + 1)γ − lγ], If

γ −→ 1 and α −→ 2, the explicit methods (3.116) is reduced to the classical forward Euler

method, the implicit methods (3.117) is reduced to the classical backward Euler method,

and the Crank-Nicolson type method (3.118) is reduced to the classical CN method.

The stability and convergence analyses of the methods (3.116)-(3.118) are more compli-

cated than their counterparts of the classical equations.

If c(x, t) = d(x, t) = Kγ > 0, then the implicit method (3.117), the CN type method (3.118)

are unconditionally stable and are convergent to order (∆t+∆xp), (∆t2−γ +∆xp).
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Conclusion

I In this thesis, we will be devoted to a some preliminary concepts will be introduced as

the Euler Gamma function, Beta and Mittag-Leffler functions. we are also interested in

elementary defenitions and basic notions relating to fractional calculus: the fractional integrals

and fractional Derivatives, we also talked about some of their properties and the relationship

between them. We also touched upon Partial Fractional Derivatives.

In addition, we studied the numerical ways of Approximations to Riemann-Liouville Deriva-

tives using serval ways of them the Grünwald-Letnikov approximation, L1 approximation and

similar methods to it.

In the last,we investigate the finite difference methods for the time-fractional equation in

one spatial dimension, the space-fractional equations in one spatial dimension and time-space

fractional equations in one space dimension .
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ية  من بينها  في هذه المذكرة،  :ملخص درسنا طرق التحليل العددي للمشتقات ال كسر

ية أحادية   أنواع مختلفة للفروق المحدودةق ذاتطر لحل معادلات تفاضلية جزئية  كسر
ية الزمنية، ية المكانية  البعد، وخاصة المعادلات ال كسر والمعادلات   المعادلات ال كسر

ية الزمنية  .المكانية-ال كسر

،الفروق المحدودة ، الاشتقاق ال كسري  ، ال كسري   التكامل:كلمات مفتاحية

ية معادلات تفاضلية جزئية ية فرعية ، كسر  . معادلات كسر

 

 

 

Abstract:  In this thesis, we have studied several methods of 

numerical analysis for fractional derivatives; including the 

methods of different types of finite difference methods for solving 

one-dimensional fractional partial differential equations, 

especially time fractional equations, space fractional equations 

and time-space fractional equations. 

Key-Words:  Integrals Fractional, Fractional  Derivatives, 

Finite Differences,  Fractional Partial Differential Equations,  

Fractional Sub-diffusion equations. 
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