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Abstract 
The structural, elastic, electrical, and thermodynamic characteristics of Fe2Hf cubic 

and hexagonal phases with space group Fd-3m and P63/mmc are presented using the 

generalized gradient approximations. The k-points mesh density and plane-wave energy 

cut-off accomplish the energy convergence. The computed equilibrium parameters are 

closer to the theoretical data. The elastic tensor and crystal anisotropy of ultra-

incompressible Fe2Hf are computed in a wide pressure range. The isothermal and adiabatic 

bulk modulus, as well as the heat capacity of Fe2Hf is successfully calculated utilizing the 

quasi-harmonic Debye Model. The Fd-3m and P63/mmc Fe2Hf structures are stable in the 

studied pressure range.   
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Introduction 

Fe2Hf structures have not been produced in crystalline form. We propose the 

cubic and hexagonal structures. The strength and hardness of materials are determined 

from elastic constants under pressure. These crucial parameters determine the crystal's 

reaction to external forces, as defined by the bulk and shear modulus. The elastic 

characteristics of cubic and hexagonal structures are also obtained. The structural, 

elastic and thermodynamic parameters of hexagonal Fe2Hf structure under pressure 

were treated for the first time. Koki Ikeda et al. [1] investigated the structure and 

magnetism in the iron hafnium system. The conclusion is that hexagonal MgZn2-type 

Fe2Hf and cubic MgCu2-type Fe2Hf exist above 1673 K and below 1273 K. S. 

Kobayashi et al. [2-3] observed periodic arranged rows of fine Fe2Hf Laves phase 

particles produced in a 9 % chromium ferritic matrix. J. Belosevic-Cavor et al. [4] 

investigated the magnetic characteristics, Mossbauer Effect, and first-principles 

computations of Fe2Hf with a C14 type structure in the laves phase. Masao Takeyama 

[5] discovered the hexagonal lattice for Fe2Hf with space group P63/mmc (N0 194). 

Fe2Hf has the MgCu2 type C15 cubic structure with a narrow content range around the 

stoichiometry. It also crystallizes in the MgZn2 (C14) hexagonal structural type. The 

hexagonal phase appears along the dominant cubic structure. The aim of this work is to 

present a theoretical investigation of the structural and thermodynamic properties of 

cubic and hexagonal Fe2Hf structures. The cubic Fe2Hf (hexagonal Fe2Hf) structure has 

the space group 227, Fd-3m and Cu2Mg-type (194, P63/mmc and Zn2Mg-type). The 

non-equivalent atoms are Fe (0.625, 0.625, 0.625), Hf (0, 0, 0) and lattice constant 

a=6.882Å [Fe1 (0, 0, 0), Fe2 (0.8, 0.6, 0.25), Hf (1/3, 2/3, 0.06) and lattice parameters 

a=b= 4.968Å, c=8.098Å] for cubic Fe2Hf (hexagonal Fe2Hf). 

Computational details 
We use CASTEP, PWG and GGA as exchange-correlation potential. Without 

taking account the spin polarized, we must investigate and examine the convergence of 

calculated total energies with respect to the plane wave cut-off Ecut =380 eV (Ecut =385 

eV) in the cubic (hexagonal) phase as reported in Fig.1 (a) and (b) respectively. 

 

 

 



M. Hamici et al. - Density Functional Prediction Of The Structural, Elastic, Electronic … 173 

 

 

Fig. 1. Unit-cell of Fe2Hf cubic and hexagonal crystal, the large and small balls 

represent Hf and Fe atoms, respectively. 

Structural properties 
We use first-principles computations to investigate the structural, elastic, 

electrical, and thermodynamic properties of Fe2Hf with cubic (hexagonal) structure 

under pressures up to 10 GPa (15GPa). The elastic characteristics of cubic and 

hexagonal Fe2Hf under pressure are examined, where the mechanical stability is 

ensured. The Debye model is used to derive thermodynamic parameters such as heat 

capacity, thermal expansion and Debye temperature. However, it is difficult to study it 

experimentally because of the small size and time scale at which the functional 

properties appeared. Theoretical modeling offers a way to overcome these difficulties 

through "virtual experiments" that can enable us to explore the phase space. The DFT is 

widely used in quantum computation in condensed matter physics [6-8]. DFT is a 

general-purpose computational method, and can be applied to most systems. Although 

density functional theory is more precise and perfect in theory, it involves various 

approximations in practice, [9-11], and mesh size for Brillouin zone for plane-wave 

basis [12-14]. More include plane waves; the better the wave function is modeled. The 

k-points mesh controls the BZ integration, can play a huge role in the quality of the 

results and heavily depends on the number of these points on the mesh-grid, especially 

for metals. The plane wave basis set, in the DFT wave function is expanded in terms of 

its periodicity and case of use. The DFT wave function is expanded in terms of a plane 

wave basis set [15]:  

 

                       𝜓(𝑟) = ∑ 𝐶𝐺𝑒𝑖(𝐺+𝐾)𝑟
𝐺                                                                                   1 

 

And the cut-off energy Ecut is defined as:  

 

                      𝐸𝑐𝑢𝑡 =
ħ2

2𝑚
|𝐺𝑐𝑢𝑡|2                                                                                           2 

 

                   |𝐺 + 𝐾|<𝐸𝑐𝑢𝑡                                                                                                    3 

The Fig. 1 represents total energy as a function of k-points. The convergence has been 

achieved in the k-points sampling of 1x1x1 for total energy convergence tolerance (1.0 

10-6 eV/atom). 
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The rest of this paper is structured as follows. The computational method is 

described in section 2. The results and some discussions of structural, elastic and 

thermodynamic properties of Fe2Hf under pressure are presented and compared with 

available experimental and theoretical data in section 3. The large and small balls of Fe 

and Hf atoms are shown in Fig. 2. The convergence of calculated number of points is 

6x6x6 of c-Fe2Hf and h-Fe2Hf, as shown in Fig.3. We show the plot of energy versus 

volume for cubic and hexagonal Fe2Hf in Fig.4 (a) and (b). The calculations of the 

structural, elastic, and thermodynamic properties were performed using the CASTEP 

code [16,17]. Fe (3d64 s2) and Hf (4f145 d26 s2) orbitals are considered as valence 

electrons. The Brillouin zone sampling was done using the Monkhorst-Pack mesh 

6x6x6 for cubic and hexagonal structures of Fe2Hf [18]. The most stable structure 

requires its optimization using the Broyden-Fletcher-Goldfarb-Shenno (BFGS) 

minimization technique. Setting self-consistent convergence conditions: total energy per 

atom was less than 0.2 eV, force per atom was less than 0.05 eV, offset tolerance was 

less than 0.0002 A, and stress bias was less than 0.1GPa. It should be noted that the 

predicted total energies of cubic and hexagonal (c- h)- Fe2Hf structures have negative 

values, indicating an exothermic reaction, as shown in Table 1. According to the total 

energies, hexagonal structure is more stable than cubic structure.  

Table 1. The calculated lattice constant (Å), volumes (Å3), bulk modulus, elastic 

constants, shear modulus, Young’s modulus, B/G ratio, density, sound velocities, and 

Debye temperature for (c- h)- Fe2Hf structures. 

 Cubic structure Hexagonal structure 

Cuttofenegy (eV) 380 385 

KxKxK 6x6x6 6x6x6 

Total energy (eV) -4280.10 -8560.42 

a(Å) 4.883 4.858 (4.968) 

b(Å) 4.883 4.858(4.968) 

c(Å) 4.883 8.042(8.098) 

Volume (Å3) 

Z 

82.340 

2 

164.456 

1 

B(GPa) 218.90 222.496 

C11 316.256 358.613 

C12 170.230 180.066 

C44 96.075 91.652 

C33 - 347.149 

C13 - 146.081 

Cs 86.075 93.721 

ρ 11.0766 11.7201 

vl(m/s) 5488.5230 5447,6170 

vt(m/s) 2787.6312 2827,834 

vm(m/s) 3123.573 3164,9355 

ΘD (K) 378 394 

Y 230.119 246.595 

ν 0.32479 0.31557 
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Fig. 2. Energy versus Ecut in cubic (a) and hexagonal (b) structure. 
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Fig. 3. Energy versus number of k points of our computed compounds. 
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Fig. 4. Energy versus volume for Fe2Hf in cubic (a) and hexagonal (b) structure. 
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Elastic constants  

The elastic constants for the system are established using a Taylor series expansion 

of the total energy, E (V), in comparison to a modest deformation δ of the lattice unit cell 

volume V. The energy of system limitation is expressed as follow [19]: 

 

       

0 0

1
( , ) ( ,0) [ ]

2
i i i ij i i j

i ij

E V E V V C                                                           4 

Where E(V0, 0) is the energy of an unstrained system with V0, is a stress tensor element, 

and is a factor to account for the Voigt index. Asymmetric and isotropic materials have 

between 21 and 2 independent elastic constants, while cubic and hexagonal crystals have 3 

and 5 independent elastic constants, respectively. C11, C44, and C12 for cubic crystals and 

C11, C33, C44, C12, and C13 for hexagonal crystals are the three independent elastic constants. 

The first-order and second-order derivatives of the potential are well-known for giving 

forces and elastic constants. As a result, checking the accuracy of the calculations for forces 

and elastic constants is critical. Let us recall that the effect of pressure on elastic constants 

is critical for understanding interatomic interactions, mechanical stability, and phase 

transition mechanisms, at the very least. For cubic and hexagonal Fe2Hf structures, the 

relevant bulk moduli are found as a function of pressure up to 50 GPa. When pressure is 

increased as shown in Fig. 5, all elastic constants, as well as bulk moduli B, increase 

linearly. 

 

                𝐵 = (𝐶11 + 2𝐶12) 3 ⁄                                                                                                            5 

 

The bulk modulus value estimated using the second approach agrees with the bulk modulus 

calculated using the first method. The generalized elastic stability criterion for Fe2Hf in a 

cubic crystal is as follows: 

 

              (C11 + 2C12) 3 > 0           C44 > 0                                                                                  ⁄     6 

 

              (𝐶11 − 𝐶12) 2 > 0            ⁄                                                                                                       7 

 

For Fe2Hf in a hexagonal crystal, the elastic stability criteria [20,21] are: 

 

        𝐶11 > 0, 𝐶33 > 0, 𝐶44 > 0, 𝐶66 > 0 , 𝐶11 − 𝐶12 > 0, 𝐶11 + 𝐶33 + 𝐶12 > 0, (𝐶11 +
        𝐶12)𝐶33 − 2𝐶13

2 > 0                                                                                                                     8   

                

The fact that all of the foregoing conditions are violated by the elastic constants of Fe2Hf in 

the cubic [hexagonal] crystal suggests that it is instable [stable]. The shear anisotropy 

factors A(Cij)=0.88 and kc/ka = 1.22 for Fe2Hf with hexagonal structure, the B and G for 

hexagonal structures are calculated as follows [22,23]: 

 

                𝐵 =
2

9
(𝐶11 + 𝐶12 + 2𝐶13 +

1

2
𝐶33)                                                                                      9 

 

                𝐺 = {𝐶44[𝐶44(𝐶11 − 𝐶12)/2]1 2⁄ }
1 2⁄

                                                                              10 
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                 𝐸 =
[𝐶33(𝐶11+𝐶12)−2𝐶13

2 ](𝐶11−𝐶12)

𝐶11𝐶33−𝐶13
2                                                                                          11 

                 𝐴 =
2𝐶44

𝐶11−𝐶12
                                                                                                                           12 

 

                  𝜈 =
𝐶12𝐶33−𝐶13

2

𝐶11𝐶33−𝐶13
2                                                                                                                     13 
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Fig. 5. The elastic constants of the cubic and hexagonal structures of Fe2Hf compound 

under pressure up to 50 GPa at 0 K. 

We can conclude that the bulk modulus is 219 GPa for cubic Fe2Hf and 222 

GPa for hexagonal one. All values are exceptionally high, exceeding or matching other 

hard materials, including boron carbide (B4C, 200 GPa), silicon carbide (SiC, 248 GPa), 
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sapphire (Al2O3, 252 GPa), and cubic boron nitride (c-BN, 367 GPa) [24]. Pugh [25] 

proposed the B/G ratio to represent a measure of a “machine able behavior”. A high 

B/G value (2.444 for hexagonal Fe2Hf type structure) is linked to ductility, while a low 

one is linked to brittleness. Around 1.75 is the crucial number that distinguishes 

between ductile and brittle behavior. Diamond, for example, has a B/G of 0.80 [26], 

whereas aluminum, cobalt, rhodium, and iridium, respectively, have B/G ratios of 2.74, 

2.43, 1.77, and 1.74. We find a B/G estimated ratio of 2.44 for the hexagonal structure 

of Fe2Hf combination. Due to the fact that Fe2Hf compounds are ductile; furthermore, 

the elastic constants data (C11 – C12> 0) can be used to forecast the hexagonal structure's 

mechanical stability at 0 GPa. The elastic constants of pure Fe2Hf are reported in Table 

1. The average sound velocity Vm [26,27] can be used to calculate the Debye 

temperature.  

 
1/3

3 3

1 2 1

3
m

s l

V
V V



  
   

  

                                                                       14 

 

The shear and longitudinal sound velocities are Vs and Vl. 

In Table 1, the longitudinal, transverse, and average sound velocities, as well as the 

Debye temperature of Fe2Hf have been determined. We have estimated the sound 

velocities and Debye temperature for the Fe2Hf compounds from our elastic constants at 

0GPa and 0K. The experimental and estimated sound velocities and Debye temperatures 

are comparable. 

Electronic structure 
The electronic characteristics of Fe2Hf are studied in this section. At 

equilibrium lattice constants; Fig. 6 displays the (DOS) for our compound 

configurations. Only the Fermi energy level's vicinity is shown here. Except for a few 

changes, the DOS profiles of Fe2Hf are identical throughout the energy range. Near the 

Fermi level, the DOS is primarily derived from the M-d bands M (Fe2Hf) in cubic and 

hexagonal structures, implying that our compounds are all conductive and that the 

transition metal's d bands play a dominant role in electrical transport. This phenomenon 

is particularly pronounced in hexagonal structures. In cubic and hexagonal Fe2Hf, the 

DOS at the Fermi level n(EF) is predicted to be 10.69 states/eV unit cell for cubic Fe2Hf 

and 20.11 eV for hexagonal Fe2Hf, suggesting the metallic material.  
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Fig. 6. The total electronic density of state for Fe2Hf in cubic and hexagonal structures.  

Thermodynamic properties 
A study of the effects of chemistry and crystal structure must be performed for 

motors with operating temperatures in the region of 2000°C that will require materials 

that can withstand. Intermetallic compounds with high melting temperatures are 

candidates for these applications. Thermodynamics is mainly based on temperature and 

entropy, which is the degree of disorganization of the material. Physical properties 

under pressures and temperatures have important meanings to accelerate the 

understanding and synthesis of (c, h)- Fe2Hf structures. The investigation of the thermal 

capacity of crystals is an interesting subject in solid state physics because it enters many 

applications, and provides essential information on its vibratory properties. According 
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to the standard theory of elastic continuum, two limiting cases are correctly predicted. 

At sufficiently low temperatures, the thermal capacity CV is proportional to T3. At high 

temperature, CV tends to the limit Petit and Dulong. Applying the quasi-harmonic 

Debye model to the (c, h)- Fe2Hf structures, we calculated the thermal capacity 𝐶𝑉,  and 

the Debye temperature 𝛩 at different temperatures. Now we investigate the dependences 

of bulk modulus B on temperature T and pressure P. B is plotted in Fig. 7.  
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Fig. 7. Variation of bulk modulus with temperature T and pressures for c- Fe2Hf and h- 

Fe2Hf (upper panel) respectively. 

The bulk modulus B decreases with increasing temperature T in a quasi-linear manner 

for both c- Fe2Hf and h- Fe2Hf structures. The calculated B0 at (T=0 K) is 244.5 GPa for 

c- Fe2Hf and 222 GPa for h- Fe2Hf structures. We can see that the B decreases 

[increases] with temperature (upper panel) [P] [lower panel] at a given pressure [T] for 

both c- Fe2Hf (slowly decreases) and h- Fe2Hf structures. The resulting Debye 

temperature 𝛩 versus temperature [P] (upper panel) [lower panel] for c- Fe2Hf and h- 

Fe2Hf structures is shown in Fig. 8.  
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Fig. 8. Variation of constant pressure heat capacity CP with temperature T and 

pressures for c- Fe2Hf  and h- Fe2Hf (upper panel) respectively.  

From the quasi-harmonic Debye model, we obtained the Debye temperature 𝛩 = 415.5 

K and 458 K at P=0 GPa and T=0 K for c- Fe2Hf and h- Fe2Hf structures Fig. 9. The 

heat capacity CP and CV, represents the heat absorbed by the crystal at constant pressure 

or constant volume necessary to raise the temperature of one mole of a pure substance 

by one degree K generated by this transformation. The heat capacity of a crystal is given 

by a relation deduced from the vibratory motions of the crystal lattice it is also 

mandatory for many applications. For solids and liquids, the variation of the PV product 

with the temperature is negligible. Consequently, in the condensed phase, the volume 

and constant pressure heat capacities have similar values CP~ CV for both c- Fe2Hf and 

h- Fe2Hf structures.  
In Fig. 10, we see the sharp increase of CP and CV from 0 to 500 K. At high temperature, 

the CP and CV tends to a constant value (300 J.mol-1K-1) [ 150 J.mol-1K-1] for (c- h)- 

Fe2Hf the so-called Dulong-Petit limit of 3nkB value [30]. We can conclude that the 

volume heat capacity in 300°K is in the range of 120- 150 J.mol-1K-1 for c- Fe2Hf and 

250- 300 J.mol-1K-1for h- Fe2Hf. All of the values in this range are extremely high, 

surpassing or equal those of other hard materials, including silicon oxide (SiO2, 71.5 
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J.mol-1K-1), sapphire (Al2O3, 120.5 J.mol-1K-1), and (Cr2O3, 125.1 J.mol-1K-1) and 

approaching that of diamond (B0 = 442 GPa).The volume expansion coefficient 𝛼of (c, 

h)-Fe2Hf structures as function of T (upper panel) and P (lower panel) is plotted in Fig. 

11. At 0 GPa and 300 K, α = 0.41242 × 10−5 K−1 for c-Fe2Hf and 0.42234 × 10−5 K−1 for 

h-Fe2Hf. It is shown that, for a given P [T], 𝛼 increases [constant] with T [P], especially 

at 0 GPa and gradually tends to a linear increase at high T, for c- Fe2Hf and slightly 

different for h- Fe2Hf structures. We show in Fig. 12, the entropy function of the 

temperature at different pressures and of the pressure at different temperatures of the 

two types of c-FeHf and h-Fe2Hf structures of the compound. We show that the entropy 

increase parabolically with increasing temperature. We notice that these curves have the 

same shape except the existence of q slight offset at high temperature for the case of the 

hexagonal type (upper panel). 
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Fig. 9. Variation of Debye temperature with temperature T and pressures for c- Fe2Hf 

and h- Fe2Hf (upper panel), respectively. 
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Fig. 10. Variation of constant volume heat capacity CV with temperature T and 

pressures for c- Fe2Hf and h- Fe2Hf (upper panel), respectively. 
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for c- Fe2Hf and h- Fe2Hf (upper panel), respectively. 
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Fig. 12. Variation of entropy S with temperature T and pressures for c- Fe2Hf and h- 

Fe2Hf (upper panel), respectively.  

Conclusion 
We draw theoretical findings for structural, elastic, mechanical, electrical, and 

thermodynamic properties of Fe2Hf in the cubic and hexagonal solid phases based on 

ab initio total energy calculations. The lattice constants obtained are fairly close to the 

experimental values. Hexagonal structures are more stable than cubic structures in terms 

of total energy. The DOS at the Fermi level n(EF) for cubic is 10.69 states/eV unit cell, 

while the DOS for hexagonal is 20.11 states/eV, indicating metallic material. In general, 

the molecule with a lower n(EF) is more stable. As a result, the total energy minimum 

values and the values generated from the total energy minimum agree well. All 

estimated bulk modulus values are exceptionally high, exceeding or equaling those of 

other hard materials such as boron carbide (B4C, 200 GPa), silicon carbide (SiC, 248 

GPa), sapphire (Al2O3, 252 GPa), and cubic boron nitride (CBN, 252 GPa) (c-BN, 367 

GPa). For the other estimated qualities in this paper, there are no previous computations 

or experimental data to compare with.  
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