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Abstract— This work reported the structural, dielectric, and 

piezoelectric behavior of (1-x) Pb (Zr0.52 Ti0.48) O3 – x Sm Cr O3 

ceramics (abbreviated as PZTSC, where x = 0.005, 0.01, 0.015, 

0.02 and 0.025), were prepared by the traditional solid-state 

reaction method. The phase transition, microstructure, 

dielectric, piezoelectric properties, and the temperature stability 

of the ceramics were investigated. X-ray diffraction analysis 

indicated that as-prepared ceramics were of pure perovskite 

phase and the possible morphotropic phase boundary (MPB) 

between the tetragonal and rhombohedral phase compositions 

were located near the SC content of  x ≥ 0.02, confirmed by their 
corresponding dielectric and piezoelectric properties. All 

specimens present high relative density above 97%, indicating a 

wide sintering window for this system. Microstructural 

investigations of all the samples reveal that SC doping inhibits 

grain growth. The dielectric and piezoelectric properties show a 

maximum response at x ≥ 0.02, which corresponds to the 
morphotropic phase boundary (MPB). 
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I. INTRODUCTION 

The high power characteristics of piezoelectric materials 

have been investigated for device applications in ultrasonic 

motors, piezoelectric actuators, piezoelectric transformers, 

ultrasonic vibrator, filter, blue luminescence and resonator, 

and medical applications [1–5]. 

For high-power multilayer piezoelectric device 

applications, piezoelectric materials are electrically driven to 

high mechanical vibration near the resonance frequencies, 

leading to a temperature rising and deterioration of 

piezoelectric properties with the increase of their vibration 

velocities [6,7]. Therefore, the lead-based piezoelectric 

ceramics should have high piezoelectric constant (d31), high 

electromechanical coupling factor (kp), high mechanical 

quality factor (Qm), and good temperature stability [8,9]. 

The Pb(ZrxTi1-x)O3 system and its modified solid solutions 

are known to exhibit excellent dielectric and elastic properties 

at the “Morphotropic Phase Boundary (MPB)” [10–13]. This 

MPB is believed to be a coexistence region of two phases 

namely, tetragonal and rhombohedral phases and still is a 

topic of great debate [14–22]. 

In general, PZT system ceramics should be sintered at high 

temperatures between1100 and 1300 °C in order to obtain 

complete densification. Accordingly, environmental pollution 

due to its PbO evaporation and the use of expansive Pd rich 

Ag/Pd internal electrode in case of manufacturing multilayer 

ceramic actuator are inevitable. 

Hence, to reduce its sintering temperature, various kinds of 

material processing methods such as hot pressing, high 

energy mill, liquid phase sintering, and using ultra fine 

powder have been performed. Among these methods, liquid 

phase sintering is basically an effective method for aiding 

densification at low temperature. The theoretical explanation 

for liquid phase sintering was already reported over 40 years 

ago. 

In this work, the phase structure, density, electrical 

properties, low-temperature sintering and temperature 

characteristics of PZTSC piezoelectric ceramics were 

described systemically. The aim of the work was to find out 

the optimized content of Sm2O5 and Cr2O3, which can make 

this system have higher electrical properties for multilayer 

piezoelectric device applications. 

II. EXPERIMENTAL PROCEDURE 

PZTSC ceramics having the chemical formula of (1-x) Pb 

(Zr0.52 Ti0.48) O3 – x Sm Cr O3, where x = 0.005, 0.01, 0.015, 

0.02 and 0.025), were prepared by the mixed oxide route.  

An appropriate mixture of pure oxides (purities ˃99 %) 

were ball milled for 24 h using ZrO2 media with distilled 

water. The mixture was then dried and calcined at 850 °C for 

3h. The calcined powder was again ball milled to achieve1.2 

μm particle size. This was followed by mixing of 10 wt.% of 
PVA as a binder in the calcined powder and the specimens 

were pressed using uniaxial press. Specimens were 

subsequently sintered in a PbO rich atmosphere between 1150 

°C for 2 h and final dimension obtained after lapping was12 

mm diameter and 1mm thickness.  

The density of the sintered samples was measured using 

Archimedes’ principle. Microstructural features such as a 

grain size and pores were characterized by means of atomic 

force microscopy (AFM). The sintered pellets were 

electroded with high-purity silver paste and fired at 700 °C 

for 1 h. The samples were pooled in a silicon oil bath at   120 

°C for 1 h under a static DC electrical field of 4.5 kV/mm. 
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Powder X-ray diffraction (XRD) measurements were 

carried out using a Rigaku X-ray diffractometer with Cu Kα. 

The XRD patterns were recorded at a scan rate of 2°/min for 

2θ varying from 10º to 80°. Temperature-dependent dielectric 

constant (εr) and tangent loss (tanδ) were obtained as the 
functions of temperature using a inductance capacitance 

resistance meter (LCR, HIOKI, Model-3532-50) in a 

proportional integral derivative (PID) controlled heating 

chamber.  

Twenty four hours after poling, the piezoelectric 

properties: piezoelectric constant (d31), electromechanical 

planar coupling factor (kp) and mechanical quality factor (Qm) 

were measured by a method similar to that of the IRE 

standard. The resonance and anti-resonance frequencies were 

obtained by using the maximum and the minimum of spectra 

admittance. 

III. RESULTS AND DISCUSSION 

A. X-ray Diffraction Profile  

Fig. 1 shows the XRD patterns of sintered (1-x) Pb (Zr0.52 

Ti0.48) O3 – x Sm Cr O3 (where x = 0.005, 0.01, 0.015, 0.02 

and 0.025) ceramics. The tetragonal, rhombohedral and 

tetragonal-rhombohedral phases are identified by analysis of 

peaks [002 (tetragonal), 200 (tetragonal), 200 

(rhombohedral)] in 2θ range of 10º–80°. 

The XRD patterns confirm that all the PZTSC powders are 

pure and monophasic in nature, and free from the pyrochlore 

phases. As evident from the XRD patterns, the structure is 

tetragonal at SC concentrations up to x = 0.015. The co-

existence of rhombohedral and tetragonal phases at x values 

equal or greater than 0.02 suggests that this composition         

(x ≥ 0.02) corresponds to MPB.  
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Fig. 1 XRD patterns of PZTSC ceramics with different SC contents in the 2θ 
range of 10º–80°, sintered at 1150 °C 

B. AFM Analysis 

Fig. 2 shows AFM images of ceramic samples of doped 

solid solutions: (1-x) Pb (Zr0.52 Ti0.48) O3 – x Sm Cr O3 with 

x=0.005, x=0.01, x=0.015, x=0.02 and x=0.025. 

Microstructural details, such as grain size and morphology as 

well as domain wall arrangements, can be observed from 

these micrographs. With the increase of SC content, the (1-x) 

Pb (Zr0.52 Ti0.48) O3 – x Sm Cr O3 ceramics become much 

denser, and their average grain size gradually decreases, as 

shown in Fig.2.  
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Fig. 2 AFM images of the (1-x) Pb (Zr0.52 Ti0.48) O3 – x Sm Cr O3 solid solutions with various compositions: x=0.005, x=0.01, x=0.015, x=0.02 and x=0.025

 

C. Density Measurement 

Fig. 3 shows the relative density (i.e. the measured density 

divided by the theoretical density of PZT of 8.0 g/cm
3
) of the 

ceramics as a function of the SC content. With increasing SC 

content, the density increases, reaching a maximum value of 

7.91 g/cm
3
 in samples with 0.025 wt.% Sm2O5 and Cr2O3. 

In addition, the density results in Fig. 3 are consistent with 

the porosity variations shown in Fig. 2 which lead to the 

decreasing density. These results show that adding an 

appropriate amount of Sm2O5 and Cr2O3 can promote the 

densification behavior, because of the enhanced sintering 

activity. This may be due to mass transfer caused by oxygen 

vacancies via partial substitution of Cr
3+

 for Zr
4+

 and Ti
4+

, 

which is used as a transferred carrier to accelerate mass 

mobility. 
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Fig. 3  Density of ceramics as a function of  SC content 

D. Dielectric Properties 

The temperature dependence of the (a) dielectric constant 

(ɛr) and (b) losses (tanδ) for (1-x) Pb (Zr0.52 Ti0.48) O3 – x Sm 

Cr O3 ceramics with different SC contents at the frequency of 

1kHz is presented in Fig. 4. It is observed that with the 

increase in Sm and Cr substitution, there is systematic 

decrease in phase transition temperature (Tc). The decrease in 

phase transition temperature is mainly due to dis-appearance 

of long range order co-operative phenomenon. 

The dielectric constant increases with increase in Sm and Cr 

substitution and the losses (tanδ) are smaller for the denser 

samples (x=0.02 and 0.025).  

The decrease in dielectric constant (ɛr) may be due to the 

dominance of 90° domains contribution to the dielectric 

properties after poling. Here in our case the aligned ∼90° 

rotated domains after poling cause more mechanical stress and 

enhance the anisotropy that results in decrease in dielectric 

constant. 
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Fig. 4  Temperature dependence of (a) ɛr and (b) tanδ of the PZTSC 

ceramics with different SC contents 

E. Piezoelectric Properties 

Fig. 5 indicates the mechanical quality factor (Qm), 

electromechanical coupling factor (Kp) and piezoelectric 

constant (d31) as a function of SC content. As can be seen,      

Kp, d31 and Qm show a similar variation with increasing SC 

content. Kp, d31 and Qm both increase with increasing SC 

contents.  Kp, d31 and Qm reach their maximum                 

(0.58, 293 pC/N and 745) at 0.025 (mol.) SC content.  

The increase of Qm may be due to the low-valence 

substitution of Cr
3+

 for Zr
4+

 and Ti
4+

, which will lead to the 

appearance of oxygen vacancies to maintain electrovalence 

balance. The oxygen vacancies will produce a “pinning effect” 

on domain rotation; thereby, the material becomes “hard”     

[23, 24]. The increase of Qm may be caused by the increasing 

density. 

In addition, the changes of Qm, Kp and d31 are complex and 

slightly different from traditional acceptor doping effects, 

because two factors act together to cause the variation of the 

electrical properties, i.e.,Cr
3+

 modification resulting in the 

development of hard piezoelectric behavior, and densification 

of the ceramics with Cr2O3 addition. 

Therefore, under the combination of both of these effects, 

some electrical properties do not agree with the expected hard 

characteristics of this system. 
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Fig. 5  Qm, Kp, and d31 of ceramics as a function of SC content 

IV. CONCLUSIONS 

Ceramic samples of (1-x) Pb (Zr0.52 Ti0.48) O3 – x Sm Cr O3 

(where x = 0.005, 0.01, 0.015, 0.02 and 0.025) were prepared 

by the conventional oxide-mixed method. The structure, 

microstructure, dielectric and piezoelectric properties were 

investigated systematically. XRD analysis reveals the co-

existence of tetragonal and rhombohedral phases (MPB) were 

located near the SCX content of x ≥ 0.02. The grain size in the 

modified microstructure decreases with the increase of Sm and 

Cr substitution. The SC addition promoted densification of 

ceramics and the highest density of 7.91 g/cm
3
 was obtained at 

0.025 wt.% SC addition. The room temperature dielectric 

constant (ɛr) and tangent loss (tanδ), piezoelectric coefficient 

d31, electromechanical coupling factor kp, and mechanical 

quality factor (Qm) of 0.975 Pb (Zr0.52 Ti0.48) O3 – 0.025 Sm Cr 

O3 ceramics are 998, 1.405 %, 293 pC/N, 0,58, 745, 

respectively, which mean it has a great promise for ultrasonic 

motors. 
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