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_____________________________________________________________________________________________________ 

 
Abstract: In this paper, the finite element formulation of the classical laminated plate with embedded piezoelectric patches is 
based on the first order shear deformation theory (FSDT) and Hamilton’s principle, in this formulation the mass and stiffness 
of the piezoelectric have been taken into account. The formulation results in a coupled finite element model with mechanical 
(displacements) and electrical (charges at electrodes) degrees of freedom. The use of the piezoelectric actuator and sensor 

patches for vibration active control of smart composite plates is discussed. A Linear Quadratic Regulator (LQR) controller is 
designed based on the independent mode space control techniques to stifle the vibration of the system. Numerical results 
obtained with the present finite element FE model are found to be in good agreement with ANSYS. The effects of the 
boundary conditions control vibration of the smart composite plate are examined. 
Keywords: Piezoelectric, smart composite plate, finite element, Active control, LQR 
_________________________________________________________________ 
 

1. Introduction 

In the recent years, piezoelectric materials have been studied extensively for use as smart structures(Cao, 

Tanner, & Chronopoulos, 2020; Chandrashekhara & Agarwal, 1993; Hasheminejad & Oveisi, 2016; Lee & Moon, 

1990; Roy & Chakraborty, 2009; Sohn, Choi, & Kim, 2011; Wankhade & Bajoria, 2021). A smart structure can 

be defined as a structure or structural component with bonded or embedded sensors and actuators as well as 

control systems, which change the shape and dynamic behavior of the structure. Smart structures and systems 

have self-inspection and inherent adaptive capabilities. They can respond almost instantaneously to the changes in 

the external environment and hence can greatly enhance the performance of existing structures. The research and 
implementation of smart structures and systems opens new opportunities for radical changes in the design of 

adaptive structures and high performance structures(G. Liu, Peng, Lam, & Tani, 1999). 

Elements have also become available in commercial finite element codes such as ANSYS (Documentation, 

2011) and ABAQUS. On the other hand, the design of smart structures is multidisciplinary by nature. Design of a 

smart structure system requires more than accurate structural modeling. To design piezoelectric smart structures 

for active vibration control, both structural dynamics and control theory need be considered. 

An active vibration control using smart material is being increasingly used for flexible structures in aerospace 

industry. Over the last decade the usage of piezoelectric as actuators and sensors has considerably increased and 

they provide effective means of high quality actuation and sensing mechanism. Time lag, signal conditioning, 

placement and bonding issues are very easy to resolve with piezoelectric(Sethi & Song, 2004). 

Great efforts were devoted to studying the vibrations of constrained piezoelectric composite damping plates. 

Reddy (Junuthula N Reddy, 1984) and Mallek et al (Mallek, Jrad, Wali, & Dammak, 2021) who presented the 
formulation of a finite element model for the analysis of general laminate composite plate. The displacement field 

is based in a first order shear deformation theory (FSDT). this theory has been considered to designate the 

electromechanical state of the piezoelectric patches bonded on an elastic composite plate. 

Chhabra et al (Chhabra, Bhushan, & Chandna, 2016) and Liu (X. Liu, Cai, Peng, & Zhang, 2018)  studied the 

optimal placement of piezoelectric actuators on a thin plate using the integer-coded genetic algorithm.  Jia et al 

(Jia, He, & Zhang, 2020) studied the effect of linear quadratic regulator (LQR for vibration reduction. 

Abdelrahman et al (Abdelrahman, Al-Garni, Abdelmaksoud, & Abdallah, 2018) developed numerical technique 

to study the Effect of Piezoelectric Patch Size and Material on Active Vibration Control of Wind Turbine Blades. 

The simulation results show that LQR controller produces considerable reduction in both the settling time and the 

actuation force. Quek et al (Quek, Wang, & Ang, 2003) studied a simple optimal placement strategy of 

piezoelectric actuator/sensor pairs on a laminated composite plate and employed the classical direct pattern search 
method to obtain the local optimum. Han and Lee (Han & Lee, 1999) studied the optimal placement of 

piezoelectric actuators and sensors on a composite plate, where the locations of both sensors and actuators were 

determined with consideration of controllability, observability and spillover prevention  
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Kumar (Kumar & Narayanan, 2007) and Sadri et al (Sadri, Wright, & Wynne, 1999) studied the optimal 

placement of collocated piezoelectric actuator/sensor pairs on a thin plate using the model-based linear quadratic 

regulator (LQR) controller, where the LQR performance was taken as the optimization criterion and GA was 

taken as the optimization algorithm. Jandaghian et al (Jandaghian, Jafari, & Rahmani, 2014) studied the harmonic 

forced vibration of circular functionally graded plate integrated with two uniformly distributed actuator faces 

made of piezoelectric material .The results show that thickness of piezoelectric layer and changing the power 
index in FG material has a significant influence on the deflection and natural frequencies of system. 

The paper is organized as follows. In section 2 the finite element FE formulation of a composite plate 

embedded with piezoelectric patches, sections 3 are presented the active vibration control procedure and LQR 

problem; the numerical analysis validation of literature Liu(G. Liu et al., 1999) and effects of boundary conditions 

for active vibration control are described in detail in section 4. Finally, conclusions are drawn in Section 5. 

2. Finite element model 

The enormous numbers of publications are widely presented and discussed the mathematical aspects of a 

general finite element (FE) statement of laminate composite plate with embedded piezoelectric patches problems 

(Kapuria & Yasin, 2010; Karegar, Bidgoli, & Mazaheri, 2021; Junuthula Narasimha Reddy, 2003). 

2.1 Mechanical displacements and strains 

In the present study first Shear deformation laminated plate theory used is discussed as follows. In the first-

order shear deformation laminated plate theory (FSDT).  

Figure.1.The assomptions for the first order shear deformation theory 

 

 

 

 

 

 

 

 

The displacement fields for the laminate plate(figure.1), are proposed by (Malgaca, 2010; Mallek et al., 2021; 

Junuthula N Reddy, 1984). 

 

U1 x, y, z, t = u0 x, y, t + zθx (x, y, t)

U2 x, y, z, t = v0 x, y, t + zθy (x, y, t)

U3 x, y, z, t = w0 x, y, t 

                                      (1) 

The deformation field related with the displacement field by: 

 ε = {εxx εyy εxy }T = ε0 + zκ                                                  (2) 

With: 
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εy0
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                                                          (3) 

And:  
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κx
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                                                          (4) 

 

Thereafter: 
 ε = [L] U                                                           (5) 

 

Where [L] :  
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                                                   (6) 

 

The transverse shear deformations are assumed by: 

γ =  
γ

yz

γ
xz
 =  

∂w0

∂y
+ θy

∂w0

∂x
+ θx

                                                          (7) 

The coefficients  Qij
(k)

are known in terms engineering constants of the kth layer:     

Q11
(k)

=
E1

(k )

1−v12
(k )

v21
(k )          (8) 
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Q66
(k)

= G12
(k)             (11) 

 

Q55
(k)

= G13
(k)             (12) 

 

Q44
(k)

= G23
(k)             (13) 

Where: 

E1, E2 : Are the two Young's module in the x and y directions. 

G12 , G12 and  G13 : Are the shear modules. 

v12 , v21  : Are the Poisson coefficients. 
The stresses-strains in each layer of a laminate composite plate are given by: 
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Where: 

ks : Is the shear correction factor  

And: 

 Q
ij
 = [T]T[Qij

(k)][T]                     (15) 

 

Where: 

[T] : Is a transformation matrix 

 

 T =

 
 
 
 
 

cos Phi2 sin Phi2 −sin2Phi 0 0
sinPhi2 cosPhi2 sin2Phi 0 0

sinPhi cosPhi −sinPhi cosPhi cosPhi2 − sinPhi2 0 0
0 0 0 cosPhi sinPhi
0 0 0 −sinPhi cosPhi 

 
 
 
 

                                    (16)     

The equations of the resulting stresses are obtained as follows: 

 N  =  D   ε −  N E                                               (17) 

With: 

 N  = (Nx , Ny , Qy , Qx , Nxy , Mx , My , Mxy )T                               (18) 

 Nx , Mx =  ζx

h

2

−
h

2

 1, z dz                                           (19) 

 Ny , My =  ζy

h
2 

−
h

2

 1, z dz                                         (20) 

 Nxy , Mxy  =  ηxy

h

2

−
h

2

 1, z dz                                        (21) 

Qx =  ηxz

h

2

−
h

2

dz                                                     (22) 

Qy =  ηyz

h

2
h

2

dz                                                     (23) 

Where: 

[N]:  tensor of the membrane resultants, 

[Q]:  vector of the resultants in shear, and 

[M]: tensor of the moments of flexion-torsion. 

The matrix  D   is defined by: 

 D  =

 
 
 
 
 
 
 
 
A11 A12 0 0 A16 B11 B12 B16

A21 A22 0 0 A26 B12 B22 B26

0 0 A44 A45 0 0 0 0
0 0 A54 A55 0 0 0 0

A16 A26 0 0 A66 B16 B26 B66

B11 B12 0 0 B16 D11 D12 D16

B12 B22 0 0 B26 D12 D22 D26

B16 B26 0 0 B66 D16 D26 D66 
 
 
 
 
 
 
 

                     (24) 

Where: 
 D   : tensor of generalized suppleness, 

 Aij : matrix of membrane plate rigidities, 

 Bij : matrix of membrane-flexion-torsion plate couplings, and 

 Dij : matrix of the rigidities in flexion and torsion of plat. 

We have the following relations: 

Aij , Bij , Dij =    Q ij   1, z, z2 dz
zk +1

zk

n
k=1 (i, j = 1,2,6)                       (25) 

Aij =    Q ij ksdz
zk +1

zk

n
k=1 (i, j = 4,5)                                 (26) 
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2.1 Piezoelectric constitutive equations 

The piezoelectric effect can be expressed by four pairs of equations: 

 
 ζ =  Q  ε −  e T E 
 D =  e  ε −  ϵ  E 

                                        (27) 

Where: 
 ε : strain vector, 
 ζ : stress vector, 
 E : vector of the electric field, 
 D : vector of electrical displacement, 
 Q : elasticity matrix at constant electric field, 
 e : piezoelectric constants matrix, and 
 ϵ : dielectric matrix at constant strain. 

The matrices  e  and  ϵ  are expressed as:  

 e =

 
 
 
 
 

0 0 e31

0 0 e32

0 0 0
0 e24 0

e15 0 0  
 
 
 
 

                           (28) 

 ϵ =  
ϵ1 0 0
0 ϵ2 0
0 0 ϵ3

                                  (29) 

The electric field vector E  is given by: 

Ex = −
∂θ

∂x
                        (31) 

Ey = −
∂θ

∂y
                       (32) 

Ez = −
∂θ

∂z
                       (33) 

Where: 

Ex , Ey  and Ez : Are the component of the electric field in the x, y and z directions. 

θ: Is the electrical potential: 

Assuming that the distribution of the electric potential field  E  varies linearly across the thickness of a 

piezoelectric element, and the voltage difference across its thickness is constant over its entire area. 

The matrix E  can be expressed as: 

 E =
1

hp
[0      0    − 1]T ∆θ                                    (34) 

Consequently, considering that: 

Ez = −
V+

hp
                                                            (35) 

Where V+ represents the electrical voltage at the terminals of the piezoelectric element is given by: 

V+ = θ h + hp − θ h                                            (36) 

Where hp  is the thickness of the piezoelectric element. 

2.2 Hamilton principle 

For a continuous system, the Hamilton principle is written between two instants t1 and t2: 

 δ T − ψ + W dt
t2

t1
                                           (37) 

Where:  

 The kinetic energy: 

T =  
1

2v
ρ U  

T
 U  dv                                           (38) 

 

  The potential energy: 

ψ =  
1

2v
( ε T ζ −  E T D )dv                                 (39) 

 The work done by a force Ps : 

W =   δU T Ps ds
s

                                              (40) 
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Finally, the dynamic equations are done by:  

                          

 M  U  +  C  U  +  K  U +  Kme   θ a +  Kme   θ
e s =  Fm 

 [Kme ]a
T u −  Ke a θ a = − Ke a θ a

[Kme ]s
T u −  Ke s θ s = − Ke s θ s

                                         (41) 

Where:  M ,  C  and  K : Are a matrix of masses, damping and stiffness respectively of the smart composite 

plate (composite plate + patches piezoelectric). 

[Kme ]a
T ,  Ke a, [Kme ]s

T ,  Ke s: Are an electro-mechanic coupling and stiffness electric for actuator an sensor 
respectively. 

 𝐹𝑚 : Is vector of exterior force generalities.  

3. Active vibration control 

the characteristic equation for free vibration is 

  K − ωn
2 M   U = 0                                              (42) 

With: 

 U =   Ωk 
Nmode
k  x(t)                            (43) 

Where: 

 
 Ωk : Is a Kth vibration mode of the smart plate. 
 x t  : Is a modal contribution of the K mode. 

       [Ω]T M  Ω = diag(μ
k

) 

                                                                         [Ω]T K  Ω = diag(μ
k
ωk

2)                                                     (44) 

                                                                         [Ω]T C  Ω = diag(2ξ
k
ωk

2)                                           

 

 x 
x 
 =  

0 I
−diag(ωk

2) −2ξ
k
ωk
  

x
x 
 −  

0
μΩ

TK(i)
me
  θ(ac )                (45) 

 

Where  A , [B] and  C  denotethe system matrix, the input matrix and the system output matrix, respectively. 

They can be obtained as. 

A =  
0 I

−diag(ωk
2) −2ξ

k
ωk
                                       (46) 

B =  
0

μΩ
TK(ac )

me
                                                       (47) 

C =  K(i)
me

T
Ω 0                                                     (48) 

3.1. Objective function  

To design such a Linear Quadratic Regulator LQR compensator, first, we consider the minimization of the 

quadratic cost function as follows: 

J =    X T Q  X +   θ T R  θ  dt = min
∝

0
                               (49) 

Where: 

Q Is a positive semidefinite matrix and  R is a positive matrix. 
The selection of Q and R is vital in the control design process. Q and R are the free parameters of design and 

stipulate the relative importance of the control result and the control effort. A large Q puts higher demands on 

control result, and a large R puts more limits on control effort (Schulz, Gomes, & Awruch, 2013). 

The optimal solution is: 

 G =  R T B T K                                                   (50) 

Where  K  satisfies the Riccati equation: 

 A T K +  K  A −  K  B  R −1 B T K +  Q = 0                         (51) 
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𝑪 + 

-

G 

 

𝒙 
𝒙  𝒕 = 𝑨𝒙 𝒕 + 𝑩𝒖(𝒕) 

 

𝒖 

3.1 Linear Quadratic Regulator (LQR) problem 

The state feedback approach can provide a complete model of the global response of the system under 

control. They are particularly applicable to the control of the first few modes of a structure. The state feedback 

(Fig.2) approach provides the best performance that can be achieved under an ideal feedback control 

system(Biglar, Gromada, Stachowicz, & Trzepieciński, 2015; Tian, Guo, & Shi, 2020). 

Figure.2. The principle of the state feedback 

 

 

 

 

 

 

In MATLAB, the command lqr is used to calculate the optimal gain matrix G. 

 

Where e is the closed-loop eigenvalues. 

e = eig(A − BG)                                                            (52) 

4. Numerical analysis and discussions 

The numerical examples considered in the paper are chosen in correspondence with the existing numerical 

solutions that are available in the literature. The proposed finite element model was implemented in Matlab. 

In this section, eigenfrequency results obtained with the proposed model are compared to results obtained by 
ANSYS APDL code and numerical results found in the open literature. 

4.1 Validation 

In this case, a square laminate plate composed of four layers of Graphite-Epoxy material       [-30/30/-30/30] 

(Figure.3). Covered by PZT G-1195 piezoelectric patches poled in z-direction (through-thickness) is considered. 

Figure.3. The smart composite plate  (G. Liu et al., 1999) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Case studies is presented in this section to demonstrate the validity of the literature. 

Selected piezoelectric smart structure systems for active vibration control are designed using a finite element 

code ANSYS (ANSYS 2021 R1) and output feedback control law. 
Three-dimensional coupled-field solid element (Solid 5) ( Figure. 4) with 4 degree of freedom and 8 nodes is 

utilized to model piezoelectric patches, and three-dimensional structural multilayered solid element (Solid 186) 

(Figure. 5) with 3 degree of freedom and 20 nodes is employed to model host structures. 

 

 

 

𝐒𝐲𝐧𝐭𝐚𝐱𝐞:      𝐆,𝐊, 𝐞 = 𝐥𝐪𝐫(𝐀,𝐁,𝐐,𝐑) 
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Figure.4. Solid5 geometry 

 

 

 

 

 

 

 

 

Figure.5. Solid 186 geometry 

 

 

 

 

 

 

 

 

 

 

 

The material properties data for the composite plate, piezoelectric patches are given in table 1. 

 

Table 1. The material properties data for the composite plate and piezoelectric patches. 

 

proprieties Graphite/ep

oxy 

PZT G-

1195 

Poisson’s ratio 0.31 0.3 

Density ρ (kg/m3) 

Elastic stiffness matrix 

(GPa) 

E11 

E22 

E33 

G12 

G13 

G23 

Piezoelectric constant  

(C/m2) 

1550 

 

 

119 

8.67 

8.67 

5.18 

3.29 

3.29 

7600 

 

 

132.38 

10.76 

10.76 

3.61 

5.61 

5.61 

e31 

e33 

e15 

Dielectric constant (F/m) 

g11 

g22 

g33 

- 12.5 

12.5 

12.5 

 

1.53×10-8 

1.53×10-8 

1.53×10-8 
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The FE model and the boundary conditions for simply supported plate shown in Figure 6, the FE model 

includes the composite plate, and a 4 pair of squares PZT actuators and sensors attached to the top and bottom 

surfaces of the plate.  

The processing of the geometry and finite element mesh generation is provided by ANSYS processing 

analysis. The current structure is meshed by 40x40 eight-node solid elements, with 40 elements in width direction 

and 40 elements in the width direction. And each sensor and actuator are meshed with 100 identical elements. The 

simulation denotes the mechanical response of the plate equipped with the piezoelectric actuators without control. 

 

Figure.6. Finite element model  

 

 

 

 

 

 

 

 

 

 

 

 

A coupling electromechanical is created by the CP command and the appropriate voltage potential is assigned 

(Figure.7). 

Figure.7. The electromecanical coupling 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8 shows the four layers [-30/30/-30/30] of a composite plate, creating by SECDATA command.  
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Figure.8. Orientation of the ply in the composite plate 

 

 

 

 

 

 

 

 

 

All simulations featured in this paper assume 𝛼 = 0.5 and 𝛽 = 0.025 damping constants. In this approach. 

The smart composite plate in this case is exposed to a uniformly distributed load of 50 𝑁/𝑚2. 

Steps are taken to identify the natural frequencies and mode shapes for the plate structures by using modal 

analysis. The time step ∆𝑡  for Transient analysis is taken as 1/(20𝑓ℎ) , where 𝑓ℎ  is the higher frequency. 

Consider an initial displacement field applied to the plate equal to 1 mm. 

Table 2 shows the first six natural frequencies of the smart composite plate. 

Table 2. The first six vibration modes of the smart composite plate 

Modes (Rd/s) ( LIU[8]) ANSYS 

Mode 1 174.573 175.102 

Mode 2 354.818 354.612 

Mode 3 

Mode 4 

Mode 5 

Mode 6 

481.046 

637.596 

688.55 

935.439 

497.514 

640.351 

700.254 

1002.329 

 

Figure 9 shows the first six vibration modes of the smart plate. 
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Figure.9. The six first vibration modes of the smart composite plate  

 

 
 

 

Mode (1,1) Mode (2,1)  Mode (1,2) 

 
 

 

Mode (3,1) Mode (2,2) Mode (3,2) 

 

The FEM results obtained by MATLAB software and valued by ANSYS APDL, to determine the cost 

function and the state space representation of the system. This model was obtained by system identification 

commands from MATLAB software using the frequency response of the smart plate. 

In this study, a linear quadratic optimal controller is considered to control the first three modes of the flexible 

plate. The dynamic response is calculated using the first three modes. As a result, the size of system matrix [A] is 

6x6. In addition, the size of the input matrix [B] is 4x6, the matrix [B] depend of the number of actuators which 

four in our case. 

Validation of the literature (G. Liu et al., 1999) are shown in Figure.10.  

Figure.10. Validation of the literature (G. Liu et al., 1999) 
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Figure 11 shows the displacement response of the smart composite plate in open and close loop. 

Figure.11. The displacement response of the smart composite plate  

 
The Bode plot of the open-loop and closed-loop system are shown in Figure.12, when the control is open-

loop are also shown for comparison.  

Figure.12. Frequencial response of the smart composite plate in M(0.2,0.2) 
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4.2. Active vibration control of the smart composite plate for different boundary conditions   

In this section, the effect of the different boundary conditions in active vibration control is discussed. The 

previews smart composite plate is considered.   

Table 3 shows the first six natural frequency of the smart composite plate for different boundary conditions. 

we denote by: 

CCCC: Clamped- clamped- clamped- clamped ; CFCF: Clamped-free- clamped-free 

CCFF: Clamped- clamped-free-free  ; CFFC: Clamped-free-free- clamped 

 

Table 3.The first six natural frequency of the smart composite plate for different boundary conditions 

 

Modes (HZ) CCCC CCFF CFCF CFFC 

Mode (2,1) 48.505 15.452 15.721 13.814 

Mode (1,2) 

Mode (3,1) 

Mode (2,2) 

Mode (3,2) 

76.072 

87.810 

91.056 

126.64 

33.021 

42.233 

45.381 

66.990 

35.798 

39.527 
44.549 

62.577 

24.298 

38.003 

40.646 

62.171 

In figure13, the first tree vibration modes of the smart composite plate for four conditions boundary are presented. 

Figure.13. The tree vibration modes of the smart composite plate for four different boundary conditions (CCCC, 

CCFF, CFCF, CFFC) 

 

 Mode (1,1) Mode (2,1) Mode (1,2) 
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CCFF 

   

 

 

 

 

CFCF 
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CFFC 

   

The displacements response of the plate in the point M (0.2,0.2) m and the Bode plot for four different 

boundary conditions (CCCC, CCFF, CFCF, CFFC) in close and open loop, are shown in Figure.14. and Figure.15 

respectively. 

 

Figure.14. The displasment response of the smart composite plate in M (0.2, 0.2) m for four boundary conditions 

(A, B, C, D). 
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The different boundary conditions done different natural frequencies. The values matrix values A calculated 

by the first three natural frequencies. So, the transient response at the point M (0.2.0.2) in each boundary condition 

(A, B, C and D) take a different form. 

The shape of the curves of the Bode magnitude in the cases (A, B, C and D) are logically different, and the 

same thing with the curves (A, B, C and D) of the phase. 

The active control of the smart composite plate is stable in the first five seconds for the case (CCCC). On the 

other cases, the other three cases (CCFF, CFCF, CFFC) stabilization is carried out within 10 seconds. 

The boundary conditions of the controlled plate play a large role in the stabilization delay and the decrease 
value of the mode responses. 
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Figure. 15. The Bode plot response of the smart composite plate for 

four boundary conditions (A, B, C, D). 
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Conclusion 

This paper proves the importance of using an appropriate FE model and an actually LQR perform the 

vibration control of piezoelectric composite plates. 

 With this work a procedure based on a finite element technique for solving a tow field coupling problem, 

such as the piezoelectric-structure interaction, is presented. We exploit the finite elements of software tool, 

ANSYS, for modelling the structure, and we exploit the software tool, MATLAB, for calculating control gains 

and simulating the system. The numerical results show the effectiveness of the procedure (LQR controller 

produces considerable reduction in both the settling time and the actuation force). The model is valued with the 

numerical results in literature. The damping tendencies of the various of boundary conditions of the smart 

composite plate have been found to be similar. 
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