
https://ietresearch.onlinelibrary.wiley.com/action/showCampaignLink?uri=uri%3A564479fc-875b-4321-b1ef-fe23bf326497&url=https%3A%2F%2Fietresearch.onlinelibrary.wiley.com%2Fhub%2Fjournal%2F1350911x%2Fhomepage%2Fcfp%3Futm_medium%3Ddisplay%26utm_source%3Ddartads%26utm_content%3DIET_ePDF_call_for_papers_feb23%26utm_term%3DELL2&pubDoi=10.1049/el.2017.0566&viewOrigin=offlinePdf


Localisation of faults in wiring networks
using time domain reflectometry and
adaptive neuro-fuzzy inference system

A. Laib✉, M. Melit, B. Nekhoul, H. Boudjefdjouf and
H. Bouchekara

The aim the present research is to develop a new approach for the
localisation of faults in wiring networks based on adaptive neuro
fuzzy inference system (ANFIS) and time domain reflectometry
(TDR). In this approach a forward model has been developed and
validated with measurements in order to generate a TDR response of
any wiring network then the inverse problem is solved using ANFIS.
The developed approach has been tested using a complex configuration
that is YY-shaped network. The results show the efficiency and
accuracy of the proposed approach.

Introduction: Modern electric power networks are able to handle more
and more complicated tasks where their main functions are to transfer
energy and information where they are needed. In order to guarantee
the performance such systems, safety is of paramount importance.
Therefore, an accurate and efficient diagnosis is needed. Time domain
reflectometry (TDR) is commonly used to detect and localise faults in
wiring networks; where a specific signal is injected into the wiring
network at an injection point (this can be the origin point) and collect
the reflected signals. However, TDR technique, when it used alone,
might not be able to give complete information about the wiring
network under test, especially in the case of complex networks. In
[1], TDR is combined with an artificial neural network to detect and
locate faults, this approach is efficient to detect and locate faults in
complex networks but it has a major disadvantage that it needs big
data for training. Recently, alternative approaches using TDR and
iterative-based optimisation methods such as genetic algorithm [2, 3],
electromagnetism-like mechanism [4], particle swarm optimisation
[5, 3], teaching–learning-based optimisation [6], backtracking search
algorithm [7], and black hole [8] are used to detect, locate and charac-
terise faults in wiring networks. However, the major drawback of
these methods is that they are computationally expensive and therefore,
they need a long time to converge. To overcome the above mentioned
drawbacks of exiting methods, i.e. small data for training, the ability
to perform an online diagnosis, a new approach based on TDR and
adaptive neuro fuzzy inference system (ANFIS) is proposed in this
Letter. In this approach, the TDR response of the wiring network
under test is calculated using the finite difference time domain
(FDTD) method then ANFIS is applied to solve the inverse problem
for localising faults in complex wiring networks.
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Fig. 1 First order Sugeno ANFIS architecture (Type-3 ANFIS)

Adaptive neuro-fuzzy inference systems: An ANFIS works by applying
neural learning rules to identify and adjust the parameters and structure
of a fuzzy inference system (FIS) [9]. The attractive features of an
ANFIS based only on the available data include: excellent explanation
facilities through fuzzy rules easy to implement, fast and accurate
learning, strong generalisation abilities, and easy to incorporate both
linguistic and numeric knowledge for problem solving [10]. We
assume that the examined FIS has two inputs and one output. For a
first-order Sugeno fuzzy model, a typical rule set with two fuzzy ‘if
then’ rules can be expressed as follows:

If x isA1 AND y isB2 THEN y1 = f1 x, y
( ) = p1x+ q1y+ r1

If x isA2 AND y isB2 THEN y1 = f2 x, y
( ) = p2x+ q2y+ r2

The ANFIS system has a total of five layers [9] as shows in (Fig. 1).
ANFIS uses two sets of parameters: a set of premise parameters and a

set of consequent parameters where the premise parameters are the

membership function parameters and the consequent parameters are
the first order Sugeno rule parameters (pi, qi, ri). ANFIS uses a
hybrid learning algorithm to update the parameters of the network,
where back propagation gradient descent methods and the least-squares
are used for training FIS membership function parameters and the first
order Sugeno rule parameters (pi, qi, ri) to model a given set of
input/output data. More details about ANFIS architecture, rules,
layers, and functions are available in [9–11].

Forward model: The forward model is used in order to get the TDR
response of any wired network. The propagation in Network
Transmission Line (NTL) can be modelled using a RLCG circuit
model [12], the corresponding equations are:

∂

∂z
v z, t( ) = −R · i z, t( ) − L · ∂

∂t
i z, t( ) (1)

∂

∂z
i z, t( ) = −G · v z, t( ) − C · ∂

∂t
v z, t( ) (2)

where R, L, C and G: are the per-unit-length parameters, the series
resistance, the series inductance, the shunt capacitance and the shunt
conductance, respectively [12]. The time-domain analysis of the MTL
is determined by the FDTD method [12]. The length of the spatial
cell size Dz and sampling interval Dt is chosen by insurance of the
stability condition on the time stepping algorithm Dt = Dz/v, with v
is the propagation velocity.

Validation of the developed forward model: The RG58 CU coaxial
cable shown in Fig. 2 has been used for this network where the distributed
parameters L, and C, R, G can be calculated based on the formulation
given in [13] and is evaluated as follows: C = 100× 10−12 F/m,
L = 250× 10−9, G = 2w× 10−13 S/m, r = 0.02V/m. The YY-shaped
network used here is sketched in Fig. 3, this network is composed of
five branches that are L1 = 1 m, L2 = 4 m, and L3 = 1 m, L4 = 0.5 m
and L5 = 1.5 m. The network is affected with one a hard fault (short
circuit) in branch L2 at a distance of 2.4 m form the origin.
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Fig. 3 YY-shaped network used for the validation of the forward model
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Fig. 4 Comparison between measured and simulated TDR responses of the
healthy and faulty Y Y-shaped network

Fig. 4 shows a comparison between the TDR response obtained using
measurement and the one obtained using the developed forward model
for the two cases of healthy and faulty network wiring network. It can be
seen from this figure that there is a good agreement between measured
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and simulated TDR responses. The small differences between the
simulated and measured values may be due to variation between the
ideal and actual characteristic impedance of the cable.

Inversion result: In this case the faulty YY-shaped network investigated
in the previous section is considered. The inverse problem is solved by
applying the ANFIS method where the difference between the voltage
signals of healthy and faulty networks is used. Once this difference is
calculated, the maximum value of this difference and its corresponding
time i.e. the appearance time (t) are identified. This time is used than for
the localisation of faults. The diagram of the proposed approach is
shown in Fig. 5.

calculate the
difference

between voltage
signals of the

faulty and
healthy

networks 

calculate the
appearance time

(t)
corresponding to

the maximum
value of the
difference

apply the
ANFIS method

in order to
locate the fault 

Fig. 5 Diagram of proposed approach based on ANFIS

Wang et al. [14] restricts the size of the training data to be about 5
times the number of modifiable parameters (premise parameters and
consequent parameters), where these parameters depends on fuzzy
‘if then’ rules of a Takagi and Surgeon’s type. Modifiable parameters
are the number of premise parameters plus the number of consequent
parameters. The efficiency of the ANFIS method is improved by
changing the number of rules from two to six as illustrated in Table 1.
The obtained results using ANFIS method are tabulated in this
Table 1. The generalization capability of the ANFIS is examined
using the RMS error obtained on the test set which contains input/
output data not contained in the previous set, The ANFIS training
time, is about 2 min and 10 s using a PC equipped with Intel(R) Core
(TM) i3-2310M Processor and 4 Gb of RAM. It is worth mentioning
that, the creation of the needed databases and the training of the
ANFIS can be performed offline. It can be noted from Table 1 that,
the ANFIS method is very efficient for the localisation of the hard
faults affecting the YY-shaped wiring network. This can be justified
by the small value of error found. Furthermore, the computational
time is very low (<1 s), this offers the ANFIS method the ability to be
applicable online. Moreover, it is shown that the number of examples
used for both training and validation is low (about 120 examples in
the case of two rules and about 360 examples in the case of six rules)
and this number is sufficient to train and validate the ANFIS
architecture.

Table 1: Efficiency of the ANFIS method for the localisation of
faults for the YY-shaped network

Number of rules 2 3 4 5 6

Number of modifiable
parameters

12 18 24 30 36

Length of training data
5 × total number of

parameter
60 90 120 150 180

Length of validation data
5 × total number of

parameter
60 90 120 150 180

Length of testing data 1960 1900 1840 1780 1720

Length of total data 2080 2080 2080 2080 2080

Localisation error (m)
3.11 ×
10−4

2.04 ×
10−4

2.54 ×
10−4

2.02 ×
10−4

1.87 × 10−4

Computational time (s) 0.274 0.224 0.217 0.228 0.227

Conclusion: In this Letter a new approach based on ANFIS is proposed
for the localisation of faults in wiring networks based on time domain
reflectometry. The wiring network has been modelled using MTL
approach where the transmission line equations have been resolved
using FDTD method. The developed forward model has been validated
using measurements. A complex configuration that is the YY-shaped
networks have been investigated. The obtained results for the locali-
sation of faults are very accurate based on the small value of error
found. It has been demonstrated that the ANFIS method doesn’t need
big data for training.
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