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Abstract
Recently, studies are oriented to introduce sustainable materials in construction. This study aims to investigate the effects 
of sisal fibers on the thermophysical and mechanical properties of compressed earth blocks (CEB) made of local materials 
by mixing red clayey soil taken from the M’sila region in Algeria and brick waste (BW). First, the maximum percentage of 
BW is fixed at 20% while respecting the plasticity criteria. Then, the effects of fibers and cement addition on the engineering 
properties of CEB are analyzed and compared according to fiber and cement contents. Sisal fibers are added with different 
percentages varying from 0 to 0.5%, while cement content is used with four percentages: 0, 5, 7, and 9% (by wt% of the 
newly modified soil). Many tests are performed including, capillary absorption rate, thermal conductivity, compressive/
tensile strengths, and abrasion resistance. The results showed that the inclusion of sisal fibers improves the thermal insula-
tion of cement-stabilized blocks by up to 21% and strength by 150%. However, it is observed that the hydrophilic character 
of sisal fibers increases the capillary absorption by 81%, and the abrasion coefficient increases with the increase in fiber 
content. Furthermore, the investigation revealed that the use of fibers alone is insufficient to ensure the stability of the blocks 
in moist conditions since the material fully loses its resistance, which requires the total protection of material against any 
type of infiltration and/or the use of cement as stabilizing agents. As a result, the research showed that sisal fibers may be 
used in CEB reinforcement, further an environmentally alternative solution was proposed for managing BW by their use in 
CEB manufacturing as this contributed to sustainability and circular economy strategies.
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Introduction

Using energy efficiency measures in construction played an 
important role in improving heat/cooling systems, control-
ling energy consumption, and reducing CO2 emissions. The 
current state of research in the field of construction materials 
is oriented toward integrating alternative materials to reduce 
the adverse effects associated with the use of gray materi-
als. Among the solutions highly recommended by scientists 
is using earth construction techniques [1]. It was assumed 
that 30% of international energy production resulted from 
building sectors [2] and it will rise by another 30% by 2060 
[3]. Researchers [2, 4–6] indicated that low-carbon materials 

might be obtained by the integration of raw materials and/
or the incorporation of industrial by-products and wastes. 
Therefore, these processes help to create ecofriendly and 
sustainable products, reduce pollutant emissions, improve 
energy recovery, and contribute to circular economy strate-
gies [7].

Since ancient civilizations, the earth has been widely used 
as a construction material due to its availability, low costs, 
ease of construction, and being socially accepted [8]. In 
addition, earthen materials are characterized by very inter-
esting thermal properties which reduced energy consump-
tion and offered economic and environmental benefits. In 
comparison with concrete material, using earthen materials 
in construction significantly reduced operational and trans-
portation energy.

The mechanical properties of traditional masonry blocks 
called adobe when they improved by compaction under high 
efforts created CEB. Although, CEB presented certain limi-
tations in comparison with modern construction materials 
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including water penetration and cracking strengths. To rem-
edy this problem, many additives were used to reinforce/
stabilize CEB including fibers, cement, lime, bitumen, and 
other waste materials. The principle of functioning of these 
additives is based on a chemical process for hydraulic bind-
ers, a mechanical mechanism for fibers, or the interaction 
between them. Many factors can affect therefore the per-
formance of CEB such as granulometric size distribution of 
soil, the plasticity of soil, cement content, type, and dosage 
of fibers [1, 9].

For CEB material, Walker [10] recommended using soil 
with a plasticity index ranging from 5 to 15 to produce CEB, 
while Mesbah et al. [11] reported that the cement dosage 
used for CEB should be comprised between 4 and 10% of 
the dry mass of soil. However, other researchers [12, 13] 
indicated that using higher percentages of binder (> 10%) 
was not economic for CEB.

Fibers were used effectively in civil engineering to 
reinforce both soil and cement-based materials [14–18]. 
Therefore, when fibers are incorporated they contributed to 
improving crack resistance, strength, ductility, durability, 
and insulation aspect [19–21]. For CEB material, research-
ers [20–22] indicated that the fibers contributed to improv-
ing crack resistance, tensile strength, shrinkage, thermal 
behavior, and durability. Therefore, it was reported that 
natural fibers were more beneficial than synthetic fibers to 
produce CEBs [23]. So, natural fibers are available in abun-
dance, biodegradable, and have low costs. More recently, the 
efficiency of using lignocellulosic fibers as reinforcements 
for CEB has been proved by many studies, therefore many 
kinds are used including, date palm fibers [24], kenaf fibers 
[25], banana fibers [26], hibiscus cannabinus fibers [27], 
and doum fibers [28]. Furthermore, few studies have been 
focused on the effectiveness of sisal fibers for CEB [1, 29] 
and therefore little information is available on the effects of 
such types of fibers on the engineering properties of CEB. 
In addition, the scientific mechanisms between sisal fibers 
and soil particles are not sufficiently defined. To this end, 
the effects of sisal fiber inclusion on the physical, mechani-
cal and thermal properties of CEB were experimentally 
investigated in this paper. Besides, the study emphasizes 
also an environmentally attractive solution by incorporat-
ing brick waste in CEB to make a sustainable product. The 
brick manufacturing industry generates large quantities of 
BW from non-standard bricks (i.e., broken, deformed, under-
burn, or overburned) [30]. Hence, their use can absorb some 
quantities of these wastes and creates alternative aggregates. 
Besides, this strategy contributes directly in circular econ-
omy and sustainability.

Experimental

Materials

•	 Soil

A red clay collected from the Chaaba El Hamra region in 
M’sila, Algeria was used to produce CEB. Figure 1 shows 
the granulometric distribution curve for this soil carried 
out as per NF P 94–056 [31]. Plasticity characteristics were 
determined with Atterberg limits and Methylene blue tests 
as per NF P 94–051 and NF P 94–068, respectively. Accord-
ingly, the results indicated that the clay used in the study is 
classified in the category of low-plastic clays (USCS clas-
sification). The physical and chemical properties of this clay 
are shown in Table 1, whereas the X-ray diffractogram is 
presented in Fig. 2. The soil composed is mainly of alumino-
silicates (34.68% of silica 9.16% of alumina) and a relatively 
high content of calcite (22.52%). The compaction behavior 
of this clay is characterized by a maximum dry density of 
20.05 kN/m3 and optimum moisture content of 12.5%.

•	 Cement

Portland cement CEM II/B class 42.5 according to 
EN 197–1 [32] from Ain Touta factory with a density of 
3150 kg/m3 was used as stabilizer. The chemical composi-
tion of this cement is shown in Table 2. As indicated in 
many studies [11–13], the most effective cement dosage for 
CEB should be ranged between 5 and 10%. So, three cement 
contents are chosen in this interval (5, 7, and 9%).

0

10

20

30

40

50

60

70

80

90

100

0.01 0.1 1 10

Cu
m

ul
a�

ve
 p

as
sin

g 
 %

Diameter  mm

Soil

Brick

Fig. 1   Granulometric distribution curves for clay and brick waste
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•	 Fibers

Commercialized sisal fibers with 40  mm in length, 
0.2–0.4 mm in diameter, and 500 MPa of tensile strength 
were used to reinforce CEB (Fig. 3). The fiber length was 
kept constant for all the tests based on literature [25, 33–35]. 
These fibers are locally available and commonly used in civil 

engineering applications such as soil stabilization and plaster-
panel reinforcement. Further, they were characterized by high 
initial tensile strength similar to polyester fibers, which can be 
considered good reinforcements [36, 37].

Fourier Transform Infrared spectrometer (FTIR) analysis 
spectra of sisal fibers are shown in Fig. 4 and some indica-
tions on bands obtained are summarized in Table 3. The details 
of peaks and the type of chemical stretching are defined in 
comparison with the investigation of [38]. Five concentrations 
were used to reinforce the blocks varying from 0.1, 0.2, 0.3, 
0.4, and 0.5% of the global dry mass of all ingredients.

•	 Brick waste

Brick waste with a specific density of 2358 kg/m3 collected 
from construction sites was used in this study. Its granulomet-
ric size distribution and chemical composition are shown in 
Fig. 1 and Table 4, respectively.

Mix design and procedures

The procedure followed in the study to analyze the effects of 
sisal fibers and cement on the engineering properties of blocks 
is shown in the flowchart of Fig. 5. According to the specifica-
tions of CRATerre (International Centre on Earthen Architec-
ture) [39], the soil that will be used to produce CEB blocks 
should be satisfied the criteria of plasticity. Therefore, the soil 
is located within the limits as mentioned in Fig. 6. Among the 
objectives of this study consisted to incorporate BW in CEB 
for producing eco-friendly material. In this sense, the maxi-
mum possible percentage of BW while respecting the require-
ments cited above was fixed at 20% as indicated in Fig. 6.

For each dosage of cement, the optimum moisture content 
was determined using the Proctor test. But, it should be noted 
that fresh blocks were consolidated with static effort using a 
hydraulic press because the dynamic impact commonly used in 
the Proctor test is inappropriate for CEB material as reported 
in many studies [40, 41]. To study the effects of both fibers and 
cement stabilization on the engineering properties of CEB, a 
total of 24 mixes were formulated as shown in Table 5. For 
all tests, the mean arithmetic of three values was considered.

Blocks of 70 × 70 × 280 mm3 were used for mechani-
cal characterization as per XP 13–901[42]. Compressive 
strength was determined at dry and saturated states to 
simulate its behavior, respectively, at normal and extreme 
weather conditions. The test was conducted based on the 
standard XP 13-901 [42], as shown in Fig. 7. Splitting 
tensile strength was determined from blocks loaded with 

Table 1   Physical and chemical properties of the clay used

Property Value

Physical properties Specific density (kg/m3) 2500
Methylene blue value (g/cm3) 1.62
Liquid limit, % 26
Plastic limit, % 18
Plasticity index, % 8

Compaction characteristics Optimum water content, % 12.5
Maximum dry density, kg/m3 20.05

Chemical composition, % SiO2 34.68
Al2O3 9.16
Fe2O3 3.44
CaO 22.52
MgO 4.66
SO3 0.94
Cl 0.63
K2O 1.1
Na2O 0.14
PF 22.98

Fig. 2   X-ray diffractogram of clay

Table 2   Chemical composition 
of cement

Element SiO2 Al2O3 Fe2O3 CaO MgO SO3 Cl K2O Na2O PF

Cement, % 21.45 4.31 4.56 61.43 1.24 2.28 0.018 0.61 0.39 2.19
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linear concentric compressive effort in a similar manner 
as the Brazilian test as described in RILEM TC 164-EBM 
[43]. Capillary absorption test was conducted on partially 
immersed specimens (see Fig.  8) as described in XP 
13-901 [42]. Abrasion resistance was quantified according 
to the recommendations of AFNOR XP P 13 901 [42] and 
NTC 5324 [44]. The test consisted to express, for a spe-
cific surface, the mass loss when the block was solicited by 
abrasive effort using a steel brush as mentioned in Fig. 9. 
The thermal conductivity was measured using a CT-meter 
device as per ISO 8894-1:1987 as shown in Fig. 10.

To produce relatively homogenous material and reduced 
the variability of samples, the soil was previously mixed 
with BW in the dry state and then they mixed for 60 s. 
After fibers were added and the ingredients were mixed 
again for 60 s. The required water was added and the ingre-
dients were mixed again for 180 s. The mix was placed in 
a rigid mold then the soil was immediately compacted in 
a hydraulic press since this method was more appropriate 
for CEB blocks as reported in many investigations [24, 41, 
45]. All specimens were produced with the same compac-
tion stress of 6 MPa.

After fresh blocks were removed carefully from molds 
and there were stored in plastic bags in laboratory condi-
tions until the date of the test. Unstabilized soil specimens 
are stored for 14 days, while cement-stabilized blocks are 
cured for 28 days. Before testing CEB blocks are dried in 
an oven until mass stabilization as per the standard (XP 
13-901) [42].

Fig. 3   Aspect of sisal fibers 
used
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Fig. 4   FTIR analysis of sisal fibers

Table 3   Definition of FTIR peak positions

Wave number (cm−1) Origin

3325 N–H stretching (amide)
2910 C–H stretching
1728 C=O stretching of hemicellulose
1610 OH absorbed water
1336, 1238 C–O stretching
1028, 903 C–OH stretching of lignin

Table 4   Chemical composition 
of brick waste

Element SiO2 Al2O3 Fe2O3 CaO MgO SO3 Cl K2O Na2O PF

BW, % 32.45 9.84 4.31 21.19 2.76 5.89 0.371 0.86 0.97 20.94
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Results and discussion

Physical properties

Thermal conductivity

Figure 11 showed the effect of fibers on the thermal con-
ductivity of fiber-reinforced and cement-stabilized fiber-
reinforced samples. For fiber-reinforced CEB, it was 
observed that the thermal conductivity decreased as the 
fiber content increased in the mix. For example, with 0.5% 
of fiber addition, the thermal conductivity decreased by 

Fig. 5   Flowchart of the proce-
dure used in the study

Adding sisal fibers with different 
percentages (0, 0.1, 0.2, 0.3, 0.4, 
and 0.5%)

Determination of BW 
content based on the 
plasticity

Determination of the effects of
fibers and cement on the 
engineering properties of the 
blocks

Stabilizing of the mixture with 
cement (for contents were 
considered 0, 5, 7, and 9%)

Preparation of raw materials: 
raw clay and BW
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Fig. 6   Position of different mixes in the plasticity charts as per XP 
P13 901 [42]

Table 5   CEB mix proportions

Mix Soil (%) BW (%) Cement (%) Fibers (%)

C0F0 80 20 0 0
C0/F0.1 79.92 19.98 0.1
C0/F0.2 79.84 19.96 0 0.2
C0/F0.3 79.76 19.94 0.3
C0/F0.4 79.68 19.92 0.4
C0/F0.5 79.60 19.90 0.5
C5F0 76 19 5 0
C5/F0.1 75.92 18.98 0.1
C5/F0.2 75.84 18.96 0.2
C5/F0.3 75.76 18.94 0.3
C5/F0.4 75.68 18.92 0.4
C5/F0.5 75.60 18.90 0.5
C7F0 74.40 18.60 7 0
C7/F0.1 74.32 18.58 0.1
C7/F0.2 74.24 18.56 0.2
C7/F0.3 74.16 18.54 0.3
C7/F0.4 74.08 18.52 0.4
C7/F0.5 74.00 18.50 0.5
C9F0 72.80 18.20 9 0
C9/F0.1 72.72 18.18 0.1
C9/F0.2 72.64 18.16 0.2
C9/F0.3 72.56 18.14 0.3
C9/F0.4 72.48 18.12 0.4
C9/F0.5 72.40 18.10 0.5
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15% in comparison with unreinforced CEB. The decrease 
in thermal conductivity might be explained by the fact 
that fiber addition generated more voids which increased 
the porosity and consequently created an open Skelton. 
Similar results were obtained in previous investigations 
[35, 46–48].

Fig. 7   CEB specimen during compression test according to the method of XP P13 901

Fig. 8   Schematic setup for water absorption by capillary

Fig. 9   Abrasion test: Steel brush used (left), specimen aspect after the test (right)
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For cement-stabilized fiber-reinforced CEB, it was 
observed that for a given cement content, the thermal con-
ductivity decreased as increasing of fiber content. There-
fore, for 0.5% of fiber addition, the thermal conductivity 
decreased by 17, 19, and 21% for cement content 5, 7, and 
9%, respectively. So the same argument utilized to justify 
the decrease in thermal conductivity of fiber-reinforced 
CEB can be used for the case of cement-stabilized fiber-
reinforced CEB. On the other hand, it can be seen also that 
for a given fiber content, the thermal behavior increased 
with the increase in cement content. Similar observations 
were stated by Zakham et al. [49]. The thermal conduc-
tivity changed from 0.189 to 0.24, 0.3, 0.351 (W/m k) 
when the control block stabilized, respectively by 5, 7, 
and 9% of cement. This increase in thermal conductiv-
ity resulted mainly from the hydration process between 
cement and soil minerals which created stronger bonds, 

hence reducing porous the network and increasing the 
rigidity in CEB material [50].

Capillary absorption test

Durability tests were conducted by studying the effect of 
capillary water absorption to simulate the case of humidifi-
cation of CEB-based walls from the bottom by capillary. In 
addition, researchers indicated that coefficient absorption 
(Cb) gave a sufficient idea on the performance of CEB [51]. 
From the bar chart shown in Fig. 12, it can be seen that the 
absorption coefficient is significantly affected by incorporat-
ing fibers and cement.

First, the blocks made only with soil and BW (unce-
mented, unreinforced) have very low water resistance, 
once the blocks moistened they started to dissolve as seen 
in Fig. 13. However, in the presence of fibers, the blocks 
remained partially intact. Thus, stated that the sisal fibers 
contributed to decreasing the sensitivity of CEB to water. 
Therefore, it could be noted that using fibers only to rein-
force CEB blocks is insufficient to ensure the long-term sta-
bility of CEB in moist conditions, which required a chemical 
agent to create some adhesion between soil particles.

Second, for cement-stabilized fiber-reinforced CEB, it 
was observed that for a given cement content the absorption 
coefficient was increased with the increase in fiber content. 
In comparison with unreinforced blocks, the absorption coef-
ficient of 0.5% fiber-reinforced blocks increased by 81, 71, 
and 7% when they stabilized by 5, 7, and 9%, respectively. 
These findings agree with that reported in previous studies 
[52, 53]. The authors stated that the addition of fibers led to 
increasing water absorption of laterite bricks. Ghavami et al. 

Fig. 10   Measurement of 
thermal conductivity of CEB 
using the commercial CT-meter 
device
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1999 [33] indicated that vegetal fibers created more voids 
and generated pathways through soil particles.

On the other side, it is observed that the absorption 
decreased with increasing cement content as shown in Fig. 12. 
Cement addition played a positive role to reduce the absorption 

rate by creating stronger bonds between soil particles. Thus, 
reducing the porosity and flocculated soil components [54]. 
Even though the increase in absorption coefficient, it should 
be noted that this material is considered as low capillary as per 
NF XP 13-901 [42].

Fig. 12   Effect of fibers and 
cement additions on the capil-
lary absorption
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Strength tests

Compressive strength

The 28-day dry compressive strength of different blocks pro-
duced is shown in Fig. 14. From the results, it can be seen 
that both cement and fiber addition improved the strength, 
however fiber-reinforced and cement-stabilized fiber-rein-
forced possessed different behaviors.

First, the compressive strength of fiber-reinforced CEB 
regularly increased with the increase in fiber content. It 
changed from 2 to 5 MPa when fibers were incorporated at 
a rate of 0.5%, which indicated an improvement of 150% in 
comparison with the unreinforced sample. This behavior is 
mainly attributed to the presence of fibers. They supported 
therefore some part of the applied load which increased fric-
tion between soil particles. Indeed, the interaction between 
soil and fibers increased the contact forces between soil 
particles. It was reported that fibers when associated with 
soils, created an additional cohesion in the composite and 
improved thereby the performance of earth-based materials 
[17]. Furthermore, it was important to mention that CEB 
should have a minimum strength of 2 MPa as recommended 
in [55]. This condition was already satisfied for fiber-rein-
forced CEB. Further strength obtained in this work, was 
higher than that obtained in other studies [35]. Thus, might 
be justified by the type of soil and strength of the fibers used.

Second, strength developed by cement-stabilized fiber-
reinforced blocks characterized by peak value then further 
a decrease in strength observed after the optimal values. 
Therefore, the effect of fibers was more remarkable at rela-
tively low cement contents and the sensibility of strength 
was decreased as cement content was increased. For all 
cement concentrations, it was observed that the most effec-
tive fiber content was 0.2% and strengths developed after 
the optimal values were relatively comparable. Further 
strength was near to 8 MPa which signified that was pos-
sible to increase strength at low cement content which was 

environmentally advantageous to reduce the use of cement. 
In the case of cement stabilization, the strength resulted 
mainly from the reaction between cement and water which 
created sufficiently rigid hydrates filling voids and binding 
particles together. Further, pozzolanic reactions take place 
with clay minerals and calcium hydroxide (Ca(OH)2) formed 
by cement hydration [56, 57].

In literature researchers justified the decrease in strength 
of cement-stabilized fiber-reinforced CEB after the optimal 
fiber content by the fact that the interaction between fib-
ers and matrix mobilized, further fibers created more voids 
which reduced the strength [52, 58].

The wet compressive strength was used to analyze the 
behavior of CEB in extremely worst conditions. Further, 
some researchers considered this parameter as a durability 
indicator [59]. Therefore, the test consisted to determine the 
compressive strength after 2h immersion of CEB in water. 
The results obtained are shown in Fig. 15. As for the dry 
state, saturated compressive strength results showed two 
distinct behaviors (i) the fiber-reinforced blocks were fully 
or partially dissolved after their immersion in water which 
led to neglect of the strength (ii) cement-stabilized fiber-
reinforced blocks remained intact and more consolidated.

Accordingly, based on these findings and considering the 
dry strength results presented above, fiber-reinforced blocks 
may be used in earth construction with the condition of its 
coating with impermeable material to prevent any form of 
water penetration.

From Fig. 15, it can be seen also that the wet strength was 
increased with the increase in cement content. As discussed 
above, the reactions between clay and cement were respon-
sible of this improvement. These findings were in agree-
ment with that obtained by Venkatarama Reddy et al. [60]. 
Moreover, the results indicated that the strength decreased 
as the fiber content increased. This decrease may be the 
result of relatively poor adhesion between fibers and matrix 
[24]. Although, despite this decrease in strength, the values 
obtained with 7 and 9% of cement addition satisfied the min-
imal strength of 2 MPa. However, for 5% of cement addition, 
the maximum percentage of fibers should be limited to 0.3%. 
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But it might be possible to use relatively high percentages 
with the condition of coating the CEB with impermeable 
material.

Tensile strength

Figure  16 shows the effect of fiber addition on tensile 
strength. It clearly can be seen that the tensile strength regu-
larly increased for both cement-stabilized and cement-sta-
bilized fiber-reinforced CEB as the fiber content increased. 
The increase in tensile strength as a function of the cement 
content is attributed to the hydration process as explained 
above. The effect of fibers was more remarkable in ten-
sile than in compressive strength. These results might be 
explained the relatively anisotropic behavior of CEB. As 
the intensive compaction effort of CEB created a horizontal 
layer perpendicular to the compaction direction. This argu-
ment was used by other researchers when studying pavement 
material made with highly compaction effort in a privileged 
direction [61].

These obtained results were in agreement with that 
obtained by Millogo et al. [35]. They reported that the fibers 
subjected to tensile stresses improved the adhesion between 
the fibers and the matrix. In another study [62], it was 
reported that the incorporation of 1% hay fibers improved 
the tensile strength of fiber-reinforced clays.

Furthermore, it was observed during the test that two 
pieces of specimen in failure were connected for fiber-rein-
forced CEB; however, for unreinforced CEB the two parts 
of the specimen were entirely separated (Fig. 17). Therefore, 
the incorporation of fibers improved the absorption energy 
capacity and consequently increased the ductility aspect of 
the material in comparison with unreinforced CEB. These 
statements were in agreement with those obtained in other 
works [63, 64]. Conversely, other researchers reported that 
the addition of natural aggregates or fibers decreased the 

tensile strength [24, 65–68]. They attributed this decrease 
to the fiber distribution and heterogeneity of CEB [24] and 
the insufficient quantity of fiber addition [66].

Abrasion resistance test

The abrasion coefficient is an important property of CEB 
material which can indicate the resistance under an abra-
sive effort. This technique consisted to quantify the loss of 
mass under contact friction force. Abrasion test results for 
fiber-reinforced cement-stabilized and cement-stabilized 
CEB are shown in Fig.18. The results indicated that the 
addition of fiber to CEB increased the abrasion coefficient. 
In comparison with unreinforced CEB, the abrasion coef-
ficient increased by 20, 43, 184, 239, and 232% for samples 
containing 0.1, 0.2, 0.3, 0.4, and 0.5%, respectively. The 
improvement of abrasion resistance was due to the inclu-
sion of fibers which created a supplementary cohesion 
between soil particles [17]. For cement-stabilized fiber-
reinforced blocks, the abrasion coefficient was improved 
for blocks reinforced with 0.1% of fibers and stabilized with 
5 and 7% of cement. However, for 9% cement addition the 
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Fig. 17   Failure of soil blocks under tensile force
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abrasion coefficient regularly decreased as the fiber content 
increased. Therefore, for the given fiber content, the abrasion 
coefficient was increased with the increase in fiber content. 
Similar results are obtained in many investigations [35, 66, 
69–71]. It should be noted that the abrasion coefficient for 
fiber-reinforced CEB was significantly lower than that of 
cement-stabilized blocks as the good bond resulting from 
hydration increase the abrasion resistance. Furthermore, 
All the values of abrasion coefficient were higher than the 
minimum value recommended by NF XP 13-901 which is 
equal to 2cm2/g.

Summary and conclusion

In this study, an eco-construction CEB was produced by 
using a red clayey soil collected from M’sila region in 
Algeria and BW. These blocks were stabilized with a com-
bined effect between sisal fibers and cement. The results 
showed that the thermal conductivity regularly decreased 
with increasing fiber content. As an example with 0.5% of 
fiber addition, the thermal conductivity coefficient decreased 
by 15 and 21% for uncemented and cemented, respectively. 
Thus, reducing energy used in heating/cooling inside resi-
dents. Fiber-reinforced CEB blocks are characterized by low 
resistance to water even though their sensitivity decreased 
as the fiber content increased which required external pro-
tection to prevent water penetration. However, it is stated 
that cement-stabilized fiber-reinforced blocks resisted more 
in moist conditions which contributed to improving the 
durability of the blocks. In comparison with unreinforced 
blocks, the absorption coefficient of 0.5% fiber-reinforced 
blocks increased by 81, 71, and 7% for blocks containing 
5, 7, and 9%, respectively. Therefore, the blocks stabilized 
with a combined effect between fibers and cement satisfy the 
requirements of NF XP 13–901 standards.

The 28d dry compressive strength of sisal fibers-rein-
forced CEB regularly increased as the fiber content increased 
in the mix. For 0.5% of fiber addition, the strength increased 
by 150%. However, in the case of cement-stabilized fiber-
reinforced CEB, curves characterized by peak strength and 
then a further decrease in strength was observed after the 
optimal values (0.2% of fiber addition). The decrease in 
strength is caused by the presence of fibers which increased 
the porosity in the blocks compared to unreinforced blocks. 
Furthermore, in extremely worst conditions (saturate sate), 
fiber-reinforced blocks were fully or partially dissolved after 
their water immersion, while blocks resisted much more 
when they stabilized with the combined effect of cement 
and fibers. Further, CEB stabilized with 7 and 9% of cement 
addition satisfied the minimal strength (2 MPa) regardless 
of the fiber content; however, it should be important to limit 
the use of sisal fibers to 0.3% for 5% of cement addition to 

obtain the best performance. In terms of tensile strength, 
it regularly increased as the cement and fiber contents 
increased in the mix.

Abrasion test results indicated the coefficient of abra-
sion regularly decreased with increasing fiber content for 
cemented blocks, however for uncemented blocks increased. 
But, it should be noted that the values of the abrasion coef-
ficient for both fiber-reinforced and cement-stabilized 
fiber-reinforced CEB satisfy the minimum value of NF XP 
13–901.

Therefore, based on the obtained results the stabiliza-
tion of CEB with a combined effect between sisal fibers and 
cement contributed to improving the insulation aspect CEB-
based walls, however, it is always possible to use sisal fibers 
as reinforcements for CEB but it is necessary to protect the 
material from water penetration. Finally, this research sug-
gested a novel environmental method by incorporating BW 
in CEB manufacturing.
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