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Abstract
Recently, coupled Wavelet transform and Neural Networks models (WANN) were exten-
sively used in hydrological drought forecasting, which is an important task in drought risk 
management. Wavelet transforms make forecasting model more accurate, by extracting 
information from several levels of resolution. The selection of an adequate mother wavelet 
and optimum decomposition level play an important role for successful implementation of 
wavelet neural network based hydrologic forecasting models.

The main objective of this research is to look into the effects of various discrete wavelet 
families and the level of decomposition on the performance of WANN drought forecasting 
models that are developed for forecast drought in the Algerois catchment for long lead 
time. The Standard Precipitation Index (SPI) is used as a drought measuring parameter 
at three-, six- and twelve-month scales. Suggested WANN models are tested using 39 
discrete mother wavelets derived from five families including Haar, Daubechies, Symlets, 
Coiflets and the discrete approximation of Meyer. Drought is forecasted by the best model 
for various lead times varying from 1-month lead time to the maximum forecast lead time. 
The obtained results were evaluated using three performance criteria (NSE, RMSE and 
MAE).

The results show that WANN models with discrete approximation of Meyer have the 
best forecast performance. The maximum forecast lead times are 36-month for SPI-12, 
18-month for SPI-6 and 7- month for the SPI-3. Drought forecasting for long lead times 
have significant values in drought risk and water resources management.

Keywords Algerois catchment · Drought · Forecasting · Neural networks · SPI · 
Wavelet transforms
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ANN  Artificial Neural Networks
WANN  Wavelet Artificial Neural Networks
SPI  Standard Precipitation Index
NSE  Nash-Sutcliffe Efficiency coefficient
RMSE  Root Mean Squared Error
MAE  Mean Absolute Error
ACF  Autocorrelation function
PACF  Partial autocorrelation function
WMO  The World Meteorological Organization
CWT  Continuous wavelet transform
DWT  Discrete Wavelet Transform
db  Daubechies wavelets
Sym  Symlets wavelets
Coif  Coiflets wavelets
dmey  Discrete approximation of Meyer

1 Introduction

Drought is a natural part of the climate that occurs in all types of climate regimes (Wilhite 
2000). As one of the severe and frequently occurring natural hazards, drought has negative 
impacts on human life in many regions around the word (Roushangar et al. 2022a). Drought-
related events have been increasing exponentially over the last three decades in the Mediter-
ranean regions. Algeria, like the rest of the Mediterranean countries, has been subjected to 
severe and long-lasting droughts over the last two decades especially the north-western part 
has been affected more, which is marked by a severe precipitation deficit (Medejerab and 
Henia 2011).

Forecasting future dry spells is crucial for long-term water management solutions and 
the risk assessment of drought occurrence (Bordi and Sutera 2007). Drought forecasting 
is also crucial in reducing the effects on water resources (Kim and Valdés 2003).Many 
drought indices have been developed during the last decades for drought analysis (Tigkas 
et al. 2019).

The Standardised Precipitation Index (SPI) is one of the most commonly used indices in 
the world (Mishra et al. 2007; Tigkas et al. 2019). The World Meteorological Organization 
(WMO) proposed the SPI as the main meteorological drought index that countries should 
utilize to follow and monitor drought conditions (Hayes, 2011). The SPI is a powerful, flex-
ible index that is simple to calculate (WMO, 2012).

Drought forecasting approaches can range from the simplest to the most advanced mod-
els. Time series stochastic models have been employed in the past (Mishra and Desai 2005; 
Modarres 2007; Fernández et al. 2009; Han et al. 2010, 2013; Barua et al. 2012; Belayneh 
et al. 2014; Djerbouai and Souag-Gamane 2016; Karthika et al. 2017; Aghelpour et al. 
2021). However, time series models have a limited capabilities to represent non-linear and 
non-stationary time series (Kim and Valdés 2003; Mishra and Desai 2006). To get around 
this limitation, hydrologists had to consider different methods to forecast non-stationary and 
non-linear times series.

1 3

1402



Comparative Study of Different Discrete Wavelet Based Neural Network…

In recent decades, due to their flexibility in modelling non-linear time series artificial 
neural networks (ANN) have shown considerable promise in water engineering problems 
and hydrological modelling (e.g. Mishra and Desai 2006; Morid et al. 2007; Marj and Mei-
jerink 2011; Belayneh and Adamowski 2012; Shirmohammadi et al. 2013; Belayneh et 
al. 2014; Hosseini-Moghari and Araghinejad 2015; Djerbouai and Souag-Gamane 2016; 
Kousari et al. 2017; Anshuka et al. 2019; Drisya et al. 2021; Roushangar et al. 2022a;). If 
the inputs are not pre-processed, they are incapable of dealing with non-stationary data. 
Wavelet-transformed time series improves model accuracy by taking into account important 
information at multiple resolution levels. Various researchers have examined the ability 
of hybrid wavelet transforms and ANN models over the last decade. (e.g. Kim and Valdès 
2003; Özger et al. 2012; Belayneh and Adamowski 2012; Belayneh et al. 2014; Jalalkamali 
et al. 2015; Djerbouai and Souag-Gamane 2016; Prasad et al. 2017 ; Soh et al. 2018; Ans-
huka at al. 2019; Zhang zt al. 2020; Munir et al. 2020 ; Drisya et al. 2021; Roushangar et al. 
2022b; Wang et al., 2022; Piri at al., 2022). Coupled wavelet transform with artificial intelli-
gence (AI) models, is discussed by Nourani et al. (2014). Wavelet transformation requires a 
mother wavelet function to perform transformation. Furthermore, the choice of an appropri-
ate mother wavelet is very important for hybrid wavelet-based models (Shoaib et al. 2014).

In the present work we are interested to study the effect of three important parameters 
concerning hybrid wavelet neural network (WANN) models for long term drought fore-
casting. These parameters are: (1) The appropriate mother wavelet choice; (2) vanishing 
moment number; and (3) the optimum level of decomposition. It should be noted that this is 
the first study that focuses on the effect of wavelet parameters in the performance of WANN 
drought forecasting models in Algeria.

Drought was forecasted for various lead times varying from 1-month to the maximum 
forecast lead time in the Algerois catchment by taking into account the SPI as a drought 
measurement indicator.

2 Methodology

2.1 The Standardized Precipitation Index (SPI)

The SPI was developed by McKee et al. (1993) and it quantifies drought also in the present 
study due to the following advantages.

Its calculation needs only precipitation data; it can be calculated for any time scale; 
and the frequency of extreme and severe droughts is consistent (Hayes et al. 1999; WMO, 
2012). Even during the winter season, the SPI is just as effective and does not depnd on top-
ographical features. The SPI computation is based on the long-term monthly precipitation 
record (McKee et al. 1993) fitted to gamma distribution, transformed thereafter to the stan-
dard normal random variable Z, which is the value of the SPI (Edwards and McKee 1997).

2.2 Artificial Neural Networks (ANN)

ANNs are nonlinear models that can learn patterns from data in adaptive manner. The feed-
forward model is the most frequently utilized for time series forecasting among the various 
types of ANN models. It is constituted of many layers of neurons, where external informa-
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tion is received by the input layer while output layer consists of forecast results. The input 
and output layers are separated by.

one or more hidden layers as in the proposed ANN model in Fig. 1.
ANN application basically consists of three steps: network architecture definition, net-

work training, and network testing. One of the most commonly-used algorithms for ANN 
training is the Levenberg Marquardt (LM) back propagation algorithm (Noori et al. 2011), 
which is also applied in the present work.

2.3 Wavelet Artificial Neural Networks (WANN)

WANN is an abbreviation for the combination of wavelet decomposition and ANN. Inputs 
are decomposed by wavelet into approximations and details components.

2.3.1 Wavelet Decomposition

Wavelet decomposition is suitable to study non-stationary times series. It can reveal aspects 
of data such as trends, breakdown points, and discontinuities that other tools may overlook. 
(Kim and Valdes 2003).

For a time series, f(t), the continuous wavelet transform (CWT) at time t is defined by: 
(Shoaib et al. 2014) as follows.

 
Wa,b (t) =

∫ +∞

−∞
f (t)

1√
a
ψ

∗ (
t − b

a

)
dt  (1)

where :
*: complex conjugate of the function.
a: dilation (scale) parameter.
b: translation (position) parameter.
CWT is characterized by redundancy and as a substitute Discrete Wavelet Transform 

(DWT) is used (Maheswaran and Khosa 2012), the expression of which is given below.

Fig. 1 The proposed Feed-forward Neural network
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W (a, b)D = 2

−j/
2
∫ j=J

j=1
ψ∗

(
2
−j/

2 − k

)
f (t) dt  (2)

where, k, j: integers that control the wavelet translation and dilation. The a’ trous algorithm 
is used. Corresponding to the original series x(t), smoother versions of x(t) are defined at 
different scales as given by the following equations.

 c0 (t) = x (t) (3)

 
cj (t) =

∞∑

l=−∞

h (l) cj

(
t + 2j−1l

)
 (4)

where j is the level of decomposition and h(l) is a low pass filter with compact support.
The detail component of x(t) at level i is defined as,

 dj (t) = cj−1 (t) − cj (t)  (5)

The set {d1, d2, . . . , dp, cp}  in this last expression represents the additive wavelet decom-
positions of the data up to resolution level p and cp is the residual component.

The choice of the best mother wavelet and decomposition level are of utmost importance 
(Nourani et al. 2014). Many of hydrological studies regarding the performance of different 
mother wavelets have concluded that the appropriate mother wavelet is ideally determined 
by a trial-and-error process (Maheswaran and Khosa 2012; Nalley et al. 2012; Nourani et 
al. 2011; Sang 2012).

2.3.2 Selection of Wavelet Families

The best mother wavelet function choice is difficult and influenced by the time series at hand 
as well as some of properties of the wavelet functions (Maheswaran and Khosa 2012). The 
present study compares the effects of 39 selected wavelet functions on the performance of 
hybrid Wavelet-ANN (WANN) models. Below, is an overview of the used wavelet families, 
and more details can be found in many standard text books such Daubechies (1992), Addi-
son (2002) and Walker (2008).

Haar Wavelet It was proposed by Haar (1910) as the simplest mother wavelet because it has 
just two scaling coefficients both of which are equal to one, but non-continuous, symmetric 
and have one vanishing moments.

Daubechies Wavelets It has a compact support, highest number of vanishing moments and 
extreme phase. They have minimum phase associative scaling filters and are orthogonal and 
bi-orthogonal. Daubechies wavelets are very good at capturing polynomial behaviour in 
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signals. It is denoted by dbN, where N is the number of vanishing moments (in this study N 
is varied between 2 and 17).

Symmlets Daubechies wavelets are quite symmetric, so it is important to improve symmetry 
while retaining simplicity, Daubechies proposed Symmlets as a modification to her original 
wavelets (also spelled symlets) (Addison 2002). They have Nk/2 − 1 vanishing moments, 
support length Nk-1 and filter length Nk. In this study, we used 16 members of this wavelet 
family, namely the Sym2, Sym3, …, Sym17.

Coi flets: Coiflets are another wavelet family found by Daubechies. They are also nearly 
symmetrical and have vanishing moments. It has only five members from Coif1 with 1 to 
Coif5 with 5.

Meyer Wavelet Constructed by Meyer (1985), It’s the second orthogonal wavelet. To define 
the Meyer wavelet function and the corresponding scaling functions, the frequency domain 
is used (Meyer 1992).

2.3.3 Hybrid wavelet-ANN Model Development

WANN models are constructed taking into account the discrete wavelets of SPI time series 
as inputs to the ANN and the original SPI time series as outputs, which lead to the hybrid 
Wavelet-ANN models (WANN). The 39 selected mother wavelet functions are used to divide 
the original SPI series into approximations and details in order to investigate the effect of 
DWT pre-processing on the effectiveness of ANN models for long lead time drought fore-
casting. Figure 2 illustrates the proposed WANN model.

2.4 Performance Measures

The following goodness of fit measures were used to evaluate the forecast performance of 
all proposed models.

Nash-Sutcliffe Efficiency Coefficient (NSE) It is sensitive to additive and proportional differ-
ences between forecasts and observations (Legates and McCabe 1999).

Fig. 2 Schematic diagram of the proposed WANN model
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NSE = 1 − ΣN

i=1(SPIi − S
�

PIi)
2

ΣN
i=1(SPIi − SPI)

2  (6)

Root Mean Squared Error and Mean Absolute Error They describe the difference in 
observed and forecasted values as well accepted absolute indicators for continuous vari-
ables (Legates and McCabe 1999). They are given by.

 
RMSE =

√
∑N

i=1 (SPIi − ŜP Ii)
2

N
 (7)

 
MAE =

∑N
i=1

∣∣∣SPIi − ŜP Ii

∣∣∣
N

 (8)

2.5 Study area and Database

The study area is located in the western part of the Algerois watershed (Fig. 3) it covers 
5,225.3 km2. It has a Mediterranean climate with average annual rainfall of 600 to 800 mm 
in the coastal regions and 500 to 1,000 mm in the interior.

Fig. 3 Location of rain gauge stations used in the study
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In order to estimate the mean areal rainfall, the Thiessen polygon method is used for 
historical monthly rainfall data from the year 1936 to 2008 available at 17 rainfall gauging 
stations.

3 Results and Discussions

Theissen polygon method estimates average areal precipitation, which was used to calculate 
SPI time series. The SPI series of three-, six- and twelve-month time scales are shown in 
Fig. 4.

3.1 ANN Models

Optimal ANN models for SPI series are identified by trial-and-error approach. The number 
of tested input neurons ranged from 1 to 20. The number of hidden nodes was gradually 
increased from 1 to 20 for each input layer dimension. The combination with the best per-
formance measures is selected. The early stopping technique is used in this work to prevent 
overfitting. NSE, RMSE and MAE for each combination are calculated.

NSE for different ANN combination for SPI-12, is presented in Fig. 5. It has been noticed 
that there is no improvement from 13 input neurons onwards. So, ANN model with 13 and 

Fig. 4 SPIs time series
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4 neurons in the input and the hidden layers respectively is are chosen as a drought forecast-
ing model for the SPI-12. Similarly, the optimal models for the other SPIs series results are 
given in Table 1.

In this study, the autocorrelation function (ACF) and the partial autocorrelation function 
(PACF) are employed to confirm the number of inputs corresponding to different anteced-
ents values.

Figure 6 presents these functions for SPI-12. It is clear that the ACF has a peak at lag 12. 
As a result, twelve antecedent SPI values contain the most information for predicting future 
droughts, which are used as input for ANN models. The same results are obtained for 3- and 
6- month SPI, which ACF functions exhibit peaks at lags 3 and 6, respectively.

Lead- time (month) NSE RMSE MAE ANN Structure
(a) SPI-3

1 0.4499 0.7255 0.579 4-10-1
2 0.1619 0.8905 0.6959 4-11-1
3 -0.0028 0.9754 0.7548 4-13-1
4 -0.008 0.9787 0.76 4-15-1
5 -0.0094 0.9818 0.7657 4-18-1
6 -0.0343 0.9906 0.7766 4-20-1

(b) SPI-6
1 0.7056 0.5111 0.4043 7-4-1
2 0.4706 0.6873 0.5479 7-5-1
3 0.2831 0.7976 0.6642 7-7-1
4 0.1241 0.8817 0.7048 7-8-1
5 0.0240 0.9307 0.7209 7-10-1
6 -0.0959 0.9888 0.7578 7-11-1

(c) SPI-12
1 0.8608 0.3252 0.2422 13-4-1
2 0.7040 0.4743 0.3590 13-4-1
3 0.5805 0.5646 0.4112 13-5-1
4 0.4200 0.6639 0.5007 13-6-1
5 0.3106 0.7238 0.5749 13-6-1
6 0.2095 0.7751 0.6118 13-7-1

Table 1 ANN forecasts 

Fig. 5 NSE Evolution for different input number
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The best ANN model structures are used to forecast droughts at different lead times and 
the results are shown in Table 1.

3.2 WANN Models

The purpose of this research is to look into the effects of different wavelet families and 
the decomposition level on the performance of WANN models. For this reason, a two-step 
procedure applies as follows.

i. The selection for each wavelet family of the appropriate vanishing moment number, 
and the corresponding optimum level of decomposition level for all SPIs time scales are 
used for all forecast lead time.

ii. Comparison between the efficient wavelet function selections among the 39 are used as 
mother wavelet.

For this reason, the performance of hybrid WANN models is examined for the 39 selected 
wavelet function derived from 5 wavelet families, including Haar(db1), Daubechies (from 
db2 to db17), Symlets (from Sym2 to Sym17), Coiflets (from Coif1 to coif5) and the Dis-
crete approximation of Meyer (dmey).

SPI time series is decomposed between 1 and 6 levels using the 39 selected discrete 
wavelet functions to determine the appropriate wavelet function and the optimum decom-
position level.

Once SPI time series are successfully decomposed, these coefficients of details and 
approximations are used as input to ANN component of the hybrid model WANN to obtain 
the output prediction. Following the decomposition of SPI time series, the obtained coef-

Fig. 6 SPI-12 series ACF and PACF
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ficients of details and approximations are considered as input to the ANN model to obtain 
the output prediction. Optimal WANN architecture is reached by trial-and-error approach.

As we cannot display all results in this paper, we will just present some illustrative result 
of the SPI-3 series for1-month lead forecast.

Starting with Daubechies wavelet family, to determine the best wavelet mother function, 
the vanishing moments number is varied from 1 (Haar) to 17. For each vanishing moment 
number, the SPI time series is decomposed up to 6th level in order to determine the optimum 
decomposition level.

The effect of the vanishing moment number and the decomposition level in db wavelet 
family is shown in Fig. 7, which shows that db15 (15 vanishing moment) is the most well 
adapted function at the fourth decomposition level.

From the results, it can be deduced that the WANN model with the db15 wavelet func-
tion is better than the other 17 models. Daubechies wavelets being tested with NSE equal to 
0.9745 and lowest RMSE and MAE values are 0.1563, 0.1224, respectively.

The same strategy was adopted for Symlets and Coiflets wavelet families. For Symlets, 
to determine the best wavelet mother function the vanishing moments number is varied 
from 2 to 17. For each vanishing moment number, the SPI time series are decomposed up 
to 6th level in order to determine the optimum level of decomposition. The forecast results 
indicate that Sym15 is the best Symlets function at the fourth decomposition level. The 
results are shown in Table 2.

For the Coiflets family, the forecast results indicate that Coif5 is the best Coiflets Symlets 
function at the second decomposition level. The results are given also in Table 2.

Fig. 7 Effect of vanishing moments and decomposition level in db wavelet family on NSE and RMSE 
(SPI-3, 1-month lead time)
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Finally, the discrete approximation of Meyer (dmey) wavelet family has one mother func-
tion. In this case only, the decomposition level is varied from 1 to 6 in order to determine 
the optimum decomposition level. The forecast results of SPI-3, presented in Table 3, show 
that discrete Meyer (dmey) wavelet mother with an optimum decomposition level of 4 have 
the best performance with NSE equal to 0.9758, RMSE and MAE equal to 0.1523,0.1224, 
respectively.

For the other lead times, the vanishing moments number is fixed based on the 1-month 
lead time forecasts, but the decomposition level is varied from 1 to 6. The results are pre-
sented in Table 2.

Following the same approach for SPI-6 and SPI-12 series, the results show that the best 
wavelet mother functions for SPI-6 are db13, Sym13, Coif5 and dmey, and for SPI-12 series 
the best wavelet mother functions are db13, Sym14, Coif5 and dmey.

Table 2 Decomposition level effect on discrete Meyer (dmey) performance (SPI-3, 1-month lead time 
forecast)
Mother wavelet Forecasting 

Measures
Decomposition levels Opti-

mum 
level

1 2 3 4 5 6

NSE 0.9307 0.9749 0.9755 0.9758 0.9754 0.9753
Dmey RMSE 0.2575 0.1549 0.1532 0.1523 0.1535 0.1538 4

MAE 0.1987 0.1247 0.1227 0.1224 0.1217 0.1230

Table 3 WANN forecasts for SPI-3
Selected Mother
wavelet

Lead- time 
(month)

Optimum 
decomposition 
level

NSE RMSE MAE WANN 
Struc-
ture

Discrete Meyer 
(dmey)

1 4 0.9758 0.1523 0.1224 20-2-1
3 3 0.8438 0.3866 0.3081 16-2-1
6 4 0.5904 0.6260 0.5012 20-2-1
7 4 0.5375 0.6653 0.5260 20-3-1
8 4 0.3932 0.7620 0.5863 20-3-1

Daubechies(db15) 1 4 0.9745 0.1563 0.1262 20-2-1
3 4 0.8376 0.3970 0.3064 20-2-1
6 4 0.6920 0.5429 0.4292 20-2-1
7 4 0.6097 0.6111 0.4938 20-3-1
8 4 0.4852 0.7019 0.5614 20-3-1

Symlets(Sym15) 1 3 0.9693 0.1715 0.1276 16-2-1
3 4 0.8260 0.4080 0.3139 20-2-1
6 4 0.6918 0.5400 0.4282 20-2-1
7 4 0.5787 0.6349 0.5098 20-3-1
8 4 0.4611 0.7181 0.5844 20-3-1

Coiflets(Coif5) 1 2 0.9538 0.2102 0.1657 12-2-1
3 4 0.7950 0.4429 0.3569 20-2-1
6 4 0.5615 0.6441 0.4882 20-2-1
7 4 0.4530 0.7194 0.5492 20-3-1
8 4 0.3103 0.8078 0.6108 20-3-1
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3.3 Evaluation of Models’ Performance

The purpose of this research is to look into the effects of various wavelets families and the 
decomposition level on the performance of the proposed drought forecasting models for 
long lead time. For this purpose, taking the optimal ANN and WANN models, time series 
of the SPI for the three-time scales (3-, 6- and 12-month) are forecasted for the maximum 
lead time (we consider accepted efficiency for NSE ≥ 0.50). The results are presented in 
Tables 3, 4 and 5.

The results show that, for ANN and WANN models, the forecast accuracy is lower in 
SPI-3, but the best forecasts are those of SPI-12, which is caused by the high temporal 
rainfall variability in SPI-3, whereas this variability is reduced in the other scales, due to the 
fact that more monthly data is summed. Hence, the forecast accuracy is proportional to the 
SPI time scale. When the forecast lead time is risen, an important increase appears in the 
RMSE and a significant decrease in the NSE occurs for all models, which is very frequent 
in forecasting models.

The results of the ANN without wavelet transformation are shown in Table 1. For 
1-month lead forecast, SPI-3, SPI-6 and SPI-12 results are satisfactory. For 2- and 3-months 
lead times, only SPI-12 forecasts are acceptable. The drought’s evolution cannot be repre-
sented by ANN.

For the WANN models, as indicated earlier for 1-month lead time forecast, the three SPI 
time series are decomposed between 1 and 6 levels using the 39 selected discrete wavelet 
function, and thus a total of 702 WANN models are analyzed. Thereafter, for the other lead 
times only the decomposition level is varied up 6th level for the four selected wavelet func-
tions, which add to 288 models to the latter, so a total of 990 WANN models are analysed 
in the present study. Figure 8 shows an example of the evolution of NSE and RMSE for 
different lead time forecast for the SPI-12.

The maximum decomposition level of discrete wavelet transforms is calclulated gener-
ally using the following equation : L = int [log (N)] , where L is the level and N the total 
data number. On the basis of this equation with N equal to 874, 871 and 865 for the the SPI-
3, SPI-6 and SPI-12 respectively correspond to L value is 2.

However, in this study it is found that the optimum decomposition level depends on three 
parameters, namely, the wavelet function; for example, for SPI-3 series (1-month lead time 
forecast) the optimum decomposition level for the wavelet mother dmey, db15, Sym15 and 
Coif5, equal to 4, 4, 3 and 2 respectively. On the forecast lead time, as it is indicated by the 

Fig. 8 Evolution of NSE and RMSE over different forecast lead time for SPI-12

 

1 3

1413



D. Salim et al.

results of SPI-12 series, for example for dmey the optimum decomposition level equal to 2 
and 5 for the 1-month and the 36-month lead forecasts, respectively. Finally, on time series 
complexity, for example for 1-month lead forecast using dmey wavelet function, the 2nd 
decomposition level is sufficient to capture the variation of the SPI-12 series, while, for the 
SPI-3 decomposition up to 4th level is needed. These results confirm the limitation of the 
formula evoked by Nourani et al. (2011). Stating that this formula is based on fully autore-
gressive times series, it only takes into account the length of the time series and ignores 
seasonal effects.

The results of the best selected WANN models with maximum lead time forecasts are 
displayed in Tables 2, 4 and 5. The use of wavelets transforms gives more accurate forecast-
ing models. Compared to ANN models, WANN results show a higher NSE values, but lower 
RMSE and MAE values.

Furthermore, as compared to ANN models, the number of hidden nodes decreases, this is 
due to the fact that wavelet decomposition reduces time series complexity.

For the SPI-3 series, from Table 2, it can be shown that maximum forecast lead time is 
7-months, which is obtained with all the selected mother wavelet except the coif5. The best 
wavelet mother for 1-month and 3-month lead time are the dmey followed by db15 and 
sym15, which provide comparable results, and then the Coif5. For 6-month and 7-month 
lead time forecasts appear as the best results of db15 and sym15 is followed by dmey, and 
then the Coif5, which shows the poor forecast results. For the maximum forecast lead time 
(7-month) the best results were obtained by db15 with NSE equal to 0.6097 and lowest 
RMSE and MAE equal to 0.6111, 0.4938, respectively. SPI-3 forecasts for 1-month and 
7-month lead time are shown in Fig. 9 and Fig. 10.

Table 4 WANN forecasts for SPI-6
Selected Mother 
wavelet

Lead- time 
(month)

Optimum 
decomposition 
level

NSE RMSE MAE WANN 
Struc-
ture

Discrete Meyer(dmey) 1 2 0.9967 0.0543 0.0406 21-2-1
3 3 0.9462 0.2185 0.1644 28-2-1
6 3 0.8809 0.3252 0.2664 28-2-1

12 5 0.6742 0.5377 0.4239 42-2-1
18 5 0.5029 0.6642 0.5076 42-2-1

Daubechies(db13) 1 4 0.9948 0.0676 0.0522 35-2-1
3 4 0.9118 0.2797 0.2184 35-2-1
6 4 0.8166 0.4034 0.3152 35-2-1

12 5 0.5631 0.6227 0.4754 42-2-1
18 5 0.2800 0.7994 0.6174 42-2-1

Symlets(db13) 1 4 0.9945 0.0700 0.0529 35-2-1
3 3 0.9129 0.2780 0.2140 28-2-1
6 4 0.8588 0.3540 0.2778 35-2-1

12 5 0.6313 0.5720 0.4422 42-2-1
18 5 0.3986 0.7305 0.5594 42-2-1

Coiflets(Coif5) 1 4 0.9937 0.0747 0.0570 35-2-1
3 3 0.8968 0.3026 0.2364 28-2-1
6 4 0.8128 0.4076 0.3225 35-2-1

12 5 0.5019 0.6649 0.5193 42-2-1
18 5 0.1359 0.8757 0.6826 42-2-1
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For the SPI-6, it has been found that the performance of the dmey is the best for all 
forecast lead times, followed by db13 and sym13, which have closer results, and then the 
Coif5. The maximum forecast lead time is 18-months obtained only by the dmey mother 
wavelet with NSE equal to 0.5029 and lowest RMSE and MAE equal to 0.6642, 0.5076, 
respectively. SPI-6 for 18-months lead forecasts is shown in Fig. 11.

The performance of the dmey for the SPI-12, has been found as the best for all forecast 
lead times, followed by db13 and sym14, which have closer results, and then the Coif5. The 
maximum forecast lead time is 36-months obtained only by the dmey mother wavelet with 
NSE equal to 0.5916 and lowest RMSE and MAE equal to 0.5571, 0.4511, respectively. 

Table 5 WANN models forecasts for SPI-12
Selected Mother 
wavelet

Lead- time 
(month)

Optimum 
decomposition 
level

NSE RMSE MAE WANN 
Struc-
ture

Discrete Meyer(dmey) 1 2 0.9999 0.0080 0.0062 39-2-1
6 4 0.9767 0.1330 0.1009 65-2-1

12 4 0.9344 0.2232 0.1745 65-2-1
24 4 0.9276 0.2346 0.1808 65-2-1
36 5 0.5916 0.5571 0.4511 78-2-1

Daubechies(db13) 1 2 0.9994 0.0215 0.0167 39-2-1
6 4 0.9607 0.1732 0.1377 65-2-1

12 5 0.8586 0.3278 0.2524 78-2-1
24 5 0.6559 0.5113 0.3925 78-2-1
36 5 0.4548 0.6437 0.5035 78-2-1

Symlets(Sym14) 1 3 0.9994 0.0222 0.0173 52-2-1
6 4 0.9537 0.1876 0.1391 65-2-1

12 5 0.8639 0.3216 0.2426 78-2-1
24 5 0.6105 0.5440 0.4345 78-2-1
36 5 0.4142 0.6672 0.5306 78-2-1

Coiflets(Coif5) 1 4 0.9983 0.0356 0.0275 65-2-1
6 4 0.9407 0.2127 0.1693 65-2-1

12 4 0.8588 0.3276 0.2528 65-2-1
24 5 0.5292 0.5981 0.4534 78-2-1
36 5 0.2161 0.7718 0.6123 78-2-1

Fig. 9 SPI-3 forecasts for 1-months lead time
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SPI-12 for 36-month lead forecasts is shown in Fig. 12. The figure shows that there is no 
significant overestimation or underestimating, and the points are near to the trend line.

From the results, it can be seen that the WANN models are strongly performed than the 
ANN models. Also, as the forecast lead time increased, the forecast performance for all 
models decreased.

Daubechies and Symlets wavelet families have similar vanishing moments number and 
optimum decomposition levels, this is due to fact that their constructions are very similar.

SPI times series are complex, for this reason a higher vanishing moments number is 
needed to capture information from the SPI time series. This can be explained by the fact 
that more vanishing moments indicate that scaling function can accurately represent more 
complicated signals.

4 Conclusion

This study searches for the effect of different mother wavelets and the decomposition level 
on the performance of the hybrid discrete WANN drought forecasting models.

To quantify drought the standard precipitation index (SPI) is selected as a drought indictor 
the in the Algerois catchement in North Algeria. The SPI was chosen, due to its multiple 

Fig. 11 SPI-6 forecasts for 18-months lead time (maximum forecast lead time)

 

Fig. 10 SPI-3 forecasts for 7-months lead time (maximum forecast lead time)
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advantages compared to other drought indices. Using SPI leads to most sorts of drought 
episodes quantification. The SPI time scales represent how drought affects the availability of 
various water resources. For this reason SPI-3 is used, which reflects short and medium term 
moisture conditions, SPI-6 can be related with anomalous stream flows and reservoir levels, 
and finally, SPI-12 provides reflection of long-term rainfall patterns and they are usually tied 
to groundwater levels, stream flows and reservoir levels (WMO, 2012).

The best models are employed forecast droughts for various lead times varying from 
1-month to the maximum forecast lead time possible. Comparison and evaluation of fore-
casting models are based on best performance measures.

Wavelet decomposition improves ANN model performance by taking useful information 
at multiple resolution levels. It also minimizes the time series complexity, consequently the 
number of hidden nodes. The WANN models with Meyer discrete approximation have the 
best forecast performance.

The optimum decomposition level depends on three parameters, which are the wavelet 
function, the time series complexity and the forecast lead time. Also, the vanishing moment 
number depends on the time series complexity.

The maximum forecast lead times reached (we consider accepted efficiency for 
NSE ≥ 0.50) are 36-month for SPI-12, 18-month for SPI-6 and 7- month for the SPI-3.

The developed WANN models can be used in other Algerian basins to develop effec-
tive water resources management and monitoring. This study focused on the effect of the 
wavelet transform on the performance of hybrid wavelet neural network models. For future 
studies, it is recommended to evaluate the effect of the wavelet transform on the perfor-
mance of other hybrid wavelet artificial intelligence-based models. It is also recommended 
to investigate this approach in different climatic regions.
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