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Abstract- In this paper, a novel field-oriented induction motor 
drive using backstepping control design is presented. 
Backstepping control is proposed for replacing the existing PI 
controller to obtain high performance motion control systems, 
for the speed, flux and currents control loops. Stability 
analysis based on Lyapunov theory is also performed to 
guarantee the convergence of the speed tracking error from all 
possible initials conditions. Also, the computer simulations 
confirm that the proposed backstepping control scheme offers 
improved performance in terms of the trajectory tracking 
ability to time-varying reference input and robustness against 
parameters variation. 
 
Keywords- Induction motor, field-oriented control, 
Backstepping control, Lyapunov theory. 
 

NOMENCLATURE 
 

s, r  Stator and rotor subscripts  
d, q  Direct and quadrate Park subscripts  
v, i, φ  Voltage/ Current/ Flux variables 

rs RR ,   Stator, rotor resistance 

rs LL ,   Stator, rotor inductance 
M  Mutual magnetizing inductance 
σ  Total leakage factor  
ωs  Stator frequency 
ωr  Slip frequency  
Ω  Rotor speed 
J  Inertia 
f  Friction coefficient 
p  Pole pair number 

LT   Load torque 
IM  Induction Motor 
 

I . INTRODUCTION 
 

NDUCTION motor drives, controlled by field oriented 
technique, have been widely used in industrial 
applications because their low cost, high reliability, 

power efficiency and easy maintenance. Induction motors 
are difficult to control for several reasons: (1) their 
dynamics are intrinsically non-linear and multivariable, (2) 
not all of the state variables and not all of the outputs to be 
controlled may be available for feedback; (3) there are 
critical parameters (for instance, load torque, stator and 
rotor resistances) which may considerably vary during 

operations. The concept of field orientation can be viewed 
as a nonlinear feedback transformation that achieves 
torque-flux decoupling technique [1]. More recently, 
various variations and improvements have been made for 
this control [2-4], which is based on a PI controller. In this 
approach, PI controllers are used in both the speed and 
inner flux and currents control loops. In many motion 
control applications, the PI controller works well and 
presents certain acceptable performance. However, when 
the system parameter uncertainties and mismatch become 
significant due to load disturbances, it is difficult to achieve 
satisfactory performance based on the classical PI scheme.  
On the other hand, the PI controller strategy does not 
consider the cross-relation between the outer and inner 
control loops, which essentially limits its performance. 
The backstepping algorithm, which is used to replace the PI 
controller, presents very good position tracking response as 
well as rejection to load disturbance. In the past decade, 
research about backstepping control has been increased    
[5-16]. The backstepping theory is a systematic and 
recursive design methodology for nonlinear feedback 
control. In many cases, the feedback linearization method 
using geometric approach is only valid in some local region 
and with a disturbance-free setting. The backstepping 
design alleviates some of these limitations [5]. Moreover, 
the backstepping design offers a choice of design tools for 
accommodation of uncertainties and nonlinearities and can 
avoid wasteful cancellations. In addition, the backstepping 
control approach is capable of keeping almost all the 
robustness properties [6], [8-10]. 
In this paper, we propose an approach that combines field 
orientation principle and backstepping design. The idea of 
backstepping design is to select recursively some 
appropriate functions of state variables, in our case the 
speed and flux, as pseudo-control inputs for lower 
dimension subsystems of the overall system. When the 
procedure terminates, a feedback design for the true control 
input results which achieves the original design objective 
by virtual of a final Lyapunov function, which is formed by 
summing up the Lyapunov functions associated with each 
individual design stage. The paper is organized as follows. 
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Section 2 gives the induction motor model in field-oriented 
control. Then, the backstepping control design with 
Lyapunov theory is shown in section 3. The simulation 
results presented in section 4 for an induction motor verifies 
the validity of the proposed control. Finally, some 
conclusions are given in section 5. 
 

II. INDUCTION MOTOR MODEL 
The dynamic model of IM in ),( βα  stationary reference 
frame, which includes both the electrical and mechanical 
dynamics, is a fifth order system of nonlinear equations and 
can be described by the following differential equations. 
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The above model for the induction motor is obviously a 
highly coupled multivariable nonlinear system. It is very 
difficult to control such a system directly based on this 
model. According to the vector control principle, the q-axis 
flux rqφ  is always forced to be zero in order to orient all 
the rotor flux in the d-axis and a decoupled system for 
linear torque control is achieved. This control technique 
involves a transformation of the representation for the state 
vector in the fixed stator frame ),( βα  into that in a frame 

),( qd   
 
The stator field angle sθ  is estimated as: 
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Transformation between the two different frames is: 
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Where x  can be used for current i , flux φ  and voltage v . 
Using equation (2), we obtain: 
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Therefore the equations (3) become: 
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Using this transformation, the state equations (1) can be 
rewritten in the new state variables as: 
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Using the decoupled control approaches, the dynamic 
behavior of the induction motor is rather similar to that of a 
separately excited DC motor. However, the decoupled 
relationship is obtained by means of a proper selection as 
state co-ordinates, under the hypothesis that the rotor flux is 
kept constant [1], [5] and [10]. Therefore, the rotor speed is 
only asymptotically decoupled from rotor flux, and the 
speed is linearly related to torque current only after the 
rotor flux becomes the steady-state values. So, the 
induction motor system (10) leads a simplified system 
structure with two approximately decoupled subsystems. 
The first one is a subsystem with state vector ),( sqiΩ  and 

control sqV , and the second one with ),( sdd iφ  as states 

and sdV  as control input. Particularly, this structure allows 
as to conveniently applying backstepping design techniques 

(4)



to replace the traditional nonlinear feedback PI control of 
the field oriented control technique for better performance. 
Thus, we will take a different path than the linearzing 
control of the field oriented control technique. The 
subsystem structure will be fully exploited in our control 
design as detailed in the next section. 
 

III. BACKSTEPPING CONTROL 
The backstepping is a systematic and recursive design 
methodology for nonlinear feedback control. The 
backstepping design offers a choice of design tools for 
accommodation of uncertainties and nonlinearities and can 
avoid wasteful cancellations. The idea of backstepping 
design is to select recursively some appropriate functions of 
state variables as pseudo-control inputs for lower dimension 
subsystems of the overall system. Each backstepping stage 
results in a new pseudo-control designs from preceding 
design stages When the procedure terminates, a feedback 
design for the true control input results which achieves the 
original design objective by virtue of a final Lyapunov 
function, which is formed by summing the Lyapunov 
functions associated with each individual design stage    
[14-16]. The backstepping design procedure consists of the 
following three steps. 
 
Step 1 

This first step consists in identifying the errors 1z and 2z  
which respectively represent the error between real speed 
Ω  and reference speed refΩ , as well as between the rotor 

flux module dφ and its reference refφ  
 

dref

ref

z

z

φ−φ=

Ω−Ω=

2

1         (11) 

 
The derivative of (11) is computed as 
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The first Lyapunov candidates 1v  is chosen as 
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So, the derivative of (13) is computed as 
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Thus, the tracking objectives will be satisfied if we choose 
 

( )

( )drref
r

refsd

L
ref

d
refsq

zk
M

i

TzkJi

φτ+φ+
τ

=

μ
+Ω+

μφ
=

&

&

22

11

1)(

1)(
     (15) 

 
Where 1k  and 2k  are positive design constants that 
determine the closed loop dynamics. Then (12) can be 
expressed as 
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Therefore, (14) can be rewritten as  
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So, the control refsqi )(  and refsdi )(  in (15) is 
asymptotically stabilizing. 
 
Step 2 
Define other errors signals between the current and the 
reference currents. 
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With this definition, (12) can be expressed as 
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From (18), the errors dynamics are given by 
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Step 3 
Since the actual control inputs sqsd VV ,  have appeared in 
the above equations, we can go to the final step. Now, we 
define the following Lyapunov function candidate. 
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Taking the time derivative of 2v , we obtain 
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This equation can be rewritten in the following from 
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The choice of 03 >k and 04 >k  can be made such that 

02 <v& . At last, in order to make the derivative of the 
complete Lyapunov function (23) be negative definite, the 
d-axis and q-axis voltage control input is chosen as follows. 
 

( )
( )133

244

)(

)(

δ−+σ=

δ−+σ=

refsqssq

refsdssd

izkLV

zkiLV
&

&
      (24) 

 
Then, (20) can be expressed as 
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To show boundedness of all states, we can rearrange the 
dynamical equations from (19) and (25) as 
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Where A  can be shown to be Hurwitz, this proves the 
boundedness of all the states. 
The block diagram of the proposed backstepping control 
scheme is presented in figure (1). The blocks ‘ sdrefi ’ 

calculation and ‘ sqrefi ’ calculation provide the currents 
references from the rotor flux and speed errors, through the 
equation (15) which represent the fictive control. The 
voltage command based on currents errors are given by the 
two blocks ‘ sdV ’ Calculation and ‘ sqV ’ Calculation which 
are implemented by equations (24). The block 

)( αβ−dq makes the conversion between the synchronous 
rotating and stationary reference frames and is implemented 
by equation (3). So, the calculations blocks replace the 
classical regulators PI in field control induction motor 
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Fig. 1 Block diagram of the proposed Backstepping field oriented control of induction machine 



IV. SIMULATION RESULTS 
 

Digital simulation is implemented to display the 
effectiveness of the backstepping control combined with 
field oriented control of induction motor. The system 
parameters of induction motor are given in Appendix. The 
parameters 321 ,, kkk  and 4k  are chosen as follows: 

400,100,120 321 === kkk  and 304 =k  to satisfy 
convergence conditions.  
Fig. 2 shows the control variable; the stator voltage in 

),( βα frame, the rotor speed and the rotor flux components 
in ),( qd  frame which present the performance of the 
backstepping control in the nominal case. It is observed 
that the rotor speed is very close to the reference one 
without instabilities effects. It should be noted that the 
decoupling between the torque and the flux is quite good. 
 
 
 
 
. 
Fig. 1 present  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

To test the speed evolution of the system, the induction 
motor is accelerate from standstill to nominal speed 
(+157rd/s), afterwards it is decelerate to the inverse rated 
speed (-157rd/s) and accelerate again to low speed (30rd/s). 
The performances are presented in Fig. 3. Note that the 
decoupling control is very quite maintained with the speed 
variation. The speed response is merged with the reference 
one and the flux is very similar to the nominal case. We can 
find also, that the rotor speed error and rotor flux error 
given by 1z  and 2z  converge to zero rapidly. 
Thus, in the nominal case, the control gives good quality 
results. Furthermore, the interest is to verify the robustness 
of the control with respect to parameter variation. With this 
aim, we have tested the control according to stator 
resistance variation.  
The results with resistance variation (+50%) between 1.5s 
and 3.5s are presented in Fig.4. the speed response is 
merged with the nominal case (Fig. 2). The flux is very 
similar to the nominal case, we can remark that the increase 
of the stator resistance amplifies the static error and it 
appears a small static error in steady condition with respect 
to nominal case. 
From these simulation results, it is obvious that the 
proposed backstepping controller is quite successful and 
presents an excellent performance. 
 

V. CONCLUSION 
In this paper, we have proposed a backstepping controller 
for the induction motor with fifth order nonlinear dynamic 
model which is controlled by primary voltage source. Field 
oriented control and backstepping design are combined to 
design the nonlinear model for an induction motor. Step by 
step control designs are given. The simulation results have 
demonstrated the effectiveness of our design scheme and 
have shown that backstepping control can achieve superior 
performance in comparison to the conventional PI 
controller. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 Dynamic responses of backstepping control for IM 

a. Stator voltage b. Zoom of Stator voltage

c. Rotor speed d. Rotor flux 

Fig. 3 Backstepping control of IM with rotor speed variation 

 

a. stator voltage αsV  

d. stator voltage βsV  

b. Rotor speed

e. Rotor flux

c. Error speed 1z  

f. Error flux 2z  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

APPENDIX 
 

Parameters  Rated Values Unity 
Output power  1.08  [kW] 
Stator voltage  220/380  [V] 
Stator frequency  50  [Hz] 
Pole pair number  2 
Stator resistance  8  [Ω]  
Rotor resistance  4  [Ω] 
Mutual inductance  0.42  [H] 
Stator inductance  0.47  [H] 
Rotor inductance  0.42  [H] 
Inertia   0.06  [Kgm2] 
Friction coefficient  0.00  [SI] 
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Fig. 4  Backstepping control of IM with stator resistance variation. 

a. Rotor speed 

c. Rotor flux 

b. Error speed 1z

d. Error flux 2z




