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Abstract
In a semi-arid region of Maadher, central Hodna (Algeria), groundwater is the main source for agricultural and domestic 
purposes. Anthropogenic activities and the presence of climate change’s effects have a significant impact on the region’s 
groundwater quality. This study’s goals were to use water quality indices to evaluate the groundwater’s quality and its suit-
ability for drinking and irrigation, as well as to identify contaminated wells using a geographic information system (GIS) 
and the spatial interpolation techniques of ordinary kriging and inverse distance weighting (IDW). The results reveal that 
all water samples exceeded the World Health Organization’s standards for nitrate ions and had alarming concentrations of 
calcium, chlorine, and sulfate (WHO). According to Piper’s diagram, the groundwater hydrochemical facies is composed 
of the elements sulfate–chloride-nitrate-calcium  (SO4

2−-Cl—NO3
−-Ca2+ water type). The majority of samples fall into the 

poor water category, slightly more than 10% fall into the very poor water category, and less than 10% fall into the good 
to the excellent quality category, per the water quality indices, which classify samples in a similar manner. According to 
irrigation water indices, every sample is suitable for irrigation. Depending on the direction of groundwater flow, the spatial 
distributions of  Ca2+,  Na+,  Mg2+,  SO4

2−, and  Cl− show that their concentrations are high north of the area and relatively 
low south of Maadher village (Fig. 3). Nitrate concentrations are high in the majority of samples, particularly those close 
to the Bousaada wadi. In most samples, particularly those close to the Bousaada wadi, nitrate levels are high. Various water 
quality models were described, and GIS spatial distribution maps were created using standard kriging and inverse distance 
weighting (IDW) techniques through selected semi-variograms predicted against measurements. To determine the origin of 
mineralization and the chemical processes that take place in the aquifer—which include the precipitation and dissolution of 
dolomite, calcite, aragonite, gypsum, anhydrite, and halite—the groundwater saturation index was calculated.

Keywords Groundwater quality · Water quality indices · Kriging method · Inverse distance Weighting (IDW) method · 
Saturation index · Maadher

Introduction

The arid region of Maadher is located south of the salt 
lake “Chott Hodna”, which is almost dry all year round, 
in the Hodna basin. This area has exploitable shallow and 
deep aquifers that can be used for irrigation and domestic 

purposes; as a result, overexploitation has started to develop 
under the influence of climate change (Selmane et al. 2022; 
Boudiaf et al. 2020). The Maadher aquifer serves as the main 
source of water for domestic and agricultural needs in the 
densely populated area of Bousaada, and water is supplied 
by pumped wells. Currently, many countries lack access 
to appropriate groundwater for domestic and irrigation 
purposes (Pazand et al. 2018; Dougha and Hasbaia 2019; 
Belkhiri et al. 2020).

Concerns about the region’s water quality are very high 
because groundwater chemistry is dependent on natural 
geochemical processes like recharge water quality, aqui-
fer lithology, chemical weathering of different rocks, soil 
gases, dissolution or precipitation reactions, ion exchange, 
and residence time of water in aquifers (Selmane et al. 2022; 

Responsible Editor: Xianliang Yi

 * Tahar Selmane 
 tahar.selmane@univ-msila.dz

1 VESDD Laboratory, University of M’sila, 28000, M’sila, 
Algeria

2 Scientific and Technical Research Centre On Physical 
and Chemical Analysis, 42004 Bou-Ismail, Tipaza, Algeria

http://orcid.org/0000-0001-6233-6536
http://crossmark.crossref.org/dialog/?doi=10.1007/s11356-022-24338-1&domain=pdf


 Environmental Science and Pollution Research

1 3

Rashid et al. 2021). Agriculture, urban solid waste dumped 
next to wadi banks, and wastewater discharges are all exam-
ples of human activities that introduce undesirable elements 
(nitrates, pesticides, heavy metals, etc.) into groundwater 
and worsen its quality. Furthermore, it is unknown how sen-
sitive the area’s groundwater is to pollution (Selmane et al. 
2022).

Major water contaminants in the area include a number 
of factors, including an excessive concentration of cations 
 (Ca2+,  Mg2+,  Na+) and anions  (SO4

2−,  Cl−,  HCO3
−,  NO3

−) 
(Selmane et al. 2022; Wen et al. 2013). Piper, Chadha, and 
Gibbs diagrams (Li et al. 2018; Rashid et al. 2020) were 
used to identify the types of hydrochemical waters, to con-
firm drinking water standards, and to provide a method 
for hydro-geochemical processes (mineral dissolution, ion 
exchange reaction, water pollution), it is necessary to ana-
lyze and interpret the quality parameters of the groundwater 
samples taken.

The idea of the quality index will be used to evaluate and 
manage water quality. Water consumption indices, such as 
the water quality index (WQI) and the Canadian Water Qual-
ity Index (CCME-WQI) (El Mountassir et al. 2020; Soltani 
et al. 2020; Li et al. 2015), as well as indices for irrigation 
purposes like TH (total hardness), Na% (percent sodium), 
and SAR (sodium adsorption ratio), will be used to assess 
the suitability of domestic use and irrigation (Ghazaryan 
et al 2020; Aravinthasamy et al. 2020; Chapman 2021). 
Researchers currently use these indices frequently to inter-
pret the general quality of groundwater or surface water 
(Radouane et al. 2021). These indices offer qualitative values 
that are very useful when considering groundwater manage-
ment plans that must be developed by the public authorities.

Numerous quality indices developed globally have been 
given the task of evaluating and controlling water quality. 
Horton created the first quality index in 1965 to illustrate the 
gradation of water quality (Radouane et al. 2021; Ramachan-
dran et al. 2021). Recently, researchers have used it exten-
sively to interpret the overall quality of the water, whether 
it be groundwater or surface water (Radouane et al. 2021; 
Gao et al. 2013).

The unitless water quality index (WQI) is produced by 
a mathematical formula that converts a substantial amount 
of water quality data into a manageable number (Rabeiy 
2018; Bahir et al. 2020). This score illustrates how various 
water quality parameters collectively affect the overall water 
quality (Luo et al. 2018; Radouane et al. 2021). Aggrega-
tion functions, on which WQI models are based, enable the 
analysis of sizable data sets on water quality that change over 
time and space (Uddin et al. 2020a). In general, the index 
has been used to assess whether the particular groundwater 
is fit for human consumption, especially as pollution appears 
and the number of physicochemical parameters to be meas-
ured rises (Mutlu 2019).

The Geographic Information System (GIS) is a strong 
visualization tool employing distribution models to explain 
the spatial variation of groundwater quality parameters 
and indices over the study region (Hussain et al. 2017). It 
helps in controlling and modeling groundwater resources 
as well as identifying appropriate and sensitive ground-
water locations. In order to create a continuous dataset 
for studying spatial distribution, a variety of determinis-
tic and geostatistical interpolation techniques have been 
exploited, including inverse distance weighting (IDW), 
ordinary kriging (Taloor et al. 2020; Shil et al. 2019).

According to Obaid and Mohammed (2020), kriging 
is a highly regarded geostatistical interpolation tech-
nique that relies on the spatial relationships between the 
various measurements close to the prediction location. 
The approach is an estimation technique that identifies 
unknown values using a semivariogram and known values. 
Given its Gaussian assumption, the kriging prediction is 
the best linear unbiased estimator for spatial points (Rata 
et al. 2018; Rashid et al. 2019).

Many researchers have recently been interested in the 
accuracy of various spatial interpolation techniques for 
the prediction of water quality parameters (Javed et al. 
2017; Gunarathna et al. 2016). Since in geostatic ordi-
nary kriging modeling, the main parameters are sponta-
neously simulated with under-adjustments and the error 
predictions are presented by semi-variogram estimation, 
ordinary kriging is considered a modern and superior tech-
nique with more advantages over conventional methods 
(Kumar et al. 2019).

With the help of WQI indices, this study will identify 
the physico-chemical parameters that influence water quality 
and explain how they relate to one another. The limitation of 
areas sensitive to pollution controlled by anthropogenic fac-
tors will be achieved by using ordinary kriging and inverse 
distance weighting (IDW) methods to determine the spatial 
distribution of the main parameters.

These methods will be used for the first time to evalu-
ate the quality of groundwater in the Maadher region of 
Bousaada, mainly because they make it possible to gather 
precise data on the water’s quality and the presence of pol-
lution zones.

Materials and methods

The methodology designed for this research work includes 
four main phases: laboratory analysis, verification of results, 
calculation of water quality indices, and finally the genera-
tion of spatial distribution maps using the ordinary kriging 
method. The methodology adopted for the study is presented 
in the flowchart, see Fig. 1.
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Study area

The Maadher plain is located in the Hodna basin, south of 
the chott, see Fig. 2. This plain of Maadher is geographically 
located at the coordinates of 35°17′13.39″ N, latitude and 
4°16′5.81″ E, longitude with an average altitude of 450 m 
above sea level (Fig. 3c). Morphologically, the study area is 
made up of sand dunes and recent alluvial deposits and iso-
lated rocky hills (Aissaoui 1989). The region is permanently 
subject to wind erosion due to the sandy texture and the lack 
of natural vegetation cover.

Topographically, the study area is approximately 
42,000 ha which is limited in the north and the northeast by 
Chott Hodna and in the south and the southwest by mount 
Kerdada, Maalleg, Tsegna, Mabakhira, and Gharhor.

Climatically, the region has an arid to semi-arid climate, 
which is characterized by a cool and humid season in winter 
and a hot and dry season in summer. Low and poorly dis-
tributed rainfall throughout the year and variable from year 
to year (Boudjemline and Semar 2018), the mean annual 
rainfall is estimated to be 225 mm and the mean monthly 
temperature is 21.9 °C.

For the hydrography of the study area, three wadis are 
considered, i.e., Bousaada, Roumana, and Maîter. The first 
two wadis drain to the depression of the region and the 
third wadi of Maîter drains to the chott, whose waters only 
arrive in times of flood (Fig. 2). All these wadis contribute 
to the recharge of the water table. Since the 1970s, the 
plain of Maadher has become a large agricultural area irri-
gated by the pumping of groundwater. The soils are brown 
and reddish-brown sandy clay which allow them to be cul-
tivated (Selmane et al. 2022). Farmers’ wells have depths 
varying between 30 and 120 m, of which the majority of 
these wells do not respect the criteria of equipment and 

isolation of poor water quality aquifers. The urban areas 
are located in the capital of the commune of Bousaada and 
the Maadher village.

Different geological studies carried out show the fol-
lowing the Triassic appears to the south of the mountains 
of the Hodna basin and the Cretaceous limestone occurs 
to the south and north of the basin (Fig. 3a); the Miocene 
sandstone is transgressed in the Cretaceous. Carbonate 
deposits fill the southern areas of the mountain range; the 
Lower Eocene is composed of gypsum marls, phosphate 
limestone, and flint limestone (Askri et al. 1995). The qua-
ternary accumulates in the center of the basin and rests on 
a marly substrate.

The geometry of the Mio-Plio-Quaternary aquifer 
exceeds 250 m in thickness at the center of the plain (Dere-
kov 1973; Guiraud 1973). Thus, the stratigraphy of the study 
area contains several alternations, often disordered, of clays, 
sandy clays, sandstone or sometimes clayey sands and con-
glomerates at the top. The main aquifers in the study area 
are conglomerates and sandy formations of the continental 
Mio-Pliocene, which communicate with all the permeable 
formations of the Cretaceous, of which the most important 
is the Albian (Guiraud 1970). The latter has a large cistern 
that extends to the west, where it outcrops at higher altitudes, 
where aquifer recharge takes place. The water table supplied 
mainly by infiltration of water wadi and irrigation water. 
The separation layer between the phreatic aquifer and the 
deep aquifer is defective and fissured, so that the aquifers 
can communicate with each other (Abdesselam et al. 2013). 
Since the 1970s, a drop in the groundwater level of more 
than 15 m has been recorded (ANRH 2006).

Groundwater in the water table (Quaternary) has a rela-
tively high salinity compared to that in the deep aquifer. 
The deep aquifer (Pliocene and Miocene) consists of marls 

Fig. 1  Flowchart showing the 
methodology adopted in this 
study
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and intercalated conglomerates (Continental Tertiary); it is 
a renewable aquifer (Derekov 1973; ANRH 2006).

Sampling and collecting

The representative water samples from farmers’ wells were 
collected from the study area for the analysis of major anions 
and cations.

The samples were collected following the standard meth-
ods of sampling protocol (Wilde 2010).

Water samples from 33 wells were taken in clean poly-
ethylene bottles after every 10 to 15 min of pumping, the 
sampling campaign is made from 17 to 20 November 2021. 
Temperature, electrical conductivity (EC), and pH were 
measured in the site by WTW cond 3110. For the analysis 
of major ions, the samples were immediately transferred 
to the University Laboratory. Calcium  (Ca2+), magnesium 
 (Mg2+), bicarbonate  (HCO3

−), and chloride  (Cl−) were ana-
lyzed by volumetric titration. The concentrations of  Ca2+ 
and  Mg2+ were estimated by titrimetry using 0.01 N EDTA, 

and those of  HCO3
− and  Cl− by HCl and  AgNO3, respec-

tively. The sodium  (Na+) and potassium  (K+) concentrations 
were measured using Atomic Absorption Systems Agilent 
technologies 200 series AA and that of the sulfate  (SO4

2−), 
ammonium  (NH4

+), nitrite  (NO2
−), and nitrates  (NO3

−) were 
analyzed calorimetrically with visible UV/vis ODYSSEY 
DR 2500 spectrophotometry. For each analysis of the param-
eters, the measurement is repeated at least twice.

The analyzed water chemistry data was used to determine 
the water quality variables in the study area and to know the 
quality index and to visualize the major ions of quality using 
the kriging method.

Water drinking indices

Water quality index (WQI)

Over the past few decades, the WQI has been considered 
as an effective tool that provides information on the quality 
of water for use by citizens and has been utilized in surface 

Fig. 2  Geographical position of the study area
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and groundwater quality evaluation (El-Zeiny and Elbeih 
2019). The WQI indicates the water quality in terms of an 
index number which represents the overall quality of water 
in relation to specific standards for specific uses. WQI is 
defined as a rating reflecting the overall effect of various 
water quality parameters.

The WQI is considered a rapid and systematic tool for the 
evaluation and classification of water characteristics (El Moun-
tassir et al. 2020). This indicator is calculated by the weighted 
output of selected parameters, and from the result obtained, 
the quality of the water body is classified between poor and 

Fig. 3  Geological map with position of wells, hydrogeological cross-section along B-B’ axis with elevation map of the study area



 Environmental Science and Pollution Research

1 3

Fig. 3  (continued)
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optimal, relating a range of WQI variation (0–100). Several 
techniques can be used to monitor environmental factors.

The weighted arithmetic water quality index was used. It 
can be calculated using eleven measured variables from each 
sample taken of well water from the Maadher plain. The index 
calculation steps are followed, first a weight Wi is assigned 
from 1 to 5 for each of the parameters (pH, EC,  Ca2+,  Mg2+, 
 HCO3

−,  Cl−,  SO4
2−, TH,  NO3

−,  Na+,  K+, and  NO2
−) according 

to their importance in quality. For drinking water, the values 
of Wi are given in Table 1 (Oseke et al. 2021).

Relative weight ( RW ) of the water quality parameters was 
computed using Eq. (1) and n is the number of parameters

The quality rating scale for each parameter was calculated 
by dividing its concentration in each water sample by its 
respective standards according to WHO (2011) and multiply-
ing the results by 100

qi is the quality rating scale. Ci is the concentration of each 
chemical parameter in each sample mg/l. Si is the World Health 
Organization standard for each chemical parameter in mg/l 
according to the guidelines of the WHO (2011).

Then, for deriving the WQI value, the water quality sub-
index ( SIi ) for each parameter is calculated using Eq. (3)

Finally, water quality index WQI is calculated by the use 
water quality sub-index ( SIi)

WQI results are evaluated into five types of water: excellent 
water (WQI < 50), good water (WQI = 50–100), poor water 
(WQI = 100–200), very poor water (WQI = 200–300), and 
water unsuitable for drinking (WQI > 300).

Canadian water quality index (CCME‑WQI)

The CCME-WQI has been developed and modified by the 
Canadian Council of Ministers of the Environment (CCME 
2017). This index combines three measures of variance (scope, 

(1)RWi =
Wi∑n

i=1
Wi

(2)qi =
Ci

S
1

× 100

(3)SIi = RWi × qi

(4)WQI =

n∑
i=1

SIi

frequency, and amplitude) to generate a single dimensionless 
number that represents water quality relative to the objec-
tives and is easily understood by the public (CCME 2017). 
The CCME-WQI models do not require giving weight values 
to estimate the final result. It has been widely used in many 
countries to evaluate and control water quality in various 
uses (Soltani et al. 2020). The CCME-WQI has been used 
for groundwater classification because of its flexibility with 
respect to type, number of water quality variables, application 
period, and type of water (groundwater, lake, river, stream, 
etc.) (Yilma et al. 2018).

CCME-WQI has three factors: scope (F1), frequency (F2), 
and amplitude (F3). These factors are expressed as follows: 
F1 (scope): represents the percentage of variables that do not 
meet their objectives at least once during the period under 
consideration (“failed variables”), relative to the total number 
of variables measured (Eq. 5):

F2 (frequency): represents the percentage of individual tests 
that do not meet the objectives (Eq. 6):

F3 (amplitude): represents the amount by which the failed 
test values do not meet their objectives. F3 is calculated in 
three steps:

Step 1: The number of times by which an individual con-
centration is greater than (or less than, when the objective is 
a minimum) the objective is termed an “excursion” and is 
expressed as follows in Eqs. 7 and 8. When the test value must 
not exceed the objective:

For the cases in which the test value must not fall below 
the objective:

Step 2: The collective amount by which individual tests are 
out of compliance. This is calculated by summing the excur-
sions of individual tests from their objectives and dividing by 
the total number of tests (both those meeting objectives and 

(5)F1 =

(
Number of failed variables

Total number of variables

)
× 100

(6)F2 =
(

Number of failed tests

Total number of variables

)
× 100

(7)Excursioni =

(
Failed test valuei

Objectivej

)
− 1

(8)Excursioni =

(
Objectivej

Failed test valuei

)
− 1

Table 1  Weight and relative 
weight of each parameter used 
for the WQI calculation

Parameter pH EC Ca2+ Mg2+ HCO3
- Cl- SO4

2− TH NO3
- Na+ K+ NO2

- ∑Wi

Wi 4 5 2 2 2 3 5 2 5 2 2 3 37
RWI 0.11 0.14 0.05 0.05 0.05 0.08 0.14 0.05 0.14 0.05 0.05 0.08 1
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those not meeting objectives). This variable, referred to as the 
normalized sum of excursions (NSE), is calculated as follows:

Step 3: F3 is then calculated by an asymptotic function 
that scales the normalized sum of the excursions from objec-
tives (NSE) to yield a value between 0 and 100 (Eq. 10).

The CCME-WQI is finally calculated as expressed in 
Eq. 11

After the CCME-WQI value was determined for the 
groundwater of Maadher plain using the WHO 2011 stand-
ard, water quality is categorized by linking it to one of the 
following five categories: excellent (95–100), good (80–94), 
fair (60–79), marginal (45–59) and poor (0–44).

Water irrigation indices

Irrigation suitability assessment different ionic parameters 
(in meq/l) were used to assess the irrigation water quality 
basing on various indices such as TH (total hardness), Na% 
(percent sodium), and SAR (alkalinity hazard) (Ghazaryan 
et al 2020; Aravinthasamy et al. 2020; Chapman 2021).

Ordinary kriging method

The kriging method is based on the hypothesis that a spa-
tial autocorrelation exists between the measured points in 
an ensemble of data. The method statistically assesses the 
values of the points that are regrouped automatically by a 
central primary variable in order to predict a continuous 
surface that estimates the non-measured values of other 
emplacements. The possible statistics are derived from a 
semivariogram, which is a model that evaluates the spatial 

(9)NSE =

∑n

i=1
Excursioni

Number of tests

(10)F
3
=
(

NSE

0.01 NSE + 0.01

)

(11)CCME WQI = 100 −

⎛
⎜⎜⎜⎝

�
F2

1
+ F2

2
+ F2

3√
1002 + 1002 + 1002

⎞
⎟⎟⎟⎠

(12)TH = 2.5 × Ca2+ + 4.1 ×Mg2+

(13)%Na = 100 ×
Na+ + K+

Na+ +Mg2+ + Ca2+

(14)SAR =
Na+√

Mg2++Ca2+

2

correlation gradient as a function of the distance between 
the donor points (Uddin et al. 2020b).

Kriging tool similar to inverse distance weighting (IDW), 
its general mathematics formula is

Ẑ
(
S
0

)
 is the estimated value at the location S

0
 , Z

(
Si
)
 the 

measured value at the ith location, �i an unknown weight 
for the measured value at the ith location and N the number 
of measured values. Ordinary kriging is an estimation tech-
nique based on spatially dependent variance, which allows to 
find the best linear unbiased estimate (Belkhiri et al. 2020). 
The great advantage is using information from the semivari-
ogram. The predictions are based on the model:

where � is an unknown constant, and  is the spatially cor-
related stochastic part of the variation (Singh and Verma 
2019).

The spatial dependence between nearby observations 
could be determined with the variogram, which is half the 
variance of the difference between the attribute values at all 
points separated by h as follows:

where, �̂(h) is the variogram for the distance h; N(h) repre-
sents the number of data pairs for this offset h , and  Z

(
�i

)
 

and Z
(
�i + h

)
 are the values of the regionalized variable of 

interest at the location �i and �i + h , respectively (Rostami 
et al. 2020).

Inverse distance weighted method (IDW)

A linear combination of values at known points is used to 
explicitly calculate the in-the-art-unknown (IDW) values, 
which is a deterministic estimation interpolation (Singh and 
Verma, 2019). According to the IDW method, each entry 
point has a local influence which decreases as one moves 
further away (Taloor et al. 2020). Neighborhood search of 
IDW points with power function weighting. The impact 
of more distant points frequently decreases as the power 
increases. Weight is distributed more evenly between nearby 
points when there is less power (Shil et al. 2019). IDW is 
sensitive to outliers and works best with evenly distrib-
uted points. IDW works best when the sampling is dense 
enough to simulate local variation. The IDW method does 
not explicitly assume anything about the statistical charac-
teristics of the input data, unlike the kriging methods. When 
the input data does not meet the statistical presumptions of 

(15)Ẑ
(
S
0

)
=

N∑
i=1

�iZ
(
Si
)

(16)Z(s) = � + �
�

(s)

(17)�̂(h) =
1

2N(h)

N(h)∑
i=1

[Z
(
�i + h

)
− Z

(
�i

)
]
2
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the most sophisticated interpolation techniques, IDW is fre-
quently used.

However, the weights ( �i
(
S
0

)
) were estimated through 

inverse distance from all points to the new points by apply-
ing Eq. (18)

where �i is the weight for neighbor i (the sum of weights 
must be unity to ensure an unbiased interpolator), d

(
S
0
, S

1

)
 

is the distance from the new point to a known sample point, 
� is the coefficient used to adjust the weights, and n is the 
total number of points in the neighborhood analysis.

These two chosen interpolation techniques were exploited 
using ArcGIS 10.8 software.

Saturation index (SI)

Underground rocks contribute to the formation of water 
quality through ion exchange during its passage or residence 
in it (Jalees et al. 2021). Their total essentially equals the 
mineral’s solubility, and SI is utilized to determine whether 
it is out of equilibrium or not (Jampani et al. 2020).

Geochemical modeling PHREEQC interactive version 
3.4 was developed for determining and simulating hydro-
geochemistry. It produces as output chemical speciation and 
saturation indices of chemical species. The software per-
forms a wide range of low-temperature aqueous geochemi-
cal computations and simulates a number of reactions and 
processes in natural waters and laboratory studies (Lu et al. 
2022; Kim and Lee 2022; Hu et al. 2021). Furthermore, 
the model offers information about a solution’s speciation, 
saturation, and oxidation/reduction, which is the first step 
in interpreting water chemistry using a thermodynamic 
approach (Abdelshafy et al. 2019). The SI is a common 
index used for hydrogeochemical studies that describe the 
quantitative deviation of water from equilibrium and identi-
fies controlling geochemical reactions (Ahmad et al. 2019). 
To calculate the saturation, the ionic concentrations of all 
the main parameters specified in the water were used (Jalees 
et al. 2021) and are obtained from the equation:

where IAP is the ion activity product of the dissociated 
chemical species in solution, Kt is the equilibrium solubility 
product for the chemical involved at the sample temperature.

If SI > 0, then this indicates that the groundwater has 
reached the stage of oversaturation. At this point, no more 
minerals will be dissolved in water, resulting precipita-
tion condition of minerals. If SI < 0, groundwater tends to 

(18)𝜆i
�
S
0

�
=

1

𝛽d(S0,S1)∑n

i=1

1

𝛽d(S0,S1)

;𝛽 > 1

(19)SI = ���

(
IAP

Kt

)

dissolve more minerals, which leads to the dissolution con-
dition of minerals. (Jalees et al. 2021; Ahmad et al. 2019). 
An SI equal 0 (with ± 0.5) indicates equilibrium conditions.

Results and discussion

Hydrogeochemical parameters of groundwater

Calculating the absolute ion balance provides information 
about the analytical ion measurement’s accuracy (IB). A 
charge balance error of less than 6% exists in every sample. 
The majority of sample analysis results revealed respectable 
precision (Panneerselvam et al. 2021).

In Table 2, the result shows that the groundwater pH 
is between 7.34 and 8.15 for an average of 7.63. All sam-
ples fall within the scope of the WHO for drinking water. 
Groundwater’s electrical conductivity (EC) ranges from 
1035.8 to 4901.8 μS/cm, with an average of 2621.57 μS/
cm, all samples exceed the recommended value WHO 1500 
μS/cm except the well 13. When the water is full of minerals, 
the EC is generally high. The calcium  (Ca2+) concentra-
tion ranges from 108.6 to 601.2 mg/l, with an average of 
310.52 mg/l. All samples exceed the WHO recommended 
limit of 75 mg/l, and they are the most abundant cation in all 
samples. 67.64% of the magnesium  (Mg2+) concentrations 
in all samples were within the WHO standard for drinking 
water 100 mg/l. Its value ranges from 36.45 to 255.20 mg/l. 
The average value of sodium  (Na+) is 126.35 mg/l, with 
a range of 42.77 to 379.06 mg/l. Potassium  (K+) levels in 
groundwater samples range from 5.1 to 16 mg/l, with an 
average of 7.3 mg/l.

The cation analysis reveals that  Ca2+ comes first, fol-
lowed by  Na+,  Mg2+, and finally  K+ respectively in order 
of importance.

The sulfate  (SO4
2−) is the most abundant anion in 

the samples analyzed, their content ranges from 250 to 
1300 mg/l for an average of 659.05 mg/l. All samples are 
out of the standard limits for drinking water 250 mg/l. As 
for the chlorides  (Cl-), their content is between 88.75 and 
923 mg/l, with an average of 419.31 mg/l. It was 70.58% of 
all samples outside the standards limits of WHO. The con-
centration of bicarbonate  HCO3

− in all samples was within 
the limits permitted by the WHO (2011) for drinking water 
300 mg/l. Its values range from 149.45 to 244 mg/l and the 
average is 179.68 mg/l.

For nitrate, which is a pollution factor for water, 67.64% 
of all samples were above the acceptable value by WHO 
2011 (50 mg/l), except wells 12, 13, 15, and 26 containing 
concentrations below 50 mg/l.

As a result, sulfate dominates the average anions content 
in groundwater, followed by chlorides, bicarbonate, and ulti-
mately nitrates, in the order  SO4

2−  >  Cl−  >  HCO3
−  >  NO3

−.
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In addition, moreover, strong linear cor rela-
tions are mentioned between EC and  Ca2+ (R = 0.97), 
 Cl− (R = 0.95),  SO4

2− (R = 0.84),  Na+ (R = 0.70),  Mg2+ 
(R = 0.66), see Table 3. The calcium has a fort correlation 
with  Cl− (R = 0.93),  SO4

2− (R = 0.78),  Mg2+ (R = 0.63) 
and a moderate correlation with  Na+ (R = 0.56) and  K+ 
(R = 0.50). On the other hand,  Na+ and  K+ ions have 
moderate correlations with  Ca2+,  Cl−, and  SO4

2−. As for 
nitrates, nitrites and bicarbonate, it was observed that they 
do not have good correlations with the rest of the parame.

Hydrogeochemical water classification using piper 
diagram

The term hydrochemical facies is used to describe the vari-
ous groundwater families and the predominant chemical 

parameters in an aquifer, which differ in their chemical 
composition. The main ionic species present in most natu-
ral waters are  Ca2+,  Mg2+,  Cl−,  SO4

2−,  Na+,  K+,  HCO3
−, 

and  NO3
− (Fetter 2018). The Piper diagram has been widely 

used to show water classifications and water quality trends 
for groups of samples (Li et al. 2018).

The Piper diagram (Fig.  4) shows that the water 
coming from all wells contains a low percentage of 
 CO3

2−  +  HCO3
− (about 10%), while the percentage of 

 Cl−  +  NO3
− ranges from 40 to 70% except the wells 13, 26 

contains a low percentage less than 40%. The sulfate ratios 
are average, ranging between 40 and 55% in most of the 
samples except the wells 7, 8, 11, 18, 19, 21, 22, and 30 are 
less than 40%.

As for the diagram of cations was observed, all samples 
contain a high percentage of calcium more than 50% and a 

Table 2  Statistical description 
of the physicochemical results 
of samples studied

All parameters in mg/l except, EC (25 °C) in μs/cm, T in °C, and pH without unitters

Variable Algerian  
standard (2011)

WHO  
standard (2011)

Min Max Mean ± SD

T (°C) 25 - 14.80 15.80 15.29 ± 0.29
pH 6.5–9.0 8.5 7.34 8.15 7.64 ± 0.16
EC 2800 1500 1035.81 4901.78 2648.33 ± 871.21
Ca2+ 200 75 108.22 601.20 314.12 ± 116.20
Mg2+ 150 100 36.46 255.20 97.57 ± 45.55
HCO3

- - 300 149.45 244.00 178.84 ± 27.64
Cl- 500 250 88.75 923.00 425.89 ± 220.68
SO4

2- 400 250 250.00 1300.00 666.15 ± 232.38
TH 200 500 420.00 2450.00 1203.64 ± 471.94
NO3

- 50 50 12.00 407.00 173.47 ± 104.41
Na+ 200 200 42.78 379.07 127.52 ± 75.73
K+ 12 12 5.10 16.00 7.35 ± 1.90
NO2

- 0.2 3 0.00 0.02 0.00 ± 0.01
NH4

+ 0.5 1.5 0.00 0.00 0.00 ± 0.00

Table 3  Correlation matrix of the physicochemical parameters

All parameters in mg/l except, EC (25 °C) in μs/cm, T in °C, and pH without unit

Variables T pH EC Ca2+ Mg2+ HCO3
- Cl- SO4

2- TH NO3
- Na+ K+ NO2

-

T 1
pH 0.17 1
EC 0.22  − 0.30 1
Ca2+ 0.19  − 0.23 0.97 1
Mg2+ 0.04  − 0.31 0.66 0.63 1
HCO3

-  − 0.14  − 0.30  − 0.24  − 0.29  − 0.22 1
Cl- 0.22  − 0.32 0.95 0.93 0.65  − 0.28 1
SO4

2- 0.09  − 0.30 0.84 0.78 0.74  − 0.10 0.70 1
TH 0.09  − 0.19 0.89 0.91 0.79  − 0.32 0.83 0.83 1
NO3

- 0.17 0.13 0.11 0.18  − 0.03  − 0.41 0.11  − 0.24 0.14 1
Na+ 0.15  − 00.31 0.70 0.56 0.30  − 0.04 0.59 0.69 0.50  − 0.10 1
K+ 0.07 0.36 0.47 0.50 0.29  − 0.23 0.37 0.52 0.55 0.11 0.37 1
NO2

- 0.09 0.43 0.03 0.13 0.08  − 0.15  − 0.04 0.10 0.28 0.28  − 0.22 0.45 1
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low percentage of  Mg2+ and  Na+ +  K+. We can say that cal-
cium is clearly dominant compared to  Mg2+,  Na+, and  K+.

Also, the Chadha diagram is used to determine the hydro-
chemical facies of groundwater. The diagram consists of four 
fields, representing four types of hydrogeochemical pro-
cesses (Fig. 4). All the samples studied belong to Ca–Mg–Cl 
type water. This field indicates reverse ion exchange (Ca, 
Mg, Cl) processes (Kamel et al. 2013). In this zone, the 
strong acid anions  (Cl− and  SO4

2−) exceed the weak acid 
anions  (HCO3

−). In addition, the alkaline ions  (Ca2+ and 
 Mg2+) bypass the alkalis  (Na+ and  K+). The results from the 
Chadha diagram corroborate the results obtained from the 
Piper diagram that they gave the same groundwater hydro-
chemical facies, which are dominated by the water type 
 (SO4

2−  −  Cl−  −  Ca2+  −  Mg2+).
Overall, the waters of the Maadher plain have dominant 

hydro-chemical facies of sulfate–chloride-calcium-nitrate 
 (SO4

2- –  Cl− –  Ca2+ –  NO3
−type water) and have a very 

remarkable tendency towards salinization. This is due to the 

presence of high proportions of the sum  (SO4
2- +  Cl- +  NO3

-) 
and  (Ca2+  +  Na+  +  Mg2+).

Identification of water–rock interaction

The Gibbs diagram was used to establish the relationship 
between the water composition and the lithological char-
acteristics of the aquifer (Ehya and Saeedi 2019; He et al. 
2019). Gibbs divided the corresponding controlling factors 
of groundwater into three types: evaporation dominance, 
rock dominance, and precipitation dominance (Gibbs 1970).

Gibbs diagram represents the ratios of  (Na+/(Na+ +  Ca2+) 
and  (Cl-/  (Cl- +  HCO3

-)) as a function of total dissolved sol-
ids (TDS), see Fig. 4. The ratios of  Na+ are low relative 
to  Ca2+ ratios;  Cl− ratios are a major contributor to high 
groundwater salinity (all samples exceed 0.6). The ground-
water samples are in the zone of evaporation dominance, 
implying that evaporation is the main determinant of the 
chemical evolution of groundwater.

Fig. 4  Piper, Gibbs, and Chadha diagrams of the groundwater samples
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In Fig. 5a, the relationship between  Ca2+ and  SO4
2- shows 

that the majority of the samples are close to the bisector 
line. Most of the samples are located above the dissolution 
line and indicate an excess of  Ca2+, suggesting a dissolu-
tion of carbonates. The fall of samples from wells 5, 17, 
21, 26, and 33 below the bisector indicates a  Ca2+ deficit, 
suggesting carbonate precipitation. The evaporation pro-
cess is also important for controlling groundwater chem-
istry. In Fig. 5b is the plot of  Ca2+ versus  Na+, all samples 
fall above the bisecting line except well 17, suggesting that 
halite dissolution affects salinity in these wells. According 
to Fig. 5c, groundwater mineralization is controlled, in addi-
tion to the mineral dissolution, by reverse ion exchange with 
clay minerals present in aquifers. The carbonate and silicate-
weathering index shown in Fig. 5d shows that all samples lie 
above the bisecting line, indicating that the water samples 
are bound to carbonate rock.

Irrigation purposes

The collected groundwater samples were assessed for irriga-
tion uses using different indices; the results are illustrated 
in Table 4. According to the TH (total hardness) values, 
60.60% of samples present a soft water quality (TH < 75), 
and 36.36% of samples come moderately hard category. 
Finally, a hard water category of 3% represented in well 17. 
The %Na indicates that 72.72% of all samples are excellent 
for irrigation, and 24.24% of all samples are in the good 
category for irrigation. According to the SAR values, all 
samples of the aquifer present excellent water (SAR < 10).

Water quality indices

The water quality indices were applied to assess the quality 
of groundwater intended for drinking in the Maadher region, 
where the results are presented in Fig. 6. The calculated 
WQI values of 33 wells ranged from 61.47 to 310.62. The 
WQI indicated that the majority of the wells with 77.75% 
were in the poor water category and only well 13 contains 
good water. On the other hand, wells 1, 2, 3, 10, 19, and 
23 are characterized by a very poor water category with 
18.18%. Well 16 is classified in the category of not suitable 
for drinking water. These high WQI values found are due to 
high concentrations of sulfate, chloride, calcium, and nitrate.

The CCME-WQI gave similar results with arithmetic 
WQI, where the majority of the studied samples belonged 
to the marginal category with a 57.57%, and 36.36% of the 
samples belonged to the poor water category. The wells 13 
and 26 belong to the good and fair categories, respectively.

Figure 6 shows the WQI and CCME-WQI values of the 
samples studied. These indices gave similar results, clearly 
noticeable in wells 5, 10, 16, 19, 23, 29, 4, 13, and 26.

The correlation matrix calculated between the physico-
chemical parameters and the water quality indices has been 
summarized in Table 5. For the arithmetic WQI, the strong 
correlation noted with the main parameters (EC, TH,  Cl-, 
 SO4

2-,  Na+,  Ca2+,  Mg2+,  NO3
-). On the other hand, a weak 

correlation was observed with  NO2
-,  K+,  HCO3

-, and pH. 
This case can be explained by the fact that the higher the 
concentrations of the main parameters, the higher the values 
of AWQI and the lower the water quality becomes.

Fig. 5  a Plot of  SO4
2−against 

 Ca2+.b Plot of  Na+ against 
 Cl−. c Plot of  Na+ against 
 (Ca2+ +  Mg2+).d Plot of 
 (HCO3

− +  SO4
2−) against 

 (Ca2+ + Mg.2+)
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For CCME-WQI, there is a strong inverse correlation 
with the main parameters (EC,  Ca2+,  Mg2+,  Cl-,  SO4

2-, TH, 
 Na+,  K+), a weak correlation with  HCO3

- and pH,  NO3
- and 

 NO2
-. The inverse correlation shows that the lower the con-

centrations of physicochemical parameters in the water, the 
higher the CCME-WQI values, the more the water quality 
improves, and vice versa.

Figure 7 displays the values for the two proposed indi-
ces calculations (WQI, CCME-IQE). Using two techniques, 
ordinary kriging and IDW, spatial distribution maps of index 

values were created. While the index distributions yielded 
results that were generally comparable, the IDW method 
displayed greater local variation than the ordinary kriging 
method. The outcome demonstrates that the groundwa-
ter categories and groundwater flow are related (south to 
north). From the south to the north of the Maadher region, 
the groundwater category was good and fair, then poor. The 
poor category can be found in the area of Maadher and in 
the plain’s northern region, specifically at the level of wells 
1, 2, 3, 16, 17, and 19.

Table 4  Irrigation quality 
indices of Maadher aquifer

Range Classification Nbr of samples % of samples

Total Hardness (TH) Soft 20 60.60%
75–150 Moderately hard 12 36.36%
150–300 Hard 1 3.03%
 > 300 Very hard - -

Percent sodium (%Na)  < 20 Excellent 24 72.72%
20–40 Good 8 24.24%
40–60 Permissible 1 3.03%
60–80 Doubtful - -
 > 80 Unsafe - -

Sodium absorption ratio (SAR)  < 10 Excellent All samples 100%
10–18 Good - -
18–26 Doubtful - -
 > 26 Unsuitable - -
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Fig. 6  Comparison between WQI and CCME-WQI results of groundwater samples studied

Table 5  Correlation between the physicochemical parameters and water quality indices

Index pH EC Ca2+ Mg2+ HCO3
- Cl- SO4

2- TH NO3
- Na+ K+ NO2

-

WQI  − 0.17 0.87 0.89 0.60  − 0.41 0.82 0.63 0.85 0.565 0.51 0.49 0.23
CCME-WQI 0.27  − 0.80  − 0.78  − 0.67 0.22  − 0.72  − 0.79  − 0.83  − 0.19  − 0.55  − 0.64  − 0.29
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Fig. 7  Spatial distribution map of water quality indices (WQI, CCME-WQI). a and b Using IDW method.c and d Using ordinary kriging method
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Spatial interpolation of principal physicochemical 
parameters using ordinary kriging

Interpolation by the ordinary kriging method shows the 
spatial distributions of the main quality parameters in the 
Maadher plain (Figs. 8 and 9). The spatial interpolations 
of  Ca2+,  Mg2+,  Cl-, and  SO4

2- have a similar distribution, a 
strong correlation between these parameters and EC. The 
direction of underground flow has an influence on the spatial 
distributions; where the concentrations are high (exceeding 
drinking water standards) in the northeast of the plain com-
pared to the concentrations measured in the positions south 
and southwest of the Maadher plain (Fig. 8).

The spatial interpolations of  Na+,  NO3
-,  NO2

-, and  HCO3
- 

(Fig. 9) take different distributions compared to the first 
distributions; because wells 3, 16, and 17 have high  Na+ 
concentrations (exceeding drinking water standards).  NO3

- 
concentrations exceed the standards in most samples, but 
they are relatively low in the south and south-east compared 
to those in the northwest of the Maadher plain, and in par-
ticular, concentrations are high along the wadi of Bousaada 
(Fig. 9b). The reason for these high  NO3

- concentrations can 
be attributed to agricultural activities (synthetic and animal 
fertilizers) and the pollution of Bousaada Wadi, which serves 
as a dumping ground for local inhabitants. As for  NO2

- 
(Fig. 9c), all samples contain very weak concentrations. It 

Fig. 8  Spatial distribution maps of EC,  Ca2+,  Mg2+,  Cl−,  SO4
2− and  Na+ using ordinary kriging method
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has an opposite spatial distribution of  NO3
-. This can be 

explained by the occurrence of the nitrification process; that 
is, the presence of favorable conditions that help to com-
pletely convert  NO2

- and  NH4
+ into nitrates. In addition, the 

spatial distribution of  HCO3
- is different from those of other 

quality parameters (Fig. 9a) and with the absence of direc-
tion of flow whose concentrations are low in the north and 
center of the Maadher plain and high in the south, notably 
in wells 21, 26, 27, 28, 3, and 6. This case can be explained 
by that during the process of denitrification, carbon is used 
as an electron donor (Wild et al. 2018). Therefore, we note 
that bicarbonate has opposite distributions of nitrate as well.

Technically, we used ArcGIS software to apply ordinary 
kriging to the dataset, using the spherical and Gaussian 
semi-variogram models because we found that they better 
fit the data. The Gaussian model for quality indices and the 
spherical model for quality parameters.

Interpreting a variogram’s nugget, sill, or range is not 
particularly crucial. All of these are model parameters, even 
though some variogram models do not have a range and oth-
ers only have an “effective” range. The nugget/sill ratio of 
kriging geostatistics indicates the degree of spatial variabil-
ity that is affected by both structural/inherent and stochastic 
factors. A lower nugget/sill ratio indicates that structural 
factors (e.g., geological factors) play an important role in 
spatial variability. A higher nugget/sill ratio indicates that 
the spatial variability is mainly caused by stochastic factors 
(e.g., cropping systems and other human activities). The 
range is an indication of the proposed sampling distance 
from observation to observation.

The nugget-to-sill ratio reveals how spatially dependent 
certain variables are. For model explanation, three catego-
ries are used: strong spatial dependence is demonstrated 
by a ratio of less than 25%; moderate spatial dependence 

is shown by a ratio of between 25 and 75%; weak spatial 
dependence is demonstrated by a ratio of more than 75%.

Saturation index

The thermodynamic calculations of the saturation index for 
the groundwater samples are given in Table 6. All wells have 
similar values of the saturation index. The result indicates that 
the solid mineral phases of the groundwater samples such as 
anhydrite, gypsum, halite, and sylvite were undersaturated, 
implying that more solid phases or minerals must dissolve in the 
groundwater (meaning it tends to increase the concentrations of 
its chemical constituents in the water). Aragonite, calcite, and 
dolomite minerals were oversaturated, indicating more of the 
minerals need precipitation from water, it means that ground-
water contains high concentrations of  SO4

2-,  Ca2+, and  Mg2+.

Fig. 9  Spatial distribution maps of  HCO3
−,  NO3

− and  NO2
− using ordinary kriging method

Table 6  Statistical description of the saturation index for all minerals 
in groundwater samples

Mineral Phase Range Mean ± SD

Anhydrite CaSO4  − 1.52–0.59  − 0.99 ± 0.22
Aragonite CaCO3  − 0.04–0.82 0.31 ± 0.16
Calcite CaCO3 0.11–0.97 0.46 ± 0.17
CH4 (g) CH4  − 73.19–65.68  − 68.54 ± 1.49
CO2 (g) CO2  − 3.11– − 2.12  − 2.54 ± 0.19
Dolomite CaMg  (CO3)2 0.05–1.64 0.61 ± 0.31
Gypsum CaSO4:2H2O  − 1.11– − 0.18  − 0.59 ± 0.22
H2 (g) H2  − 24.33– − 22.71  − 23.30 ± 0.33
H2O (g) H2O  − 1.78– − 1.75  − 1.76 ± 0.01
Halite NaCl  − 7.00– − 5.20  − 6.03 ± 0.39
O2 (g) O2  − 41.41– − 38.06  − 40.04 ± 0.68
Sylvite KCl  − 7.45– − 6.27  − 6.75 ± 0.27
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Carbonate minerals (aragonite, calcite, and dolomite) and 
sulfate minerals (gypsum and anhydrite) followed by (halite 
and sulfite) were the most common mineral phases that influ-
enced the chemical composition of water resources in the 
study area, as shown in Fig. 10. The carbonate mineral satu-
ration index of the dolomite was oversaturated, this oversatu-
ration increased from wells 1, 5, 6, 12, 14, 15, 16, 24, and 
26 while it decreased in the other wells; the same remark for 
aragonite and calcite. Sulfate minerals were undersaturated, 
but undersaturation increased (near 0) in wells 1, 2, 3, 12, 
15, 16, 19, 20, and 23; the same remark was noted for halite 
and sylvite. During hydrogeochemical processes, carbonate 

minerals (aragonite, calcite, and dolomite) are more likely to 
precipitate, while sulfate minerals (gypsum and anhydrite) 
as well as (halite and sylvite) are more likely to dissolve.

The SI plot of carbonate minerals such as aragonite, cal-
cite, and dolomite with  (Ca2+  +  HCO3

-) has been shown in 
Fig. 11a, and all samples indicated oversaturation except for 
well 33 which is undersaturated with aragonite. In Fig. 11b, 
the relationship between magnesium as a function of arago-
nite, calcite, and dolomite shows that all samples are over-
saturated with these minerals, indicating that these phases 
tend to precipitate calcium and magnesium from water. The 
SI plot between sulfur minerals and  SO4

2- in groundwater. 

Fig. 10  Saturation index of 
common minerals in the Maad-
her region: (aragonite, calcite, 
and dolomite), sulfate (gypsum 
and anhydrite), halite and syl-
vite in the water samples
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Figure 12a shows that the water samples are undersaturated, 
this suggests that if these minerals are present, they will 
be dissolved in groundwater and increase the concentration 
of  SO4

2-. Figure 12b illustrates the SI of halite (NaCl) and 
sylvite (KCl) in relation to the  Cl- concentration in water 
samples. The SI is strongly undersaturated (below zero), 
suggesting that halite and sylvite dissolve in groundwater 
and increase the concentration of  Na+,  Cl-, and  K+. The good 
linear correlation of  Cl- with halite and sylvite for the sam-
ples was indicated by the regression coefficient R2 = 0.84 and 
R2 = 0.73, respectively.

Conclusion

The primary source of water for domestic use and irrigation 
is the Maadher plain. Due to the presence of anthropogenic 
factors and the excessive use encouraged by climate change, 
the quality and quantity of this resource have significantly 
declined. This study examined the evaluation of groundwater 
quality using hydrogeochemistry and water quality indices 
(WQI, CCME-WQI) to identify wells, assess more miner-
alization, and assess contamination. The variation in water 
quality is now more understandable thanks to the use of the 
GIS spatial distribution in this study along with ordinary 
kriging and IWD techniques. The work that was presented 
can be summarized as follows:

• The concentrations of  SO4
2−,  Cl−,  NO3

- and  Ca2+ 
exceeded WHO standard limits for drinking water; the 
groundwater belongs to hydrochemical facies sulfate–
chloride-nitrate-calcium type water.

  - Since all samples from the Maadher zone are accept-
able according to irrigation indices, the drinking water 
quality indices (WQI, CCME-WQI) place the zone's 
northern portion in the poor category, its southern por-
tion in the good category, and its center in the medium 
category.

• Using the GIS technique, spatial interpolations of Ca2 + , 
Mg2 + ,  Cl-, and  SO42- reveal a similar distribution. 
These spatial distributions are in accordance with the 
direction of underground flows, with high concentra-
tions in the north and low concentrations in the south of 
the study area. Aside from the bicarbonate and nitrate 
concentrations, which were higher close to the Bousaada 
wadi depression.

• The present study’s findings showed that excessive agri-
cultural practices and inflows from the Bousaada wadi, 
two examples of anthropogenic activities, had a signifi-
cant negative impact on the quality of groundwater in the 
study area.

• The minerals anhydrite, gypsum, halite, sylvite, arago-
nite, calcite, and dolomite precipitate and dissolve in 

groundwater to form its chemical composition. We also 
consider the effects of regional climate change, such as 
the increase in temperatures and decrease in precipita-
tion, which increase the need for water.

• Since the CCME-WQI has demonstrated its effective-
ness on groundwater by producing results comparable 
to the WQI, the techniques used in the assessment of 
groundwater quality have given satisfactory results. The 
ordinary kriging and IDW interpolation methods made it 
possible to concretize the hypotheses presented through 
precise and interpreted maps of the phenomena that 
occur in the study area. Future work will focus on the 
choice of interpolation techniques as well as the criteria 
for applying variogram models for a good representation 
of GIS.
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