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2 ABDELMOUMEN TIAIBA

1. I NTRODUCTION

In this paper, we start with the classic definition of the usual class of the operators which are
the non linear mappingss−positively homogeneous. Some results of this type of operators that
was shown but under the need to the development wanted in this paper. We study the structure
of the above classical class and prove that such a class is Banach space.

In the same circle ideas of Nikishin in [7]. B Maurey in his thesis [5], led to the idea of
factorization and he guarantees with some necessary and sufficient conditions that every linear

operatoru : X −→ Lp(Ω, µ) factors throughLq(Ω, µ) like thisX
eu−→ Lq(Ω, µ)

Mgu−→ Lp(Ω, µ).
Whereũ is a bounded linear operator,Mgu is the bounded linear operator of multiplication by
a functiongu in Lr(Ω, µ) andp, q, r real numbers such that0 < p ≤ q ≤ ∞ with 1

p
= 1

r
+ 1

q
.

In [2] A. Defant presented these results generalizing the type of Maurey theorems to a positive
homogeneous operators.

As second part in this work we also make use of this occasion to prove of a famous theo-
rems of B. Maurey, by a showing the generalization of last theorems of factorization in [2] to
s−positively homogeneous operators space. Remark that in this part our generalization is only
if we take the departs spacesLq(Ω, µ) or the arrived spacesLq(Ω, µ) in the Maurey theorem [2].
We can considered the generalization to sublinear operators given in [8] as particular case of
this in [2]. In [8]. The authors study the generalization of the last theorem factorization where
are establish necessary and sufficient conditions to give the result: If that for0 < p ≤ q ≤ +∞,
andT be a sublinear operator from a Banach spaceX into Lp(Ω, µ) thenT factors through
Lq(Ω, µ). But let cited that the proof in [8] is an other method of this in Defant see [2]. In [1].
The authors had proved the extension of the work in [10], died the dual problem factorization
of sublinear operators fromLs(S, λ) into a Banach spaceY by Lq1(S, ν), for 1 ≤ q < s < ∞).
Also in the present paper, we will study the dual problem of our factorization [5]. Anther words.
Let s; p, q andr real numbers such that,s = 1, 0 < p ≤ q ≤ +∞, with 1

p
= 1

q
+ 1

r
. We shall

proof that with some necessary and sufficient conditions over the1−positively homogeneous
operatorT from Sq closed subspace ofLq(Ω, µ) into anX a complete Banach lattice, that the
operatorT factors throughSp closed subspace ofLp(Ω, µ). ((Ω, µ) any measure space).

In Section 2, we give some basic definitions, some preliminaries on the Banach lattices, sub-
linear operators, positively homogeneous operators. We also give results of relations between
linear and sublinear operators. We shall use this preliminaries in the sequel of the present paper.

In Section 3, We define the classical operators class ofs−positively homogeneous operators
and prove that the above class is a Banach space. At second main results. We show with a
necessary and sufficient conditions and some conditions over real numbersp, q which T is a
s−positively homogeneous operator fromX a Banach space intoLp that the operatorT factors
throughLq. After this, we give the extend result of dual problem factorization to same operators
space above or we can say that ifT from Sq ⊂ Lq into X a Banach space thenT factors through
Sp ⊂ Lp.

2. FUNDAMENTAL PROPERTIES AND PRELIMINARIES

We collect below some properties and definitions which shall use in the sequel of this work.
For more information about positively homogeneous operator, sublinear operators, Banach
spaces and lattice spaces. We refer the reader to [2], [9] , [4],[3] and [6].

Definition 2.1. Let X A real vector space is partially ordered by a partial order and denoted by
≤ is called an order vector space if

x ≤ y impliesx + z ≤ y + z for everyz ∈ X;
x ≥ 0 impliesαx ≥ 0 for everyα ≥ 0 in R+.
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Remark 2.1. A subsetA of X is called simply bounded if there exists an elementy in X such
that x ≤ y for all x ∈ A andy is then called an upper bound forA or the supremum ofA.
If A is bounded thenz is called the least upper bound ofA if z is an upper bounded forA
andz ≤ y for every upper bound ofA. An order vector space in which each pair of elements
has least upper bound is called a vector lattice. In this case denoted by sup{x, y} or x ∨ y.
For which every non-empty order bounded subset has a least upper bound, we mean an order
space or complete vector lattice. Let recall that an Banach lattice spaceX is called a Banach
K-space if each bounded from above subset ofX has upper bound and‖.‖ is monotone or if
|x| ≤ |y| ⇒ ‖x‖ ≤ ‖y‖ .

Example 2.1.The spacesL1([0.1] , µ), C (K) is a Banach lattices. The spacesLp (1 ≤ p ≤ ∞)
is a complete Banach lattices and if(1 < p < ∞) is Banach K-spaces.

Definition 2.2. Let T be an operator from a Banach spaceX into Y a Banach lattice.

T is said to be sublinear see[8] if for all x, y in X andλ in R+, we have,

(1) T (λx) = λT (x) (i.e. positively homogeneous),
(2) T (x + y) ≤ T (x) + T (y) (i.e. subadditive).

Note that the multiplication by a positive number is also a sublinear operator. The sum of two
sublinear operators is sublinear operator.

Definition 2.3. Let T be an operator from a Banach spaceX into Y a Banach spaceT is said
positively homogeneous operator see [2] if for allx in X andλ in R+, we have,

T (λx) = λT (x) (i.e. positively homogeneous).

Let us denote by
SL(X, Y ) = {sublinear operatorsT : X −→ Y } ,
andL(X, Y ) ={ linear operatorsu : X −→ Y }.
We equip it with the natural order induced byY we take thatT1 andT2 is in SL(X, Y ) then

(2.1) T1 ≤ T2 ⇐⇒ T1(x) ≤ T2(x), ∀x ∈ X.

Now, we will give the following properties.
Let T ∈ SL(X, Y ) or T ∈ L(X,Y ) be a bounded operator from a Banach spaceX into a
Banach latticeY . if and only if ∃C > 0 : ∀x ∈ X, ‖T (x)‖ ≤ ‖T‖ ‖x‖ in this case we put,

(2.2) ‖T‖ = sup{‖T (x)‖ : ‖x‖BX
= 1}.

Remark 2.2. [8]. Let X be an arbitrary Banach space. LetY, Z be Banach lattices. We have,

(1) ConsiderT ∈ SL(X, Y ) andu inL(Y, Z). Assume thatu is positive. Then,u ◦ T ∈
SL(X, Z).

(2) Consideru ∈ L(X, Y ) andT in SL(Y, Z). Then,T ◦ u ∈ SL(X, Z).

3. M AIN RESULTS

3.1. The Banach space ofs− positively homogeneous operators.In this part we introduce
the concept of non linears−positively homogeneous operators. Next, we prove that the class of
this operators is a Banach space, and Banach lattice ifY be Banach lattice space and give some
properties of characterization of this space.
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4 ABDELMOUMEN TIAIBA

Definition 3.1. Let s ∈ [1, +∞[ . Let T be an operator from a Banach spaceX into a Banach
spaceY . T is calleds− positively homogeneous operator. If for allx ∈ X and(λ ∈ R+) we
have,

(3.1) T (λx) = λsT (x) (i.e . s-positively homogeneous).

If we takes = 1, see [2] we are in the type of positively homogenous operators.

Remark 3.1. Note that the multiplication by a real number is also as−positively homogeneous
operator. The sum of twos−positively homogeneous operators iss−positively homogeneous
operator. The multiplication of twos−positively homogeneous operators is2s−positively ho-
mogeneous operator.

Let us denote by
Hs(X, Y ) = { s− positively homogeneous operatorsT : X −→ Y } ,
and we equip it with the natural order induced byY If Y be Banach lattice, we take thatT1 and
T2 is in Hs(X, Y ) then,

T1 ≤ T2 ⇐⇒ T1(x) ≤ T2(x), ∀x ∈ X.

Now, we will give the following properties.

Remark 3.2. Let X be an arbitrary Banach space. LetY, Z be Banach spaces. We have
(1) If T ∈ Hs(X, Y ) andu ∈ L(Y, Z). Then,u ◦ T ∈ Hs(X, Z).
(2) If u ∈ L(X, Y ) andT ∈ Hs(Y, Z). Then,T ◦ u ∈ Hs(X, Z).

Proposition 3.1. Let s ∈ [1, +∞[ and X Y be a Banach spaces and letT be s−positively
homogeneous operator fromX into anY . If T is discontinuous atx0, thenT is discontinuous
at all xa = |a|x0, ∀a ∈ R∗.

Proof. We haveT is discontinuous atx0

(
i.e lim

x→x0

T (x) 6= T (x0)

)
we have that the operator

T1 = |a|s T is discontinuous atx0, then also the operatorT2 is discontinuous atx0 such that

T2 (x) = T (|a|x) = T1 (x) = |a|s T (x) ,

then we havelim
x→x0

T2 (x) 6= T2 (x0) , but

lim
x→x0

T2 (x) = lim
x→x0

T (|a|x)
y=|a|x

= lim
y→|a|x0

T (y) 6= T2 (x0)

6= |a|s T (x0) = T (|a|x0)
then, lim

y→|a|x0

T (y) 6= T (|a|x0) .

ConsequentlyT is discontinuous at allxa = |a|x0, ∀a ∈ R∗. �

Proposition 3.2. Let s ∈ [1, +∞[ and X Y be a Banach spaces and letT be s−positively
homogeneous operator fromX into anY . T is discontinuous overX, then,T is discontinuous
at 0.

Proof. Assume thatT discontinuous overX. This implies that∃x0 ∈ X such thatT discontin-
uous atx0 consequently we have the statement:

(3.2) ∀η > 0,∃ε > 0, .x 6= x0, ‖x− x0‖X < η ⇒ ‖T (x)− T (x0)‖Y ≥ ε.
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Noted that ifT is discontinuous atx0, then also by Proposition (3.1)T is discontinuous at all
xa = ax0, ∀a ∈ R∗

+. We have

(3.3)
∀η > 0,∃εa > 0, .x 6= ax0, if

‖x− ax0‖X < η ⇒ ‖T (x)− T (ax0)‖Y ≥ εa.

Let x0 6= 0, assume thatT discontinuous atx0 and continuous at0 then

(3.4)
T continuous at0 ⇔

∀ε > 0, ∃η0 > 0, .x 6= 0, ‖x‖X < η0 ⇒ ‖T (x)‖Y < ε.

First if ‖x0‖X < η0 ,by (3.4)

(3.5) ‖x0‖X < η0 ⇒ ‖T (x0)‖Y < ε, ∀ε > 0,

and in (3.2) if we putη = η1 =
‖x0‖ η0

2
, this implies that,

(3.6) 0 ∈ V (x0) ⊂ V (0) ⇒ ∃ε1 > 0 ⇒ ‖T (x0)‖Y ≥ ε1,

by (3.5) and (3.6) contradiction.

Secondly if‖x0‖X ≥ η0. We geta0 =
‖x0‖x η0

2
, η2 =

η0

2
, and x1 =

‖x0‖x η0

2
x0 since

‖x1‖ < η0

2
= η2 < η0. We have

(3.7)
T continuous at0 ⇔

∀ε > 0,∃η0 > 0, . ‖x1‖X < η0 ⇒ ‖T (x1)‖Y < ε.

This implies

(3.8)
‖x1‖X < η0

⇒ ‖T (x0)‖Y <
2s

ηs
0 ‖x0‖s ε = B, ∀ε > 0 or ∀B > 0.

T a discontinuous atx1 in this case we choose(∀η) that η = η2 we have. that forx2 =
x1

2
,∃εa0 > 0, , ‖x2‖X < η2 then by(3.3) we have,∥∥∥∥T (

‖x0‖x η0

4
x0)− T (

‖x0‖x η0

2
x0)

∥∥∥∥
Y

≥ εa0 ,

then

(3.9)

‖T (x0)‖Y ≥
10

@
������
‖x0‖x η0

4
−
‖x0‖x η0

2

������
1
A

s εa = A > 0

or ∃A > 0.

By (3.8) and (3.9) contradiction. Now ifx0 = 0. Evident. Consequently the result is proved.
�

Theorem 3.3. Let s ∈ [1, +∞[ , X and Y be a Banach spaces and letT be s−positively
homogeneous operator fromX into Y . Then, the following conditions are equivalent.

1- T is continuous overX.
2- T is continuous at0.
3- There is a finite positive constantC such that,

(3.10) ‖T (x)‖Y ≤ C ‖x‖s
X .
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Proof. (1)=⇒(2).Evident.
(2)=⇒(3). Let T be a continuouss−positively homogeneous operator then, it is at0, in this

case we have

(3.11) ∃η > 0 : ∀x(6= 0) ∈ X, ‖x‖X < η ⇒ ‖T (x)‖Y ≤ 1.

Takey =
x

‖x‖X

η. Then ‖T (y)‖Y ≤ 1. Hence ‖T (x)‖Y ≤
1

ηs
‖x‖s

X . PutC =
1

ηs
.

(3)=⇒(1) Assume thatT discontinuous overX. by the Proposition (3.2) we study only that
T discontinuous at0 consequently we have the statement:

(3.12) ∀η, 1 > η > 0,∃ε0 > 0, .x 6= 0, ‖x‖X < η ⇒ ‖T (x)‖Y ≥ ε0.

We defineV (0) = {x ∈ X/ ‖x‖X < η}. Takez ∈ V (0) we definex1 =
zη

C
1
s ‖z‖X

1
ε0

, η1 =

η

C
1
s ‖z‖X

1
ε0

+ 1
andV1 (0) = {x ∈ X/ ‖x‖X < η1} we have thatV1 (0) ⊂ V (0) . We can see

thatx1 ∈ V1 (0) ⇒ x1 ∈ V (0) . We deduce by (3.12) that

Forη, 1 > η > 0,∃ε0 > 0, .x 6= 0, ‖x1)‖X < η ⇒ ‖T (x1)‖Y ≥ ε0.

We have(V1 (0) ⊂ V (0)) then

(3.13) For, η1 > 0,∃ε1 > 0, . ‖x1‖ < η1 ⇒ ‖T (x1)‖Y ≥ ε1 ≥ ε0.

By (3.13)

‖T (x1)‖Y ≥ ε0 ⇒

∥∥∥∥∥T (
zη

C
1
s ‖z‖X

1
ε0

)

∥∥∥∥∥
Y

≥ ε0,

⇒ ‖T (z)‖Y ≥
1

η
C ‖z‖s

X ≥ C ‖z‖s
X /

(
1

η
≥ 1

)
,

we deduce that, there isz ∈ X such that,‖T (z)‖Y > C ‖z‖s
X . Finally, immediateT is contin-

uous overX and(3) =⇒ (1) is shown. Consequently the result is proved. �

Proposition 3.4. Let T be a continuouss− positively homogeneous operator from a Banach
spaceX into a Banach spaceY . T is bounded if and only if∃C > 0 : ∀x ∈ X, ‖T (x)‖ ≤
C ‖x‖s in this case we put

(3.14) C = ‖T‖ = sup{‖T (x)‖ : ‖x‖BX
= 1}.

‖T‖ is a norm overH(X, Y ).

Proof. Let the set{‖T (x)‖
‖x‖s /∀x 6= 0}, we have,

{‖T (x)‖
‖x‖s /∀x 6= 0} = {

∥∥∥T ( x
‖x‖

)∥∥∥ /x 6= 0}

⊂ {‖T (x)‖ / ‖x‖BX
= 1}

⊂ {‖T (x)‖ / ‖x‖BX
≤ 1}.

Put

C1 = sup{‖T (x)‖
‖x‖s /∀x 6= 0},

C2 = sup{‖T (x)‖ / ‖x‖BX
= 1},

C3 = sup{‖T (x)‖ / ‖x‖BX
≤ 1}.
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The above set inclusions show thatC1 ≤ C2 ≤ C3.

If ∀x 6= 0
‖T (x)‖
‖x‖s ≤ C1 ⇒ ‖T (x)‖ ≤ C1 ‖x‖s .

If ‖x‖BX
= 1 ⇒ ‖T (x)‖ ≤ C1 ≤ C2 ‖x‖BX

.

If ‖x‖BX
≤ 1 ⇒ ‖T (x)‖ ≤ C1 ≤ C2 ≤ C3 ‖x‖BX

≤ C3.

Then,C1 ≤ C2 ≤ C3 =⇒ C1 = C2 = C3 = C.
For‖T‖ = sup{‖T (x)‖ : ‖x‖BX

= 1}. ‖T‖ is a norm overHBs(X, Y ) evident. �

Notation . We denoted by
HBs(X, Y ) = boundeds− positively homogeneous operator.T : X −→ Y ,
HB1(X, Y ) = bounded1− positively homogeneous operator.T : X −→ Y ,
SB(X, Y ) = bounded sublinear operatorsT : X −→ Y ,
and by
B(X,Y ) = bounded linear operatorsu : X −→ Y .

We have,B(X, Y ) ⊂ SB(X,Y ) ⊂ HBp(X, Y ) ⊂ HB(X, Y ).

Example 3.1. Let f : R → R such thatf (x) = xn, /n ∈ N∗, is it continuous, in our case if
to answer we want to give that: we have thatf (x) is n− positively homogeneous function, and
we have also|xn| ≤ 1 |x|n then∃C = 1 by Theorem (3.3)f is continuous.

Example 3.2. Same of Example (3.1) . Letf : R2→ R2 such thatX = (x, y) 7→ f (x, y) =
(xn, yn) , /n ∈ N∗, We have thatf (X) is n−positively homogeneous function, and we have
also

‖f (x, y)‖ =
√

x2n + y2n ≤

√√√√(x2 + y2)n = x2n + y2n +
n−1∑
i=1

Ck
n (x2)k (y2)n−k

such that
n−1∑
i=1

Ck
n (x2)

k
(y2)

n−k ≥ 0 then ‖f (x, y)‖ ≤
√

(x2 + y2)n = ‖(x, y)‖n

then∃C = 1 by Theorem (3.3)f is continuous.

Remark 3.3. Unfortunately in this time we can not give discontinuous linear or discontinuous
s− positively homogeneous for an application of Theorem (3.3).

Corollary 3.5. Let U1, : X→Y, U2, : Y→Z be a boundeds−positively homogeneous opera-
tors, thenU2 ◦U1 is bounded2s−positively homogeneous operator,‖U2 ◦ U1 (x)‖ ≤ C ‖x‖2s .

Proposition 3.6. Lets ∈ [1, +∞[ andX beY a Banach spaces. ThenHBs(X, Y ) is complete
space.

Proof. Let (Tn)n∈N be a Cauchy sequence inHS(X, Y ). Take K ≥ 1 then there isNK such
that‖Tn − Tm‖Y ≤

1
K

, for all n; m ≥ NK . Take the sequence{Tn (x)}n∈N such thatx ∈ BX

is Cauchy sequence inY this implies that‖Tn (x)− Tm (x)‖Y ≤ 1
K

for all n; m ≥ NK . We
deduce that is functionT (x) such thatTn (x) → T (x) . Therefore‖T − Tn‖Y ≤

1
K

, ∀n ≥ NK .
As consequence‖T − Tn‖Y → 0. Proved now thatT is in HBS(X, Y ). Indeed, letλ ∈ R+,
then,T (λx) = lim

n
Tn (λx) = λSlim

n
Tn (x) = λST (x) , henceT (λx) = λST (x) . Remark that

lim
x→x0

lim
n

T (x) = lim
n

lim
x→x0

Tn (x) = lim
n

Tn (x0) = T (x0) ⇒ T is continuous at anyx0 ∈ X. �

AJMAA, Vol. 16, No. 2, Art. 10, pp. 1-12, 2019 AJMAA

http://ajmaa.org


8 ABDELMOUMEN TIAIBA

If we according Remark (3.2), Theorem (3.3), Proposition (3.4) and Proposition (3.6), we
give the below Corollary.

Corollary 3.7. HBs(X, Y ) is a Banach space.

Remark 3.4. We can see thatB(X,Y ), HB1(X, Y ) are a subspaces ofHBs(X, Y ) butSB(X, Y )
is only a positive cone inHBs(X, Y ).

3.2. Generalized factorization theorems to elements ofHs(X, Y ). In this subsection we
start by giving extend of the same result of Theorem 4.2 in [8]

Theorem 3.8. Let s ∈ [1, +∞[ , p, q, rin ]0, +∞] such that0 < p ≤ q ≤ +∞ and 1
p

= 1
q

+ 1
r
.

Let X be a Banach space and letT be as−positively homogeneous operator fromX into an
Lp(Ω, µ). LetC a finite constant. The following assertions are equivalent.

(i) There is a finite positive constantC such that for all finite sequence(xi)1≤i≤n ∈ X, we
have,

(
∫

Ω

[
n∑

i=1

|T (xi)|q
] p

q

dµ)
1
p ≤ C

[
n∑

i=1

((‖xi‖s
X))

q

] 1
q

.

(ii) There is a functiong ∈ B+
Lr(Ω,µ) such that for allx ∈ X, we have

(
∫
Ω

∣∣∣T (x)
g

∣∣∣q dµ)
1
q ≤ C ‖x‖s

X .

(iii ) There is a functiong ∈ B+
Lr(Ω,µ) and a continuouss− positively homogeneous operator

S from X into LqΩ, µ), and T = TgoS such thatTg : Lq(Ω, µ) → Lp(Ω, µ) is the linear
operator of multiplication byg

X
T−→ Lp(Ω, µ)

S ↘ ↗Tg

Lq(Ω, µ)

.

Proof. (i)=⇒(ii). With Similar idea of Theorem 4.2 in [8]. It suffices to take in [5, Theorem 2]

the real valuesαi = ‖xi‖s
X where1 ≤ i ≤ n and fi = T

(
xi

‖xi‖X

)
. We have

(

∫
Ω

[
n∑

i=1

|T (xi)|q
] p

q

dµ(ω))
1
p = (

∫
Ω

[
n∑

i=1

∣∣∣∣‖xi‖s
X

‖xi‖s
X

T (xi)

∣∣∣∣q
] p

q

dµ(ω))
1
p

(

∫
Ω

[
n∑

i=1

∣∣∣∣‖xi‖s
X T

(
xi

‖xi‖

)∣∣∣∣q
] p

q

dµ(ω))
1
p

≤ C

[
n∑

i=1

((‖xi‖s
X))

q

] 1
q

.

By [5, Theorem 2]∃g in B+
Lr(Ω,µ) such that,

(3.15) ∀i ∈ I (

∫
Ω

∣∣∣∣∣∣∣∣
T

(
xi

‖xi‖X

)
g

∣∣∣∣∣∣∣∣
q

dµ(ω))
1
q ≤ C.
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Consequently for allxi in X, ∀i ∈ I (
∫
Ω

∣∣∣T (xi)
g

∣∣∣q dµ (ω))
1
q ≤ C ‖xi‖s

X . Then for allx in X

(3.16) (

∫
Ω

∣∣∣∣T (x)

g

∣∣∣∣q dµ (ω))
1
q ≤ C ‖x‖s

X .

(ii)⇒(iii) . Used (3.15) we show that:
T

g
(xi) ∈ Lq(Ω, µ) for all xi in X. Then we defineS

such thatS : X → Lq(Ω, µ) by S(x) =
T (x)

g
. T by Theorem (3.3) is continuouss−positively

homogeneous operator satisfied the statement that‖S (x)‖ ≤ δ ‖x‖s. Finally, clearly we have
T = TgoS by Remark (3.2) the diagram is commutative.

(iii)⇒(i). By Hölder inequality implies for1
p

= 1
q

+ 1
r∫

Ω

(
n∑

i=1

|T (xi)|q)
p
q dµ =

∫
Ω

(
(

n∑
i=1

|g|q |S(xi)|q)
1
q

) p
q

dµ(ω)

≤ (

∫
Ω

n∑
i=1

|S(xi (ω))|q dµ(ω))
p
q (

∫
Ω

(|g|q)
r
q dµ(ω))

p
r

≤

∫
Ω

n∑
i=1

(|S(xi)|q dµ(ω))


p
q

(

∫
Ω

|g|r dµ(ω))
1
r

Using Theorem(3.3) ≤ Cp(
n∑

i=1

(‖xi‖s
X)

q
)

p
q .

�

Remark 3.5. In our Theorem (3.8) ifs = 1 same result in [2]. Ifs = 1 andT subadditive same
result in [8]. If s = 1 andT additive same result in [5].

In this part of our work we study the transposed problem of the last factorization see [5]. We
give an analogous factorization to1−positively homogeneous operators.

Lemma 3.9. [5] Letp, q andr three real numbers such that0 < p ≤ q < +∞ and 1
p

= 1
q
+ 1

r
.

Let (Ω, µ) a measure space,I a set of indices and{fi}i∈I ⊂ Lq(Ω, µ). Then, the following
assertions are equivalent.

a)- There is a measurable functiong ∈ BLr(Ω,µ) such that

(3.17) ∀i ∈ I

∫
Ω

|gfi|p (w)dµ(w) ≥ 1.

b)- For all {αi}i∈I in R(I) there is a finite constantC such that

(3.18) (
∑
i∈I

|αi|p)
1
p ≤ C(

∫
Ω

(
∑
i∈I

|αifi(w)|p)
q
p dµ(w))

1
q .

Theorem 3.10.Let s = 1, Let p, q and r ∈ R, such thatp ≤ q and , 1
p

= 1
q

+ 1
r
. Let (Ω, µ)

a measure space,Sq closed subspace ofLq(Ω, µ), T be a1−positively homogeneous operator
fromSq into X a complete Banach lattice and a positive finite constantC. Then, the following
assertions are equivalent.

a) There existsSp closed subspace ofLp(Ω, µ) such thatT admits the following factoriza-
tion
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Sq
T→ X

Tg ↘ Sp ↗ v

v is a continuous1− homogenous operator such that‖v (Tgf)‖ ≤ C ‖Tgf‖1 .
g a function inBLr(Ω,µ).
Tg is the induced operator onSq by the multiplication operatorTg.
b) For all finite sequences{fi}1≤i≤n in Sq, we have

(3.19) (
n∑

i=1

‖T (fi)‖p
X)

1
p ≤ C(

∫
Ω

(
n∑

i=1

|fi|p)
q
p dµ(w))

1
q .

Proof. a)⇒b). By Hölder inequality,we have

n∑
i=1

‖T (fi)‖p
X = (

n∑
i=1

‖vJg(fi)‖p
X ,

≤ C
n∑

i=1

‖Jg(fi)‖p
Sp

,

≤ C
n∑

i=1

‖g(w)fi(w)‖p
Sp

,

≤ C
n∑

i=1

(

∫
Ω

|gp(w)fp
i (w)| dµ(w)

≤ C

∫
Ω

|g(w)p|

(
n∑

i=1

|fi(w)|p
)

dµ(w),

≤ C
(
‖g‖Lr

)∫
Ω

(
n∑

i=1

|fi(w)|p
) q

p

dµ(w)

 1
q

,

≤ C

∫
Ω

(
n∑

i=1

|fi(w)|p
) q

p

dµ(w)

 1
q

.

b)⇒a). Let {αi}i∈I ∈ R(I).Writing

|αi| = ‖T (fi)‖X

|αi|
‖T (fi)‖X

= ‖|αi|T (fi)‖X

1

‖T (fi)‖X

=

∥∥∥∥T (
|αi| fi

‖T (fi)‖X

)

∥∥∥∥
X

.

Then we
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(
n∑

i=1

|αi|p)
1
p = (

n∑
i=1

∥∥∥T ( |αi|fi

‖T (fi)‖X
)
∥∥∥p

X
)

1
p

by (3.19) ≤ C(
∫

Ω
(

n∑
i=1

(|αi|
|fi|

‖T (fi)‖X

)p)
q
p dµ(w))

1
q ,

takeFi =
|fi|

‖T (fi)‖X

in Lq(Ω, µ) therefore according to Lemma (3.9). We have

(3.20) ∃g ∈ BLr(Ω,µ) such that
∫

Ω

|gFi|p dµ(w) ≥ 1.

By (3.20) implies that ∫
Ω

∣∣∣∣g |fi|
‖T (fi)‖

∣∣∣∣p dµ(w) ≥ 1,

hence

∀fi ∈ Sq, ‖T (fi)‖p
X ≤

∫
Ω

|gfi|p dµ(w);

then

∀f ∈ Sq,
(
‖T (f)‖p

Lp

) 1
p

≤ (

∫
Ω

|gf |p dµ(w))
1
p ,

and

∀fi ∈ Sq, ‖T (fi)‖p
X ≤

∫
Ω

|gfi|p dµ(w)
1
p ;

Then,

∀f ∈ Sq, ‖T (f)‖Lp
≤ (

∫
Ω

|gf |p dµ(w))
1
p .

By Hölder inequality we have

(3.21) ∀f ∈ Sq, ‖T (f)‖Lp
≤ ‖g‖Lr

‖f‖1
Lq

.

We can get

Tg : Lq(Ω, µ) −→ Lp(Ω, µ)
f 7−→ fg.

Defining v on Tg(Sq) by v(fg) = T (f), T continuous thenv also, by inequality (3.21) and

Theorem (3.3) implies that‖v (x)‖ ≤ C ‖x‖1 . By extendingv to Sp = Tg(Sq)
Lp

. We have the
result. �

Remark 3.6. With similar supposition of above Theorem (3.10), only in this oneT be a sub-
linear operator and with similar prove ifs = 1 and subadditive we have the same factorization.

Proposition 3.11. Let 1 < p ≤ q ≤ ∞ and 1
r

= 1
p
− 1

q
. Let X Banach K-space andT1, T2

be sublinear operators fromSq closed subspace ofLq(Ω, µ) into X such thatT1 ≤ T2 . If T2

factors throughSp(Ω, µ), thenT1 factors throughSp(Ω, µ).

Proof. If T2 factors throughSp(Ω, µ). According Remark (3.6) there is a finite positive constant
C (T2 ) such that for all finite sequences(fi)1≤i≤n in Sq, we have

(3.22) (
n∑

i=1

‖T2(fi)‖p
X)

1
p ≤ C (T2 ) (

∫
Ω

(
n∑

i=1

|fi|p)
p
q dµ(w))

1
q .
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By (2.1) allfi in Sq (T2 is sublinear ), we have,

|T1(fi)| ≤ |T2(fi)|+ |T2(−fi)| , ∀f ∈ Sq.

We have thatX Banach K-space. Hence

‖T1(fi)‖X ≤ ‖T2(fi)‖X + ‖T2(−fi)‖X).

Therefore by the Minkowski inequality ,

‖‖T1(fi)‖X‖lp(X)
≤ ‖‖T2(fi)‖X‖lp(X)

+ ‖‖T2(−fi)‖X‖lp(X)
.

By similar of (3.19) in Remark (3.6), for all finite sequences(fi)1≤i≤n in Sq, we have

(
n∑

i=1

‖T1(fi)‖p
X)dµ)

1
p ≤ C (T2 ) (

∫
Ω

(
n∑

i=1

|fi|p)
p
q dµ(w))

1
q ,

whereC 8 = 2C (T2 ) by Remark (3.6) we deduce thatT1 factors bySp(Ω, µ) and this concludes
the proof.

�
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