

Fabrication of new polypyrrole/silicon nitride hybrid materials for potential applications in electrochemical sensors: Synthesis and characterization

Faiza Nessark^{a,b}, Ahmed Zouaoui^c, Alvaro Garcia-Cruz^a, Anne Bonhomme^a, Michael Lee^a, Belkacem Nessark^b, Nadia Zine^a, Pedro Marote^a, Joan Bausells^d, Abdoullatif Baraket^a and Abdelhamid Errachid^a

^aInstitut des Sciences Analytiques (ISA), Université Claude Bernard Lyon 1, 5 rue de la Doua, Villeurbanne cedex, France; ^bLaboratoire d'Electrochimie et Matériaux (LEM), Université Ferhat Abbas Sétif 1, Algeria; ^cLaboratoire de Croissance et Caractérisation de Nouveaux Semi-conducteurs (LCCNS), Université Ferhat Abbas Sétif 1, Algeria; ^dCentro Nacional de Microelectrónica (CNM), Universidad Autónoma de Barcelona, Bellaterra, Spain

ABSTRACT

In this research, an efficient fabrication process of conducting polypyrrole (PPy)/silicon nitride (Si₃N₄) hybrid materials were developed in order to be employed as transducers in electrochemical sensors used in various environmental and biomedical applications. The fabrication process was assisted by oxidative polymerization of pyrrole (Py) monomer on the surface of Si/SiO₂/Si₃N₄ substrate in presence of FeCl₃ as oxidant. To improve the adhesion of PPy layer to Si₃N₄ surface, a pyrrole-silane (SPy) was chemically bonded through silanization process onto the Si₃N₄ surface before deposition of PPy layer. After Py polymerization, Si/SiO₂/Si₃N₄-(SPy-PPy) substrate was formed. The influence of SPy concentration and temperature of silanization process on chemical composition and surface morphology of the prepared Si/SiO₂/Si₃N₄-(SPy-PPy) substrates was studied by FTIR and SEM. In addition, the electrical properties of the prepared substrates were characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). It was found that the best silanization reaction conditions to get Si/SiO₂/Si₃N₄-(SPy-PPy) substrate with high PPy adhesion and good electrical conductivity were obtained by using SPy at low concentration (4.3 mM) at 90°C. These promising findings open the way for fabrication of new hybrid materials which can be used as transducers in miniaturized sensing devices for various environmental and biomedical applications.

ARTICLE HISTORY

Received March 2017, Revised and Accepted May 2017

KEYWORDS

Silicon nitride; Polypyrrole; Oxidative polymerization; Surface characterization; Cyclic voltammetry; Electrochemical impedance spectroscopy

1. Introduction

Silicon nitride (Si₃N₄) plays an important role in microelectronics, integrated circuits technology, memory and thin film transistors, optoelectronics, optics, and hard surface coating (1, 2). Si₃N₄ offers a number of advantages when compared to other materials, such as the absence of undesirable impurities and the excellent control of the film composition and thickness (3). In addition, Si_3N_4 is considered as a biocompatible material in contact with bone in-vitro and it has been suggested as a load-bearing implant material due to its favorable mechanical properties (4). Also, the application of Si₃N₄ thick film for the fabrication and development of novel biosensors have been reported (5, 6). However, only few Si₃N₄-based biosensors have been successfully developed. This is due to the lack of an efficient and direct protocol for the integration of biological elements with Si₃N₄-based substrates and it is still one of its main drawbacks.

Nowadays, there is a great challenge to develop Si₃N₄ based devices. In this regard, the application of conductive polymers (CPs) has opened a new alternative to easily modify the Si₃N₄ substrate and to generate new materials with novel properties. Among all CPs, polypyrrole (PPy) is one

of the most successfully employed polymers due to its high electrical conductivity, good environmental stability, biocompatibility, electro activity in neutral environments, and easy synthesis (7). PPy presents good electrical and optical properties for biosensor technology due to its π -electron conjugation along the polymer backbone (8, 9). Therefore, to enhance the conducting properties of $\mathrm{Si}_3\mathrm{N}_4$ semiconducting-based materials, recent studies have focused on the use of PPy conducting polymers as tools (transducers) which have the ability for amplification of the response signal arise from biomolecules interactions (e.g. in DNA biosensors, glucose sensing electrodes, amperometric enzyme biosensors, amperometric cholesterol biosensors, etc) (10–13).

Recently, Si₃N₄ and PPy have been used to generate novel Si₃N₄-PPy composites by using different techniques. For example, Si₃N₄ nanoparticles have been coated with PPy by the sonoelectrochemical synthesis of PPy (14). Besides, other techniques including the electrochemical grafting of PPy on porous silicon (Si) was used for gas sensors applications (15). Previously, we have reported PPy microstructures printed on glass and polyethylene terephthalate (PET) substrates for biosensing applications (16).