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وَرَسُولُهُ  وَقُلِ اعِمَلُواِ فَسَيَرَى اللّهُ عَمَلَكُمِ"
 دَةِوَالِمُؤِمِنُونَ وَسَتُرَدُّونَ إِلَى عَالِمِ الِغَيِبِ وَالشَّهَا

 [501]التوبة:   " فَيُنَبِّئُكُم بِمَا كُنتُمِ تَعِمَلُونَ
 

 ويقول العماد الأصفهاني 

) إني رأيت أنه لا يكتب أحد كتابا في يومه إلا قال 
ا لكان أحسن    للنو ديند لكنان     عنه : لو غير هذ هفي

    للو قدم هذا لكان أفضل   للنو رنره هنذا    يستحس
لكان أجمل   لهذا م  أعظم العبر   لهو دلينل عىن    

 استيلاء النقص عى  جمىة البشر(. 
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Notation

N Natural numbers {0, 1, 2, 3, . . .} .

N∗ Nonzero natural numbers {1, 2, 3, . . .} .

Z Integers {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .} .

Z−
0 Negative integers {. . . ,−3,−2,−1, 0} .

R Real numbers (−∞,∞) .

R+ Positive real numbers (0,∞) .

R∗ Nonzero real numbers (−∞, 0) ∪ (0,∞) .

C Complex numbers, z ∈ C, then z = x+ iy, where x, y ∈ R, and i2 = −1.

L1 (Ω) Space of LEBESGUE complex-valued measurable functions φ on Ω, for which

∥φ∥L1 =
∫
Ω
|φ (ξ)| dξ <∞.

C (Ω) The BANACH space of all continuous functions φ on Ω, for which

∥φ∥∞ = sup
0≤η≤ℓ

|φ (η)| .

Γ (·) EULER gamma function.

B (·, ·) Beta function.

Eα (·) Standard MITTAG-LEFFLER function.

Eα,β (·) MITTAG-LEFFLER function in two arguments, α and β.

Iα
0+φ RIEMANN-LIOUVILLE fractional integral of order α.

RLDα
0+φ RIEMANN-LIOUVILLE fractional derivative of order α.

CDα
0+φ CAPUTO fractional derivative of order α.

FDE Fractional Differential Equation.

FPDE Fractional-order’s Partial Differential Equation.
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Introduction

Historically, on the topic of fractional integrals and derivatives, we cite a particular

date as that of the first appearance of the so called ”Fractional Calculus”. In a letter

dated September 30th, 1695, L’HÔSPITAL wrote to LEIBNIZ asking him about a particular

notation he had used in his writings for the nth-derivative of the linear function u (t) = t,

dnt
dtn
. L’HÔSPITAL wondered what the result would be if n = 1/2. LEIBNIZ response was: ”An

apparent paradox, from which one day useful consequences will be drawn.” In these words

fractional calculus was born.

In recent years, considerable interest in fractional calculus has been aroused by Frac-

tional partial differential equations (FPDEs) Which is a valuable tool for modeling numer-

ous tangible incidents that science attempts to explain and has approached more frequently.

For further reading on their use, readers can refer to the following books (Diethelm 2010

[20], Kilbas et al. 2006 [28], Podlubny 1999 [36], Samko et al. 1993 [39]).

Exact solutions (or closed-forms) of fractional-order’s PDEs are crucial for rendering

many qualitative features of natural science processes and phenomena fathomable, where

become obtainable using various methods including the residual power series, symmetry,

spectral, Fourier transform, similarity, etc. (see [9, 10, 15, 25, 32, 33, 35, 37, 43]).

The existence and uniqueness of solutions for fractional differential equations or

fractional-order’s PDEs have been investigated in recent years. (see [7, 9, 10, 15, 28, 32, 33,

35, 43]) for further details. For this purpose, the technique used is to reduce the study of

our problem to the research of a fixed point of an integral operator. The obtained results

are based on some standard fixed point theorems such as Banach and Schauder [23].

Our directions in this thesis are based particularly on several works that study various

FPDEs by converting them into fractional differential equations using several methods.

The lie group analysis has been discussed by Luchko et al. (see [15, 32]), who studied

the space-time fractional diffusion/wave equation.
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Introduction

In 2020, B. Basti and N. Benhamidouche [9] studied the space-fractional heat equation

by self-similar forms (see also [5]).

From 2014 to 2017, the authors (see [18, 24]) studied the nonlinear time-fractional

Boussinesq equation by traveling wave transformation.

The main objective of this thesis is the study of the existence and uniqueness of solutions

of CAPUTO-type partial differential equations of fractional order, by transforming it into

differential equations of fractional order.

The originality of our work was by suggesting, studying and discussing new forms

and methods transform FPDEs to FDEs, which were represented in: Firstly, traveling

profile forms (see [11]), this method plays an important role in modeling all scientific

fields: computer science, physics, biology, medicine..., because it contributes to the study of

complex problems by transforming them into simple problems. Secondly, traveling wave

forms (see [41]), which is a special case of traveling profile forms, and radially symmetric

forms (for more details see [1, 2, 16, 19, 30, 42, 45]).

This thesis is divided into five chapters as follows

In the first chapter, we recall the basic notions related to the theory of fractional calculus

that we will need in the rest of this work such as Gamma, Beta and Mittag-Leffler functions

that play an important role in the theory of fractional differential equations, as well as the

fixed point theorems such as Banach and Schauder. Two approaches (RIEMANN-LIOUVILLE

and CAPUTO) to the generalization of notions of derivation will then be considered.

In the second chapter, we study the existence and uniqueness of solutions under the

traveling wave forms

ω (x, t) = exp
(
−κ2t

)
φ (x− κt) , with κ ∈ R∗,

for a free boundary problem of higher-order space-fractional wave equations as follows
∂2t ω = κ2∂αxω, (x, t) ∈ Ω ⊂ R2,

ω (κt, t) = c0 exp (−κ2t) , c0 ∈ R,
∂kxω (κt, t) = 0, k ∈ {1, 2, . . . ,m− 1} .

It does so by applying the properties of Schauder’s and Banach’s fixed point theorems.

In the third chapter, we study the existence and uniqueness of solutions under the

traveling wave forms

ω (x, t) = exp

(
−κ

2

δ
t

)
φ (x− κt) , with κ, δ ∈ R∗

+,
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Introduction

for a free boundary Cauchy problem of space-fractional Jordan-Moore-Gibson-Thompson

equations of nonlinear acoustics as follows
τωttt + µωtt − κ2∂αxω − δ∂αxωt = F (x, t, ω, ωt, ωtt, ωxx, (ωt)xx) , (x, t) ∈ Ω ⊂ R2,

ω (x, 0) = ω0 (x) , ωt (x, 0) = ω1 (x) , ωtt (x, 0) = ω2 (x) , ω0, ω1, ω2 ∈ C,
ω (κt, t) = c0 exp

(
−κ2

δ
t
)
, ωx (κt, t) = (ωt)x (κt, t) = 0, κ > 0, c0 ∈ C.

It does so by applying the properties of Schauder’s and Banach’s fixed point theorems,

while CAPUTO’s fractional derivative is used as the differential operator. For application

purposes, some examples of explicit solutions are provided to demonstrate the usefulness

of our main results.

In the fourth chapter, we treat and discuss some analytical studies on the existence and

uniqueness of global or blow-up solutions under the traveling profile forms

ω (x, t) = c (t)φ

(
x− b (t)

a (t)

)
, with a, c ∈ R∗

+, b ∈ R,

for a free boundary problem of diffusion equations of moving fractional order as follows
∂tω = κ∂αxω, (x, t) ∈ Ω, κ ∈ R∗, Ω ⊂ R2,

ω (b (t) , t) = c0c (t) , c0 ∈ R, c ∈ R∗
+,

∂xω (b (t) , t) = c1
c(t)
a(t)

, c1 ∈ R, a, c ∈ R∗
+,

∂kxω (b (t) , t) = 0, k ∈ 2, 3, . . . ,m− 1, for m ≥ 3.

It does so by applying the properties of Schauder’s and Banach’s fixed point theorems. For

application purposes, some examples of explicit solutions are provided to demonstrate the

usefulness of our main results.

The fifth chapter, we treat and discuss some analytical studies on the existence of

radially symmetric solutions

ω (x, t) = |x|µ φ (|x|γ t) , (t, x) ∈ Ω ⊂ R+ × Rm, µ, γ ∈ C,

for a multidimensional nonlinear time and space-fractional reaction-diffusion/wave equa-

tion as follows ∂αt ω − κ2∆ω = F
(
t, x, ω, ∂βt ω, (−∆)s ω

)
, (t, x) ∈ Ω, κ ∈ R∗,

ω (0, x) = |x|δ c0, ∂ω
∂t

(0, x) = 0, δ, c0 ∈ C.

It does so by applying the properties of Schauder’s and Banach’s fixed point theorems. For

application purposes, some examples of explicit solutions are provided to demonstrate the

usefulness of our main results.
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CHAPTER 1

PRELIMINARIES AND BACKGROUND

MATERIALS

This chapter will be devoted to the primary definitions and basic concepts related to

fractional calculus such as the EULER Gamma, Beta and MITTAG-LEFFLER functions.

In addition to that, it will also present other elements of functional analysis, such as the

fractional derivation, fractional integration, relative definitions of operators of fractional

order, among others, which will all be at the core of this work.

1.1 Special Functions of the Fractional Calculus

In this section, we present the functions EULER gamma, Beta and MITTAG-LEFFLER. These

functions play an important role in the theory of fractional calculus and its applications.

Euler Gamma Function

One of the basic functions of fractional calculus is EULER Gamma function Γ (α) which

naturally extends the factorial to positive real numbers (and even to complex numbers

with positive real parts).

Definition 1.1 ([28]). For α > 0 (or actually Re (α) > 0), the EULER gamma function Γ (α)

defined by

Γ (α) =

∫ ∞

0

e−ξξα−1dξ, (1.1)

this integral is convergent for all complex Re (α) > 0, with Γ (1) = 1, Γ (0+) = +∞, Γ (α) is a

monotonous and strictly decreasing function for 0 < α ≤ 1.

An important property of the EULER gamma function Γ (α) is the following recurrence relation

Γ (α + 1) = αΓ (α) , Re (α) > 0, (1.2)

Rabah Djemiat 4 Mohamed Boudiaf University of M’sila



1.1. Special Functions of the Fractional Calculus

Beta Function

It is one of the basic functions of fractional calculus. This function plays an important

role when combined with the Gamma function.

Definition 1.2 ([28]). The Beta function is a type of EULER integral defined by

B (p, q) =

∫ 1

0

ξp−1 (1− ξ)q−1 dξ, p, q ∈ C\Z−
0 , (1.3)

The Beta function is related to the Gamma function by the following relation

B (p, q) =
Γ (p) Γ (q)

Γ (p+ q)
. (1.4)

Mittag-Leffler Function

The MITTAG-LEFFLER function is an important function that is widely used in the field of

fractional calculus. Just as the exponential naturally arises out of the solution to integer

order differential equations, the MITTAG-LEFFLER function plays an analogous role in the

solution of non-integer order differential equations. The generalization of the single-

parameter exponential function has been introduced by G. M. MITTAG-LEFFLER and is

designated by the following definition:

Definition 1.3 ([28]). The standard definition of the MITTAG-LEFFLER function is given by

Eα (η) =
+∞∑
k=0

ηk

Γ (αk + 1)
, α > 0. (1.5)

It is also common to represent the MITTAG-LEFFLER function in two arguments, α and β. Such that

Eα,β (η) =
+∞∑
k=0

ηk

Γ (αk + β)
, α, β > 0. (1.6)

The last relation is the more generalized form of the function. For β = 1, we find (1.5).

Example 1.1. From the relation (1.6), we find that

E1,1 (η) =
+∞∑
k=0

ηk

Γ (k + 1)
=

+∞∑
k=0

ηk

k!
= eη,

E1,2 (η) =
+∞∑
k=0

ηk

Γ (k + 2)
=

+∞∑
k=0

ηk

(k + 1)!
=

1

η

+∞∑
k=0

ηk+1

(k + 1)!
=

1

η
(eη − 1) ,
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1.2. Elements From Fractional Calculus Theory

1.2 Elements From Fractional Calculus Theory

The purpose of this part is to introduce the two most important approaches to fractional

calculus: in the sense of RIEMANN-LIOUVILLE and in the sense of CAPUTO, including some of

their properties as well as the relationship between these two approaches. The majority of

the definitions in this section are taken from [28] and [36], which we refer to for a thorough

analysis of the subject.

Riemann-Liouville Fractional Integrals

Definition 1.4 (Left-sided Riemann-Liouville fractional integral [28]). The left-sided RIEMANN-

LIOUVILLE fractional integral of order α > 0 of a continuous function φ : [0, ℓ] → R is given

by

Iα
0+φ (η) =

1

Γ (α)

∫ η

0

(η − ξ)α−1 φ (ξ) dξ, η ∈ [0, ℓ] . (1.7)

Γ (α) is the Euler gamma function (1.1).

Example 1.2. If α > 0 and β > −1, then

Iα
0+η

β =
1

Γ (α)

∫ η

0

(η − ξ)α−1 ξβdξ, (1.8)

By making the change of variable ξ = ηz, then (1.8) becomes

Iα
0+η

β =
1

Γ (α)

∫ 1

0

(η − ηz)α−1 (ηz)β ηdz

=
ηα+β

Γ (α)

∫ 1

0

(1− z)α−1 zβdz

=
ηα+β

Γ (α)

∫ 1

0

(1− z)α−1 zβ+1−1dz.

Using the Beta function definition (1.3) then the relationship (1.4), we arrive at

Iαηβ =
ηα+β

Γ (α)
B (α, β + 1)

=
ηα+β

Γ (α)

Γ (α) Γ (β + 1)

Γ (α + β + 1)

=
Γ (β + 1)

Γ (α + β + 1)
ηα+β. (1.9)

In particular, the relationship (1.9) shows that the fractional integral in the sense of RIEMANN-

LIOUVILLE of ordre α of a constant is given by

Iα
0+C =

C

Γ (α + 1)
ηα, C = const.
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1.2. Elements From Fractional Calculus Theory

Property 1.1 ([28]). Let α, β ∈ C (Re (α) > 0 and Re (β) > 0), for any function φ ∈ L1 ([0, ℓ])

and ℓ > 0 we have

Iα
0+

(
Iβ
0+φ (η)

)
= Iα+β

0+ φ (η) = Iβ
0+ (Iα

0+φ (η)) ,

for almost everything η ∈ [0, ℓ]. If more φ ∈ C ([0, ℓ]), then this identity is true ∀η ∈ [0, ℓ].

Riemann-Liouville Fractional Derivatives

Definition 1.5 (Left-sided Riemann-Liouville fractional derivative [28]). The left-sided

RIEMANN-LIOUVILLE fractional derivative of order α > 0 of a continuous function φ : [0, ℓ] → R is

given by

RLDα
0+φ (η) =

{
dmφ(η)
dηm

, for α = m ∈ N,
dm

dηm
Im−α
0+ φ (η) = dm

dξm

∫ η

0
(η−ξ)m−α−1

Γ(m−α)
φ (ξ) dξ, for m− 1 < α < m ∈ N∗,

Example 1.3 (Constant Function). Let m− 1 < α < m ∈ N, then

RLDα
0+C =

Cη−α

Γ (1− α)
̸= 0, C = const.

Example 1.4 (Power Fonction). Let m− 1 < α < m, m− 1 < β ∈ R, then

RLDα
0+η

β =
Γ (β + 1) ηβ−α

Γ (β − α + 1)
.

Caputo Fractional Derivatives

Definition 1.6 (Left-sided Caputo fractional derivative [28]). The left-sided CAPUTO fractional

derivative of order α > 0 of a function φ : [0, ℓ] → R is given by

CDα
0+φ (η) =

{
dmφ(η)
dηm

, for α = m ∈ N,
Im−α
0+

dmφ(η)
dηm

=
∫ η

0
(η−ξ)m−α−1

Γ(m−α)
dmφ(ξ)
dξm

dξ, for m− 1 < α < m ∈ N∗,
(1.10)

Property 1.2 ([28]). Let α ∈ C such as m − 1 < Re (α) < m, and be m ∈ N∗ both functions φ

and ψ such as CDα
0+φ and CDα

0+ψ exist. CAPUTO fractional derivation is a linear operator

CDα
0+ (λφ+ ψ) (η) = λ CDα

0+φ (η) + CDα
0+ψ (η) , λ ∈ R.

Proof. We have according to (1.10)

CDα
0+ (λφ+ ψ) (η) = Im−αDm (λφ+ ψ) (η)

= λIm−αDm (φ+ ψ) (η) .
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1.2. Elements From Fractional Calculus Theory

As the mth derivative and the integral are linear then

CDα
0+ (λφ+ ψ) (η) = λIm−αDmφ (η) + Im−αDmψ (η)

= λCDα
0+φ (η) +C Dα

0+ψ (η) .

The proof is complete.

Property 1.3 ([36]). Assume that m − 1 < Re (α) < m ∈ N∗, and let the function φ such as
CDα

0+φ exist, then
CDα

0+Dmφ (η) = CDα+m
0+ φ (η) ̸= Dm CDα

0+φ (η) .

Lemma 1.1 ([28, 36]). Assume that CDα
0+φ ∈ C ([0, ℓ] ,R) , for all α > 0, then

Iα
0+

CDα
0+φ (η) = φ (η)−

m−1∑
k=0

φ(k) (0)

k!
ηk, m− 1 < α ≤ m ∈ N∗.

Example 1.5 (Constant Function). the following example is one of the advantages of the CAPUTO

derivative over the RIEMANN-LIOUVILLE derivative (see [36]).

CDα
0+C = 0, C = const.

In fact, as usual 0 < m− 1 < α < m ∈ N, which means m ≥ 1. Applying the definition

of the CAPUTO derivative (1.10) and since the mth derivative of a constant C equals 0 it

follows
CDα

0+C =
1

Γ (m− α)

∫ η

0

C(m) (η − ξ)m−α−1 dξ = 0.

Example 1.6 (Power Fonction).

CDα
0+η

β = RLDα
0+η

β =
Γ (β + 1)

Γ (β − α + 1)
ηβ−α, m− 1 < α < m, m− 1 < β ∈ R.

In fact, let m− 1 < α < m, m− 1 < β ∈ R.
The direct way reads

CDα
0+η

β =
1

Γ (m− α)

∫ η

0

(
ξβ
)(m)

(η − ξ)m−α−1 dξ

=
1

Γ (m− α)

∫ η

0

Γ (β + 1)

Γ (β −m+ 1)
ξβ−m (η − ξ)m−α−1 dξ,
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1.2. Elements From Fractional Calculus Theory

and using the substitution ξ = zη, 0 ≤ z ≤ 1

CDα
0+η

β =
Γ (β + 1)

Γ (m− α) Γ (β −m+ 1)

∫ η

0

(zη)β−m ((1− z) η)m−α−1 ηdz

=
Γ (β + 1) ηβ−α

Γ (m− α) Γ (β −m+ 1)

∫ η

0

zβ−m (1− z)m−α−1 dz

=
Γ (β + 1) ηβ−α

Γ (m− α) Γ (β −m+ 1)
B (β −m+ 1,m− α)

=
Γ (β + 1) ηβ−α

Γ (m− α) Γ (β −m+ 1)

Γ (β −m+ 1)Γ (m− α)

Γ (β − α + 1)

=
Γ (β + 1) ηβ−α

Γ (β − α + 1)
.

Example 1.7 (Exponential Fonction). Let α ∈ R, m − 1 < α < m ∈ N, β ∈ C. Then the

CAPUTO fractional derivative of the exponential function has the form

CDα
0+e

βη = βmηm−αE1,m−α+1 (βη) .

In fact;

CDα
0+e

βη = CDα
0+

∞∑
k=0

(βη)k

k!

=
1

Γ (m− α)

∫ η

0

(
∞∑
k=0

(βξ)k

k!

)(m)

(η − ξ)m−α−1 dξ

=
1

Γ (m− α)

∫ η

0

∞∑
k=0

βm+kξk

k!
(η − ξ)m−α−1 dξ

=
βm

Γ (m− α)

∞∑
k=0

βk

k!

∫ η

0

ξk (η − ξ)m−α−1 dξ.

Let ξ = zη, 0 < z < 1

CDα
0+e

βη =
βm

Γ (m− α)

∞∑
k=0

βk

k!

∫ 1

0

(zη)k (η − zη)m−α−1 ηdz

=
βm

Γ (m− α)

∞∑
k=0

βk

k!
ηm+k−α

∫ 1

0

zk (η − z)m−α−1 dz

=
βmηm−α

Γ (m− α)

∞∑
k=0

βkηk

k!
B (k + 1,m− α)

=
βmηm−α

Γ (m− α)

∞∑
k=0

(βη)k

k!

Γ (k + 1)Γ (m− α)

Γ (m+ k − α + 1)

= βmηm−α

∞∑
k=0

(βη)k

Γ (m+ k − α + 1)
.
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1.2. Elements From Fractional Calculus Theory

Example 1.8 (Sine function). Let z ∈ C, α ∈ R, m− 1 < α < m ∈ N. Then

CDα
0+ sin zη = −1

2
i (iz)m ηm−α (E1,m−α+1 (izη)− (−1)mE1,m−α+1 (−izη)) .

In fact, the following representation of the sine function used

sin ξ =
eiξ − e−iξ

2i
, ξ ∈ C.

Now, using the linearity property of the CAPUTO fractional derivative and formula for the

exponential function it can be shown that

CDα
0+ sin zη = CDα

0+
eizη − e−izη

2i

=
1

2i

(
CDα

0+e
izη − CDα

0+e
−izη

)
=

1

2i

(
(izη)m ηm−αE1,m−α+1 (izη)− (−izη)m ηm−αE1,m−α+1 (−izη)

)
= −1

2
i (izη)m ηm−α (E1,m−α+1 (izη)− (−1)mE1,m−α+1 (−izη)) .

Example 1.9 (Cosine function). Let z ∈ C, α ∈ R, m− 1 < α < m ∈ N. Then

CDα
0+ cos zη =

1

2
(iz)m ηm−α (E1,m−α+1 (izη) + (−1)mE1,m−α+1 (−izη)) .

In fact, the following representation of the cosine function used

cos ξ =
eiξ + e−iξ

2
, ξ ∈ C.

Now, using the linearity property of the CAPUTO fractional derivative and formula for the

exponential function it can be shown that

CDα
0+ cos zη = CDα

0+
eizη − e−izη

2

=
1

2

(
CDα

0+e
izη + CDα

0+e
−izη

)
=

1

2

(
(izη)m ηm−αE1,m−α+1 (izη) + (−izη)m ηm−αE1,m−α+1 (−izη)

)
=

1

2
(izη)m ηm−α (E1,m−α+1 (izη) + (−1)mE1,m−α+1 (−izη)) .

Relation Between Riemann-Liouville and Caputo Derivatives

If α /∈ N and φ is a function for which the CAPUTO fractional derivatives CDα
0+φ of order

α > 0 exist together with the RIEMANN-LIOUVILLE fractional derivatives RLDα
0+φ, then, in

accordance with (1.7), they are connected with each other through the following relations

CDα
0+φ (η) = RLDα

0+φ (η) −
m−1∑
k=0

φ(k) (0)

Γ (k − α + 1)
ηk−α, where m = [α] + 1,
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1.3. Caputo Fractional Order’s PDEs

then
CDα

0+φ (η) = RLDα
0+φ (η) , if φ (0) = φ′ (0) = · · · = φ(m−1) (0) = 0.

1.3 Caputo Fractional Order’s PDEs

Partial differential equations (PDEs) with fractional order have recently become a valu-

able tool for modeling numerous tangible incidents that science attempts to explain and

have approached more frequently in recent years. Their application spans studies of vibra-

tion and control, signal and image processing, and modeling earthquakes, among others

(Diethelm 2010 [20], Kilbas et al. 2006 [28], Podlubny 1999 [36], Samko et al. 1993 [39]).

Exact solutions of fractional-order’s PDEs are crucial for rendering many qualitative

features of natural science processes and phenomena fathomable, where become obtainable

using various methods including the residual power series, symmetry, spectral, Fourier

transform, similarity, etc. (for more details see [1, 2, 16, 19, 30, 42, 45]).

What is a CAPUTO fractional-order’s partial differential equation?

To answer this question, we present the following two definitions.

Definition 1.7 (Caputo FDEs). CAPUTO fractional differential equations is a relationship of the

type
CDα

0+φ (η) = f
(
η, φ, CDα1

0+φ ,
CDα2

0+φ ,
CDα3

0+φ , . . .
)
, (1.11)

where the variable η ∈ R, and the fractional derivatives of order α1, α2, α3, . . . of the unknown

function φ at the point η. Here CDα
0+φ presents a CAPUTO fractional differential operator of order

α ≥ α1 ≥ α2 ≥ . . . > 0.

Definition 1.8 (Caputo FPDEs). CAPUTO fractional order’s partial differential equations are space

or time fractional Defined by the following relation

∂α∗ ω = F
(
x1, x2, . . . , t, ω, (−∆)α1 ω, ∂α2

t ω, ∂α3
x1
ω . . .

)
, α ≥ α1 ≥ α2 ≥ . . . > 0, (1.12)

where (−∆)α1 defines the fractional Laplacian operator [29] and the symbol ∂α∗w is the CAPUTO

left-sided fractional derivative of order α. With

∂α∗ ω = ∂αxi
ω = Im−α

a

∂mω

∂xmi
or ∂α∗ ω = ∂αt ω = Im−α

0

∂mω

∂tm
,

where ω = ω (x, t) is a scalar function of the time t ≥ 0 and space variables x ∈ (a, b)m , and a, b

may be finite constants or infinitie. The symbol Iα
∗ presents the RIEMANN-LIOUVILLE fractional

integral of order α.
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1.4 Different Solution Forms For Caputo FPDEs

Sometimes to prove that the FPDEs accept at least one or only one solution, the FPDEs

are converted into an FDEs of form and then the solution of the form is said to be the

solution of the given FPDEs.

What are the methods available to convert FPDEs into a form FDEs?

To answer this question, we present the following ways

Traveling wave Solutions

Traveling wave solution is important in application because it allows modeling the

dynamics of many problems in physics, chemistry, engineering, medicine, economics,

control theory, etc. We propose solutions in ”Traveling wave” form for FPDEs as follows

ω (x, t) = exp (a (t))φ (η) , with η = x− κt, and κ ∈ R∗, (1.13)

the function a (t) depends on time t, and the basic profile φ are not known in advance and

are to be identified.

Example 1.10. Let κ ∈ R∗ and a (t) = −κ2t, we consider the space-fractional wave equations of

higher order as follows

∂2ω

∂t2
= κ2

∂αω

∂xα
, for m− 1 < α ≤ m ∈ N∗, (1.14)

then the transformation (1.13) reduces the partial differential equation of space-fractional order

(1.14) to the ordinary differential equation of fractional order of the form

CDα
0+φ (η) = κ2φ (η) + 2κφ′ (η) + φ′′ (η) , (1.15)

For more details about using the method ”traveling wave” to convert FPDEs (1.14) into a form

FDEs (1.15), see page 17 in chapter two.

Example 1.11. Let τ, µ, κ, ℓ, δ ∈ R∗
+, p, q,m ∈ R and a (t) = −κ2

δ
t, we consider the space-

fractional equations of nonlinear acoustics as follows

τωttt + µωtt − κ2∂αxω − δ∂αxωt = F (x, t, ω, ωt, ωtt, ωxx, (ωt)xx) , for 1 < α ≤ 2, (1.16)

with F is a nonlinear continuous function that is invariant by the change of scale (1.13). It gives us

F (x, t, ω, ωt, ωtt, ωxx, (ωt)xx) = exp

(
−κ

2

δ
t

)(
δκf (η, φ, φ′, φ′′)− κ3τφ′′′) ,
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1.4. Different Solution Forms For Caputo FPDEs

where f : [0, ℓ]×C×C×C → C is a continuous function, then the transformation (1.13) reduces

the partial differential equation of space-fractional order (1.16) to the ordinary differential equation

of fractional order of the form

CDα+1
0+ φ (η) = pφ (η) + qφ′ (η) +mφ′′ (η) + f (η, φ (η) , φ′ (η) , φ′′ (η)) , (1.17)

For more details about using the method ”traveling wave” to convert FPDEs (1.16) into a form

FDEs (1.17), see page 28 in chapter three.

Traveling Profile Solutions

Traveling profile solutions (see [11]), plays an important role in modeling all scientific

fields: computer science, physics, biology, medicine... Because it contributes to the study of

complex problems by transforming them into simple problems. We suggest finding the

solution for FPDEs in the following ”traveling profile” form

ω (x, t) = c (t)φ (η) , with η =
x− b (t)

a (t)
, for a ̸= 0. (1.18)

The functions a (t), b (t) and c (t) depends on time t and the basic profile φ are not known

in advance and are to be identified.

Example 1.12. Let κ ∈ R∗, we consider a diffusion equation of moving fractional order as follows

∂ω

∂t
= κ

∂αω

∂xα
, (1.19)

then the transformation (1.18) reduces the partial differential equation of space-fractional order

(1.19) to the ordinary differential equation of fractional order of the form

CDα
0+φ (η) = αφ (η) + βηφ′ (η) + γφ′ (η) . (1.20)

For more details about using the method ”traveling profile” to convert FPDEs (1.16) into a form

FDEs (1.20), see page 43 in chapter four.

Radially Symmetric Solutions

Radially symmetric solutions (see [9, 10, 15, 25, 43]), are extremely useful solutions in

different fields of physics and pure mathematics because they model phenomena that are

independent of the scale of measurement. We propose solutions in ”radially symmetric”

form for FPDEs as follows

ω (x, t) = |x|µ φ (η) , with η = |x|γ t, and µ, γ ∈ C. (1.21)
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Example 1.13. Let κ ∈ R∗ and p, q ∈ R, we consider a multidimensional nonlinear time and

space-fractional reaction-diffusion/wave equation as follows

∂αt ω − κ2∆ω = F
(
t, x, ω, ∂βt ω, (−∆)s ω

)
, for 0 < s ≤ 1 < β ≤ α ≤ 2, (1.22)

with F is a nonlinear continuous function that is invariant by the change of scale (1.21). It gives us:

F
(
t, x, ω, ∂βt ω, (−∆)s ω

)
= |x|δ−2

(
f
(
η, φ (η) , φ′ (η) , CDβ

0+φ (η)
)
− 4κ2

α2
η2φ′′ (η)

)
,

where η = |x|−
2
α t and f : [0, ℓ]×C×C×C → C is a continuous function, then the transformation

(1.21) reduces the partial differential equation of space-fractional order (1.22) to the ordinary

differential equation of fractional order of the form

CDα
0+φ (η) = pφ (η) + qηφ′ (η) + f

(
η, φ (η) , φ′ (η) , CDβ

0+φ (η)
)
, (1.23)

For more details about using the method ”radially symmetric” to convert FPDEs (1.22) into a form

FDEs (1.23), see page 57 in chapter five.

1.5 Fixed Point Theorems

In the remainder of this section, we introduce the notations, definitions and theorems

necessary for this study.

Definition 1.9 (Equicontinuous [4]). Let E be a BANACH space. A part P in C (E) is called

equicontinuous if

∀ε > 0, ∃δ > 0, ∀η1, η2 ∈ E, ∀A ∈ P, ∥η1 − η2∥ < δ ⇒ ∥A (η1)−A (η2)∥ < ε.

Theorem 1.1 (Ascoli-Arzelà [23]). Let E be a compact space. If A is an equicontinuous, bounded

subset of C (E) , then A is relatively compact.

Definition 1.10 ([23]). Let E be any space and A a map of E, or of a subset of E, into E.

- The map A is called a contraction mapping if there exists k ∈ (0, 1) such that

∀φ, φ1 ∈ E, ∥Aφ−Aφ1∥ ≤ k ∥φ− φ1∥ .

- A point φ ∈ E is called a fixed point for A if Aφ = φ.

Theorem 1.2 (Banach’s fixed point [23]). Let P be a non-empty closed subset of a BANACH space

E, then any contraction mapping A of P into itself has a unique fixed point.

Theorem 1.3 (Schauder’s fixed point [23]). Let E be a BANACH space, and P be a closed, convex

and nonempty subset of E. Let A : P → P be a continuous mapping such that A (P ) is a relatively

compact subset of E. Then A has at least one fixed point in P.
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CHAPTER 2

EXISTENCE OF TRAVELING WAVE

SOLUTIONS FOR A FREE BOUNDARY

PROBLEM OF HIGHER ORDER SPACE

FRACTIONAL WAVE EQUATIONS

This chapter has been publication in: Journal of Applied Mathematics E-Notes 22 (2022), (see [22]).

2.1 Introduction

This chapter investigates the problem of existence and uniqueness of solutions under

the traveling wave forms

ω (x, t) = exp
(
−κ2t

)
φ (x− κt) , with κ ∈ R∗, (2.1)

for a free boundary problem of higher-order space-fractional wave equations as follows

∂2t ω = κ2∂αxω, κ ∈ R∗, m− 1 ≤ α < m ∈ N− {0, 1, 2} , (2.2)

with

∂αxω =

{
∂mx ω, α = m ∈ N,
Im−α
κt ∂mx ω = 1

Γ(m−α)

∫ x

κt
(x− τ)m−α−1 ∂m

∂τm
ω (τ, t) dτ, m− 1 < α < m ∈ N∗.

It does so by applying the properties of Schauder’s and Banach’s fixed point theorems.

Where the basic profile φ are not known in advance and are to be identified and

ω = ω (x, t) is a scalar function of a space and time variables (x, t) ∈ Ω with

Ω = {(x, t) ∈ R× [0, T ] ; κt ≤ x ≤ X} , for T > 0 and X > |κ|T.
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2.2. Main Results

The higher-order space-fractional wave equation (2.2) becomes the wave equation for

α = 2 and the fourth-order wave equation for α = 4, (see [44]). This was, with a second

member, the first model of surface waves in shallow water that takes into consideration

the balance between the nonlinearity and dispersion, thus, keeping the wave’s shape; it is

properly termed currently the ’Boussinesq paradigm with a second member. This balance

bears solitary waves that behave like quasi-particles, these waves behave as particles called

Solitons. This concept can be crucial for the interpretation of the dualism wave-particle in

physics.

This method permits us to reduce the fractional-order’s PDE (2.2) to a fractional differ-

ential equation. This approach (2.1) is very promising and can also bring novel results for

other applications in fractional-order’s PDEs.

Throughout the rest of this chapter, we have m ≥ 3 is a natural number and

m− 1 ≤ α < m, T > 0 and X > |κ|T for some κ ∈ R∗.

and J = [0, ℓ] with ℓ = X + |κ|T.
(2.3)

2.2 Main Results

Statement of the Free Boundary Problem

In this part, we first attempt to find the equivalent approximate to the following free

boundary problem of the higher-order space-fractional wave equation
∂2t ω = κ2∂αxω, (x, t) ∈ Ω,

ω (κt, t) = c0 exp (−κ2t) , c0 ∈ R,
∂kxω (κt, t) = 0, k ∈ {1, 2, . . . ,m− 1} ,

(2.4)

under the traveling wave form

ω (x, t) = exp
(
−κ2t

)
φ (η) , with η = x− κt . (2.5)

Main Theorems

Now, we give the principal theorems of this work.

Theorem 2.1. Let α, κ, T,X ∈ R, be the real constants given by (2.3). If

(X + |κ|T )α−2 [α (2 (X + |κ|T ) |κ|+ α− 1) + κ2 (X + |κ|T )2
]
< Γ (α + 1) , (2.6)

then the problem (2.4) has at least one solution in the traveling wave form (2.5).
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2.3. Compute of Traveling Wave Solutions

Theorem 2.2. Let α, κ, T,X ∈ R, be the real constants given by (2.3). If

Γ (α + 1) > α (X + |κ|T )α−2 (2 (X + |κ|T ) |κ|+ α− 1)

and
κ2 (X + |κ|T )α

Γ (α + 1)− α (X + |κ|T )α−2 (2 (X + |κ|T ) |κ|+ α− 1)
< 1, (2.7)

then the problem (2.4) admits a unique solution in the traveling wave form (2.5).

2.3 Compute of Traveling Wave Solutions

First, we should deduce the equation satisfied by the function φ in (2.5) and used for the

definition of traveling wave solutions.

Theorem 2.3. The transformation (2.5) reduces the partial differential equation problem of space-

fractional order (2.4) to the ordinary differential equation of fractional order of the form

CDα
0+φ (η) = g (η) , η ∈ J, (2.8)

where

g (η) = κ2φ (η) + 2κφ′ (η) + φ′′ (η) ,

with the conditions

φ (0) = c0 and φ(k) (0) = 0, for k ∈ {1, 2, . . . ,m− 1} . (2.9)

Proof. The fractional equation resulting from the substitution of expression (2.5) in the

original fractional-order’s PDE (2.4), should be reduced to the standard bilinear functional

equation (see [37]).

First, for η = x− κt, we get η ∈ J and

∂2t ω = exp
(
−κ2t

)
g (η) , (2.10)

with

g (η) = κ2φ (η) + 2κφ′ (η) + φ′′ (η) .

In another way, for ξ = τ − κt, we get

∂αxω =
1

Γ (m− α)

∫ x

κt

(x− τ)m−α−1 ∂
mω (τ, t)

∂τm
dτ

=
exp (−κ2t)
Γ (m− α)

∫ η

0

(η − ξ)m−α−1 dm

dξm
φ (ξ) dξ

= exp
(
−κ2t

)
CDα

0+φ (η) . (2.11)
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2.4. Existence and Uniqueness Results

If we replace (2.10) and (2.11) in the first equation of (2.4), we get

CDα
0+φ (η) = g (η) .

From the conditions in (2.4), we find for each k ∈ {1, . . . ,m− 1} that

ω (κt, t) = exp
(
−κ2t

)
φ (κt− κt) = exp

(
−κ2t

)
φ (0) ,

∂kxω (κt, t) = exp
(
−κ2t

)
φ(k) (κt− κt) = exp

(
−κ2t

)
φ(k) (0) ,

which implies that

φ (0) = c0 and φ(k) (0) = 0, for k ∈ {1, 2, . . . ,m− 1} .

The proof is complete.

2.4 Existence and Uniqueness Results

In what follows, we present some significant lemmas to show the principal theorems.

Lemma 2.1. The problem (2.8)–(2.9) is equivalent to the integral equation

φ (η) = c0 +
1

Γ (α)

∫ η

0

(η − ξ)α−1 g (ξ) dξ, ∀η ∈ J,

where g ∈ C (J,R) satisfies the functional equation

g (η) = κ2 (c0 + Iα
0+g (η)) + ψ (g (η)) ,

with ψ : R → R is a function satisfying

ψ (g (η)) = 2κIα−1
0+ g (η) + Iα−2

0+ g (η) .

Proof. Using Theorem 2.3, and applying Iα
0+ to the equation (2.8), we obtain

Iα
0+

CDα
0+φ (η) = Iα

0+g (η) .

From Lemma 1.1, we simply find

Iα
0+

CDα
0+φ (η) = φ (η)−

m−1∑
k=0

φ(k) (0)

k!
ηk, m− 1 < α ≤ m ∈ N∗.

Substituting (2.9) gives us

φ (η) = c0 + Iα
0+g (η) . (2.12)
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As

φ′ (η) =
d

dη
(c0 + Iα

0+g (η)) = Iα−1
0+ g (η)

and

φ′′ (η) =
d2

dη2
(c0 + Iα

0+g (η)) = Iα−2
0+ g (η) ,

then

g (η) = κ2φ (η) + 2κφ′ (η) + φ′′ (η)

= κ2 (c0 + Iα
0+g (η)) + 2κIα−1

0+ g (η) + Iα−2
0+ g (η)

= κ2 (c0 + Iα
0+g (η)) + ψ (g (η)) .

Otherwise, starting by applying CDα
0+ on both sides of the equation (2.12) and using

the linearity of Caputo’s derivative and the fact that CDα
0+c0 = 0, we find easily (2.8).

Furthermore;

φ (0) = (c0 + Iα
0+g) (0) = c0

φ(k) (0) = Iα−k
0+ g (0) = 0, for any k ∈ {1, 2, . . . ,m− 1} .

The proof is complete.

Theorem 2.4. If we put

ℓα−2
[
α (2ℓ |κ|+ α− 1) + κ2ℓ2

]
< Γ (α + 1) , (2.13)

then the problem (2.8)–(2.9) has at least one solution on J.

Proof. To begin the proof, we will transform the problem (2.8)–(2.9) into a fixed point

problem. Let us define

Au (η) = c0 +
1

Γ (α)

∫ η

0

(η − ξ)α−1 g (ξ) dξ, (2.14)

where

g (η) = κ2u (η) + ψ (g (η)) , η ∈ J,

with

ψ (g (η)) = 2κIα−1
0+ g (η) + Iα−2

0+ g (η) .

We first notice that if g ∈ C (J,R) , then Au is indeed continuous (see the step 1 in this

proof); therefore, it is an element of C (J,R) , and is equipped with the standard norm

∥Au∥∞ = sup
η∈J

|Au (η)| .
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Clearly, the fixed points of A are solutions of the problem (2.8)–(2.9).

We demonstrate that A satisfies the assumption of Schauder’s fixed point theorem (see

[23]). This could be proved through three steps.

Step 1: A is a continuous operator.

Let (un)n∈N be a real sequence such that lim
n→∞

un = u in C (J,R) . Then ∀η ∈ J,

|Aun (η)−Au (η)| ≤
∫ η

0

(η − ξ)α−1

Γ (α)
|gn (ξ)− g (ξ)| dξ, (2.15)

where {
gn (η) = κ2un (η) + ψ (gn (η)) ,

g (η) = κ2u (η) + ψ (g (η)) .

We have

|gn (η)− g (η)| =
∣∣κ2 (un (η)− u (η)) + ψ (gn (η))− ψ (g (η))

∣∣
≤ κ2 ∥un − u∥∞ + 2 |κ|

∣∣Iα−1
0+ (gn (η)− g (η))

∣∣+ ∣∣Iα−2
0+ (gn (η)− g (η))

∣∣ .
As ∣∣Iα−1

0+ (gn (η)− g (η))
∣∣ ≤ 1

Γ (α− 1)

∫ η

0

(η − ξ)α−2 |gn (ξ)− g (ξ)| dξ

≤ ℓα−1

Γ (α)
∥gn − g∥∞

and ∣∣Iα−2
0+ (gn (η)− g (η))

∣∣ ≤ 1

Γ (α− 2)

∫ η

0

(η − ξ)α−3 |gn (ξ)− g (ξ)| dξ

≤ ℓα−2

Γ (α− 1)
∥gn − g∥∞

≤ ℓα−2 (α− 1)

Γ (α)
∥gn − g∥∞ .

Then we get

∥gn − g∥∞ ≤ κ2 ∥un − u∥∞ +
ℓα−2 (2ℓ |κ|+ α− 1)

Γ (α)
∥gn − g∥∞ .

According to (2.13), we have Γ (α)− ℓα−2 (2ℓ |κ|+ α− 1) > κ2ℓα

α
> 0, thus

∥gn − g∥∞ ≤ κ2Γ (α)

Γ (α)− ℓα−2 (2ℓ |κ|+ α− 1)
∥un − u∥∞ .
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Since un → u, we get gn → g when n→ ∞.

Now, let µ > 0 be such that for each η ∈ J, we get

|gn (η)| ≤ µ, |g (η)| ≤ µ.

Then, we have

(η − ξ)α−1

Γ (α)
|gn (η)− g (η)| ≤ (η − ξ)α−1

Γ (α)
[|gn (η)|+ |g (η)|]

≤ 2µ

Γ (α)
(η − ξ)α−1 .

For each η ∈ J, the function ξ → 2µ
Γ(α)

(η − ξ)α−1 is integrable on [0, η] , then the

Lebesgue dominated convergence theorem and (2.15) imply that

|Aun (η)−Au (η)| → 0 as n→ ∞,

and hence

lim
n→∞

∥Aun −Au∥∞ = 0.

Consequently, A is continuous.

Step 2: According to (2.13), we put the positive real

r ≥
(
1 +

κ2ℓα

Γ (α + 1)− ℓα−2 [α (2ℓ |κ|+ α− 1) + κ2ℓ2]

)
|c0|

and define the subset H as follows

H = {u ∈ C (J,R) : ∥u∥∞ ≤ r} .

It is clear that H is a bounded, closed and convex subset of C (J,R) .
Let A : H → C (J,R) be the integral operator defined by (2.14), then A (H) ⊂ H.

Indeed, we have for each η ∈ J

|g (η)| =
∣∣κ2u (η) + ψ (g (η))

∣∣
≤ κ2 |u (η)|+ ℓα−2 (2ℓ |κ|+ α− 1)

Γ (α)
∥g∥∞ .

According to (2.13), we get Γ (α)− ℓα−2 (2ℓ |κ|+ α− 1) > 0 and

∥g∥∞ ≤ κ2Γ (α)

Γ (α)− ℓα−2 (2ℓ |κ|+ α− 1)
r.
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Then

|Au (η)| ≤ |c0|+
1

Γ (α)

∫ η

0

(η − ξ)α−1 |g (ξ)| dξ

≤ |c0|+
κ2r

Γ (α)− ℓα−2 (2ℓ |κ|+ α− 1)

∫ η

0

(η − ξ)α−1 dξ

≤ |c0|+
ℓα

α
κ2r

Γ (α)− ℓα−2 (2ℓ |κ|+ α− 1)

≤ |c0|+
κ2ℓα

Γ (α + 1)− αℓα−2 (2ℓ |κ|+ α− 1)
r

≤
|c0|
(
1 + κ2ℓα

Γ(α+1)−ℓα−2[α(2ℓ|κ|+α−1)+κ2ℓ2]

)
1 + κ2ℓα

Γ(α+1)−ℓα−2[α(2ℓ|κ|+α−1)+κ2ℓ2]

+
κ2ℓα

Γ (α + 1)− αℓα−2 (2ℓ |κ|+ α− 1)
r

≤ r.

Then A (H) ⊂ H.

Step 3: A (H) is relatively compact.

Let η1, η2 ∈ J, η1 < η2, and u ∈ H. Then

|Au (η2)−Au (η1)| =
1

Γ (α)

∣∣∣∣∫ η2

0

(η2 − ξ)α−1 g (ξ) dξ −
∫ η1

0

(η1 − ξ)α−1 g (ξ) dξ

∣∣∣∣
≤ 1

Γ (α)

∫ η1

0

∣∣((η2 − ξ)α−1 − (η1 − ξ)α−1) g (ξ)∣∣ dξ
+

1

Γ (α)

∫ η2

η1

(η2 − ξ)α−1 |g (ξ)| dξ

≤ κ2r

Γ (α)− ℓα−2 (2ℓ |κ|+ α− 1)

[∫ η1

0

∣∣(η2 − ξ)α−1−

(η1 − ξ)α−1
∣∣ dξ + ∫ η2

η1

(η2 − ξ)α−1 dξ

]
. (2.16)

We have

(η2 − ξ)α−1 − (η1 − ξ)α−1 = − 1

α

d

dξ
[(η2 − ξ)α − (η1 − ξ)α] ,

then ∫ η1

0

∣∣(η2 − ξ)α−1 − (η1 − ξ)α−1
∣∣ dξ ≤ 1

α
[(η2 − η1)

α + (ηα2 − ηα1 )] ,

we have also ∫ η2

η1

(η2 − ξ)α−1 dξ = − 1

α
[(η2 − ξ)α]

η2
η1

≤ 1

α
(η2 − η1)

α .
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Then (2.16) gives us

|Au (η2)−Au (η1)| ≤
κ2r (2 (η2 − η1)

α + (ηα2 − ηα1 ))

Γ (α + 1)− αℓα−2 (2ℓ |κ|+ α− 1)
.

As η1 → η2, the right-hand side of the above inequality tends to zero.

As a consequence of steps 1 to 3, and by means of the Ascoli-Arzelà theorem, we deduce

that A : H → H is continuous, compact and satisfies the assumption of Schauder’s fixed

point theorem [23]. Then A has a fixed point which is a solution of the problem (2.8)–(2.9)

on J. The proof is complete.

Theorem 2.5. If we put Γ (α + 1) > αℓα−2 (2ℓ |κ|+ α− 1) and

κ2ℓα

Γ (α + 1)− αℓα−2 (2ℓ |κ|+ α− 1)
< 1, (2.17)

then the problem (2.8)–(2.9) admits a unique solution on J.

Proof. In the previous Theorem 2.4, we transformed the problem (2.8)–(2.9) into a fixed

point problem (2.14).

Let u1, u2 ∈ C (J,R), then

Au1 (η)−Au2 (η) =
1

Γ (α)

∫ η

0

(η − ξ)α−1 (g1 (ξ)− g2 (ξ)) dξ.

Where
gi (η) = κ2ui (η) + ψ (gi (η)) ,

ψ (gi (η)) = 2κIα−1
0+ gi (η) + Iα−2

0+ gi (η) , for i = 1, 2.

Also

|Au1 (η)−Au2 (η)| ≤
1

Γ (α)

∫ η

0

(η − ξ)α−1 |g1 (ξ)− g2 (ξ)| dξ. (2.18)

We have

∥g1 − g2∥∞ ≤ κ2Γ (α)

Γ (α)− ℓα−2 (2ℓ |κ|+ α− 1)
∥u1 − u2∥∞ .

From (2.18) we find

∥Au1 −Au2∥∞ ≤ κ2ℓα

Γ (α + 1)− αℓα−2 (2ℓ |κ|+ α− 1)
∥u1 − u2∥∞ .

This implies that by (2.17), A is a contraction operator.

As a consequence Banach’s contraction principle (see [23]), we deduce that A has a

unique fixed point which is the unique solution of the problem (2.8)–(2.9) on J. The proof

is complete.
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2.5 Proof of Main Theorems

In this part, we prove the existence and uniqueness of solutions of the following free

boundary problem of the higher-order space-fractional wave equation
∂2t ω = κ2∂αxω, (x, t) ∈ Ω,

ω (κt, t) = c0 exp (−κ2t) , c0 ∈ R,
∂kxω (κt, t) = 0, k ∈ {1, 2, . . . ,m− 1} ,

(2.19)

under the traveling wave form

ω (x, t) = exp
(
−κ2t

)
φ (η) , with η = x− κt. (2.20)

Proof of Theorem 2.1

The transformation (2.20) reduces the problem of the higher-order space-fractional wave

equation (2.19) to the ordinary differential equation of fractional order of the form

CDα
0+φ (η) = g (η) , (2.21)

where

g (η) = κ2φ (η) + 2κφ′ (η) + φ′′ (η) ,

with the conditions

φ (0) = c0 and φ(k) (0) = 0, for k ∈ {1, 2, . . . ,m− 1} . (2.22)

From (2.3) we get ℓ = X + |κ|T, then the condition (2.6)

κ2 (X + |κ|T )α + α (X + |κ|T )α−2 (2 (X + |κ|T ) |κ|+ α− 1) < Γ (α + 1) ,

becomes

κ2ℓα + αℓα−2 (2ℓ |κ|+ α− 1) < Γ (α + 1) ,

which is the condition (2.13).

We already proved the existence of a solution of the problem (2.21)–(2.22) in Theorem

2.4, provided that (2.13) holds true. Consequently, if (2.6) holds, then there exists at least

one solution of the problem of the higher-order space-fractional wave equation (2.19) under

the traveling wave form (2.20). The proof is complete.

Proof of Theorem 2.2

Based on Theorem 2.5, we use the same steps through which we proved Theorem 2.1

to prove the existence and uniqueness of a traveling wave solution to the problem (2.19),

provided that the condition (2.7) holds true. The proof is complete.
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CHAPTER 3

EXISTENCE OF TRAVELING WAVE

SOLUTIONS FOR A CAUCHY PROBLEM OF

JORDAN-MOORE-GIBSON-THOMPSON

EQUATIONS

This chapter has been sent for publication.

3.1 Introduction and Statement of Results

In this chapter by applying the properties of Schauder’s and Banach’s fixed point the-

orems we examine the existence and uniqueness of solutions under the traveling wave

forms for a free boundary problem of space-fractional Jordan-Moore-Gibson-Thompson

(JMGT) equation as follows

τωttt + µωtt − κ2∂αxω − δ∂αxωt = F (x, t, ω, ωt, ωtt, ωxx, (ωt)xx) , for 1 < α ≤ 2, (3.1)

this equation results from modeling high-frequency ultra sound waves and which describe

sound propagation in thermo-viscous elastic terms, with

∂αxω =

{
∂2xω, α = 2,

I2−α
κt ∂2xω = 1

Γ(2−α)

∫ x

κt
(x− τ)1−α ∂2

∂τ2
ω (τ, t) dτ, 1 < α < 2,

where the unknown scalar function ω = ω(x, t) of a space and time variables (x, t) ∈ Ω with

Ω = {(x, t) ∈ R× [0, T ] ; κt ≤ x ≤ ℓ} , for T > 0 and ℓ > κT,

denotes an acoustic velocity.
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3.1. Introduction and Statement of Results

The fractional JMGT model (3.1) exhibits a variety of dynamical behaviors for solu-

tions, which heavily depend on the positive physical parameters in the equation. To be

specific concerning model (3.1), κ stands for the speed of sound, and τ denotes the thermal

relaxation in the view of the physical context of acoustic waves. Moreover, the parameter

δ concerns the diffusivity of the sound carrying. See the works of Moore, Gibson and

Thompson [31], and Jordan [26], for a detailed insight into their derivation and physical

background, and [27, 34, 13] for a selection of results that account for their mathematical

analysis.

The space-fractional equation (3.1) appears as a generalization of the Kuznetsov equa-

tion (3.2) (see [17]), for µ = 1, τ = 0 and α = 2,

ωtt − κ2∂2xω − δ∂2xωt = F (x, t, ω, ωt, ωtt, ωxx, (ωt)xx) . (3.2)

Both equations (3.1) and (3.2) are used as models in what is called nonlinear acoustics,

and that deals with finite-amplitude wave propagation in fluids and solids and related

phenomena. See the books of Beyer [12] or Rudenko and Soluyan [38].

Note that for F ≡ 0 and α = 2, the PDE (3.1) represents the Moore-Gibson-Thompson

equation:

τωttt + µωtt − κ2∂2xω − δ∂2xωt = 0,

which have recently been approached from various points of view. The study of the

controllability properties of Moore-Gibson-Thompson type equations can be found for

instance in [14, 31].

We define the Cauchy problem for 1 < α ≤ 2 as follows
τωttt + µωtt − κ2∂αxω − δ∂αxωt = F (x, t, ω, ωt, ωtt, ωxx, (ωt)xx) , (x, t) ∈ Ω,

ω (x, 0) = ω0 (x) , ωt (x, 0) = ω1 (x) , ωtt (x, 0) = ω2 (x) , ω0, ω1, ω2 ∈ C,
ω (κt, t) = c0 exp

(
−κ2

δ
t
)
, ωx (κt, t) = (ωt)x (κt, t) = 0, κ > 0, c0 ∈ C,

(3.3)

where τ, µ, κ, δ ∈ R∗
+ and F : Ω× C× C× C× C× C → C is a nonlinear function.

The major goal of this work is to determine the existence and uniqueness of the

fractional-order’s partial differential equation (3.1), under the traveling wave form

ω (x, t) = exp

(
−κ

2

δ
t

)
φ (x− κt) , with κ, δ ∈ R∗

+. (3.4)

The basic profile φ is not known in advance and is to be identified.

This method permits us to reduce the fractional-order’s PDE (3.1) to a fractional differ-

ential equation; the idea is well illustrated with examples in our chapter. This approach

(3.4) is promising and can also bring new results for other applications in FPDEs.
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For the forthcoming analysis, we impose the following assumptions

(A1) F is a continuous function that is invariant by the change of scale (3.4). It gives us

F (x, t, ω, ωt, ωtt, ωxx, (ωt)xx) = exp

(
−κ

2

δ
t

)(
δκf (η, φ, φ′, φ′′)− κ3τφ′′′) , (3.5)

where η = x− κt and f : [0, ℓ]× C× C× C → C is a continuous function.

(A2) There exist three positive constants β, γ, λ > 0 so that the function f given by (3.5)

satisfies

|f (η, u, v, w)− f (η, ū, v̄, w̄)| ≤ β |u− ū|+ γ |v − v̄|+ λ |w − w̄| , ∀β, γ, λ > 0,

for any u, v, w, ū, v̄, w̄ ∈ C.
(A3) There exist four nonnegative functions a, b, c, d ∈ C ([0, ℓ] ,R+) , such that

|f (η, u, v, w)| ≤ a (η) + b (η) |u|+ c (η) |v|+ d (η) |w| , ∀η ∈ [0, ℓ] ,

for any u, v, w ∈ C and η ∈ [0, ℓ] .

We denote by ϖ the positive constant defined by

ϖ = max

{
ℓ |q + γ|+ α |m+ λ|

ℓ1−αΓ (α + 1)
,
ℓ |q + c∗|+ α |m+ d∗|

ℓ1−αΓ (α + 1)

}
.

Where q = κ2

δ2

(
3τκ2

δ
− 2µ

)
, m = κ

δ

(
3τκ2

δ
− µ

)
, and

a∗ = sup
η∈[0,ℓ]

a (η) , b∗ = sup
η∈[0,ℓ]

b (η) , c∗ = sup
η∈[0,ℓ]

c (η) , and d∗ = sup
η∈[0,ℓ]

d (η) .

Throughout the rest of this chapter, we give J = [0, ℓ] and p = κ3

δ3

(
τκ2

δ
− µ

)
.

Now, we give the principal theorems of this work.

Theorem 3.1. Assume that the assumptions (A1)− (A3) hold. If we put ϖ ∈ (0, 1) and

ℓα+1
∣∣∣κ3

δ3

(
τκ2

δ
− µ

)
+ b∗

∣∣∣
Γ (α + 2) (1−ϖ)

< 1, (3.6)

then, there is at least one solution of the Cauchy problem (3.3) on Ω in the traveling wave form (3.4).

Theorem 3.2. Assume that the assumptions (A1) , (A2) hold. If we put ϖ ∈ (0, 1) and

ℓα+1
∣∣∣κ3

δ3

(
τκ2

δ
− µ

)
+ β

∣∣∣
Γ (α + 2) (1−ϖ)

< 1, (3.7)

then the Cauchy problem (3.3) admits a unique solution in the traveling wave form (3.4) on Ω.
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3.2 Compute of Traveling Wave Solutions

Our initial aim is to infer that the function φ in (3.4) satisfies an equation that is employed

in the definition of traveling wave solutions.

Theorem 3.3. If the assumption (A1) holds, then the transformation (3.4) reduces the partial

differential equation problem of space-fractional order (3.3) to the ordinary differential equation of

fractional order of the form
CDα+1

0+ φ (η) = g (η) , η ∈ J, (3.8)

where

g (η) = pφ (η) + qφ′ (η) +mφ′′ (η) + f (η, φ (η) , φ′ (η) , φ′′ (η)) ,

with the conditions

φ (0) = c0 and φ′ (0) = φ′′ (0) = 0. (3.9)

Proof. The fractional equation resulting from the substitution of expression (3.4) in the

original fractional-order’s PDE (3.3), should be reduced to the standard bilinear functional

equation (check [9, 10, 15, 25, 32, 37, 43]). First, for η = x− κt, we get η ∈ J and

τωttt + µωtt = − exp

(
−κ

2

δ
t

)(
κδ (pφ (η) + qφ′ (η) +mφ′′ (η)) + κ3τφ′′′ (η)

)
. (3.10)

On the other hand, for ξ = τ − κt, we get

∂αω

∂xα
=

∫ x

κt

(x− τ)1−α

Γ (2− α)

∂2ω (τ, t)

∂τ 2
dτ

= exp

(
−κ

2

δ
t

)∫ x

κt

(x− τ)1−α

Γ (2− α)

d2φ (τ − κt)

dτ 2
dτ

= exp

(
−κ

2

δ
t

)∫ η

0

(η − ξ)1−α

Γ (2− α)

d2φ (ξ)

dξ2
dξ

= exp

(
−κ

2

δ
t

)
CDα

0+φ (η) . (3.11)

and

∂αωt

∂xα
=

∫ x

κt

(x− τ)1−α

Γ (2− α)

∂2ωt (τ, t)

∂τ 2
dτ

= − exp

(
−κ

2

δ
t

)∫ x

κt

(x− τ)1−α

Γ (2− α)

d2

dτ 2

(
κ2

δ
φ (τ − κt) + κφ′ (τ − κt)

)
dτ

= − exp

(
−κ

2

δ
t

)(
κ2

δ

∫ η

0

(η − ξ)1−α

Γ (2− α)

d2φ (ξ)

dξ2
dξ + κ

∫ η

0

(η − ξ)2−(α+1)

Γ (3− (α + 1))

d3φ (ξ)

dξ3
dξ

)

= − exp

(
−κ

2

δ
t

)(
κ2

δ
CDα

0+φ (η) + κ CDα+1
0+ φ (η)

)
. (3.12)
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If we replace (3.5), (3.10), (3.11) and (3.12) in the first equation of (3.3), we get

CDα+1
0+ φ (η) = g (η) .

From the conditions in (3.3), we find

ω (κt, t) = exp

(
−κ

2

δ
t

)
φ (κt− κt) = φ (0) exp

(
−κ

2

δ
t

)
,

also

ωx (κt, t) = exp

(
−κ

2

δ
t

)
φ′ (κt− κt) = φ′ (0) exp

(
−κ

2

δ
t

)
,

and

(ωt)x (κt, t) = −
(
κ2

δ
φ′ (κt− κt) + κφ′′ (κt− κt)

)
exp

(
−κ

2

δ
t

)
= −

(
κ2

δ
φ′ (0) + κφ′′ (0)

)
exp

(
−κ

2

δ
t

)
,

which implies that

φ (0) = c0 and φ′ (0) = φ′′ (0) = 0.

The proof is complete.

3.3 Existence and Uniqueness Results

Lemma 3.1. Assume that f : J × C × C × C → C is a continuous function, then the problem

(3.8)–(3.9) is equivalent to the integral equation

φ (η) = c0 +
1

Γ (α + 1)

∫ η

0

(η − ξ)α g (ξ) dξ, ∀η ∈ J,

where g ∈ C (J,C) satisfies the functional equation

g (η) = p
(
c0 + Iα+1

0+ g (η)
)
+ ψ (g (η)) ,

with ψ : C → C is a function satisfying

ψ (g (η)) = qIα
0+g (η) +mIα−1

0+ g (η) + f
(
η, c0 + Iα+1

0+ g (η) , Iα
0+g (η) , Iα−1

0+ g (η)
)
.

Proof. Using Theorem 3.3, and applying Iα+1
0+ to the equation (3.8), we obtain

Iα+1
0+

CDα+1
0+ φ (η) = Iα+1

0+ g (η) .
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From Lemma 1.1, we simply find

Iα+1
0+

CDα+1
0+ φ (η) = φ (η)− c0 − ηφ′ (0)− 1

2
η2φ′′ (0) .

Substituting (3.9) gives us

φ (η) = c0 + Iα+1
0+ g (η) . (3.13)

As

φ′ (η) =
d

dη

(
c0 + Iα+1

0+ g (η)
)
= Iα

0+g (η)

and

φ′′ (η) =
d2

dη2
(
c0 + Iα+1

0+ g (η)
)
= Iα−1

0+ g (η) ,

then

g (η) = pφ (η) + qφ′ (η) +mφ′′ (η) + f (η, φ (η) , φ′ (η) , φ′′ (η))

= p
(
c0 + Iα+1

0+ g (η)
)
+ qIα

0+g (η) +mIα−1
0+ g (η)

+f
(
η, c0 + Iα+1

0+ g (η) , Iα
0+g (η) , Iα−1

0+ g (η)
)

= p
(
c0 + Iα+1

0+ g (η)
)
+ ψ (g (η)) .

Otherwise, starting by applying CDα+1
0+ on both sides of the equation (3.13) and using

the linearity of Caputo’s derivative and the fact that CDα+1
0+ c0 = 0, we find easily (3.8).

Furthermore;

φ (0) =
(
c0 + Iα+1

0+ g
)
(0) = c0

φ(k) (0) = Iα−k−1
0+ g (0) = 0, for each k = 1, 2.

The proof is complete.

Theorem 3.4. Assume the assumptions (A2) , (A3) hold. If we put ϖ ∈ (0, 1) and

ℓα+1 |p+ b∗|
Γ (α + 2) (1−ϖ)

< 1, (3.14)

then the problem (3.8)–(3.9) has at least one solution on J.

Proof. To begin the proof, we will transform the problem (3.8)–(3.9) into a fixed point

problem. Let us define

Au (η) = c0 +
1

Γ (α + 1)

∫ η

0

(η − ξ)α g (ξ) dξ, (3.15)
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where

g (η) = pu (η) + ψ (g (η)) , η ∈ J,

with

ψ (g (η)) = qIα
0+g (η) +mIα−1

0+ g (η) + f
(
η, u (η) , Iα

0+g (η) , Iα−1
0+ g (η)

)
.

As the assumptions (A2) , (A3) hold, we notice that if g ∈ C (J,C) , then Au is indeed

continuous (see the step 1 in this proof); therefore, it is an element of C (J,C) , and is

equipped with the standard norm

∥Au∥∞ = sup
η∈J

|Au (η)| .

Clearly, the fixed points of A are solutions of the problem (3.8)–(3.9).

We demonstrate that A satisfies the assumption of Schauder’s fixed point theorem (see

[23]). This could be proved through three steps.

Step 1: A is a continuous operator.

Let (un)n∈N be a real sequence such that lim
n→∞

un = u in C (J,C) . Then ∀η ∈ J,

|Aun (η)−Au (η)| ≤ 1

Γ (α + 1)

∫ η

0

(η − ξ)α |gn (ξ)− g (ξ)| dξ, (3.16)

where {
gn (η) = pun (η) + ψ (gn (η)) ,

g (η) = pu (η) + ψ (g (η)) .

We have

|gn (η)− g (η)| = |p (un (η)− u (η)) + (ψ (gn (η))− ψ (g (η)))|

≤ |p+ β| ∥un − u∥∞ + |q + γ| |Iα
0+ (gn (η)− g (η))|

+ |m+ λ|
∣∣Iα−1

0+ (gn (η)− g (η))
∣∣ .

As

|Iα
0+ (gn (η)− g (η))| ≤ 1

Γ (α)

∫ η

0

(η − ξ)α−1 |(gn (ξ)− g (ξ))| dξ

≤ ℓα

Γ (α + 1)
∥gn − g∥∞

and ∣∣Iα−1
0+ (gn (η)− g (η))

∣∣ ≤ αℓα−1

Γ (α + 1)
∥gn − g∥∞ .
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Then we get

∥gn − g∥∞ ≤ |p+ β| ∥un − u∥∞ +
ℓ |q + γ|+ α |m+ λ|

ℓ1−αΓ (α + 1)
∥gn − g∥∞

≤ |p+ β| ∥un − u∥∞ +ϖ ∥gn − g∥∞ .

As ϖ ∈ (0, 1) , thus

∥gn − g∥∞ ≤ |p+ β|
1−ϖ

∥un − u∥∞ .

Since un → u, we get gn → g when n→ ∞.

Now, let z > 0 be such that for each η ∈ J, we get

|gn (η)| ≤ z, |g (η)| ≤ z.

Then, we have

(η − ξ)α

Γ (α + 1)
|gn (η)− g (η)| ≤ (η − ξ)α

Γ (α + 1)
[|gn (η)|+ |g (η)|]

≤ 2z

Γ (α + 1)
(η − ξ)α .

For each η ∈ J, the function ξ → 2z
Γ(α+1)

(η − ξ)α is integrable on [0, η] , then the

Lebesgue dominated convergence theorem and (3.16) imply that

|Aun (η)−Au (η)| → 0 as n→ ∞,

and hence

lim
n→∞

∥Aun −Au∥∞ = 0.

Consequently, A is continuous.

Step 2: Using (3.14), we put the positive real

r ≥
(
|c0|+

a∗ℓα+1

Γ (α + 2) (1−ϖ)

)
Γ (α + 2) (1−ϖ)

Γ (α + 2) (1−ϖ)− ℓα+1 |p+ b∗|
,

and define the subset H as follows

H = {u ∈ C (J,C) : ∥u∥∞ ≤ r} .

It is clear that H is bounded, closed and convex subset of C (J,C).
Let A : H → C (J,C) be the integral operator defined by (3.15), then A (H) ⊂ H.

Indeed, we have for each η ∈ J

|g (η)| = |pu (η) + ψ (g (η))|

≤ a∗ + |p+ b∗| |u (η)|+ϖ ∥g∥∞ .
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Then, we get

∥g∥∞ ≤ a∗ + |p+ b∗| r
1−ϖ

.

Thus

|Au (η)| ≤ |c0|+
1

Γ (α + 1)

∫ η

0

(η − ξ)α |g (ξ)| dξ

≤ |c0|+
ℓα+1

Γ (α + 2)

a∗ + |p+ b∗| r
1−ϖ

≤ |c0|+
a∗ℓα+1

(1−ϖ) Γ (α + 2)
+

ℓα+1 |p+ b∗| r
(1−ϖ) Γ (α + 2)

≤

(
|c0|+ a∗ℓα+1

(1−ϖ)Γ(α+2)

)
Γ(α+2)(1−ϖ)

(1−ϖ)Γ(α+2)−ℓα+1|p+b∗|
(1−ϖ)Γ(α+2)

(1−ϖ)Γ(α+2)−ℓα+1|p+b∗|

+
ℓα+1 |p+ b∗| r

(1−ϖ) Γ (α + 2)

≤ r.

Then A (H) ⊂ H.

Step 3: A (H) is relatively compact.

Let η1, η2 ∈ J, η1 < η2, and u ∈ H. Then

|Au (η2)−Au (η1)| =
1

Γ (α + 1)

∣∣∣∣∫ η2

0

(η2 − ξ)α g (ξ) dξ −
∫ η1

0

(η1 − ξ)α g (ξ) dξ

∣∣∣∣
≤ 1

Γ (α + 1)

∫ η1

0

|((η2 − ξ)α − (η1 − ξ)α) g (ξ)| dξ

+
1

Γ (α + 1)

∫ η2

η1

(η2 − ξ)α |g (ξ)| dξ

≤ a∗ + |p+ b∗| r
Γ (α + 1) (1−ϖ)

[∫ η1

0

|(η2 − ξ)α − (η1 − ξ)α| dξ

+

∫ η2

η1

(η2 − ξ)α−1 dξ

]
. (3.17)

We have

(η2 − ξ)α − (η1 − ξ)α = − 1

α + 1

d

dξ

[
(η2 − ξ)α+1 − (η1 − ξ)α+1] ,

then ∫ η1

0

|(η2 − ξ)α − (η1 − ξ)α| dξ ≤ 1

α + 1

[
(η2 − η1)

α+1 +
(
ηα+1
2 − ηα+1

1

)]
,

we also have∫ η2

η1

(η2 − ξ)α dξ = − 1

α + 1

[
(η2 − ξ)α+1]η2

η1
≤ 1

α + 1
(η2 − η1)

α+1 .
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Thus (3.17) gives us

|Au (η2)−Au (η1)| ≤
2 (η2 − η1)

α+1 +
(
ηα+1
2 − ηα+1

1

)
Γ (α + 2) (1−ϖ)

(a∗ + |p+ b∗| r) .

The right-hand side of the latter inequality tends to zero when η1 → η2.

As a consequence of steps 1 to 3, and through Ascoli-Arzelà theorem, we infer the

continuity of A : H → H, its compact nature and its satisfaction of the assumption of

Schauder’s fixed point theorem [23]. Therefore, A has a fixed point which solves the

problem (3.8)–(3.9) on J.

Example 3.1. If we choose τ = 1, µ = 3, α = 3
2
, δ = 2, κ = 1 and ℓ = 1, we get Ω =

{(x, t) ∈ R× [0, 1] ; t ≤ x ≤ 1} . Consequently, the considered problem will be stated as follows
ωttt + 3ωtt − ∂

3
2
x ω − 2∂

3
2
x ωt = F (x, t, ω, ωt, ωtt, ωxx, (ωt)xx) , (x, t) ∈ Ω,

ω (x, 0) = ω0 (x) , ωt (x, 0) = ω1 (x) , ωtt (x, 0) = ω2 (x) , ω0, ω1, ω2 ∈ C,
ω (t, t) = c0 exp

(
−1

2
t
)
, ωx (t, t) = (ωt)x (t, t) = 0, c0 ∈ C,

(3.18)

where

F (x, t, ω, ωt, ωtt, ωxx, (ωt)xx) =
ln (x+ e− t− 1)

[
2 exp

(
−1

2
t
)
+ 3

2
|ω|+ |ωt|+ |ωxx|

]
2 exp

(
x− 1

2
t
) [

exp
(
−1

2
t
)
+ 3

2
|ω|+ |ωt|+ |ωxx|

]
+ 2ωtt + 2 (ωt)xx .

The transformation

ω (x, t) = exp

(
−1

2
t

)
φ (η) , with η = x− t,

reduces the partial differential equation problem of space-fractional order (3.18) to the ordinary

differential equation of fractional order of the form

g (η) = − 5

16
φ (η)− 9

8
φ′ (η)− 3

4
φ′′ (η) + f (η, φ, φ′, φ′′) , η ∈ [0, 1] ,

with the conditions

φ (0) = c0 and φ′ (0) = φ′′ (0) = 0,

where

p = − 5

16
, q = −9

8
, and m = −3

4
,

and

f (η, φ, φ′, φ′′) =
ln (η + e− 1) [2 + |φ (η)|+ |φ′ (η)|+ |φ′′ (η)|]

4 exp (η) [1 + |φ (η)|+ |φ′ (η)|+ |φ′′ (η)|]
+

1

4
φ (η) + φ′ (η) +

1

2
φ′′ (η) .
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Because ln (η + e− 1) , exp (η) are continuous positive functions ∀η ∈ [0, 1] , the function f is

jointly continuous. Then

f (η, u, v, w) =
ln (η + e− 1) [2 + |u|+ |v|+ |w|]

4 exp (η) [1 + |u|+ |v|+ |w|]
+

1

4
u+ v +

1

2
w, η ∈ [0, 1] , u, v, w ∈ C.

Clearly, the function f is jointly continuous. For any u, v, w, ū, v̄, w̄ ∈ C and η ∈ [0, 1] , we have

|f (η, u, v, w)− f (η, ū, v̄, w̄)| ≤ 1

2
|u− ū|+ 5

4
|v − v̄|+ 3

4
|w − w̄| .

Therefore, the assumption (A2) is satisfied with

β =
1

2
, γ =

5

4
and λ =

3

4
.

Also, we have

|f (η, u, v, w)| ≤ ln (η + e− 1)

4 exp (η)
(2 + |u|+ |v|+ |w|) + 1

4
|u|+ |v|+ 1

2
|w| .

Thus, the assumption (A3) is satisfied with
a (η) = ln(η+e−1)

2 exp(η)
,

b (η) = ln(η+e−1)
4 exp(η)

+ 1
4
,

c (η) = ln(η+e−1)
4 exp(η)

+ 1,

d (η) = ln(η+e−1)
4 exp(η)

+ 1
2
.

We also have

a∗ =
1

2
, b∗ =

1

2
, c∗ =

5

4
, d∗ =

3

4
,

with

ϖ = sup

{
ℓ |q + γ|+ α |m+ λ|

ℓ1−αΓ (α + 1)
,
ℓ |q + c∗|+ α |m+ d∗|

ℓ1−αΓ (α + 1)

}
=

√
π

6π
< 1.

And the condition (3.6)

ℓα+1
∣∣∣κ3

δ3

(
τκ2

δ
− µ

)
+ b∗

∣∣∣
Γ (α + 2) (1−ϖ)

=
3
√
π

30π − 5
√
π
< 1.

It follows from theorem 3.1, that the Cauchy problem (3.18) has at least one solution.

Theorem 3.5. Assume the assumption (A2) holds. If we put ϖ ∈ (0, 1) and

ℓα+1 |p+ β|
(1−ϖ) Γ (α + 2)

< 1, (3.19)

then the problem (3.8)–(3.9) admits a unique solution on J.
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Proof. Theorem 3.4 states that (3.8)–(3.9) can be rendered a problem of a fixed point (3.15).

Let u1, u2 ∈ C (J,C), then we get

Au1 (η)−Au2 (η) =
1

Γ (α + 1)

∫ η

0

(η − ξ)α (g1 (ξ)− g2 (ξ)) dξ,

where

gi (η) = pui (η) + ψ (gi (η)) , for i = 1, 2,

ψ (gi (η)) = qIα
0+gi (η) +mIα−1

0+ gi (η) + f
(
η, ui (η) , Iα

0+gi (η) , I
α−1
0+ gi (η)

)
.

Also

|Au1 (η)−Au2 (η)| ≤
1

Γ (α + 1)

∫ η

0

(η − ξ)α |g1 (ξ)− g2 (ξ)| dξ. (3.20)

We have

∥g1 − g2∥∞ ≤ |p+ β|
1−ϖ

∥u1 − u2∥∞ .

From (3.20) we find

∥Au1 −Au2∥∞ ≤ ℓα+1 |p+ β|
(1−ϖ) Γ (α + 2)

∥u1 − u2∥∞ .

Thus, according to (3.19), A is considered a contraction operator.

Banach’s contraction principle (see [23]) helps us infer that A has only one fixed point

which is the unique solution of the problem (3.8)–(3.9) on J.

Example 3.2. If we put τ = 2, µ = 8, α = 7
4
, δ = 3, κ = 1 and ℓ = π

3
, we get Ω ={

(x, t) ∈ R× [0, 1] ; t ≤ x ≤ π
3

}
. Thus, the studied problem will be written as follows

2ωttt + 8ωtt − ∂
7
4
x ω − 3∂

7
4
x ωt = F (x, t, ω, ωt, ωtt, ωxx, (ωt)xx) , (x, t) ∈ Ω,

ω (x, 0) = ω0 (x) , ωt (x, 0) = ω1 (x) , ωtt (x, 0) = ω2 (x) , ω0, ω1, ω2 ∈ C,
ω (t, t) = c0 exp

(
−1

3
t
)
, ωx (t, t) = (ωt)x (t, t) = 0, c0 ∈ C,

(3.21)

where Ω =
{
(x, t) ∈ R× [0, 1] ; t ≤ x ≤ π

3

}
and

F (x, t, ω, ωt, ωtt, ωxx, (ωt)xx) =
3 exp

(
−2

3
t
)
cos (x− t)

exp
(
−1

3
t
)
+ 4

3
|ω|+ |ωt|+ |ωxx|

+ 3ωtt + 3 (ωt)xx ,

The transformation

ω (x, t) = exp

(
−1

3
t

)
φ (η) , with η = x− t,

reduces the partial differential equation problem of space-fractional order (3.18) to the ordinary

differential equation of fractional order of the form

g (η) = −23

81
φ (η)− 5

3
φ′ (η)− 2φ′′ (η) + f (η, φ, φ′, φ′′) , η ∈

[
0,
π

3

]
,

Rabah Djemiat 36 Mohamed Boudiaf University of M’sila



3.4. Main Theorems’ Proof

with the conditions

φ (0) = c0 and φ′ (0) = φ′′ (0) = 0,

where

p = −23

81
, q = −5

3
, and m = −2,

and

f (η, φ, φ′, φ′′) =
cos (η)

1 + |φ (η)|+ |φ′ (η)|+ |φ′′ (η)|
+

1

9
φ (η) +

2

3
φ′ (η) +

2

3
φ′′ (η) .

Because cos (η) is continuous positive function ∀η ∈
[
0, π

3

]
, the function f is jointly continuous.

Then

f (η, u, v, w) =
cos (η)

1 + |u|+ |v|+ |w|
+

1

9
u+

2

3
v +

2

3
w, η ∈ [0, 1] , u, v, w ∈ C.

Clearly, the function f is jointly continuous. For any u, v, w, ū, v̄, w̄ ∈ C and η ∈
[
0, π

3

]
, we have

|f (η, u, v, w)− f (η, ū, v̄, w̄)| ≤ 10

9
|u− ū|+ 5

3
|v − v̄|+ 5

3
|w − w̄| .

Therefore, the assumption (A2) is satisfied with

β =
10

9
, γ =

5

3
and λ =

5

3
.

Also, we have

ϖ =
ℓ |q + γ|+ α |m+ λ|

ℓ1−αΓ (α + 1)
=

4
9

(
π
3

) 3
4

Γ
(
3
4

) < 1.

What remains is to show that the condition (3.7)

ℓα+1
∣∣∣κ3

δ3

(
τκ2

δ
− µ

)
+ β

∣∣∣
Γ (α + 2) (1−ϖ)

≃ 0.345 < 1,

is satisfied. It follows from theorem 3.2 that the Cauchy problem (3.21) has a unique solution.

3.4 Main Theorems’ Proof

This section demonstrates the proof of the existence and uniqueness of solutions of the

given Cauchy problem for a space-fractional JMGT equation of nonlinear acoustics, which

is 
τωttt + µωtt − κ2∂αxω − δ∂αxωt = F (x, t, ω, ωt, ωtt, ωxx, (ωt)xx) , (x, t) ∈ Ω,

ω (x, 0) = ω0 (x) , ωt (x, 0) = ω1 (x) , ωtt (x, 0) = ω2 (x) , ω0, ω1, ω2 ∈ C,
ω (κt, t) = c0 exp

(
−κ2

δ
t
)
, ωx (κt, t) = (ωt)x (κt, t) = 0, κ > 0, c0 ∈ C,

(3.22)
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under the traveling wave form

ω (x, t) = exp

(
−κ

2

δ
t

)
φ (x− κt) , with κ, δ ∈ R∗

+. (3.23)

Proof of Theorem 3.1

Assume the assumptions (A1) − (A3) hold. Using transformation (3.23), the Cauchy

problem (3.22) is reduced to fractional order’s ordinary differential equation of the form

CDα+1
0+ φ (η) = g (η) , η ∈ J, (3.24)

where

g (η) = pφ (η) + qφ′ (η) +mφ′′ (η) + f (η, φ (η) , φ′ (η) , φ′′ (η)) ,

with

p =
κ3

δ3

(
τκ2

δ
− µ

)
, q =

κ2

δ2

(
3τκ2

δ
− 2µ

)
and m =

κ

δ

(
3τκ2

δ
− µ

)
, (3.25)

along with the conditions

φ (0) = c0 and φ′ (0) = φ′′ (0) = 0. (3.26)

By using (3.25), the condition (3.6) is equivalent to (3.14), which is

ℓα+1 |p+ b∗|
Γ (α + 2) (1−ϖ)

< 1, with ϖ ∈ (0, 1) .

Therefore, after proving that problem (3.24)–(3.26) has a solution in Theorem 3.4 when (3.14)

holds, we can similarly prove the existence of at least a solution of the Cauchy problem for

the space-fractional JMGT equation of nonlinear acoustics (3.22) under the traveling wave

form (3.23). This can be achieved if (3.6) holds. The proof is complete.

Proof of Theorem 3.2

Similarly to the steps that we followed during the proof of Theorem 3.1, the existence

and uniqueness of a traveling wave solution to problem (3.22) is demonstrated using

Theorem 3.5, provided that the condition (3.7) holds true. The proof is complete.

3.5 Explicit Solutions

In this section, we present some explicit solutions on the traveling wave form of the

Cauchy problem (3.22)

Solution 1: Let p, q,m ∈ R, y > 1 and β, γ, λ ∈ R∗
+, for 1 < α ≤ 2, we get

φ (η) = ηy,
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which represents a solution of the problem (3.24)–(3.26), where

f (η, φ (η) , φ′ (η) , φ′′ (η)) =
Γ (y + 1)

Γ (y − α)
ηy−α−1 − pφ (η)− qφ′ (η)−mφ′′ (η) .

Then the solution of problem (3.22) is presented as follows

ω (x, t) = exp

(
−κ

2

δ
t

)
(x− κt)y ,

where

F (x, t, ω, ωt, ωtt, ωxx, (ωt)xx) =
2τκ6

δ3
ω +

3τκ4

δ2
ωt + µωtt −

2τκ4

δ
ωxx + κ2τ (ωt)xx

+ exp

(
−κ

2

δ
t

)
δκΓ (y + 1)

Γ (y − α)
(x− κt)y−α−1 .

Solution 2: Let p, q,m ∈ R, y ∈ C and β, γ, λ ∈ R∗
+, for 1 < α ≤ 2, we get

φ (η) = sin (yη)− yη,

which represents a solution of the problem (3.24)–(3.26), where

f (η, φ (η) , φ′ (η) , φ′′ (η)) = −1

2
y3η3−α (E1,4−α (iyη) + E1,4−α (−iyη))−pφ (η)−qφ′ (η)−mφ′′ (η) .

Where E1,4−α (η) is the function of Mittag-Leffler type. Then the solution of problem (3.22)

is presented as follows

ω (x, t) = exp

(
−κ

2

δ
t

)
[sin (yx− yκt)− y (x− κt)] .

Where

F (x, t, ω, ωt, ωtt, ωxx, (ωt)xx) = −1

2
y3 (x− κt)3−α exp

(
−κ

2

δ
t

)
E1,4−α (iy (x− κt)) +

κ2τ

δ
ωtt

− y3 (x− κt)3−αE1,4−α (−iy (x− κt))

2
exp

(
−κ

2

δ
t

)
+ κ2τ (ωt)xx

+

(
3τκ6

δ3
− κ4µ

δ2

)
ω +

(
5κ4τ

δ2
− 2κ2µ

δ

)
ωt − δκmωxx.

Solution 3: Let p, q ∈ R, γ ∈ C and β, γ, λ ∈ R∗
+, for 1 < α ≤ 2,we get

φ (η) = 2 cos (yη) + y2η2,

which represents a solution of the problem (3.24)–(3.26), where

f (η, φ (η) , φ′ (η) , φ′′ (η)) = − i

2
y3η3−α (E1,4−α (iyη)− E1,4−α (−iyη))−pφ (η)−qφ′ (η)−mφ′′ (η) .
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Where E1,4−α (η) is the function of Mittag-Leffler type. Then the solution of problem (3.22)

is presented as follows

ω (x, t) = 2 exp

(
−κ

2

δ
t

)
cos (yx− yκt) + y2 exp

(
−κ

2

δ
t

)
(x− κt)2 .

Where

F (x, t, ω, ωt, ωtt, ωxx, (ωt)xx) = − i

2
y3 (x− κt)3−α exp

(
−κ

2

δ
t

)
E1,4−α (iy (x− κt))

− i

2
y3 (x− κt)3−α exp

(
−κ

2

δ
t

)
E1,4−α (−iy (x− κt))

+
2τκ6

δ3
ω +

3τκ4

δ2
ωt + µωtt −

2τκ4

δ
ωxx + κ2τ (ωt)xx .
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CHAPTER 4

ANALYTICAL STUDIES ON THE GLOBAL

EXISTENCE AND BLOW-UP OF SOLUTIONS

FOR A FREE BOUNDARY PROBLEM OF

TWO DIMENSIONAL DIFFUSION

EQUATIONS OF MOVING FRACTIONAL

ORDER

This chapter has been sent for publication.

4.1 Introduction

This chapter particularly addresses and discusses some analytical studies on the

existence and uniqueness of global or blow-up solutions under the traveling profile

forms for a free boundary problem of diffusion equations of moving fractional order as

follows

∂tω = κ∂αxω, κ ∈ R∗, m− 1 < α ≤ m ∈ N− {0, 1} , (4.1)

where ∂αxω = Im−α
b(t) ∂mx ω, with b is a real function of time t. Also ω = ω (x, t) is a scalar

function of a space and time variables (x, t) ∈ Ω with

Ω = {(x, t) ∈ R× [0, T ] ; b (t) ≤ x ≤ a (t) + b (t)} ,

a (t) > 0 for any t ∈ [0, T ] and T may be an infinite or a finite positive constant.

It does so by applying the properties of Schauder’s and Banach’s fixed point theorems.
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The equation (4.1) becomes the transport equation for α = 1 and the linear dispersive

equations of Airy type for α = 3.

Therefore, for m = 2, the space-fractional diffusion equation (4.1) becomes a space-

fractional heat equation, in which the existence problems of its self-similar solutions and

its scale-invariant solutions have been discussed in [15, 32, 9].

Our main goal in this work is to determine the existence, uniqueness and main proper-

ties of the global or blow-up solution in time of the fractional-order’s PDE (4.1), under the

traveling profile form (see [11, 46]), which is

ω (x, t) = c (t)φ

(
x− b (t)

a (t)

)
, with a, c ∈ R∗

+, b ∈ R, (4.2)

the functions a (t) , b (t) and c (t) depend on time t and the basic profile φ are not known in

advance and are to be identified.

This method permits us to reduce the fractional-order’s PDE (4.1) to a fractional differ-

ential equation; the idea is well illustrated with examples in our chapter. This approach

(4.2) is very promising and can also bring new results for other applications in FPDEs.

4.2 Main Results

Throughout the rest of this paper, we have J = [0, 1] and m − 1 < α ≤ m, with m ≥ 2

is a natural number, κ ∈ R∗ and λ, β, γ, c0, c1 ∈ R. Also the functions a (t) , b (t) and c (t)

depend on time t given by (4.2).

Statement of the Free Boundary Problem

In this part, we first attempt to find the equivalent approximate to the following free

boundary problem of the diffusion equation of moving fractional order
∂tω = κ∂αxω, (x, t) ∈ Ω, κ ∈ R∗,

ω (b (t) , t) = c0c (t) , c0 ∈ R,
∂xω (b (t) , t) = c1

c(t)
a(t)

, c1 ∈ R,
∂kxω (b (t) , t) = 0, k = 2, 3, . . . ,m− 1, for m ≥ 3,

(4.3)

under the traveling profile form

ω (x, t) = c (t)φ (η) , with η =
x− b (t)

a (t)
and a, c ∈ R∗

+, b ∈ R, (4.4)

where

a (0) = c (0) = 1, b (0) = 0.
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Main Theorems

Now, we give the principal theorems of this work.

Theorem 4.1. Let a (t), b (t) and c (t) be three real functions of time t, given by the traveling profile

form (4.4). If
aα (t)

|κ|

[
α

(∣∣∣∣ ȧ (t)a (t)

∣∣∣∣+
∣∣∣∣∣ ḃ (t)a (t)

∣∣∣∣∣
)

+

∣∣∣∣ ċ (t)c(t)

∣∣∣∣
]
< Γ (α + 1) , (4.5)

then the problem (4.3) has at least one solution in the traveling profile form (4.4), which is global in

time when ȧ (t) > 0, and it blows up in a finite time

0 < t < T = −a
1−α (t)

αȧ (t)
when ȧ (t) < 0 and ċ (t) > 0.

Theorem 4.2. Let a (t), b (t) and c (t) be three real functions of time t, given by the traveling profile

form (4.4). If we put αaα(t)
|κ|

(∣∣∣ ȧ(t)a(t)

∣∣∣+ ∣∣∣ ḃ(t)a(t)

∣∣∣) < Γ (α + 1) and

aα(t)
|κ|

∣∣∣ ċ(t)c(t)

∣∣∣
Γ (α + 1)− αaα(t)

|κ|

(∣∣∣ ȧ(t)a(t)

∣∣∣+ ∣∣∣ ḃ(t)a(t)

∣∣∣) < 1, (4.6)

then the problem (4.3) admits a unique solution in the traveling profile form (4.4), which is global in

time when ȧ (t) > 0, and it blows up in a finite time

0 < t < T = −a
1−α (t)

αȧ (t)
when ȧ (t) < 0 and ċ (t) > 0.

4.3 Compute of Traveling Profile Solutions

We should first deduce the equation satisfied by the function φ in (4.4) and used for the

definition of traveling profile solutions.

Theorem 4.3. The transformation (4.4) reduces the partial differential equation problem of space-

fractional order (4.3) to the ordinary differential equation of fractional order of the form

CDα
0+φ (η) = g (η) , η ∈ J, (4.7)

where

g (η) = λφ (η) + (βη + γ)φ′ (η) ,

with the conditions {
φ (0) = c0, φ

′ (0) = c1, for any m ≥ 2,

φ(k) (0) = 0, k = 2, 3, . . . ,m− 1, for m ≥ 3,
(4.8)
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where

(λ, β, γ) =
aα (t)

κ

(
ċ (t)

c(t)
,− ȧ (t)

a (t)
,− ḃ (t)

a (t)

)
, for some λ, β, γ ∈ R. (4.9)

Proof. The fractional equation resulting from the substitution of expression (4.4) in the

original fractional-order’s PDE (4.3), should be reduced to the standard bilinear functional

equation (see [11]). First, for η = x−b(t)
a(t)

, we get η ∈ J and

∂tω (x, t) = ċ (t)φ (η)− c (t)
ȧ (t)

a (t)
ηφ′ (η)− c (t)

ḃ (t)

a (t)
φ′ (η) . (4.10)

In another way, we get for a (t) ξ = τ − b (t) that

κ∂αxω (x, t) = κIm−α
b(t) ∂mx ω (x, t)

=
κc (t)

Γ (m− α)

∫ x

b(t)

(x− τ)m−1−α dm

dτm
φ

(
τ − b (t)

a (t)

)
dτ

=
κc (t) a−α (t)

Γ (m− α)

∫ η

0

(η − ξ)m−1−α dm

dξm
φ (ξ) dξ

= κc (t) a−α (t) CDα
0+φ (η) . (4.11)

If we replace (4.10) and (4.11) in the first equation of (4.3), we get

CDα
0+φ (η) =

aα (t)

κ

(
ċ (t)

c (t)
φ (η)− ȧ (t)

a (t)
ηφ′ (η)− ḃ (t)

a (t)
φ′ (η)

)
= λφ (η) + (βη + γ)φ′ (η)

= g (η) .

From the conditions in (4.3), we find for each k ∈ {1, . . . ,m− 1} that

ω (b (t) , t) = c (t)φ

(
b (t)− b (t)

a (t)

)
= φ (0) c (t) ,

∂kxω (b (t) , t) =
c (t)

ak (t)
φ(k)

(
b (t)− b (t)

a (t)

)
= φ(k) (0)

c (t)

ak (t)
,

which implies that

φ (0) = c0, φ
′ (0) = c1 and φ(k) (0) = 0, for any k ∈ {2, . . . ,m− 1} .

The proof is complete.

4.4 Existence and Uniqueness Results of the Basic Profile

In what follows, we present some significant lemmas to show the principal theorems.
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Lemma 4.1. The problem (4.7)–(4.8) is equivalent to the integral equation

φ (η) = c0 + c1η + Iα
0+g (η) , ∀η ∈ J. (4.12)

where g ∈ C (J,R) satisfies the functional equation:

g (η) = λ (c0 + c1η + Iα
0+g (η)) + (βη + γ)

(
c1 + Iα−1

0+ g (η)
)
.

Proof. Using Theorem 4.3, and applying Iα
0+ to the equation (4.7), we obtain

Iα
0+

CDα
0+φ (η) = Iα

0+g (η) .

From Lemma 1.1, we simply find

Iα
0+

CDα
0+φ (η) = φ (η)−

m−1∑
k=0

φ(k) (0)

k!
ηk, m− 1 < α ≤ m ∈ N∗.

Substituting (4.8) gives us

φ (η) = (c0 + c1η + Iα
0+g (η)) . (4.13)

And

φ′ (η) =
d

dη
(c0 + c1η + Iα

0+g (η)) = c1 + Iα−1
0+ g (η) ,

then

g (η) = λφ (η) + (βη + γ)φ′ (η)

= λ (c0 + c1η + Iα
0+g (η)) + (βη + γ)

(
c1 + Iα−1

0+ g (η)
)
.

Otherwise, starting by applying CDα
0+ on both sides of the equation (4.13) and using the

linearity of Caputo’s derivative and the fact that CDα
0+ (c0 + c1η) = 0, we find easily (4.7).

Furthermore;

φ (0) = (c0 + c1η + Iα
0+g) (0) = c0

φ′ (0) =
(
c1 + Iα−1

0+ g
)
(0) = c1

φ(k) (0) = Iα−k
0+ g (0) = 0, for any k ∈ {2, . . . ,m− 1} .

The proof is complete.

Theorem 4.4. If we put

α (|β|+ |γ|) + |λ| < Γ (α + 1) , (4.14)

then the problem (4.7)–(4.8) has at least one solution on J.
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Proof. To begin the proof, we will transform the problem (4.7)–(4.8) into a fixed point

problem. Let us define

Au (η) = c0 + c1η +
1

Γ (α)

∫ η

0

(η − ξ)α−1 g (ξ) dξ, (4.15)

where

g (η) = λu (η) + (βη + γ)
(
c1 + Iα−1

0+ g (η)
)
.

We first notice that if g ∈ C (J,R), then Au is indeed continuous (see the step 1 in this

proof); therefore, it is an element of C (J,R) , and is equipped with the standard norm

∥Au∥∞ = sup
η∈J

|Au (η)| .

Clearly, the fixed points of A are solutions of the problem (4.7)–(4.8).

We demonstrate that A satisfies the assumption of Schauder’s fixed point theorem (see

[23]). This could be proved through three steps.

Step 1: A is a continuous operator.

Let (un)n∈N be a real sequence such that lim
n→∞

un = u in C (J,R). Then ∀η ∈ J,

|Aun (η)−Au (η)| ≤
∫ η

0

(η − ξ)α−1

Γ (α)
|gn (ξ)− g (ξ)| dξ, (4.16)

where {
gn (η) = λun (η) + (βη + γ) Iα−1

0+ gn (η) ,

g (η) = λu (η) + (βη + γ) Iα−1
0+ g (η) .

We have

|gn (η)− g (η)| =
∣∣λ (un (η)− u (η)) + (βη + γ) Iα−1

0+ (gn (η)− g (η))
∣∣

≤ λ ∥un − u∥∞ + (|β|+ |γ|)
∣∣Iα−1

0+ (gn (η)− g (η))
∣∣ .

As ∣∣Iα−1
0+ (gn (η)− g (η))

∣∣ ≤ 1

Γ (α− 1)

∫ η

0

(η − ξ)α−2 |gn (ξ)− g (ξ)| dξ

≤ 1

Γ (α)
∥gn − g∥∞ ,

then

∥gn − g∥∞ ≤ |λ| ∥un − u∥∞ +
|β|+ |γ|
Γ (α)

∥gn − g∥∞ .
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According to (4.14), we have Γ (α)− |β| − |γ| > 1
α
|λ| ≥ 0, thus

∥gn − g∥∞ ≤ |λ|Γ (α)

Γ (α)− |β| − |γ|
∥un − u∥∞ .

Since un → u, then we get gn → g as n→ ∞.

Now, let µ > 0 be such that for each η ∈ J, we get

|gn (η)| ≤ µ, |g (η)| ≤ µ.

Then, we have

(η − ξ)α−1

Γ (α)
|gn (η)− g (η)| ≤ (η − ξ)α−1

Γ (α)
[|gn (η)|+ |g (η)|]

≤ 2µ

Γ (α)
(η − ξ)α−1 .

For each η ∈ J, the function ξ → 2µ
Γ(α)

(η − ξ)α−1 is integrable on [0, η], then the

Lebesgue dominated convergence theorem and (4.16) imply that

|Aun (η)−Au (η)| → 0 as n→ ∞,

and hence

lim
n→∞

∥Aun −Au∥∞ = 0.

Consequently, A is continuous.

Step 2: According to (4.14), we put the positive real

r ≥
(
1 +

|λ|
Γ (α + 1)− (α (|β|+ |γ|) + |λ|)

)
(|c0|+ |c1|) ,

and define the subset H as follows

H = {u ∈ C (J,R) : ∥u∥∞ ≤ r} .

It is clear that H is a bounded, closed and convex subset of C (J,R).
Let A : H → C (J,R) be the integral operator defined by (4.15), then A (H) ⊂ H.

In fact, we have

∥g∥∞ ≤ |λ|Γ (α)

Γ (α)− |β| − |γ|
r. (4.17)
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Then

|Au (η)| ≤ |c0|+ |c1|+
1

Γ (α)

∫ η

0

(η − ξ)α−1 |g (ξ)| dξ

≤ |c0|+ |c1|+
1

Γ (α + 1)

|λ|Γ (α)

Γ (α)− |β| − |γ|
r

≤
(|c0|+ |c1|)

(
1 + |λ|

Γ(α+1)−(α(|β|+|γ|)+|λ|)

)
1 + |λ|

Γ(α+1)−(α(|β|+|γ|)+|λ|)

+
|λ| r

Γ (α + 1)− α (|β|+ |γ|)

≤ Γ (α + 1)− (α (|β|+ |γ|) + |λ|)
Γ (α + 1)− α (|β|+ |γ|)

r +
|λ| r

Γ (α + 1)− α (|β|+ |γ|)

≤ r.

Then A (H) ⊂ H.

Step 3: A (H) is relatively compact.

Let η1, η2 ∈ J, η1 < η2, and u ∈ H. Then

|Au (η2)−Au (η1)| =
∣∣∣∣c1η2 + 1

Γ (α)

∫ η2

0

(η2 − ξ)α−1 g (ξ) dξ

− c1η1 −
1

Γ (α)

∫ η1

0

(η1 − ξ)α−1 g (ξ) dξ

∣∣∣∣
≤ |c1| (η2 − η1) +

1

Γ (α)

∫ η1

0

∣∣((η2 − ξ)α−1 − (η1 − ξ)α−1) g (ξ)| dξ
+

1

Γ (α)

∫ η2

η1

(η2 − ξ)α−1 |g (ξ)| dξ

≤ |c1| (η2 − η1) +
|λ| r

Γ (α)− |β| − |γ|

[∫ η1

0

∣∣(η2 − ξ)α−1−

(η1 − ξ)α−1
∣∣ dξ + ∫ η2

η1

(η2 − ξ)α−1 dξ

]
. (4.18)

We have

(η2 − ξ)α−1 − (η1 − ξ)α−1 = − 1

α

d

dξ
[(η2 − ξ)α − (η1 − ξ)α] ,

then ∫ η1

0

∣∣(η2 − ξ)α−1 − (η1 − ξ)α−1
∣∣ dξ ≤ 1

α
[(η2 − η1)

α + (ηα2 − ηα1 )] ,

we have also ∫ η2

η1

(η2 − ξ)α−1 dξ = − 1

α
[(η2 − ξ)α]

η2
η1

≤ 1

α
(η2 − η1)

α .

Then (4.18) gives us

|Au (η2)−Au (η1)| ≤ |c1| (η2 − η1) +
|λ| r (2 (η2 − η1)

α + (ηα2 − ηα1 ))

Γ (α + 1)− α (|β|+ |γ|)
.

As η1 → η2, the right-hand side of the above inequality tends to zero.
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As a consequence of steps 1 to 3, and by means of the Ascoli-Arzelà theorem, we deduce

that A : H → H is continuous, compact and satisfies the assumption of Schauder’s fixed

point theorem 1.3. Then A has a fixed point which is a solution of the problem (4.7)–(4.8)

on J. The proof is complete.

Theorem 4.5. If we put |β|+ |γ| < Γ (α) and

|λ|
Γ (α + 1)− α (|β|+ |γ|)

< 1, (4.19)

then the problem (4.7)–(4.8) admits a unique solution on J.

Proof. In the previous Theorem 4.4, we transformed the problem (4.7)–(4.8) into a fixed

point problem (4.15).

Let u1, u2 ∈ C (J,R), then

Au1 (η)−Au2 (η) =
1

Γ (α)

∫ η

0

(η − ξ)α−1 (g1 (ξ)− g2 (ξ)) dξ,

where

gi (η) = λui (η) + (βη + γ) Iα−1
0+ gi (η) , for i = 1, 2.

Also

|Au1 (η)−Au2 (η)| ≤
1

Γ (α)

∫ η

0

(η − ξ)α−1 |g1 (ξ)− g2 (ξ)| dξ. (4.20)

We have

∥g1 − g2∥∞ ≤ |λ| ∥u1 − u2∥∞ +
|β|+ |γ|
Γ (α)

∥g1 − g2∥∞ .

As |β|+ |γ| < Γ (α) , we obtain

∥g1 − g2∥∞ ≤ |λ|Γ (α)

Γ (α)− |β| − |γ|
∥u1 − u2∥∞ .

From (4.20) we find

∥Au1 −Au2∥∞ ≤ |λ|
Γ (α + 1)− α (|β|+ |γ|)

∥u1 − u2∥∞ .

This implies that by (4.19), A is a contraction operator.

As a consequence of Theorem 1.2, using Banach’s contraction principle [23], we deduce

that A has a unique fixed point which is the unique solution of the problem (4.7)–(4.8) on

J. The proof is complete.
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4.5 Proof of Main Theorems

In this part, we prove the existence and uniqueness of solutions of the following free

boundary problem of the diffusion equation of moving fractional order
∂tω = κ∂αxω, (x, t) ∈ Ω, κ ∈ R∗,

ω (b (t) , t) = c0c (t) , c0 ∈ R,
∂xω (b (t) , t) = c1

c(t)
a(t)

, c1 ∈ R,
∂kxω (b (t) , t) = 0, k = 2, 3, . . . ,m− 1, for m ≥ 3,

(4.21)

under the traveling profile form

ω (x, t) = c (t)φ (η) , with η =
x− b (t)

a (t)
and a, c ∈ R∗

+, b ∈ R, (4.22)

withwhere

a (0) = c (0) = 1, b (0) = 0.

We denote by (z)+ the positive part of z, which is z if z > 0 and what remains is zero.

Proof of Theorem 4.1

The transformation (4.22) reduces the space-fractional diffusion equation in (4.21) to the

ordinary differential equation of fractional order of the form

CDα
0+φ (η) = g (η) , η ∈ J, (4.23)

where

g (η) = λφ (η) + (βη + γ)φ′ (η)

and λ, β, γ ∈ R are constant satisfying

(λ, β, γ) =
aα (t)

κ

(
ċ (t)

c(t)
,− ȧ (t)

a (t)
,− ḃ (t)

a (t)

)
, (4.24)

with the conditions {
φ (0) = c0, φ

′ (0) = c1, for any m ≥ 2,

φ(k) (0) = 0, k = 2, 3, . . . ,m− 1, for m ≥ 3.
(4.25)

Now, to determine the functions a (t), b (t) and c (t) , we just solve the system (4.24). If

β = 0, we have a (t) = 1 and {
b (t) = −κγt,
c (t) = exp (κλt) .

t > 0.
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If β ̸= 0, after an integration from 0 to t we get
a (t) = (1− ακβt)

1
α
+ ,

b (t) = γ
ακβ

(
(1− ακβt)

1
α
+ − 1

)
,

c (t) = (1− ακβt)
− λ

αβ

+ ,

0 < t < T, (4.26)

where T > 0 is the maximal existence value of time for the solution ω, which may be finite

or infinite. Thereupon, we separate the following cases

1. If κβ ≤ 0 (i.e., ȧ (t) ≥ 0), the problem (4.21) admits a global solution in time under the

traveling profile form (4.22); this solution is defined for all t > 0, (i.e., T = ∞).

In addition, for λβ > 0 (i.e., ċ (t) < 0), we have

lim
t→+∞

ω (x, t) = 0.

2. If κβ > 0 (i.e., ȧ (t) < 0), the functions a (t), b (t) and c (t) are defined locally and are

well-defined if and only if

0 < t < T =
1

ακβ
= −a

1−α (t)

αȧ (t)
.

The moment T = 1
ακβ

represents the maximal existence value of the functions a (t),

b (t) and c (t). Moreover; if λβ > 0 (i.e., ċ (t) > 0), the problem (4.21) admits a solution

under the traveling profile form (4.22), which it blows up in a finite time. The solution

is defined for all t ∈ [0, T ), the moment T represents the blow-up time of the solution

such that:

for all x ∈ R, lim
t→T−

ω (x, t) = lim
t→T−

c (t)φ

(
x− b (t)

a (t)

)
= +∞.

We recall that the solution blows up in a finite time if there exists a time T < +∞,

which we call the blow-up time, such that the solution is well defined for all 0 < t < T,

while

sup
x∈R

|ω (x, t)| → +∞, when t→ T =
1

ακβ
.

By using (4.24), the condition (4.5) is equivalent to (4.14), which is

α (|β|+ |γ|) + |λ| < Γ (α + 1) .

We already proved the existence of a solution to the problem (4.23)–(4.25) in Theorem 4.4,

provided that (4.14) holds true. Consequently, if (4.5) holds for any t ∈ [0, T ], then there
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exists at least one solution of the problem of the diffusion equation of moving fractional

order (4.21) under the traveling profile form (4.22). The proof is complete.

Proof of Theorem 4.2

Based on Theorem 4.5, we use the same steps through which we proved Theorem 4.1 to

prove the existence and uniqueness of global or blow-up traveling profile solution to the

problem (4.21), provided that the condition (4.6) holds true. The proof is complete.

4.6 Explicit Solutions

Example 1: According to the proof of the Theorem 4.1, for β = γ = 0 and λ, κ ∈ R∗, we get

a (t) = 1, b (t) = 0 and c (t) = exp (κλt) .

In this case, for m = 2, (i.e., Space-fractional heat equation), we give new explicit solutions

on the traveling profile form of the problem (4.21) as follows

ω (x, t) = exp (κλt)
[
c0Eα (λx

α) + c1xEα,2

(
λx2
)]

, c0, c1 ∈ R,

where Eα,m (η) is the function of Mittag-Leffler type. The solution defined for all t > 0.

Example 2: We present new explicit solutions on the traveling profile form of the problem

(4.21):

For m ≥ 2, if we put β, κ, c0, c1 ∈ R∗, λ = (1−m) β and γ = (m−1)βc0
c1

, we get that

φ (η) = c0 +
m−1∑
k=1

ck1 (m− 1)!

ck−1
0 k! (m− k − 1)! (m− 1)k

ηk,

is a solution of the problem (4.23)–(4.25). Then the traveling profile solution of the problem

(4.21) is presented as follows

ω (x, t) = c (t)

[
c0 +

m−1∑
k=1

ck1 (m− 1)!

ck−1
0 k! (m− k − 1)! (m− 1)k

(
x− b (t)

a (t)

)k
]

, (4.27)

where 
a (t) = (1− ακβt)

1
α
+ ,

b (t) = γ
ακβ

(
(1− ακβt)

1
α
+ − 1

)
,

c (t) = (1− ακβt)
m−1
α

+ .

0 < t < T,

According to the proof of the Theorem 4.1, we separate the following cases:
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1. If κβ < 0, the problem (4.21) admits a global solution in time under the form (4.27),

this solution is defined for all t > 0.

2. If κβ > 0, the functions a (t), b (t) and c (t) are defined if and only if 0 < t < T = 1
ακβ

and the solution does not blow up in the moment T, because λβ = (1−m) β2 < 0.

Moreover;

sup
x∈R

|ω (x, t)| → 0, when t→ T =
1

ακβ
.
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CHAPTER 5

THEORETICAL STUDIES ON THE

EXISTENCE OF SOLUTIONS FOR A

MULTIDIMENSIONAL NONLINEAR TIME

AND SPACE FRACTIONAL

REACTION-DIFFUSION/WAVE EQUATION

This chapter has been accepted for publication in: Memoirs on Diff. Eq. and Math. Physics (2022).

5.1 Introduction and Statement of Results

This chapter discusses and theoretically studies the existence of radially symmetric

solution

ω (t, x) = |x|δ φ
(
|x|−

2
α t
)
, for |x| =

√
x21 + · · ·+ x2m, and δ ∈ C, (5.1)

for a multidimensional nonlinear time and space-fractional reaction-diffusion/wave equa-

tionas follows

∂αt ω − κ2∆ω = F
(
t, x, ω, ∂βt ω, (−∆)s ω

)
, for 0 < s ≤ 1 < β ≤ α ≤ 2, (5.2)

that enables treating vibration and control, signal and image processing, and modeling

earthquakes, among others other physical phenomena. Additionally, the application of

Schauder’s and Banach’s fixed point theorems facilitates identifying the existence and

uniqueness of solutions for the selected equation. The applicability of our main results is

demonstrated through examples and explicit solutions.
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Where ω = ω (t, x) is a scalar function of the time t ≥ 0 and space variables x ∈ Rm,

with m ∈ N∗. Also F : [0,∞) × Rm × C × C × C → C is a nonlinear function, κ ∈ R∗ is a

real constant and

∂αt ω (t, x) =

{
∂nt ω, α = n ∈ N∗,

In−α
0+ ∂nt ω =

∫ t

0
(t−τ)n−α−1

Γ(n−α)
∂n

∂τn
ω (τ, x) dτ, n− 1 < α < n.

The symbol (−∆)s defines the fractional Laplacian operator [29];

(−∆)s ω = Cm,sP.V.
∫
Rm

ω (t, x)− ω (t, y)

|x− y|m+2s dy, for 0 < s < 1,

where P.V. stands for the Cauchy principal value, and the constant Cm,s is given by

Cm,s =
22ssΓ

(
m+2s

2

)
πm/2Γ (1− s)

.

We take the fractional power of (−∆) to obtain a positive operator. As a result, our

definition of the fractional Laplacian (−∆)s is the negative generator of the standard

isotropic s-stable Lévy process [29], which is reduced to −∆ = −∂2/∂2x1 − ∂2/∂2x2 − · · · −
∂2/∂2xm when s = 1.

The Significance of the Equation

Equation (5.2) is a representation of a large class of linear and nonlinear equations fall

under the name of the fractional reaction-diffusion/wave equation (see table 5.1).

Obviously, the development of accurate mathematical models for the description of

complex anomalous systems depends on swapping the fractional Laplacian with integer-

order Laplacian, e.g.

Fractional equation Formula

Reaction-diffusion/wave [9, 10, 15, 25, 33, 35, 45] ∂αt u+ κ2 (−∆)s u+ c (t, x)u = 0

Quasi-geostrophic [16] ∂tv + θ.▽ v + κ (−∆)s v = f

Cahn-Hilliard [2, 1] ∂tw + (−∆)s (−ε2∆w + f (w)) = 0

Porous medium [2, 1, 19] ∂tu+ (−∆)s
(
|u|m−1 signu

)
= 0

Schrödinger [30] iℏ∂tψ = ∂αt (−ℏ2∆)
s
ψ + c (t, x)ψ

Ultrasound [42] 1
c20
∂2t θ = ▽2θ −

{
τ∂t (−∆)s + η (−∆)s+

1
2

}
θ

Table 5.1: Significant equations involving fractional Laplacian
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Problem Statement and Main Results

Let 0 < s ≤ 1, 1 < β ≤ α ≤ 2, ε, ℓ > 0, and Tε = ℓε
2
α be such that Ω = [0, Tε] ×

[ε/
√
m,+∞)

m
. We consider ∂αt ω − κ2∆ω = F

(
t, x, ω, ∂βt ω, (−∆)s ω

)
, (t, x) ∈ Ω, κ ∈ R∗,

ω (0, x) = |x|δ c0, ∂tω (0, x) = 0, δ, c0 ∈ C,
(5.3)

where F : Ω× C× C× C → C is a nonlinear function.

This chapter contribution regards determining the existence, uniqueness, and main

properties of the general solution of stability problems obtained through replacing classical

rules with fractional quadrature rules of the radially symmetric

ω (t, x) = |x|δ φ
(
|x|−

2
α t
)
, for |x| =

√
x21 + · · ·+ x2m, and δ ∈ C,

the basic profile φ is not known in advance and is to be identified.

Taking into consideration the regularization processes, our major aim is employing of

the solutions’ intermediate properties for the fractional order’s PDE’s problem (5.3). We

consider the intermediacy of the multidimensional nonlinear reaction-diffusion equation

and the wave equation.

We illustrate that using analytical techniques to obtain the existence and uniqueness

of weak solutions via the use of form (5.1) is promising and can also bring new results for

other applications in fractional-order’s PDEs. It permits us to reduce the fractional-order’s

PDE (5.2) to a fractional differential equation; the idea is well illustrated in this paper

through selected examples and explicit solutions.

For the forthcoming analysis, we impose the following hypotheses

(hyp.1) F : Ω× C× C× C → C is a continuous function that is invariant by the change

of scale (5.1). It gives us

F
(
t, x, ω, ∂βt ω, (−∆)s ω

)
= |x|δ−2

(
f
(
η, φ (η) , φ′ (η) , CDβ

0+φ (η)
)
− 4κ2

α2
η2φ′′ (η)

)
, (5.4)

where η = |x|−
2
α t and f : J × C× C× C → C is a continuous function.

(hyp.2) There exist three positive constants γ1, γ2, γ3 > 0 so that the continuous function

f given by (5.4) satisfies

|f (η, u, v, w)− f (η, ū, v̄, w̄)| ≤ γ1 |u− ū|+ γ2 |v − v̄|+ γ3 |w − w̄| ,

for any u, v, w, ū, v̄, w̄ ∈ C.
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(hyp.3) There exist four positive functions a, b, c, d ∈ C (J,R+) such that the continuous

function f given by (5.4) satisfies

|f (η, u, v, w)| ≤ a (η) + b (η) |u|+ c (η) |v|+ d (η) |w| ,

for any u, v, w ∈ C and η ∈ J.

λ denotes the positive constant defined by

λ = sup

{
αℓβ−1 |ℓq + c∗|+ d∗

ℓβ−αΓ (α− β + 1)
,
αℓβ−1 |ℓq + γ2|+ γ3
ℓβ−αΓ (α− β + 1)

}
,

where q = −4κ2

α2

(
αδ + α + 1 + mα

2

)
and

a∗ = sup
η∈J

a (η) , b∗ = sup
η∈J

b (η) , c∗ = sup
η∈J

c (η) and d∗ = sup
η∈J

d (η) .

Throughout the rest of this chapter, we give p = δκ2 (δ +m− 2) .

Now, we give the principal theorems of this work.

Theorem 5.1. Assume the hypotheses (hyp.1)− (hyp.3) hold. If we put λ ∈ (0, 1) and

ℓα |δκ2 (δ +m− 2) + b∗|
(1− λ) Γ (α + 1)

< 1, (5.5)

then, there is at least one solution to the problem (5.3) on Ω in the radially symmetric form (5.1).

Theorem 5.2. Assume the hypotheses (hyp.1) , (hyp.2) hold. If we put λ ∈ (0, 1) and

ℓα |δκ2 (δ +m− 2) + γ1|
(1− λ) Γ (α + 1)

< 1. (5.6)

then the problem (5.3) admits a unique solution in the radially symmetric form (5.1) on Ω.

5.2 Compute of Radially Symmetric Solutions

Our initial aim is to infer that the function φ in (5.1) satisfies an equation that is employed

in the definition of radially symmetric solutions.

Theorem 5.3. If the hypothesis (hyp.1) holds, the problem of time and space-fractional order (5.3)

is reduced by the transformation (5.1) to the fractional order’s ordinary differential equation of the

form
CDα

0+φ (η) = g (η) , η ∈ J, (5.7)

where

g (η) = pφ (η) + qηφ′ (η) + f
(
η, φ (η) , φ′ (η) , CDβ

0+φ (η)
)
,

with the conditions

φ (0) = c0 and φ′ (0) = 0. (5.8)
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Proof. The fractional equation resulting from the substitution of expression (5.1) in the

original fractional-order’s PDE (5.3), should be reduced to the standard bilinear functional

equation (check [9, 10, 15, 25, 32, 37, 43]). First, for η = |x|−
2
α t, we get η ∈ J and

∆ω (t, x) = |x|δ−2

(
δ (δ +m− 2)φ− 4

α2

(
αδ + α + 1 +

mα

2

)
ηφ′ +

4

α2
η2φ′′

)
. (5.9)

On the other hand, for ξ = |x|−
2
α τ, we get

∂αω

∂tα
=

1

Γ (2− α)

∫ t

0

(t− τ)1−α ∂
2ω (τ, x)

∂τ 2
dτ

=
|x|δ

Γ (2− α)

∫ t

0

(t− τ)1−α d2

dτ 2
φ
(
|x|−

2
α τ
)
dτ

=
|x|δ−2

Γ (2− α)

∫ η

0

(η − ξ)1−α d2

dξ2
φ (ξ) dξ

= |x|δ−2 CDα
0+φ (η) . (5.10)

If we replace (5.4), (5.9) and (5.10) in the first equation of (5.3), we obtain

CDα
0+φ (η) = g (η) .

From the conditions in (5.3), we find

ω (0, x) = |x|δ φ (0)

and

∂tω (0, x) = |x|δ−
2
α φ′ (0) ,

which implies that

φ (0) = c0 and φ′ (0) = 0.

The proof is complete.

5.3 Basic-Profile’s Existence and Uniqueness Results

Lemma 5.1. Assume that f : J × C × C × C → C is a continuous function, then the problem

(5.7)–(5.8) is equivalent to the integral equation

φ (η) = c0 +
1

Γ (α)

∫ η

0

(η − ξ)α−1 g (ξ) dξ, ∀η ∈ J,

where g ∈ C (J,C) satisfies the functional equation

g (η) = p (c0 + Iα
0+g (η)) + ψ (g (η)) ,
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with ψ : C → C is a function satisfying

ψ (g (η)) = qηIα−1
0+ g (η) + f

(
η, c0 + Iα

0+g (η) , Iα−1
0+ g (η) , Iα−β

0+ g (η)
)
.

Proof. Using Theorem 5.3, and applying Iα
0+ to the equation (5.3), we obtain

Iα
0+

CDα
0+φ (η) = Iα

0+g (η) .

From Lemma 1.1, we simply find

Iα
0+

CDα
0+φ (η) = φ (η)− c0 − ηφ′ (0) .

Substituting (5.8) gives us

φ (η) = c0 + Iα
0+g (η) . (5.11)

As

φ′ (η) =
d

dη
[c0 + Iα

0+g (η)] = Iα−1
0+ g (η)

and
CDβ

0+φ (η) = CDβ
0+ [c0 + Iα

0+g (η)] =
CDβ

0+I
α
0+g (η) = Iα−β

0+ g (η) ,

then

g (η) = pφ (η) + qηφ′ (η) + f
(
η, φ (η) , φ′ (η) , CDβ

0+φ (η)
)

= p (c0 + Iα
0+g (η)) + qηIα−1

0+ g (η)

+f
(
η, c0 + Iα

0+g (η) , Iα−1
0+ g (η) , Iα−β

0+ g (η)
)

= p (c0 + Iα
0+g (η)) + ψ (g (η)) .

Otherwise, starting by applying CDα
0+ on both sides of the equation (5.11) and using

the linearity of Caputo’s derivative and the fact that CDα
0+c0 = 0, we find easily (5.7).

Furthermore;

φ (0) = (c0 + Iα
0+g) (0) = c0

φ′ (0) = Iα−1
0+ g (0) = 0.

The proof is complete.

Theorem 5.4. Assume the hypotheses (hyp.2) , (hyp.3) hold. If we put λ ∈ (0, 1) and

ℓα |p+ b∗|
(1− λ) Γ (α + 1)

< 1, (5.12)

then the problem (5.7)–(5.8) has at least one solution on J.
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Proof. To begin the proof, we will transform the problem (5.7)–(5.8) into a fixed point

problem. Let us define

Au (η) = c0 +
1

Γ (α)

∫ η

0

(η − ξ)α−1 g (ξ) dξ, (5.13)

where

g (η) = pu (η) + ψ (g (η)) , η ∈ J,

with

ψ (g (η)) = qηIα−1
0+ g (η) + f

(
η, c0 + Iα

0+g (η) , Iα−1
0+ g (η) , Iα−β

0+ g (η)
)
.

As the hypotheses (hyp.2) , (hyp.3) hold, we notice that if g ∈ C (J,C) , then Au is indeed

continuous (see the step 1 in this proof); therefore, it is an element of C (J,C) , and is

equipped with the standard norm

∥Au∥∞ = sup
η∈J

|Au (η)| .

Clearly, the fixed points of A are solutions of the problem (5.7)–(5.8).

We demonstrate that A satisfies the assumption of Schauder’s fixed point theorem (see

[23]). This could be proved through three steps.

Step 1: A is a continuous operator.

Let (un)n∈N be a real sequence such that lim
n→∞

un = u in C (J,C) . Then ∀η ∈ J,

|Aun (η)−Au (η)| ≤ 1

Γ (α)

∫ η

0

(η − ξ)α−1 |gn (ξ)− g (ξ)| dξ,

where {
gn (η) = pun (η) + ψ (gn (η)) ,

g (η) = pu (η) + ψ (g (η)) .

We have

|gn (η)− g (η)| = |p (un (η)− u (η)) + (ψ (gn (η))− ψ (g (η)))|

≤ |p+ γ1| |un (η)− u (η)|+ |q + γ2|
∣∣Iα−1

0+ (gn (η)− g (η))
∣∣

+γ3

∣∣∣Iα−β
0+ (gn (η)− g (η))

∣∣∣ .
As ∣∣Iα−1

0+ (gn (η)− g (η))
∣∣ ≤ ℓα−1

Γ (α)
∥gn − g∥∞ .

Rabah Djemiat 60 Mohamed Boudiaf University of M’sila



5.3. Basic-Profile’s Existence and Uniqueness Results

We have Γ (α + 1) > Γ (α− β + 1) for any 1 < β ≤ α ≤ 2, then

∣∣Iα−1
0+ (gn (η)− g (η))

∣∣ ≤ αℓα−1

Γ (α− β + 1)
∥gn − g∥∞ .

In another way, we have∣∣∣Iα−β
0+ (gn (η)− g (η))

∣∣∣ ≤ ℓα−β

Γ (α− β + 1)
∥gn − g∥∞ .

Then we get

∥gn − g∥∞ ≤ |p+ γ1| ∥un − u∥∞ +
αℓβ−1 |ℓq + γ2|+ γ3
ℓβ−αΓ (α− β + 1)

∥gn − g∥∞

≤ |p+ γ1| ∥un − u∥∞ + λ ∥gn − g∥∞ .

As λ ∈ (0, 1) , thus

∥gn − g∥∞ ≤ |p+ γ1|
1− λ

∥un − u∥∞ .

Since un → u, we get gn → g when n→ ∞.

Now, let µ > 0 be such that for each η ∈ J, we get

|gn (η)| ≤ µ, |g (η)| ≤ µ.

Then, we have

(η − ξ)α−1

Γ (α)
|gn (η)− g (η)| ≤ (η − ξ)α−1

Γ (α)
[|gn (η)|+ |g (η)|]

≤ 2µ

Γ (α)
(η − ξ)α−1 .

The function ξ → 2µ
Γ(α)

(η − ξ)α−1 is integrable on [0, η] , ∀η ∈ J ; thus, what the domi-

nated convergence theorem of Lebesgue implies is

|Aun (η)−Au (η)| → 0 as n→ ∞,

and hence

lim
n→∞

∥Aun −Au∥∞ = 0.

This indicates the continuity of A.

Step 2: Using (5.12), we put the positive real

r ≥
(
|c0|+

a∗ℓα

(1− λ) Γ (α + 1)

)
(1− λ) Γ (α + 1)

(1− λ) Γ (α + 1)− ℓα |p+ b∗|
,
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and define the subset H as follows

H = {u ∈ C (J,C) : ∥u∥∞ ≤ r} .

It is clear that H is bounded, closed and convex subset of C (J,C).
Let A : H → C (J,C) be the integral operator defined by (5.13), then A (H) ⊂ H.

Indeed, we have for each η ∈ J

|g (η)| = |pu (η) + ψ (g (η))|

≤ a∗ + |p+ b∗| |u (η)|+ λ ∥g∥∞ .

Then, we get

∥g∥∞ ≤ a∗ + |p+ b∗| r
1− λ

.

Thus

|Au (η)| ≤ |c0|+
1

Γ (α)

∫ η

0

(η − ξ)α−1 |g (ξ)| dξ

≤ |c0|+
ℓα

Γ (α + 1)

a∗ + |p+ b∗| r
1− λ

≤ |c0|+
a∗ℓα

(1− λ) Γ (α + 1)
+

ℓα |p+ b∗| r
(1− λ) Γ (α + 1)

≤

(
|c0|+ a∗ℓα

(1−λ)Γ(α+1)

)
(1−λ)Γ(α+1)

(1−λ)Γ(α+1)−ℓα|p+b∗|
(1−λ)Γ(α+1)

(1−λ)Γ(α+1)−ℓα|p+b∗|

+
ℓα |p+ b∗| r

(1− λ) Γ (α + 1)

≤ r.

Then A (H) ⊂ H.

Step 3: A (H) is relatively compact.

Let η1, η2 ∈ J, η1 < η2, and u ∈ H. Then

|Au (η2)−Au (η1)| =
1

Γ (α)

∣∣∣∣∫ η2

0

(η2 − ξ)α−1 g (ξ) dξ −
∫ η1

0

(η1 − ξ)α−1 g (ξ) dξ

∣∣∣∣
≤ 1

Γ (α)

∫ η1

0

∣∣((η2 − ξ)α−1 − (η1 − ξ)α−1) g (ξ)∣∣ dξ
+

1

Γ (α)

∫ η2

η1

(η2 − ξ)α−1 |g (ξ)| dξ

≤ a∗ + |p+ b∗| r
Γ (α) (1− λ)

[∫ η1

0

∣∣(η2 − ξ)α−1 − (η1 − ξ)α−1
∣∣ dξ

+

∫ η2

η1

(η2 − ξ)α−1 dξ

]
. (5.14)
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We have

(η2 − ξ)α−1 − (η1 − ξ)α−1 = − 1

α

d

dξ
[(η2 − ξ)α − (η1 − ξ)α] ,

then ∫ η1

0

∣∣(η2 − ξ)α−1 − (η1 − ξ)α−1
∣∣ dξ ≤ 1

α
[(η2 − η1)

α + (ηα2 − ηα1 )] ,

we also have ∫ η2

η1

(η2 − ξ)α−1 dξ = − 1

α
[(η2 − ξ)α]

η2
η1

≤ 1

α
(η2 − η1)

α .

Thus (5.14) gives us

|Au (η2)−Au (η1)| ≤
2 (η2 − η1)

α + (ηα2 − ηα1 )

Γ (α) (1− λ)
(a∗ + |p+ b∗| r) .

The right-hand side of the latter inequality tends to zero when η1 → η2.

As a consequence of steps 1 to 3, and through Ascoli-Arzelà theorem, we infer the

continuity of A : H → H, its compact nature and its satisfaction of the assumption of

Schauder’s fixed point theorem [23]. Therefore, A has a fixed point which solves the

problem (5.7)–(5.8) on J.

Example 5.1. If we choose s = 1, β = 3
2
, α = 7

4
, δ = 1, m = 2, ε = 1, κ =

√
7
96

and ℓ = 1, we

obtain Ω = [0, 1]×
[

1√
2
,+∞

)2
. Consequently, the considered problem will be stated as follows ∂

7
4
t ω − 7

96
∆ω = F

(
t, x, ω, ∂

3
2
t ω,∆ω

)
, (x, y) ∈ Ω,

ω (0, x, y) =
√
x2 + y2, ∂tω (0, x, y) = 0,

(5.15)

where

F
(
t, x, ω, ∂

3
2
t ω,∆ω

)
=

exp
(
− |x|−

8
7 t
) [

|ω|+ 2 |x|+ |x|2
∣∣∣∂ 3

2
t ω
∣∣∣](

|x|−
8
7 t+ 2 ln

(
|x|−

8
7 t+ e

)) [
|x| |ω|+ |x|2 + |x|3

∣∣∣∂ 3
2
t ω
∣∣∣] − 7

96
∆ω

= |x|−1

[
f
(
η, φ, φ′, CD

3
2

0+φ (η)
)
− 2

21
η2φ′′ (η)

]
,

with η ∈ [0, 1] and

f (η, u, v, w) =
exp (−η) [2 + |u|+ |w|]

(η + 2 ln (η + e)) [1 + |u|+ |w|]
− 7

96
u+

1

2
ηv, for η ∈ [0, 1] .

Clearly, the function f is jointly continuous. For any u, v, w, ū, v̄, w̄ ∈ C and η ∈ [0, 1] , we get

|f (η, u, v, w)− f (η, ū, v̄, w̄)| ≤ 55

96
|u− ū|+ 1

2
|v − v̄|+ 1

2
|w − w̄| .
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Therefore, hypothesis (hyp.2) is satisfied with

γ1 =
55

96
, γ2 =

1

2
and γ3 =

1

2
.

Also, we have

|f (η, u, v, w)| ≤ exp (−η)
η + 2 ln (η + e)

(2 + |u|+ |w|) + 7

96
|u|+ 1

2
|v| .

Thus, the hypothesis (hyp.3) is satisfied with

a (η) =
2 exp (−η)

η + 2 ln (η + e)
, b (η) =

exp (−η)
η + 2 ln (η + e)

+
7

96
, c (η) =

1

2
and d (η) =

exp (−η)
η + 2 ln (η + e)

.

Then

a∗ = 1, b∗ =
55

96
, c∗ =

1

2
, d∗ =

1

2
,

and

λ = sup

{
αℓβ−1 |ℓq + c∗|+ d∗

ℓβ−αΓ (α− β + 1)
,
αℓβ−1 |ℓq + γ2|+ γ3
ℓβ−αΓ (α− β + 1)

}
≃ 0.55163

< 1.

Condition (5.5) gives
ℓα |δκ2 (δ +m− 2) + b∗|

(1− λ) Γ (α + 1)
≃ 0.89557 < 1.

It follows from theorem 5.1, that the problem (5.15) has at least one solution on Ω.

Theorem 5.5. Assume the hypothesis (hyp.2) holds. If we put λ ∈ (0, 1) and

ℓα |p+ γ1|
Γ (α + 1) (1− λ)

< 1, (5.16)

then the problem (5.7)–(5.8) admits a unique solution on J.

Proof. Theorem 5.4 states that (5.7)–(5.8) can be rendered a problem of a fixed point (5.13).

Let u1, u2 ∈ C (J,C), then we get

Au1 (η)−Au2 (η) =
1

Γ (α)

∫ η

0

(η − ξ)α−1 (g1 (ξ)− g2 (ξ)) dξ.

Where gi ∈ C (J,C) be such that

gi (η) = p (c0 + Iα
0+gi (η)) + ψ (gi (η)) , for i = 1, 2.

ψ (gi (η)) = qηIα−1
0+ gi (η) + f

(
η, c0 + Iα

0+gi (η) , Iα−1
0+ gi (η) , Iα−β

0+ gi (η)
)
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Also

|Au1 (η)−Au2 (η)| ≤
1

Γ (α)

∫ η

0

(η − ξ)α−1 |g1 (ξ)− g2 (ξ) | dξ. (5.17)

We have

∥g1 − g2∥∞ ≤ |p+ γ1|
1− λ

∥u1 − u2∥∞ .

From (5.17) we find

∥Au1 −Au2∥∞ ≤ ℓα |p+ γ1|
Γ (α + 1) (1− λ)

∥u1 − u2∥∞ .

Thus, according to (5.16), A is considered a contraction operator.

Banach’s contraction principle (see [23]) helps us infer that A has only one fixed point

which is the unique solution of the problem (5.7)–(5.8) on J.

Example 5.2. If we put s = 1, β = 5
4
, α = 3

2
, δ = 2, m = 4, ε =

4
3

√
1
π
, κ = −

√
9

272
and ℓ = π

4
,

we get Ω =
[
0, 1

4

]
×
[
1
2

4
3

√
1
π
,∞
)4
. Thus, the studied problem will be written as follows ∂

3
2
t ω − 9

272
∆ω = F

(
t, x, ω, ∂

5
4
t ω,∆ω

)
, (t, x1, . . . , x4) ∈ Ω

ω (0, x1, . . . , x4) = 2 (x21 + · · ·+ x24) ,
∂ω
∂t

(0, x1, . . . , x4) = 0,
(5.18)

where

F
(
t, x, ω, ∂

5
4
t ω,∆ω

)
=

π |x|2 cos
(
|x|−

4
3 t
)

(
8 + tan

(
|x|−

4
3 t
)) [

|x|2 + |ω|+ |x|2
∣∣∣∂ 5

4
t ω
∣∣∣] − 9

272
∆ω

= f
(
η, φ, φ′, CD

5
4

0+φ (η)
)
− 1

17
η2φ′′ (η) ,

with η ∈
[
0, π

4

]
and

f (η, u, v, w) =
π cos (η)

(8 + tan (η)) [1 + |u|+ |w|]
− 9

34
u+

1

2
ηv, for η ∈

[
0,
π

4

]
.

As tan (η) , cos (η) are positive continuous functions for η ∈
[
0, π

4

]
, the function u is jointly

continuous. For any u, v, w, ū, v̄, w̄ ∈ C and η ∈
[
0, π

4

]
, we have

√
2
2

≤ cos (η) ≤ 1, and

0 ≤ tan (η) ≤ 1, also

|f (η, u, v, w)− f (η, ū, v̄, w̄)| ≤
(

9

34
+
π

8

)
|u− ū|+ π

8
|v − v̄|+ π

8
|w − w̄| .

Hence, hypothesis (hyp.2) is satisfied with

γ1 =
9

34
+
π

8
, γ2 =

π

8
, γ3 =

π

8
,
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and

λ =
αℓβ−1 |ℓq + γ2|+ γ3
ℓβ−αΓ (α− β + 1)

≃ 0.40786

< 1.

What remains is to show that condition (5.6)

ℓα |δκ2 (δ +m− 2) + γ1|
(1− λ) Γ (α + 1)

≃ 0.92005 < 1,

is satisfied. It follows from theorem 5.2 that the problem (5.18) has a unique solution on Ω.

5.4 Main Theorems’ Proof

This section demonstrates the proof of the existence and uniqueness of solutions of

the given problem for a multidimensional nonlinear time and space-fractional reaction-

diffusion/wave equation, which is ∂αt ω − κ2∆ω = F
(
t, x, ω, ∂βt ω, (−∆)s ω

)
, (t, x) ∈ Ω, κ ∈ R∗,

ω (0, x) = |x|δ c0, ∂ω
∂t

(0, x) = 0, δ, c0 ∈ C,
(5.19)

under the radially symmetric form

ω (t, x) = |x|δ φ (η) , with η = |x|−
2
α t . (5.20)

Proof of Theorem 5.1

Assume that hypotheses (hyp.1)− (hyp.3) hold. Using transformation (5.20), problem

(5.19) is reduced to fractional order’s ordinary differential equation of the form

CDα
0+φ (η) = g (η) , η ∈ J, (5.21)

where

g (η) = pφ (η) + qηφ′ (η) + f
(
η, φ (η) , φ′ (η) , CDβ

0+φ (η)
)

with

p = δκ2 (δ +m− 2) and q = − 4

α2

(
αδ + α + 1 +

mα

2

)
κ2, (5.22)

along with the conditions

φ (0) = c0 and φ′ (0) = 0. (5.23)

By using (5.22), the condition (5.5) is equivalent to (5.12), which is

ℓα |p+ b∗|
Γ (α + 1) (1− λ)

< 1, with λ ∈ (0, 1) .
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Therefore, after proving that problem (5.21)–(5.23) has a solution in Theorem 5.4 when

(5.12) holds, we can similarly prove the existence of at least a solution of the problem for the

multidimensional nonlinear time and space-fractional reaction-diffusion/wave equation

(5.19) under the radially symmetric form (5.20). This can be achieved if (5.5) holds. The

proof is complete.

Proof of Theorem 5.2

Similarly to the steps that we followed during the proof of Theorem 5.1, the existence

and uniqueness of a radically symmetric solution to problem (5.19) is demonstrated using

Theorem 5.5, provided that the condition (5.6) holds true. The proof is complete.

5.5 Explicit Solutions

Now, we present some explicit solutions on the radially symmetric form of the problem

(5.19).

Solution 1: Let p, q, ρ ∈ C, for 1 < β ≤ α ≤ 2, we get that

φ (η) = ηρ, with Re (ρ) > 1,

is a solution of (5.21)–(5.23), where

f
(
η, φ (η) , φ′ (η) , CDβ

0+φ (η)
)
=
ηβ−αΓ (ρ− β + 1)

Γ (ρ− α + 1)
CDβ

0+φ (η) − pφ (η)− qηφ′ (η) .

Then the radially symmetric solution of the problem (5.19) is presented as follows

ω (t, x) = |x|δ−
2ρ
α tρ,

where

F
(
t, x, ω, ∂βt ω, (−∆)s ω

)
=

Γ (ρ− β + 1)ω (t, x)

Γ (ρ− α + 1) tα−β+ρ
|x|

2ρ
α
−δ ∂βt ω (t, x)− κ2∆ω (t, x) .

Solution 2: Let p, q, ρ ∈ C, for 1 < β ≤ α ≤ 2, we have

φ (η) = exp (ρη)− ρη,

which is a solution of (5.21)–(5.23), where

f
(
η, φ (η) , φ′ (η) , CDβ

0+φ (η)
)
=
ηβ−αE1,3−α (ρη)

E1,3−β (ρη)
CDβ

0+φ (η) − pφ (η)− qηφ′ (η) .
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Here, Eα,β (η) is the Mittag-Leffler function. Then the solution of the problem (5.19) is

presented as follows

ω (t, x) = |x|δ
(
eρ|x|

− 2
α t − ρ |x|−

2
α t
)
,

where

F
(
t, x, ω, ∂βt ω, (−∆)s ω

)
=

|x|−δ tβ−αE1,3−α

(
ρ |x|−

2
α t
)
ω (t, x)(

eρ|x|
− 2

α t − ρ |x|−
2
α t
)
E1,3−β

(
ρ |x|−

2
α t
)∂βt ω (t, x)− κ2∆ω (t, x) .

Solution 3: Let p, q, ρ ∈ C, for 1 < β ≤ α ≤ 2, we get that

φ (η) = sin (ρη) + cos (ρη)− ρη,

is a solution of the problem (5.21)–(5.23), where

f
(
η, φ (η) , φ′ (η) , CDβ

0+φ (η)
)
=
ηβ−α [(i− 1)E1,3−α (iρη)− (1 + i)E1,3−α (−iρη)]

[(i− 1)E1,3−β (iρη)− (1 + i)E1,3−β (−iρη)]
CDβ

0+φ (η)

− pφ (η)− qηφ′ (η) .

Then the solution of the problem (5.19) is presented as follows

ω (t, x) = |x|δ
(
sin
(
ρ |x|−

2
α t
)
+ cos

(
ρ |x|−

2
α t
)
− ρ |x|−

2
α t
)
,

where

F
(
t, x, ω, ∂βt ω, (−∆)s ω

)
= −κ2∆ω (t, x) +

|x|−δ tβ−αω (t, x) ∂βt ω (t, x)

sin
(
ρ |x|−

2
α t
)
+ cos

(
ρ |x|−

2
α t
)
− ρ |x|−

2
α t

×

[
(i− 1)E1,3−α

(
iρ |x|−

2
α t
)
− (1 + i)E1,3−α

(
−iρ |x|−

2
α t
)]

[
(i− 1)E1,3−β

(
iρ |x|−

2
α t
)
− (1 + i)E1,3−β

(
−iρ |x|−

2
α t
)] .
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Conclusion

In this thesis, we have studied the existence and uniqueness of solutions to four problems

for fractional FPDEs with CAPUTO derivative operator:

Firstly, we have discussed the existence and uniqueness of solutions by traveling wave

transformation for higher-order space-fractional wave equations

∂2t ω = κ2∂αxω, κ ∈ R∗, m− 1 ≤ α < m ∈ N− {0, 1, 2} .

Secondly, we have studied by traveling wave forms the space-fractional Jordan-Moore-

Gibson-Thompson equations of nonlinear acoustics

τωttt + µωtt − κ2∂αxω − δ∂αxωt = F (x, t, ω, ωt, ωtt, ωxx, (ωt)xx) , for 1 < α ≤ 2.

Thirdly, we have discussed the existence of solutions by traveling profile forms for

diffusion equations of moving fractional order

∂tω = κ∂αxω, κ ∈ R∗.

Fourthly, we have studied by radially symmetric solution the multidimensional nonlin-

ear time and space-fractional reaction-diffusion/wave equation

∂αt ω − κ2∆ω = F
(
t, x, ω, ∂βt ω, (−∆)s ω

)
, for 0 < s ≤ 1 < β ≤ α ≤ 2.

In chosen Banach spaces. For this purpose, we have proposed new methods for trans-

forming FPDEs to fractional order differential equations. We have used several fixed

point theorems such as Banach and Schauder to prove the results. We have also provided

an illustrative example of each of our considered problems to show the validity of the

conditions and justify the efficiency of our established results.

The future prospects are:

1. Research of numerical and analytical methods to solve fractional order partial differ-

ential equations in time and space, more precise than those proposed in this thesis
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2. The application of one of these proposed methods to solve the partial differential equa-

tion of fractional order, but with another fractional derivative operator (in the sense

of RIEMANN-LIOUVILLE, of GRUNWALD LETNIKOV, and in the sense of HADAMARD).

3. Study the existence and uniqueness of solutions for some systems of PDEs of frac-

tional order.
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الْحَمْدُ لِلَّهِ الَّذِي لَهُ مَا فِي السَّمَاوَاتِ وَمَا فِي "

 فِي الْآخِرَةِ وَهُوَ الْحَكِيمُ الْأَرْضِ وَلَهُ الْحَمْدُ
 [01" ]سبأ: الْخَبِيُر

 
 



 

ا: 
 ذاتطية ـر خـية غيـزئـج اتـاقـقـشتاذات  عادلاتمل ولحللا وجود ووحدانيةحول ائج ـنتعدة  دراسةل الأطروحة هذه في طرقـتـن

شودار ل نظرية النقطة الثابتة تقنية باستعمال وذلكفضاء بناخي،  في تدائيةـاب بقيم ،حدودية بشروط ،بتوكا بمفهوم كسريةرتبة

 .للتقلصمبدأ بناخ و 
 

ت : شتقات كسرية لكابتوم ،كسريةرتبة معادلات تفاضلية ذات، كسريةرتبة ذات ذات اشتقاقات جزئية معادلات، 

 .وحدانية، وجود، تدائيةـاب قيمبمسألة  ،بشروط حدوديةسألة ــم، فضاء بناخي ،نقطة ثابتة

  
Résumé : 

 

Dans cette thèse, nous allons discuter plusieurs résultats d'existence et d'unicité de 

solutions pour certaines équations aux dérivées partielles non linéaires d'ordre 

fractionnaire de type Caputo, avec des valeurs aux limites, valeurs initiales, dans un 

espace de Banach, en utilisant le principe de contraction de Banach et le théorème de 

point fixe de Schauder. 
 

Mots clés: Equations aux dérivés partielles fractionnaires, équation différentielle fractionnaire, 

dérivée fractionnaire de Caputo, point fixe, espace de Banach, problème aux limites, problème 

de valeurs initiales, existence, unicité. 

 

Abstract: 
 

In this thesis, we discuss several existence and uniqueness results of solutions for some 

nonlinear partial differential equations of fractional order of Caputo type, with boundary 

value, initial values in Banach space, we use the Banach contraction principle and 

Schauder fixed point theorem. 
 

Key words: Fractional partial differential equation, fractional differential equations, fractional 

derivative of Caputo, fixed point, Banach space, boundary value problem, initial values problem, 

existence, uniqueness. 

 

A.M.S Classifications: 35R11, 35A01, 34A08, 35C06, 34K37. 
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