$\begin{array}{c} {\rm MULTIPLICITY\ RESULTS}\\ {\rm FOR\ AN\ IMPULSIVE\ BOUNDARY\ VALUE\ PROBLEM}\\ {\rm OF\ } p(t){\rm -KIRCHHOFF\ TYPE}\\ {\rm VIA\ CRITICAL\ POINT\ THEORY} \end{array}$

A. Mokhtari, T. Moussaoui, D. O'Regan

Communicated by Marek Galewski

Abstract. In this paper we obtain existence results of k distinct pairs nontrivial solutions for an impulsive boundary value problem of p(t)-Kirchhoff type under certain conditions on the parameter λ .

Keywords: genus theory, nonlocal problems, impulsive conditions, Kirchhoff equation, p(t)-Laplacian, variational methods, critical point theory.

Mathematics Subject Classification: 35A15, 35B38, 34A37.

1. INTRODUCTION

We study the multiplicity of nontrivial solutions for the problem

$$\begin{cases} -\left(a+b\int_{0}^{T}\frac{1}{p(t)}|u'(t)|^{p(t)} dt\right) \left(|u'(t)|^{p(t)-2} \cdot u'(t)\right)' = \lambda h(t,u(t)), \quad t \neq t_j, \ t \in [0,T], \\ -\Delta u'(t_j) = I_j(u(t_j)), \quad j = 1, 2, \dots, l, \\ u(0) = u(T) = 0, \end{cases}$$
(1.1)

where $0 = t_0 < t_1 < \ldots < t_l < t_{l+1} = T$, $\lambda > 0$ is a numerical parameter, h is a Carathéodory function, $I_j \in C(\mathbb{R}, \mathbb{R})$, $j = 1, 2, \ldots, l$, $\Delta u'(t_j) = u'(t_j^+) - u'(t_j^-)$, $u'(t_j^+)$ and $u'(t_j^-)$ denote the right and left derivative of u at $t = t_j$, $j = 1, 2, \ldots, l$. Here p is a function in $C([0, T], \mathbb{R})$ with

$$1 < p^{-} = \inf_{t \in [0,T]} p(t) \le p^{+} = \sup_{t \in [0,T]} p(t),$$

and a, b are positive constants.

© AGH University of Science and Technology Press, Krakow 2016

631

Impulsive problems for the p(t)-Laplacian were introduced in [12] and [13]. In [4] the authors considered

$$\begin{cases} u''(t) + \lambda h(t, u(t)) = 0, & t \neq t_j, t \in [0, T], \\ -\Delta u'(t_j) = I_j(u(t_j)), & j = 1, 2, \dots, l, \\ u(0) = u(T) = 0, \end{cases}$$

and the goal in this paper is to generalize the results so that (1.1) can be considered. The variable exponent Lebesgue space $L^{p(t)}(0,T)$ is defined by

$$L^{p(t)}(0,T) = \left\{ u: (0,T) \to \mathbb{R} \text{ is mesurable}, \int_{0}^{T} |u(t)|^{p(t)} dt < +\infty \right\}$$

endowed with the norm

$$|u|_{p(t)} = \inf\left\{\lambda > 0: \int_{0}^{T} \left|\frac{u(t)}{\lambda}\right|^{p(t)} dt \le 1\right\}.$$

The variable exponent Sobolev space $W^{1,p(t)}(0,T)$ is defined by

$$W^{1,p(t)}(0,T) = \{ u \in L^{p(t)}(0,T) : u' \in L^{p(t)}(0,T) \}$$

endowed with the norm $||u||_{1,p(t)} = |u|_{p(t)} + |u'|_{p(t)}$. Denote by C([0,T]) the space of continuous functions on [0,T] endowed with the norm $|u|_{\infty} = \sup_{t \in [0,T]} |u(t)|$. Now $W_0^{1,p(t)}(0,T)$ denotes the closure of $C_0^{\infty}(0,T)$ in $W^{1,p(t)}(0,T)$.

Proposition 1.1 ([11]). $L^{p(t)}(0,T)$, $W^{1,p(t)}(0,T)$ and $W^{1,p(t)}_0(0,T)$ are separable, reflexive and uniformly convex Banach spaces.

Proposition 1.2 ([11]). For any $u \in L^{p(t)}(0,T)$ and $v \in L^{q(t)}(0,T)$, where $\frac{1}{p(t)} + \frac{1}{q(t)} = 1$, we have

$$\Big|\int\limits_{0}^{T} uv \, dt \Big| \leq \Big(\frac{1}{p^{-}} + \frac{1}{q^{-}}\Big) |u|_{p(t)} |v|_{q(t)}.$$

Proposition 1.3 ([11]). Let $\rho(u) = \int_0^T |u(t)|^{p(t)} dt$. For any $u \in L^{p(t)}(0,T)$, the following assertions hold.

- $$\begin{split} 1. \ & For \ u \neq 0, \ |u|_{p(t)} = \lambda \Leftrightarrow \rho \Big(\frac{u}{\lambda} \Big) = 1. \\ 2. \ & |u|_{p(t)} < 1 (=1; > 1) \Leftrightarrow \rho(u) < 1 (=1; > 1). \end{split}$$
- 3. If $|u|_{p(t)} > 1$, then $|u|_{p(t)}^{p^-} \le \rho(u) \le |u|_{p(t)}^{p^+}$.
- 4. If $|u|_{p(t)} < 1$, then $|u|_{p(t)}^{p+1} \le \rho(u) \le |u|_{p(t)}^{p-1}$.

Proposition 1.4 ([11]). If $u, u_k \in L^{p(t)}(0,T)$, $k = 1, 2, \ldots$, then the following statements are equivalent:

- 1. $\lim_{k \to \pm \infty} |u_k u|_{p(t)} = 0$ (*i.e.* $u_k \to u$ in $L^{p(t)}(0,T)$),
- 2. $\lim_{\substack{k \to +\infty \\ k \to +\infty}} \rho(u_k u) = 0,$ 3. $u_k \to u$ in measure in (0,T) and $\lim_{\substack{k \to +\infty \\ k \to +\infty}} \rho(u_k) = \rho(u).$

Proposition 1.5 ([9]). The Poincaré-type inequality holds, that is, there exists a positive constant c such that

$$|u|_{p(t)} \le c|u'|_{p(t)}, \quad for \ all \quad u \in W_0^{1,p(t)}(0,T).$$

Thus $|u'|_{p(t)}$ is an equivalent norm in $W_0^{1,p(t)}(0,T)$. We will use this equivalent norm in the following discussion and write $||u|| = |u'|_{p(t)}$ for simplicity.

We now recall the Krasnoselskii genus and information on this may be found in [1, 2, 14, 15]. Let E be a real Banach space. Let us denote by Σ the class of all closed subsets $A \subset E \setminus \{0\}$ that are symmetric with respect to the origin, that is, $u \in A$ implies $-u \in A$.

Definition 1.6. Let $A \in \Sigma$. The Krasnoselskii genus $\gamma(A)$ is defined as being the least positive integer n such that there is an odd mapping $\varphi \in C(A, \mathbb{R}^n \setminus \{0\})$. If such *n* does not exist, we set $\gamma(A) = +\infty$. Furthermore, by definition, $\gamma(\emptyset) = 0$.

Theorem 1.7 ([14]). Let $E = \mathbb{R}^N$ and $\partial \Omega$ be the boundary of an open, symmetric and bounded subset $\Omega \subset \mathbb{R}^N$ with $0 \in \Omega$. Then $\gamma(\partial \Omega) = N$.

Note $\gamma(S^{N-1}) = N$. If E is infinite dimension and separable and S is the unit sphere in E, then $\gamma(S) = +\infty$.

Proposition 1.8 ([14]). Let $A, B \in \Sigma$. Then, if there exists an odd map $f \in C(A, B)$, then $\gamma(A) \leq \gamma(B)$. Consequently, if there exists an odd homeomorphism $f: A \to B$, then $\gamma(A) = \gamma(B)$.

Definition 1.9. Let $J \in C^1(E, \mathbb{R})$. If any sequence $(u_n) \subset E$ for which $(J(u_n))$ is bounded and $J'(u_n) \to 0$ when $n \to +\infty$ in E' possesses a convergent subsequence, then we say that J satisfies the Palais-Smale condition (the (PS) condition).

We now state a theorem due to Clarke.

Theorem 1.10 ([5,17]). Let $J \in C^1(E, \mathbb{R})$ be a functional satisfying the Palais-Smale condition. Also suppose that:

- 1) J is bounded from below and even,
- 2) there is a compact set $K \in \Sigma$ such that $\gamma(K) = k$ and $\sup_{x \in K} J(x) < J(0)$.

Then J possesses at least k pairs of distinct critical points and their corresponding critical values are less than J(0).

Definition 1.11. We say that $u \in W_0^{1,p(t)}(0,T) = X$ is a weak solution of Problem (1.1) if and only if

$$\left(a + b \int_{0}^{T} \frac{1}{p(t)} |u'(t)|^{p(t)} dt\right) \int_{0}^{T} |u'(t)|^{p(t)-2} \cdot u'(t)v'(t) dt = \lambda \int_{0}^{T} h(t, u(t))v(t) dt$$

+
$$\sum_{j=1}^{l} I_{j}(u(t_{j}))v(t_{j})$$

for all $v \in X$.

In Section 2 we will use the following elementary inequalities (see [16]): for all $x,y\in\mathbb{R},$ we have

$$(|x|^{p(\cdot)-2}x - |y|^{p(\cdot)-2}y)(x-y) \ge \frac{1}{2^{p(\cdot)}}|x-y|^{p(\cdot)} \quad \text{if } p(\cdot) \ge 2,$$
(1.2)

and

$$(|x|^{p(\cdot)-2}x - |y|^{p(\cdot)-2}y)(x - y) \ge (p(\cdot) - 1)\frac{|x - y|^2}{(|x| + |y|)^{2-p(\cdot)}} \quad \text{if } 1 < p(\cdot) < 2.$$
(1.3)

Remark 1.12. Note (1.2) implies

$$(|x|^{p(\cdot)-2}x - |y|^{p(\cdot)-2}y)(x-y) \ge \frac{1}{2^{p^+}}|x-y|^{p(\cdot)} \quad \text{if } p(\cdot) \ge 2.$$
(1.4)

Also (1.3) implies

$$\left[(|x|^{p(\cdot)-2}x - |y|^{p(\cdot)-2}y)(x-y) \right]^{\frac{p(\cdot)}{2}} \ge \frac{p^{-}-1}{\sqrt{2}} \frac{|x-y|^{p(\cdot)}}{(|x|^{p(\cdot)} + |y|^{p(\cdot)})^{\frac{2-p(\cdot)}{2}}}$$
(1.5)

if $1 < p(\cdot) < 2$. To see this note for any $x, y \in \mathbb{R}$ and $1 < p(\cdot) < 2$, from (1.3) we have

$$\left[(|x|^{p(\cdot)-2}x - |y|^{p(\cdot)-2}y)(x-y) \right]^{\frac{p(\cdot)}{2}} \ge (p^{-}-1)\frac{|x-y|^{p(\cdot)}}{(|x|+|y|)^{p(\cdot)\frac{2-p(\cdot)}{2}}}$$

and now using

$$(|x| + |y|)^{p(\cdot)} \le 2^{p(\cdot)-1}(|x|^{p(\cdot)} + |y|^{p(\cdot)}) \le 2(|x|^{p(\cdot)} + |y|^{p(\cdot)}),$$

we obtain

$$\begin{split} \left[(|x|^{p(\cdot)-2}x - |y|^{p(\cdot)-2}y)(x-y) \right]^{\frac{p(\cdot)}{2}} &\geq (p^{-}-1)\frac{1}{2^{\frac{2-p(\cdot)}{2}}} \frac{|x-y|^{p(\cdot)}}{\left(|x|^{p(\cdot)} + |y|^{p(\cdot)}\right)^{\frac{2-p(\cdot)}{2}}} \\ &\geq \frac{p^{-}-1}{\sqrt{2}} \frac{|x-y|^{p(\cdot)}}{\left(|x|^{p(\cdot)} + |y|^{p(\cdot)}\right)^{\frac{2-p(\cdot)}{2}}}. \end{split}$$

2. MAIN RESULTS

Theorem 2.1. Assume the following are satisfied.

(h₁) There exist $\alpha, \beta \in L^1(0,T)$ and a continuous function $\gamma : [0,T] \to \mathbb{R}$ such that $0 \leq \gamma^+ = \sup_{t \in [0,T]} \gamma(t) < 2p^- - 1$ with

$$|h(t,u)| \le \alpha(t) + \beta(t)|u|^{\gamma(t)} \quad for \ any \ (t,u) \in [0,T] \times \mathbb{R}.$$

(h₂) h(t, u) is odd with respect to u and $H(t, u) = \int_0^u h(t, \xi) d\xi > 0$ for every $(t, u) \in [0, T] \times \mathbb{R} \setminus \{0\}.$

(h₃)
$$I_j(u)$$
 $(j = 1, 2, ..., l)$ are odd and $\int_0^u I_j(s) ds \le 0$ for any $u \in \mathbb{R}$ $(j = 1, ..., l)$.

Then for any $k \in \mathbb{N}$, there exists a λ_k such that when $\lambda > \lambda_k$, Problem (1.1) has at least k distinct pairs of nontrivial solutions.

Proof. The corresponding functional to Problem (1.1) is defined as follows:

$$\varphi(u) = a \int_{0}^{T} \frac{1}{p(t)} |u'(t)|^{p(t)} dt + \frac{b}{2} \Big(\int_{0}^{T} \frac{1}{p(t)} |u'(t)|^{p(t)} dt \Big)^{2} - \sum_{j=1}^{l} \int_{0}^{u(t_{j})} I_{j}(s) ds - \lambda \int_{0}^{T} H(t, u(t)) dt.$$
(2.1)

From (h_1) and the fact that $I_j \in C(\mathbb{R}, \mathbb{R})$ it is easy to see that $\varphi \in C^1(X, \mathbb{R})$ and for all $u, v \in X$

$$\varphi'(u) \cdot v = \left(a + b \int_{0}^{T} \frac{1}{p(t)} |u'(t)|^{p(t)} dt\right) \int_{0}^{T} |u'(t)|^{p(t)-2} u'(t)v'(t) dt$$

$$- \sum_{j=1}^{l} I_{j}(u(t_{j}))v(t_{j}) - \lambda \int_{0}^{T} h(t, u(t))v(t) dt.$$
(2.2)

Thus the critical points of φ are the weak solutions of (1.1).

First we show that φ is bounded from below. From the continuous embedding of X in C([0,T]), for any $u \in X$ with ||u|| > 1, we have that

$$\int_{0}^{T} |u(t)|^{\gamma(t)+1} dt \le \int_{0}^{T} |u|_{\infty}^{\gamma(t)+1} dt \le cT ||u||^{\gamma^{+}+1},$$
(2.3)

where $c = \max_{t \in [0,T]} c_0^{\gamma(t)+1}$ and c_0 is the best constant of the continuous embedding. It follows from conditions (h_1) , (h_2) , (h_3) and (2.3) that

$$\begin{split} \varphi(u) &= a \int_{0}^{T} \frac{1}{p(t)} |u'(t)|^{p(t)} dt + \frac{b}{2} \Big(\int_{0}^{T} \frac{1}{p(t)} |u'(t)|^{p(t)} dt \Big)^{2} \\ &- \sum_{j=1}^{l} \int_{0}^{u(t_{j})} I_{j}(s) ds - \lambda \int_{0}^{T} H(t, u(t)) dt \\ &\geq \frac{a}{p^{+}} \int_{0}^{T} |u'(t)|^{p(t)} dt + \frac{b}{2(p^{+})^{2}} \Big(\int_{0}^{T} |u'(t)|^{p(t)} dt \Big)^{2} \\ &- \lambda \int_{0}^{T} \alpha(t) |u(t)| + \beta(t) |u(t)|^{\gamma(t)+1} dt \\ &\geq \frac{a}{p^{+}} ||u||^{p^{-}} + \frac{b}{2(p^{+})^{2}} ||u||^{2p^{-}} - \lambda |\alpha|_{L^{1}} c_{0}||u|| - \lambda |\beta|_{L^{1}} c||u||^{\gamma^{+}+1}, \end{split}$$

for any $u \in X$ with $||u|| \ge 1$. Since $\gamma^+ < 2p^- - 1$, then $\lim_{\|u\| \to +\infty} \varphi(u) = +\infty$ and consequently, φ is bounded from below.

Next, we show that the functional φ satisfies the (PS) condition. Now for any $u \in X$ with $||u|| \leq 1$, it is easy to see that

$$\varphi(u) \ge \frac{a}{p^+} \|u\|^{p^+} + \frac{b}{2(p^+)^2} \|u\|^{2p^+} - \lambda |\alpha|_{L^1} c_0 \|u\| - \lambda |\beta|_{L^1} c \|u\|^{\gamma^- + 1}.$$
(2.5)

Let $(u_n) \subset X$ be a Palais-Smale sequence for φ , i.e. $(\varphi(u_n))$ is a bounded sequence and $\lim_{n \to +\infty} \varphi'(u_n) = 0$. Thus there exists a positive constant B such that

$$\varphi(u_n) \le B. \tag{2.6}$$

From (2.4), (2.5), (2.6) and since $\gamma^+ < 2p^- - 1$, in all cases we deduce that the sequence (u_n) is bounded in X. Thus, passing to a subsequence if necessary, there

exists $u \in X$ such that $u_n \rightharpoonup u$ weakly in X. Moreover, by (2.1) and (2.2), we have

$$\begin{split} \left(\varphi'(u_n) - \varphi'(u)\right) \cdot (u_n - u) \\ &= \left(a + b \int_0^T \frac{1}{p(t)} |u'_n(t)|^{p(t)} dt\right) \int_0^T |u'_n(t)|^{p(t)-2} u'_n(t)(u'_n(t) - u'(t)) dt \\ &- \sum_{j=1}^l I_j(u_n(t_j))(u_n(t_j) - u(t_j)) - \lambda \int_0^T h(t, u_n(t))(u_n(t) - u(t)) dt \\ &- \left(a + b \int_0^T \frac{1}{p(t)} |u'(t)|^{p(t)} dt\right) \int_0^T |u'(t)|^{p(t)-2} u'(t)(u'_n(t) - u'(t)) dt \\ &+ \sum_{j=1}^l I_j(u(t_j))(u_n(t_j) - u(t_j)) + \lambda \int_0^T h(t, u(t))(u_n(t) - u(t)) dt \\ &= \left(a + b \int_0^T \frac{1}{p(t)} |u'_n(t)|^{p(t)} dt\right) \int_0^T |u'_n(t)|^{p(t)-2} u'_n(t)(u'_n(t) - u'(t)) dt \\ &- \left(a + b \int_0^T \frac{1}{p(t)} |u'(t)|^{p(t)} dt\right) \int_0^T |u'(t)|^{p(t)-2} u'_n(t)(u'_n(t) - u'(t)) dt \\ &- \sum_{j=1}^l (I_j(u_n(t_j) - I_j(u(t_j))(u_n(t_j) - u(t_j))) \\ &- \lambda \int_0^T (h(t, u_n(t)) - h(t, u(t)))(u_n(t) - u(t)) dt. \end{split}$$

Since the embedding of X in C([0,T]) is compact, then (u_n) uniformly converges to u in C([0,T]), by using (h_1) and the Lebesgue Dominated Convergence Theorem, we have that

$$\begin{cases} \lambda \int_{0}^{T} \left(h(t, u_{n}(t)) - h(t, u(t)) \right) \left(u_{n}(t) - u(t) \right) dt \to 0, \\ \sum_{j=1}^{l} \left(I_{j}(u_{n}(t_{j}) - I_{j}(u(t_{j})) \left(u_{n}(t_{j}) - u(t_{j}) \right) \to 0, \quad \text{as } n \to \infty. \end{cases}$$
(2.7)

Since $\varphi'(u_n) \to 0$ and $u_n \rightharpoonup u$ in X, then we have $(\varphi'(u_n) - \varphi'(u)) \cdot (u_n - u) \to 0$ as $n \to \infty$.

Consequently, from (2.7) we have $S_n \to 0$ as $n \to \infty$, where

$$S_{n} = \left(a + b \int_{0}^{T} \frac{1}{p(t)} |u'_{n}(t)|^{p(t)} dt\right) \int_{0}^{T} |u'_{n}(t)|^{p(t)-2} u'_{n}(t) (u'_{n}(t) - u'(t)) dt$$
$$- \left(a + b \int_{0}^{T} \frac{1}{p(t)} |u'(t)|^{p(t)} dt\right) \int_{0}^{T} |u'(t)|^{p(t)-2} u'(t) (u'_{n}(t) - u'(t)) dt.$$

We can rewrite S_n as

$$S_{n} = \left(a + b \int_{0}^{T} \frac{1}{p(t)} |u'_{n}(t)|^{p(t)} dt\right)$$

$$\times \int_{0}^{T} \left(|u'_{n}(t)|^{p(t)-2} u'_{n}(t) - |u'(t)|^{p(t)-2} u'(t) \right) (u'_{n}(t) - u'(t)) dt$$

$$+ \left(a + b \int_{0}^{T} \frac{1}{p(t)} |u'_{n}(t)|^{p(t)} dt\right) \int_{0}^{T} |u'(t)|^{p(t)-2} u'(t) (u'_{n}(t) - u'(t)) dt$$

$$- \left(a + b \int_{0}^{T} \frac{1}{p(t)} |u'(t)|^{p(t)} dt\right) \int_{0}^{T} |u'(t)|^{p(t)-2} u'(t) (u'_{n}(t) - u'(t)) dt.$$

From the weak convergence of (u_n) in X, and since $|u'|^{p(t)-2}u' \in X' = W_0^{1,q(t)}(0,T)$ with $q(t) = \frac{p(t)}{p(t)-1}$, we deduce that

$$\int_{0}^{T} |u'(t)|^{p(t)-2} u'(t) (u'_n(t) - u'(t)) dt \to 0 \quad \text{as} \ n \to \infty.$$
(2.8)

Hence, from (2.8) and since $S_n \to 0$, we get

$$\left(a+b\int_{0}^{T}\frac{1}{p(t)}|u_{n}'(t)|^{p(t)}\,dt\right)\int_{0}^{T}\left(|u_{n}'(t)|^{p(t)-2}u_{n}'(t)-|u'(t)|^{p(t)-2}u'(t)\right)\left(u_{n}'(t)-u'(t)\right)\,dt\to0$$

as $n \to \infty$. Since a, b > 0, then we have

-

$$\int_{0}^{T} \left(|u_{n}'(t)|^{p(t)-2} u_{n}'(t) - |u'(t)|^{p(t)-2} u'(t) \right) (u_{n}'(t) - u'(t)) \, dt \to 0 \quad \text{as} \quad n \to \infty.$$
(2.9)

To complete the proof of the Palais-Smale condition we follow the argument in the proof of Theorem 3.1 in [3]. We divide I = (0, T) into two parts

$$I_1 = \{t \in (0,T) : 1 < p(t) < 2\}, \quad I_2 = \{t \in (0,T) : p(t) \ge 2\}.$$

We will let $|\cdot|_{p(t),I_i}$, i = 1, 2, to denote the norm in $L^{p(t)}(I_i)$.

On I_1 , from Holder's inequality (See Proposition 1.2) and using the inequality (1.5) we get

$$\begin{split} &\int_{I_1} |u'_n(t) - u'(t)|^{p(t)} dt \\ &\leq \frac{\sqrt{2}}{p^- - 1} \int_{I_1} \left(\left(|u'_n(t)|^{p(t) - 2} u'_n(t) - |u'(t)|^{p(t) - 2} u'(t) \right) (u'_n(t) - u'(t)) \right)^{\frac{p(t)}{2}} \\ &\times \left(|u'_n(t)|^{p(t)} + |u'(t)|^{p(t)} \right)^{\frac{2 - p(t)}{2}} dt \\ &\leq c \Big| \left(\left(|u'_n(t)|^{p(t) - 2} u'_n(t) - |u'(t)|^{p(t) - 2} u'(t) \right) (u'_n(t) - u'(t)) \right)^{\frac{p(t)}{2}} \Big|_{\frac{2}{p(t)}, I_1} \\ &\times \left| \left(|u'_n(t)|^{p(t)} + |u'(t)|^{p(t)} \right)^{\frac{2 - p(t)}{2}} \Big|_{\frac{2}{2 - p(t)}, I_1}, \end{split}$$

where $c = \frac{\sqrt{2}(2+p^+-p^-)}{2(p^--1)}$. From (2.9) we get

$$\left| \left(\left(|u'_n(t)|^{p(t)-2} u'_n(t) - |u'(t)|^{p(t)-2} u'(t) \right) (u'_n(t) - u'(t)) \right)^{\frac{p(t)}{2}} \right|_{\frac{2}{p(t)}, I_1} \to 0 \quad \text{as} \quad n \to \infty.$$

Now using $\int_{I_1} \left(|u_n'(t)|^{p(t)} + |u'(t)|^{p(t)} \right) dt$ is bounded we get

$$\int_{I_1} |u'_n(t) - u'(t)|^{p(t)} dt \to 0 \quad \text{as} \quad n \to \infty.$$
(2.10)

On I_2 , from the inequality (1.4) we have

$$\int_{I_2} |u'_n(t) - u'(t)|^{p(t)} dt \le 2^{p^+} \int_{I_2} \left(|u'_n(t)|^{p(t)-2} u'_n(t) - |u'(t)|^{p(t)-2} u'(t) \right) (u'_n(t) - u'(t)) dt,$$
so
$$\int_{I_2} |u'_n(t) - u'(t)|^{p(t)} dt \to 0 \quad \text{as} \quad n \to \infty.$$
(2.11)

From (2.10) and (2.11) and by Proposition 1.4, we conclude that $||u_n - u|| \to 0$ as $n \to \infty$, so φ satisfies the Palais-Smale condition.

Notice that $W_0^{1,p^+}(0,T) \subset W_0^{1,p(t)}(0,T)$. Consider $\{e_1,e_2,\ldots\}$, a Schauder basis of the space $W_0^{1,p^+}(0,T)$ (see [18]), and for each $k \in \mathbb{N}$, consider X_k , the subspace of $W_0^{1,p^+}(0,T)$ generated by the k vectors $\{e_1,e_2,\ldots,e_k\}$. Clearly X_k is a subspace of $W_0^{1,p(t)}(0,T)$.

For r > 0, consider

$$K_k(r) = \left\{ u \in X_k : ||u||^2 = \sum_{i=1}^k \xi_i^2 = r^2 \right\}.$$

For any r > 0. We consider the odd homeomorphism $\chi : K_k(r) \to S^{k-1}$ defined by $\chi(u) = (\xi_1, \xi_2, \dots, \xi_k)$, where S^{k-1} is the sphere in \mathbb{R}^k . From Theorem 1.7 and Proposition 1.8, we conclude that $\gamma(K_k(r)) = k$. Let $0 < r < \frac{1}{c_0}$ where c_0 is the best constant of the embedding of X in C([0,T]), so $||u||_{\infty} \leq c_0 ||u|| < 1$. It follows from hypothesis (h_2) that $\int_0^T H(t, u(t)) dt > 0$ for any $u \in K_k(r)$. Then

$$\mu_k = \inf_{u \in K_k(r)} \int_0^T H(t, u(t)) dt$$

is strictly positive (note the compactness of $K_k(r)$). If we set

$$\nu_k = \inf_{u \in K_k(r)} \sum_{j=1}^l \int_0^{u(t_j)} I_j(s) \, ds,$$

we see that $\nu_k \leq 0$. Let

$$\lambda_k = \frac{1}{\mu_k} \left(\frac{a}{p^-} r^{p^-} + \frac{b}{2(p^-)^2} r^{2p^-} - \nu_k \right),$$

and note $\lambda_k > 0$. Then when $\lambda > \lambda_k$, we take $0 < r \le 1$, and then for any $u \in K_k(r)$ we have $||u|| \le 1$ and

$$\begin{aligned} \varphi(u) &\leq \frac{a}{p^{-}} \int_{0}^{T} |u'(t)|^{p(t)} dt + \frac{b}{2(p^{-})^{2}} \Big(\int_{0}^{T} |u'(t)|^{p(t)} dt \Big)^{2} - \nu_{k} - \lambda \mu_{k} \\ &\leq \frac{a}{p^{-}} \|u\|^{p^{-}} + \frac{b}{2(p^{-})^{2}} \|u\|^{2p^{-}} - \nu_{k} - \lambda \mu_{k} \\ &< \frac{a}{p^{-}} r^{p^{-}} + \frac{b}{2(p^{-})^{2}} r^{2p^{-}} - \nu_{k} - \lambda_{k} \mu_{k} = 0. \end{aligned}$$

Theorem 1.10 guarantees that the functional φ has at least k pairs of different critical points. Hence, Problem (1.1) has at least k distinct pairs of nontrivial solutions. \Box

Corollary 2.2. Assume that (h_2) and (h_3) hold, and

 (h_4) h(t, u) is bounded.

Then for any $k \in \mathbb{N}$, there exists a λ_k such that for any $\lambda > \lambda_k$, Problem (1.1) has at least k distinct pairs of nontrivial solutions.

Theorem 2.3. Assume that (h_1) holds, and assume the following are satisfied.

(h₅) There exist $\alpha_j, \beta_j > 0$ and γ_j with $0 < \gamma_j < 2p^- - 1$ (j = 1, 2, ..., l) such that

$$|I_j(u)| \le \alpha_j + \beta_j |u|^{\gamma_j}$$
 for any $u \in \mathbb{R}$ $(j = 1, \dots, l)$.

(h₆) h(t, u) and $I_j(u)$ (j = 1, 2, ..., l) are odd with respect to u and H(t, u) > 0 for every $(t, u) \in [0, T] \times \mathbb{R} \setminus \{0\}$.

Then for any $k \in \mathbb{N}$, there exists a λ_k such that for any $\lambda > \lambda_k$, Problem (1.1) has at least k distinct pairs of nontrivial solutions.

Proof. From assumptions (h_1) and (h_6) , we see that $\varphi \in C^1(X, \mathbb{R})$ is an even functional and $\varphi(0) = 0$. We now show that φ is bounded from below. Let $\alpha_0 = \max\{\alpha_1, \alpha_2, \ldots, \alpha_l\}, \beta_0 = \max\{\beta_1, \beta_2, \ldots, \beta_l\}$. We have for any $u \in X$ with ||u|| > 1 that

$$\begin{split} \varphi(u) &= a \int_{0}^{T} \frac{1}{p(t)} |u'(t)|^{p(t)} dt + \frac{b}{2} \Big(\int_{0}^{T} \frac{1}{p(t)} |u'(t)|^{p(t)} dt \Big)^{2} \\ &- \lambda \int_{0}^{T} H(t, u(t)) dt - \sum_{j=1}^{l} \int_{0}^{u(t_{j})} I_{j}(s) ds \\ &\geq \frac{a}{p^{+}} \|u\|^{p^{-}} + \frac{b}{2(p^{+})^{2}} \|u\|^{2p^{-}} - \int_{0}^{T} (\alpha(t)|u(t)| + \beta(t)|u(t)|)^{\gamma(t)+1} \\ &- \sum_{j=1}^{l} (\alpha_{j}|u(t_{j})| + \beta_{j}|u(t_{j})|^{\gamma_{j}+1}) \\ &\geq \frac{a}{p^{+}} \|u\|^{p^{-}} + \frac{b}{2(p^{+})^{2}} \|u\|^{2p^{-}} - |\alpha|_{L^{1}}c_{0}\|u\| - |\beta|_{L^{1}}c\|u\|^{\gamma^{+}+1} \\ &- \alpha_{0}lc_{0}\|u\| - \beta_{0}c' \sum_{i=1}^{l} \|u\|^{\gamma_{j}+1}. \end{split}$$

Now, we show that φ satisfies the Palais-Smale condition. For any $u \in X$ with $||u|| \le 1$, we have

$$\varphi(u) \ge \frac{a}{p^+} \|u\|^{p^+} + \frac{b}{2(p^+)^2} \|u\|^{2p^+} - |\alpha|_{L^1} c_0 \|u\| - |\beta|_{L^1} c \|u\|^{\gamma^- + 1} - \alpha_0 l c \|u\| - \beta_0 c' \sum_{j=1}^l \|u\|^{\gamma_j + 1}.$$
(2.13)

Let $(u_n) \subset X$ be a sequence such that $(\varphi(u_n))$ is a bounded sequence and $\varphi'(u_n) \to 0$ in X'. From (2.12), (2.13), and since $\gamma^+, \gamma_j < 2p^- - 1$, in all cases we deduce that (u_n) is bounded in X. The rest of the proof of the Palais-Smale condition is similar to that in Theorem 2.1.

Consider $K_k(r)$ as in Theorem 2.1. For any r > 0, there exits an odd homeomorphism $\chi: K_k(r) \to S^{k-1}$. From assumption (h_6) we have

$$\mu_k = \inf_{u \in K_k(r)} \int_0^T H(t, u(t)) \, dt > 0.$$

Let

$$\nu_k = \inf_{u \in K_k(r)} \sum_{j=1}^l \int_0^{u(t_j)} I_j(s) \, ds \quad \text{and} \quad \lambda_k = \max\left\{0, \frac{1}{\mu_k} \left(\frac{a}{p^-} r^{p^-} + \frac{b}{2(p^-)^2} r^{2p^-} - \nu_k\right)\right\}.$$

Then when $\lambda > \lambda_k$, we take $0 < r \le 1$, and then for any $u \in K_k(r)$ we have $||u|| \le 1$ and

$$\varphi(u) \le \frac{a}{p^{-}} r^{p^{-}} + \frac{b}{2(p^{-})^{2}} r^{2p^{-}} - \nu_{k} - \lambda \mu_{k}$$
$$< \frac{a}{p^{-}} r^{p^{-}} + \frac{b}{2(p^{-})^{2}} r^{2p^{-}} - \nu_{k} - \lambda_{k} \mu_{k} \le 0.$$

From Theorem 1.10, φ has at least k pairs of different critical points. Consequently, Problem (1.1) has at least k distinct pairs of nontrivial solutions.

Corollary 2.4. Assume that the assumptions (h_4) , (h_6) hold, and

 $(h_7) \ I_j(u) \ (j = 1, 2, ..., l) \ are \ bounded.$

Then for any $k \in \mathbb{N}$, there exists a λ_k such that for any $\lambda > \lambda_k$, Problem (1.1) has at least k distinct pairs of nontrivial solutions.

Theorem 2.5. Assume that (h_3) holds, and

- (h₈) There exists a constant $\sigma > 0$ such that $h(t,\sigma) = 0, h(t,u) > 0$ for every $u \in (0,\sigma)$,
- (h_9) h(t, u) is odd with respect to u.

Then for any $k \in \mathbb{N}$, there exists a λ_k such that when $\lambda > \lambda_k$, Problem (1.1) has at least k distinct pairs of nontrivial solutions.

Proof. Define the bounded function

$$f(t,u) = \begin{cases} 0, & \text{if } |u| > \sigma, \\ h(t,u), & \text{if } |u| \le \sigma. \end{cases}$$

Consider

$$\begin{cases} -\left(a+b\int_{0}^{T}\frac{1}{p(t)}|u'(t)|^{p(t)} dt\right) \left(|u'(t)|^{p(t)-2} \cdot u'(t)\right)' = \lambda f(t,u(t)), \quad t \neq t_j, \ t \in [0,T], \\ -\Delta u'(t_j) = I_j(u(t_j)), \quad j = 1, 2, \dots, l, \\ u(0) = u(T) = 0, \end{cases}$$
(2.14)

and we now show that solutions of Problem (2.14) are also solutions of Problem (1.1). Let u_0 be a solution of Problem (2.14). We now prove that $-\sigma \leq u_0(t) \leq \sigma$. Suppose

that $\max_{0 \le t \le T} u_0(t) > \sigma$, then there exists an interval $[d_1, d_2] \subset [0, T]$ such that $u_0(d_1) = u_0(d_2) = \sigma$ and for any $t \in (d_1, d_2)$ we have $u_0(t) > \sigma$, and so

$$-\left(a+b\int_{0}^{t}\frac{1}{p(t)}|u'(t)|^{p(t)} dt\right)\left(|u'(t)|^{p(t)-2} \cdot u'(t)\right)' = \lambda f(t,u(t)) = 0, \quad t \in (d_1,d_2).$$

We deduce that there is a constant c such that $|u'_0(t)|^{p(t)-2} \cdot u'_0(t) = c$ for any $t \in [d_1, d_2]$, and since $u'_0(d_1) \ge 0$ and $u'_0(d_2) \le 0$, then we have

$$\begin{aligned} |u_0'(d_1)|^{p(d_1)-2} \cdot u_0'(d_1) &= c \ge 0, \\ |u_0'(d_2)|^{p(d_2)-2} \cdot u_0'(d_2) &= c \le 0, \end{aligned}$$

so, $u'_0(t) = 0$ for any $t \in [d_1, d_2]$, i.e. $u_0(t) = \sigma$ for any $t \in [d_1, d_2]$, which is a contradiction. From a similar argument we see that $\min_{0 \le t \le T} u_0(t) \ge -\sigma$.

The functional $\varphi_1: X \to \mathbb{R}$ defined by

T

$$\varphi_{1}(u) = a \int_{0}^{T} \frac{1}{p(t)} |u'(t)|^{p(t)} dt + \frac{b}{2} \Big(\int_{0}^{T} \frac{1}{p(t)} |u'(t)|^{p(t)} dt \Big)^{2} - \sum_{j=1}^{l} \int_{0}^{u(t_{j})} I_{j}(s) ds - \lambda \int_{0}^{T} F(t, u(t)) dt$$
(2.15)

is continuously Fréchet differentiable at any $u \in X,$ where $F(t,u) = \int_0^u f(t,s) \ ds.$ We have

$$\varphi_1'(u) \cdot v = \left(a + b \int_0^T \frac{1}{p(t)} |u'(t)|^{p(t)} dt\right) \int_0^T |u'|^{p(t)-2} u'(t) v'(t) dt$$

$$- \sum_{j=1}^l I_j(u(t_j)) v(t_j) - \lambda \int_0^T f(t, u(t)) v(t) dt$$
(2.16)

for all $v \in X$. It is clear that φ_1 is an even functional, $\varphi_1(0) = 0$ and bounded from below. To see this note for $u \in X$ with $||u|| \ge 1$ we have

$$\begin{split} \varphi_1(u) &\geq \frac{a}{p^+} \int_0^T |u'(t)|^{p(t)} \, dt + \frac{b}{2(p^+)^2} \Big(\int_0^T |u'(t)|^{p(t)} \, dt \Big)^2 - \lambda \int_0^T \int_0^{u(t)} f(t,s) \, ds dt \\ &\geq \frac{a}{p^+} \int_0^T |u'(t)|^{p(t)} \, dt + \frac{b}{2(p^+)^2} \Big(\int_0^T |u'(t)|^{p(t)} \, dt \Big)^2 - \lambda \int_0^T \int_0^\sigma f(t,s) \, ds dt \\ &\geq \frac{a}{p^+} \|u\|^{p^-} + \frac{b}{2(p^+)^2} \|u\|^{2p^-} - \lambda \tau, \end{split}$$

so it follows that φ_1 is bounded from below. Let (u_n) be a Palais-Smale sequence. It is easy to see that (u_n) is bounded in X and the rest of the proof of the Palais-Smale condition is similar to that in the proof in Theorem 2.1.

Consider $K_k(r) = \{u \in X_k : ||u|| = r\}$. For any r > 0 the odd homeomorphism $\chi : K_k(r) \to S^{k-1}$ gives $\gamma(K_k(r)) = k$. Let $0 < r < \min\{1, \frac{\sigma}{c_0}\}$, where c_0 is the best constant of the embedding of X in C([0,T]), so $||u||_{\infty} \leq c_0 ||u|| < \sigma$ for any $u \in K_k(r)$. Using assumptions (h_8) and (h_9) , we have F(t, u(t)) > 0 as $u(t) \neq 0$. Then $\int_0^T F(t, u(t)) dt > 0$ for any $u \in K_k(r)$. If we set

$$\mu_k = \inf_{u \in K_k(r)} \int_0^T F(t, u(t)) \, dt \quad \text{and} \quad \nu_k = \inf_{u \in K_k(r)} \sum_{j=1}^l \int_0^{u(t_j)} I_j(s) \, ds,$$

then $\mu_k > 0$ and $\nu_k \leq 0$. Let

$$\lambda_k = \frac{1}{\mu_k} \left(\frac{a}{p^-} r^{p^-} + \frac{b}{2(p^-)^2} r^{2p^-} - \nu_k \right),$$

so $\lambda_k > 0$, and for any $\lambda > \lambda_k$ and any $u \in K_k(r)$ with ||u|| < 1 we have

$$\varphi(u) \leq \frac{a}{p^{-}} r^{p^{-}} + \frac{b}{2(p^{-})^{2}} r^{2p^{-}} - \nu_{k} - \lambda \mu_{k}$$
$$< \frac{a}{p^{-}} r^{p^{-}} + \frac{b}{2(p^{-})^{2}} r^{2p^{-}} - \nu_{k} - \lambda_{k} \mu_{k} = 0.$$

From Theorem 1.10, φ_1 has at least k pairs of different critical points. Then, Problem (2.14) has at least k distinct pairs of nontrivial solutions. Consequently, Problem (1.1) has at least k distinct pairs of nontrivial solutions.

A similar argument to that in Theorem 2.5, yields the following result.

Theorem 2.6. Let conditions (h_5) , (h_8) hold and

 (h_{10}) h(t, u) and $I_j(u)$ (j = 1, 2, ..., l) are odd with respect to u.

Then for any $k \in \mathbb{N}$, there exists a λ_k such that for any $\lambda > \lambda_k$, Problem (1.1) has at least k distinct pairs of nontrivial solutions.

Theorem 2.7. Suppose that (h_5) holds, and

- (h₁₁) There exist a constant $\sigma_1 > 0$ such that $h(t, \sigma_1) \leq 0$,
- (h₁₂) h(t, u) and $I_j(u)$ (j = 1, 2, ..., l) are odd with respect to u and $\lim_{u\to 0} \frac{h(t, u)}{u} = 1$ uniformly for $t \in [0, T]$.

Then for any $k \in \mathbb{N}$, there exists a λ_k such that for any $\lambda > \lambda_k$, Problem (1.1) has at least k distinct pairs of nontrivial solutions.

Proof. Define the bounded function

$$g(t,u) = \begin{cases} h(t,\sigma_1), & \text{if } u > \sigma_1, \\ h(t,u), & \text{if } |u| \le \sigma_1, \\ h(t,-\sigma_1), & \text{if } u < -\sigma_1. \end{cases}$$

We will verify that the solutions of the problem

$$\begin{cases} -\left(a+b\int_{0}^{T}\frac{1}{p(t)}|u'(t)|^{p(t)} dt\right) \left(|u'(t)|^{p(t)-2} \cdot u'(t)\right)' + \lambda g(t,u(t)) = 0, t \neq t_j, t \in [0,T], \\ -\Delta u'(t_j) = I_j(u(t_j)), \quad j = 1, 2, \dots, l, \\ u(0) = u(T) = 0, \end{cases}$$

$$(2.17)$$

are solution of Problem (1.1). Let u_0 be a solution of Problem (2.17). We prove that $-\sigma_1 \leq u_0(t) \leq \sigma_1$ for any $t \in [0,T]$. Suppose that $\max_{0 \leq t \leq T} u_0(t) > \sigma_1$, then there exists an interval $[d_1, d_2] \subset [0,T]$ such that $u_0(d_1) = u_0(d_2) = \sigma_1$ and for any $t \in (d_1, d_2)$ we have $u_0(t) > \sigma_1$, and then when $t \in (d_1, d_2)$ we obtain

$$\left(a+b\int_{0}^{T}\frac{1}{p(t)}|u_{0}'(t)|^{p(t)} dt\right)\left(|u_{0}'(t)|^{p(t)-2} \cdot u_{0}'(t)\right)' = -\lambda g(t,u_{0}(t)) = -\lambda h(t,\sigma_{1}) \ge 0.$$

Therefore, we deduce that

$$\left(|u_0'(t)|^{p(t)-2} \cdot u_0'(t)\right)' \ge 0, \quad t \in (d_1, d_2),$$

thus $t \mapsto |u'_0(t)|^{p(t)-2} \cdot u'_0(t)$ is nondecreasing in (d_1, d_2) , so then

$$0 \le |u_0'(d_1)|^{p(d_1)-2} u_0'(d_1) \le |u_0'(t)|^{p(t)-2} u_0'(t) \le |u_0'(d_2)|^{p(d_2)-2} u_0'(d_2) \le 0,$$

for every $t \in [d_1, d_2]$. Hence $u'_0 = 0$ on $[d_1, d_2]$, so, since $u_0(d_1) = u_0(d_2) = \sigma_1$, then $u(t) = \sigma_1$ for every $t \in [d_1, d_2]$, which is a contradiction. From a similar argument we see that $\min_{0 \le t \le T} u_0(t) \ge -\sigma_1$, i.e. u_0 is a solution of Problem (1.1).

We consider the functional $\varphi_2: X \to \mathbb{R}$ defined by

$$\varphi_{2}(u) = a \int_{0}^{T} \frac{1}{p(t)} |u'(t)|^{p(t)} dt + \frac{b}{2} \Big(\int_{0}^{T} \frac{1}{p(t)} |u'(t)|^{p(t)} dt \Big)^{2} - \sum_{j=1}^{l} \int_{0}^{u(t_{j})} I_{j}(s) ds - \lambda \int_{0}^{T} G(t, u(t)) dt,$$
(2.18)

where $G(t, u) = \int_{0}^{u} g(t, s) \, ds$. Obviously, φ_2 is continuously Fréchet differentiable at any $u \in X$ and

$$\varphi_{2}'(u) \cdot v = \left(a + b \int_{0}^{T} \frac{1}{p(t)} |u'(t)|^{p(t)} dt\right) \int_{0}^{T} |u'(t)|^{p(t)-2} u'(t)v'(t) dt$$

$$- \sum_{j=1}^{l} I_{j}(u(t_{j}))v(t_{j}) - \lambda \int_{0}^{T} g(t, u(t))v(t) dt,$$
(2.19)

for all $v \in X$. It is clear that critical points of φ_2 are solutions of Problem (2.17). Now $\varphi_2 \in C^1(X, \mathbb{R})$ is an even functional and $\varphi_2(0) = 0$. Let $\alpha_0 = \max\{\alpha_1, \alpha_2, \dots, \alpha_l\}, \ \beta_0 = \max\{\beta_1, \beta_2, \dots, \beta_l\}$, and we see that

$$\int_{0}^{T} G(t, u(t)) dt = \int_{0}^{T} \int_{0}^{u(t)} g(t, s) \, ds dt \le \int_{0}^{T} \int_{0}^{\sigma_1} g(t, s) \, ds dt = \eta.$$
(2.20)

Using assumption (h_5) and (2.20), we have for any $u \in X$ with ||u|| > 1 that

$$\varphi_{2}(u) = a \int_{0}^{T} \frac{1}{p(t)} |u'(t)|^{p(t)} dt + \frac{b}{2} \Big(\int_{0}^{T} \frac{1}{p(t)} |u'(t)|^{p(t)} dt \Big)^{2} - \sum_{j=1}^{l} \int_{0}^{u(t_{j})} I_{j}(s) ds - \lambda \int_{0}^{T} G(t, u(t)) dt \geq \frac{a}{p^{+}} ||u||^{p^{-}} + \frac{b}{2(p^{+})^{2}} ||u||^{2p^{-}} - \sum_{j=1}^{l} (\alpha_{j} |u(t_{j})| + \beta_{j} |u(t_{j})|^{\gamma_{j}+1}) - \lambda \eta \geq \frac{a}{p^{+}} ||u||^{p^{-}} + \frac{b}{2(p^{+})^{2}} ||u||^{2p^{-}} - \alpha_{0} lc_{0} ||u|| - \beta_{0} c' \sum_{j=1}^{l} ||u||^{\gamma_{j}+1} - \lambda \eta,$$
(2.21)

so it follows that φ_2 is bounded from below.

Now we show that φ_2 satisfies the Palais-Smale condition. For any $u \in X$ with $||u|| \leq 1$, we have

$$\varphi(u) \ge \frac{a}{p^+} \|u\|^{p^+} + \frac{b}{2(p^+)^2} \|u\|^{2p^+} - \alpha_0 lc_0 \|u\| - \beta_0 c' \sum_{j=1}^l \|u\|^{\gamma_j + 1} - \lambda \eta.$$
(2.22)

Let $(u_n) \subset X$ be a sequence such that $(\varphi(u_n))$ is a bounded sequence and $\varphi'(u_n) \to 0$ as $n \to +\infty$. From (2.21), (2.22), and since $\gamma, \gamma_j < 2p^- - 1$, in all cases we deduce

that (u_n) is bounded in X. The proof of the Palais-Smale condition is now similar to that in Theorem 2.1.

Consider $K_k(r)$ as in Theorem 2.1. From assumption (h_{12}) , for any $\varepsilon > 0$, there exists $\delta > 0$, when $|u| \leq \delta$, we have $h(t, u) \geq u - \varepsilon |u|$. Take $0 < r \leq 1$ sufficiently small such that $||u||_{\infty} < \min\{\sigma_1, \delta\}$ for any $u \in K_k(r)$. Then, taking $0 < \varepsilon < 1$ we have

$$\int_{0}^{T} G(t, u(t)) dt = \int_{0}^{T} \int_{0}^{u(t)} g(t, s) \, ds dt \ge \frac{1}{2} \int_{0}^{T} (1 - \varepsilon) |u(t)|^2 \, dt > 0,$$

for any $u \in K_k(r)$.

Set

$$\mu_k = \inf_{u \in K_k(r)} \int_0^T G(t, u(t)) \, dt \quad \text{and} \quad \nu_k = \inf_{u \in K_k(r)} \sum_{j=1}^l \int_0^{u(t_j)} I_j(s) \, ds.$$

Let $\lambda_k = \max\left\{0, \frac{1}{\mu_k}\left(\frac{a}{p^-}r^{p^-} + \frac{b}{2(p^-)^2}r^{2p^-} - \nu_k\right)\right\}$, then for all λ such that $\lambda > \lambda_k$ and every $u \in K_k(r)$, we have

$$\varphi_{2}(u) \leq \frac{a}{p^{-}}r^{p^{-}} + \frac{b}{2(p^{-})^{2}}r^{2p^{-}} - \nu_{k} - \lambda\mu_{k}$$
$$< \frac{a}{p^{-}}\|u\|^{p^{-}} + \frac{b}{2(p^{-})^{2}}\|u\|^{2p^{-}} - \nu_{k} - \lambda_{k}\mu_{k} \leq 0.$$

Theorem 1.10 guarantees that φ_2 has at least k pairs of different critical points. That is, Problem (2.17) has at least k distinct pairs of nontrivial solutions. Therefore we have the same result for Problem (1.1).

Theorem 2.8. Assume that (h_{11}) and (h_{12}) hold, and

(h₁₃) $\int_0^u I_j(s) \, ds \leq 0$ for any $u \in \mathbb{R}$ $(j = 1, \dots, l)$.

Then for any $k \in \mathbb{N}$, there exists a λ_k such that for any $\lambda > \lambda_k$, Problem (1.1) has at least k distinct pairs of nontrivial solutions.

Proof. The argument is similar to that in Theorem 2.7.

REFERENCES

- A. Ambrosetti, A. Malchiodi, Nonlinear Analysis and Semilinear Elliptic Problems, Cambridge University Press, Cambridge, 2007.
- [2] A. Castro, Metodos Variacionales y Analisis Funcional no Lineal, X Coloquio Colombiano de Matematicas, 1980.
- [3] J. Chabrowski, Y. Fu, Existence of solutions for p(t)-Laplacian problems on a bounded domain, J. Math. Anal. Appl. 306 (2005), 604–618.

- [4] H. Chen, J. Li, Variational approach to impulsive differential equation with Dirichlet boundary conditions, Bound. Value Probl. 2010 (2010), 1–16.
- [5] D.C. Clarke, A variant of the Lusternik-Schnirelmann theory, Indiana Univ. Math. J. 22 (1972), 65–74.
- [6] F.J.S.A. Corrêa, G.M. Figueiredo, On an elliptic equation of p-Kirchhoff-type via variational methods, Bull. Aust. Math. Soc. 74 (2006), 263–277.
- [7] F.J.S.A. Corrêa, G.M. Figueiredo, On a p-Kirchhoff equation via Krasnoselskii's genus, Appl. Math. Lett. 22 (2009), 819–822.
- [8] G. Dai, J. Wei, Infinitely many non-negative solutions for a p(t)-Kirchhoff-type problem with Dirichlet boundary condition, Nonlinear Anal. **73** (2010), 3420–3430.
- [9] L. Diening, P. Harjulehto, P. Hastö, M. Ružička, *Lebesgue and Sobolev spaces with variable exponents*, Lectures Notes in Mathematics, 2011.
- [10] X.L. Fan, Q.H. Zhang, Existence of solutions for p(t)-Laplacian Dirichlet problem, Nonlinear Anal. 52 (2003), 1843–1852.
- [11] X.L. Fan, D. Zhao, On the spaces $L^{p(t)}$ and $W^{m,p(t)}$, J. Math. Anal. Appl. 263 (2001), 424–446.
- [12] M. Galewski, D. O'Regan, Impulsive boundary value problems for p(t)-Laplacian's via critical point theory, Czechoslovak Math. J. 62 (2012), 951–967.
- [13] M. Galewski, D. O'Regan, On well posed impulsive boundary value problems for p(t)-Laplacian's, Math. Model. Anal. 18 (2013), 161–175.
- [14] O. Kavian, Introduction à la Théorie des Points Critiques et Applications aux Problèmes Elliptiques, Springer-Verlag, 1993.
- [15] M.A. Krasnoselskii, Topological Methods in the Theory of Nonlinear Integral Equations, MacMillan, New York, 1964.
- [16] I. Peral, Multiplicity of solutions for the p-Laplacian, Second School of Nonlinear Functional Analysis and Applications to Differential Equations, ICTP, Trieste, 1997.
- [17] P.H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, Conference board of the mathematical sciences, American Mathematical Society, Providence, Rhode Island, 1984.
- [18] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam, 1978.

A. Mokhtari mokhtarimaths@yahoo.fr

Laboratory of Fixed Point Theory and Applications Department of Mathematics E.N.S. Kouba, Algiers, Algeria T. Moussaoui moussaoui@ens-kouba.dz

Laboratory of Fixed Point Theory and Applications Department of Mathematics E.N.S. Kouba, Algiers, Algeria

D. O'Regan donal.oregan@nuigalway.ie

School of Mathematics, Statistics and Applied Mathematics National University of Ireland Galway, Ireland

Received: January 20, 2016. Revised: March 12, 2016. Accepted: March 30, 2016.