MULTIPLICITY RESULTS FOR AN IMPULSIVE BOUNDARY VALUE PROBLEM OF $p(t)$-KIRCHHOFF TYPE VIA CRITICAL POINT THEORY

A. Mokhtari, T. Moussaoui, D. O'Regan
Communicated by Marek Galewski

Abstract

In this paper we obtain existence results of k distinct pairs nontrivial solutions for an impulsive boundary value problem of $p(t)$-Kirchhoff type under certain conditions on the parameter λ.

Keywords: genus theory, nonlocal problems, impulsive conditions, Kirchhoff equation, $p(t)$-Laplacian, variational methods, critical point theory.

Mathematics Subject Classification: 35A15, 35B38, 34A37.

1. INTRODUCTION

We study the multiplicity of nontrivial solutions for the problem

$$
\left\{\begin{array}{l}
-\left(a+b \int_{0}^{T} \frac{1}{p(t)}\left|u^{\prime}(t)\right|^{p(t)} d t\right)\left(\left|u^{\prime}(t)\right|^{p(t)-2} \cdot u^{\prime}(t)\right)^{\prime}=\lambda h(t, u(t)), \quad t \neq t_{j}, t \in[0, T] \\
-\Delta u^{\prime}\left(t_{j}\right)=I_{j}\left(u\left(t_{j}\right)\right), \quad j=1,2, \ldots, l \\
u(0)=u(T)=0
\end{array}\right.
$$

where $0=t_{0}<t_{1}<\ldots<t_{l}<t_{l+1}=T, \lambda>0$ is a numerical parameter, h is a Carathéodory function, $I_{j} \in C(\mathbb{R}, \mathbb{R}), j=1,2, \ldots, l, \Delta u^{\prime}\left(t_{j}\right)=u^{\prime}\left(t_{j}^{+}\right)-u^{\prime}\left(t_{j}^{-}\right)$, $u^{\prime}\left(t_{j}^{+}\right)$and $u^{\prime}\left(t_{j}^{-}\right)$denote the right and left derivative of u at $t=t_{j}, j=1,2, \ldots, l$. Here p is a function in $C([0, T], \mathbb{R})$ with

$$
1<p^{-}=\inf _{t \in[0, T]} p(t) \leq p^{+}=\sup _{t \in[0, T]} p(t),
$$

and a, b are positive constants.

Impulsive problems for the $p(t)$-Laplacian were introduced in [12] and [13]. In [4] the authors considered

$$
\begin{cases}u^{\prime \prime}(t)+\lambda h(t, u(t))=0, & t \neq t_{j}, t \in[0, T] \\ -\Delta u^{\prime}\left(t_{j}\right)=I_{j}\left(u\left(t_{j}\right)\right), & j=1,2, \ldots, l \\ u(0)=u(T)=0 & \end{cases}
$$

and the goal in this paper is to generalize the results so that (1.1) can be considered.
The variable exponent Lebesgue space $L^{p(t)}(0, T)$ is defined by

$$
L^{p(t)}(0, T)=\left\{u:(0, T) \rightarrow \mathbb{R} \text { is mesurable, } \int_{0}^{T}|u(t)|^{p(t)} d t<+\infty\right\}
$$

endowed with the norm

$$
|u|_{p(t)}=\inf \left\{\lambda>0: \int_{0}^{T}\left|\frac{u(t)}{\lambda}\right|^{p(t)} d t \leq 1\right\}
$$

The variable exponent Sobolev space $W^{1, p(t)}(0, T)$ is defined by

$$
W^{1, p(t)}(0, T)=\left\{u \in L^{p(t)}(0, T): u^{\prime} \in L^{p(t)}(0, T)\right\}
$$

endowed with the norm $\|u\|_{1, p(t)}=|u|_{p(t)}+\left|u^{\prime}\right|_{p(t)}$.
Denote by $C([0, T])$ the space of continuous functions on $[0, T]$ endowed with the norm $|u|_{\infty}=\sup _{t \in[0, T]}|u(t)|$. Now $W_{0}^{1, p(t)}(0, T)$ denotes the closure of $C_{0}^{\infty}(0, T)$ in $W^{1, p(t)}(0, T)$.
Proposition 1.1 ([11]). $L^{p(t)}(0, T), W^{1, p(t)}(0, T)$ and $W_{0}^{1, p(t)}(0, T)$ are separable, reflexive and uniformly convex Banach spaces.
Proposition 1.2 ([11]). For any $u \in L^{p(t)}(0, T)$ and $v \in L^{q(t)}(0, T)$, where $\frac{1}{p(t)}+\frac{1}{q(t)}=1$, we have

$$
\left|\int_{0}^{T} u v d t\right| \leq\left(\frac{1}{p^{-}}+\frac{1}{q^{-}}\right)|u|_{p(t)}|v|_{q(t)}
$$

Proposition 1.3 ([11]). Let $\rho(u)=\int_{0}^{T}|u(t)|^{p(t)} d t$. For any $u \in L^{p(t)}(0, T)$, the following assertions hold.

1. For $u \neq 0,|u|_{p(t)}=\lambda \Leftrightarrow \rho\left(\frac{u}{\lambda}\right)=1$.
2. $|u|_{p(t)}<1(=1 ;>1) \Leftrightarrow \rho(u)<1(=1 ;>1)$.
3. If $|u|_{p(t)}>1$, then $|u|_{p(t)}^{p^{-}} \leq \rho(u) \leq|u|_{p(t)}^{p^{+}}$.
4. If $|u|_{p(t)}<1$, then $|u|_{p(t)}^{p+} \leq \rho(u) \leq|u|_{p(t)}^{p^{-}}$.

Proposition 1.4 ([11]). If $u, u_{k} \in L^{p(t)}(0, T), k=1,2, \ldots$, then the following statements are equivalent:

1. $\lim _{k \rightarrow+\infty}\left|u_{k}-u\right|_{p(t)}=0$ (i.e. $u_{k} \rightarrow u$ in $\left.L^{p(t)}(0, T)\right)$,
2. $\lim _{k \rightarrow+\infty} \rho\left(u_{k}-u\right)=0$,
3. $u_{k} \rightarrow u$ in measure in $(0, T)$ and $\lim _{k \rightarrow+\infty} \rho\left(u_{k}\right)=\rho(u)$.

Proposition 1.5 ([9]). The Poincaré-type inequality holds, that is, there exists a positive constant c such that

$$
|u|_{p(t)} \leq c\left|u^{\prime}\right|_{p(t)}, \quad \text { for all } \quad u \in W_{0}^{1, p(t)}(0, T)
$$

Thus $\left|u^{\prime}\right|_{p(t)}$ is an equivalent norm in $W_{0}^{1, p(t)}(0, T)$. We will use this equivalent norm in the following discussion and write $\|u\|=\left|u^{\prime}\right|_{p(t)}$ for simplicity.

We now recall the Krasnoselskii genus and information on this may be found in $[1,2,14,15]$. Let E be a real Banach space. Let us denote by Σ the class of all closed subsets $A \subset E \backslash\{0\}$ that are symmetric with respect to the origin, that is, $u \in A$ implies $-u \in A$.

Definition 1.6. Let $A \in \Sigma$. The Krasnoselskii genus $\gamma(A)$ is defined as being the least positive integer n such that there is an odd mapping $\varphi \in C\left(A, \mathbb{R}^{n} \backslash\{0\}\right)$. If such n does not exist, we set $\gamma(A)=+\infty$. Furthermore, by definition, $\gamma(\emptyset)=0$.

Theorem 1.7 ([14]). Let $E=\mathbb{R}^{N}$ and $\partial \Omega$ be the boundary of an open, symmetric and bounded subset $\Omega \subset \mathbb{R}^{N}$ with $0 \in \Omega$. Then $\gamma(\partial \Omega)=N$.

Note $\gamma\left(S^{N-1}\right)=N$. If E is infinite dimension and separable and S is the unit sphere in E, then $\gamma(S)=+\infty$.

Proposition 1.8 ([14]). Let $A, B \in \Sigma$. Then, if there exists an odd map $f \in C(A, B)$, then $\gamma(A) \leq \gamma(B)$. Consequently, if there exists an odd homeomorphism $f: A \rightarrow B$, then $\gamma(A)=\gamma(B)$.

Definition 1.9. Let $J \in C^{1}(E, \mathbb{R})$. If any sequence $\left(u_{n}\right) \subset E$ for which $\left(J\left(u_{n}\right)\right)$ is bounded and $J^{\prime}\left(u_{n}\right) \rightarrow 0$ when $n \rightarrow+\infty$ in E^{\prime} possesses a convergent subsequence, then we say that J satisfies the Palais-Smale condition (the (PS) condition).

We now state a theorem due to Clarke.
Theorem $1.10([5,17])$. Let $J \in C^{1}(E, \mathbb{R})$ be a functional satisfying the Palais-Smale condition. Also suppose that:

1) J is bounded from below and even,
2) there is a compact set $K \in \Sigma$ such that $\gamma(K)=k$ and $\sup _{x \in K} J(x)<J(0)$.

Then J possesses at least k pairs of distinct critical points and their corresponding critical values are less than $J(0)$.

Definition 1.11. We say that $u \in W_{0}^{1, p(t)}(0, T)=X$ is a weak solution of Problem (1.1) if and only if

$$
\begin{aligned}
\left(a+b \int_{0}^{T} \frac{1}{p(t)}\left|u^{\prime}(t)\right|^{p(t)} d t\right) \int_{0}^{T}\left|u^{\prime}(t)\right|^{p(t)-2} \cdot u^{\prime}(t) v^{\prime}(t) d t= & \lambda \int_{0}^{T} h(t, u(t)) v(t) d t \\
& +\sum_{j=1}^{l} I_{j}\left(u\left(t_{j}\right)\right) v\left(t_{j}\right)
\end{aligned}
$$

for all $v \in X$.
In Section 2 we will use the following elementary inequalities (see [16]): for all $x, y \in \mathbb{R}$, we have

$$
\begin{equation*}
\left(|x|^{p(\cdot)-2} x-|y|^{p(\cdot)-2} y\right)(x-y) \geq \frac{1}{2^{p(\cdot)}}|x-y|^{p(\cdot)} \quad \text { if } p(\cdot) \geq 2 \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(|x|^{p(\cdot)-2} x-|y|^{p(\cdot)-2} y\right)(x-y) \geq(p(\cdot)-1) \frac{|x-y|^{2}}{(|x|+|y|)^{2-p(\cdot)}} \quad \text { if } 1<p(\cdot)<2 \tag{1.3}
\end{equation*}
$$

Remark 1.12. Note (1.2) implies

$$
\begin{equation*}
\left(|x|^{p(\cdot)-2} x-|y|^{p(\cdot)-2} y\right)(x-y) \geq \frac{1}{2^{p^{+}}}|x-y|^{p(\cdot)} \quad \text { if } p(\cdot) \geq 2 \tag{1.4}
\end{equation*}
$$

Also (1.3) implies

$$
\begin{equation*}
\left[\left(|x|^{p(\cdot)-2} x-|y|^{p(\cdot)-2} y\right)(x-y)\right]^{\frac{p(\cdot)}{2}} \geq \frac{p^{-}-1}{\sqrt{2}} \frac{|x-y|^{p(\cdot)}}{\left(|x|^{p(\cdot)}+|y|^{p(\cdot)}\right)^{\frac{2-p(\cdot)}{2}}} \tag{1.5}
\end{equation*}
$$

if $1<p(\cdot)<2$. To see this note for any $x, y \in \mathbb{R}$ and $1<p(\cdot)<2$, from (1.3) we have

$$
\left[\left(|x|^{p(\cdot)-2} x-|y|^{p(\cdot)-2} y\right)(x-y)\right]^{\frac{p(\cdot)}{2}} \geq\left(p^{-}-1\right) \frac{|x-y|^{p(\cdot)}}{(|x|+|y|)^{p(\cdot) \frac{2-p(\cdot)}{2}}}
$$

and now using

$$
(|x|+|y|)^{p(\cdot)} \leq 2^{p(\cdot)-1}\left(|x|^{p(\cdot)}+|y|^{p(\cdot)}\right) \leq 2\left(|x|^{p(\cdot)}+|y|^{p(\cdot)}\right),
$$

we obtain

$$
\begin{aligned}
{\left[\left(|x|^{p(\cdot)-2} x-|y|^{p(\cdot)-2} y\right)(x-y)\right]^{\frac{p(\cdot)}{2}} } & \geq\left(p^{-}-1\right) \frac{1}{2^{\frac{2-p(\cdot)}{2}} \frac{|x-y|^{p(\cdot)}}{\left(|x|^{p(\cdot)}+|y|^{p(\cdot)}\right)^{\frac{2-p(\cdot)}{2}}}} \\
& \geq \frac{p^{-}-1}{\sqrt{2}} \frac{|x-y|^{p(\cdot)}}{\left(|x|^{p(\cdot)}+|y|^{p(\cdot)}\right)^{\frac{2-p(\cdot)}{2}}} .
\end{aligned}
$$

2. MAIN RESULTS

Theorem 2.1. Assume the following are satisfied.
$\left(h_{1}\right)$ There exist $\alpha, \beta \in L^{1}(0, T)$ and a continuous function $\gamma:[0, T] \rightarrow \mathbb{R}$ such that $0 \leq \gamma^{+}=\sup _{t \in[0, T]} \gamma(t)<2 p^{-}-1$ with

$$
|h(t, u)| \leq \alpha(t)+\beta(t)|u|^{\gamma(t)} \quad \text { for any }(t, u) \in[0, T] \times \mathbb{R}
$$

$\left(h_{2}\right) h(t, u)$ is odd with respect to u and $H(t, u)=\int_{0}^{u} h(t, \xi) d \xi>0$ for every $(t, u) \in$ $[0, T] \times \mathbb{R} \backslash\{0\}$.
$\left(h_{3}\right) I_{j}(u)(j=1,2, \ldots, l)$ are odd and $\int_{0}^{u} I_{j}(s) d s \leq 0$ for any $u \in \mathbb{R}(j=1, \ldots, l)$.
Then for any $k \in \mathbb{N}$, there exists a λ_{k} such that when $\lambda>\lambda_{k}$, Problem (1.1) has at least k distinct pairs of nontrivial solutions.

Proof. The corresponding functional to Problem (1.1) is defined as follows:

$$
\begin{align*}
\varphi(u)= & a \int_{0}^{T} \frac{1}{p(t)}\left|u^{\prime}(t)\right|^{p(t)} d t+\frac{b}{2}\left(\int_{0}^{T} \frac{1}{p(t)}\left|u^{\prime}(t)\right|^{p(t)} d t\right)^{2} \\
& -\sum_{j=1}^{l} \int_{0}^{u\left(t_{j}\right)} I_{j}(s) d s-\lambda \int_{0}^{T} H(t, u(t)) d t . \tag{2.1}
\end{align*}
$$

From $\left(h_{1}\right)$ and the fact that $I_{j} \in C(\mathbb{R}, \mathbb{R})$ it is easy to see that $\varphi \in C^{1}(X, \mathbb{R})$ and for all $u, v \in X$

$$
\begin{align*}
\varphi^{\prime}(u) \cdot v= & \left(a+b \int_{0}^{T} \frac{1}{p(t)}\left|u^{\prime}(t)\right|^{p(t)} d t\right) \int_{0}^{T}\left|u^{\prime}(t)\right|^{p(t)-2} u^{\prime}(t) v^{\prime}(t) d t \\
& -\sum_{j=1}^{l} I_{j}\left(u\left(t_{j}\right)\right) v\left(t_{j}\right)-\lambda \int_{0}^{T} h(t, u(t)) v(t) d t . \tag{2.2}
\end{align*}
$$

Thus the critical points of φ are the weak solutions of (1.1).
First we show that φ is bounded from below. From the continuous embedding of X in $C([0, T])$, for any $u \in X$ with $\|u\|>1$, we have that

$$
\begin{equation*}
\int_{0}^{T}|u(t)|^{\gamma(t)+1} d t \leq \int_{0}^{T}|u|_{\infty}^{\gamma(t)+1} d t \leq c T\|u\|^{\gamma^{+}+1} \tag{2.3}
\end{equation*}
$$

where $c=\max _{t \in[0, T]} c_{0}^{\gamma(t)+1}$ and c_{0} is the best constant of the continuous embedding. It follows from conditions $\left(h_{1}\right),\left(h_{2}\right),\left(h_{3}\right)$ and (2.3) that

$$
\begin{align*}
\varphi(u)= & a \int_{0}^{T} \frac{1}{p(t)}\left|u^{\prime}(t)\right|^{p(t)} d t+\frac{b}{2}\left(\int_{0}^{T} \frac{1}{p(t)}\left|u^{\prime}(t)\right|^{p(t)} d t\right)^{2} \\
& -\sum_{j=1}^{l} \int_{0}^{u\left(t_{j}\right)} I_{j}(s) d s-\lambda \int_{0}^{T} H(t, u(t)) d t \\
\geq & \frac{a}{p^{+}} \int_{0}^{T}\left|u^{\prime}(t)\right|^{p(t)} d t+\frac{b}{2\left(p^{+}\right)^{2}}\left(\int_{0}^{T}\left|u^{\prime}(t)\right|^{p(t)} d t\right)^{2} \tag{2.4}\\
& -\lambda \int_{0}^{T} \alpha(t)|u(t)|+\beta(t)|u(t)|^{\gamma(t)+1} d t \\
\geq & \frac{a}{p^{+}}\|u\|^{p^{-}}+\frac{b}{2\left(p^{+}\right)^{2}}\|u\|^{2 p^{-}}-\lambda|\alpha|_{L^{1}} c_{0}\|u\|-\lambda|\beta|_{L^{1}} c\|u\|^{\gamma^{+}+1},
\end{align*}
$$

for any $u \in X$ with $\|u\| \geq 1$. Since $\gamma^{+}<2 p^{-}-1$, then $\lim _{\|u\| \rightarrow+\infty} \varphi(u)=+\infty$ and consequently, φ is bounded from below.

Next, we show that the functional φ satisfies the (PS) condition. Now for any $u \in X$ with $\|u\| \leq 1$, it is easy to see that

$$
\begin{equation*}
\varphi(u) \geq \frac{a}{p^{+}}\|u\|^{p^{+}}+\frac{b}{2\left(p^{+}\right)^{2}}\|u\|^{2 p^{+}}-\lambda|\alpha|_{L^{1}} c_{0}\|u\|-\lambda|\beta|_{L^{1}} c\|u\|^{\gamma^{-}+1} . \tag{2.5}
\end{equation*}
$$

Let $\left(u_{n}\right) \subset X$ be a Palais-Smale sequence for φ, i.e. $\left(\varphi\left(u_{n}\right)\right)$ is a bounded sequence and $\lim _{n \rightarrow+\infty} \varphi^{\prime}\left(u_{n}\right)=0$. Thus there exists a positive constant B such that

$$
\begin{equation*}
\varphi\left(u_{n}\right) \leq B \tag{2.6}
\end{equation*}
$$

From (2.4), (2.5), (2.6) and since $\gamma^{+}<2 p^{-}-1$, in all cases we deduce that the sequence $\left(u_{n}\right)$ is bounded in X. Thus, passing to a subsequence if necessary, there
exists $u \in X$ such that $u_{n} \rightharpoonup u$ weakly in X. Moreover, by (2.1) and (2.2), we have

$$
\begin{aligned}
&\left(\varphi^{\prime}\left(u_{n}\right)-\varphi^{\prime}(u)\right) \cdot\left(u_{n}-u\right) \\
&=\left(a+b \int_{0}^{T} \frac{1}{p(t)}\left|u_{n}^{\prime}(t)\right|^{p(t)} d t\right) \int_{0}^{T}\left|u_{n}^{\prime}(t)\right|^{p(t)-2} u_{n}^{\prime}(t)\left(u_{n}^{\prime}(t)-u^{\prime}(t)\right) d t \\
&-\sum_{j=1}^{l} I_{j}\left(u_{n}\left(t_{j}\right)\right)\left(u_{n}\left(t_{j}\right)-u\left(t_{j}\right)\right)-\lambda \int_{0}^{T} h\left(t, u_{n}(t)\right)\left(u_{n}(t)-u(t)\right) d t \\
&-\left(a+b \int_{0}^{T} \frac{1}{p(t)}\left|u^{\prime}(t)\right|^{p(t)} d t\right) \int_{0}^{T}\left|u^{\prime}(t)\right|^{p(t)-2} u^{\prime}(t)\left(u_{n}^{\prime}(t)-u^{\prime}(t)\right) d t \\
&+\sum_{j=1}^{l} I_{j}\left(u\left(t_{j}\right)\right)\left(u_{n}\left(t_{j}\right)-u\left(t_{j}\right)\right)+\lambda \int_{0}^{T} h(t, u(t))\left(u_{n}(t)-u(t)\right) d t \\
&=\left(a+b \int_{0}^{T} \frac{1}{p(t)}\left|u_{n}^{\prime}(t)\right|^{p(t)} d t\right) \int_{0}^{T}\left|u_{n}^{\prime}(t)\right|^{p(t)-2} u_{n}^{\prime}(t)\left(u_{n}^{\prime}(t)-u^{\prime}(t)\right) d t \\
&-\left(a+b \int_{0}^{T} \frac{1}{p(t)}\left|u^{\prime}(t)\right|^{p(t)} d t\right) \int_{0}^{T}\left|u^{\prime}(t)\right|^{p(t)-2} u^{\prime}(t)\left(u_{n}^{\prime}(t)-u^{\prime}(t)\right) d t \\
&-\sum_{j=1}^{l}\left(I _ { j } \left(u_{n}\left(t_{j}\right)-I_{j}\left(u\left(t_{j}\right)\right)\left(u_{n}\left(t_{j}\right)-u\left(t_{j}\right)\right)\right.\right. \\
&-\lambda \int_{0}^{T}\left(h\left(t, u_{n}(t)\right)-h(t, u(t))\right)\left(u_{n}(t)-u(t)\right) d t .
\end{aligned}
$$

Since the embedding of X in $C([0, T])$ is compact, then $\left(u_{n}\right)$ uniformly converges to u in $C([0, T])$, by using $\left(h_{1}\right)$ and the Lebesgue Dominated Convergence Theorem, we have that

$$
\left\{\begin{array}{l}
\lambda \int_{0}^{T}\left(h\left(t, u_{n}(t)\right)-h(t, u(t))\right)\left(u_{n}(t)-u(t)\right) d t \rightarrow 0, \tag{2.7}\\
\sum_{j=1}^{l}\left(I _ { j } \left(u_{n}\left(t_{j}\right)-I_{j}\left(u\left(t_{j}\right)\right)\left(u_{n}\left(t_{j}\right)-u\left(t_{j}\right)\right) \rightarrow 0, \quad \text { as } n \rightarrow \infty\right.\right.
\end{array}\right.
$$

Since $\varphi^{\prime}\left(u_{n}\right) \rightarrow 0$ and $u_{n} \rightharpoonup u$ in X, then we have $\left(\varphi^{\prime}\left(u_{n}\right)-\varphi^{\prime}(u)\right) \cdot\left(u_{n}-u\right) \rightarrow 0$ as $n \rightarrow \infty$.

Consequently, from (2.7) we have $S_{n} \rightarrow 0$ as $n \rightarrow \infty$, where

$$
\begin{aligned}
S_{n}= & \left(a+b \int_{0}^{T} \frac{1}{p(t)}\left|u_{n}^{\prime}(t)\right|^{p(t)} d t\right) \int_{0}^{T}\left|u_{n}^{\prime}(t)\right|^{p(t)-2} u_{n}^{\prime}(t)\left(u_{n}^{\prime}(t)-u^{\prime}(t)\right) d t \\
& -\left(a+b \int_{0}^{T} \frac{1}{p(t)}\left|u^{\prime}(t)\right|^{p(t)} d t\right) \int_{0}^{T}\left|u^{\prime}(t)\right|^{p(t)-2} u^{\prime}(t)\left(u_{n}^{\prime}(t)-u^{\prime}(t)\right) d t .
\end{aligned}
$$

We can rewrite S_{n} as

$$
\begin{aligned}
S_{n}= & \left(a+b \int_{0}^{T} \frac{1}{p(t)}\left|u_{n}^{\prime}(t)\right|^{p(t)} d t\right) \\
& \times \int_{0}^{T}\left(\left|u_{n}^{\prime}(t)\right|^{p(t)-2} u_{n}^{\prime}(t)-\left|u^{\prime}(t)\right|^{p(t)-2} u^{\prime}(t)\right)\left(u_{n}^{\prime}(t)-u^{\prime}(t)\right) d t \\
& +\left(a+b \int_{0}^{T} \frac{1}{p(t)}\left|u_{n}^{\prime}(t)\right|^{p(t)} d t\right) \int_{0}^{T}\left|u^{\prime}(t)\right|^{p(t)-2} u^{\prime}(t)\left(u_{n}^{\prime}(t)-u^{\prime}(t)\right) d t \\
& -\left(a+b \int_{0}^{T} \frac{1}{p(t)}\left|u^{\prime}(t)\right|^{p(t)} d t\right) \int_{0}^{T}\left|u^{\prime}(t)\right|^{p(t)-2} u^{\prime}(t)\left(u_{n}^{\prime}(t)-u^{\prime}(t)\right) d t
\end{aligned}
$$

From the weak convergence of $\left(u_{n}\right)$ in X, and since $\left|u^{\prime}\right|^{p(t)-2} u^{\prime} \in X^{\prime}=W_{0}^{1, q(t)}(0, T)$ with $q(t)=\frac{p(t)}{p(t)-1}$, we deduce that

$$
\begin{equation*}
\int_{0}^{T}\left|u^{\prime}(t)\right|^{p(t)-2} u^{\prime}(t)\left(u_{n}^{\prime}(t)-u^{\prime}(t)\right) d t \rightarrow 0 \quad \text { as } n \rightarrow \infty . \tag{2.8}
\end{equation*}
$$

Hence, from (2.8) and since $S_{n} \rightarrow 0$, we get

$$
\left(a+b \int_{0}^{T} \frac{1}{p(t)}\left|u_{n}^{\prime}(t)\right|^{p(t)} d t\right) \int_{0}^{T}\left(\left|u_{n}^{\prime}(t)\right|^{p(t)-2} u_{n}^{\prime}(t)-\left|u^{\prime}(t)\right|^{p(t)-2} u^{\prime}(t)\right)\left(u_{n}^{\prime}(t)-u^{\prime}(t)\right) d t \rightarrow 0
$$

as $n \rightarrow \infty$. Since $a, b>0$, then we have

$$
\begin{equation*}
\int_{0}^{T}\left(\left|u_{n}^{\prime}(t)\right|^{p(t)-2} u_{n}^{\prime}(t)-\left|u^{\prime}(t)\right|^{p(t)-2} u^{\prime}(t)\right)\left(u_{n}^{\prime}(t)-u^{\prime}(t)\right) d t \rightarrow 0 \text { as } n \rightarrow \infty \tag{2.9}
\end{equation*}
$$

To complete the proof of the Palais-Smale condition we follow the argument in the proof of Theorem 3.1 in [3]. We divide $I=(0, T)$ into two parts

$$
I_{1}=\{t \in(0, T): 1<p(t)<2\}, \quad I_{2}=\{t \in(0, T): p(t) \geq 2\}
$$

We will let $|\cdot|_{p(t), I_{i}}, i=1,2$, to denote the norm in $L^{p(t)}\left(I_{i}\right)$.

On I_{1}, from Holder's inequality (See Proposition 1.2) and using the inequality (1.5) we get

$$
\begin{aligned}
& \int_{I_{1}}\left|u_{n}^{\prime}(t)-u^{\prime}(t)\right|^{p(t)} d t \\
& \leq \frac{\sqrt{2}}{p^{-}-1} \int_{I_{1}}\left(\left(\left|u_{n}^{\prime}(t)\right|^{p(t)-2} u_{n}^{\prime}(t)-\left|u^{\prime}(t)\right|^{p(t)-2} u^{\prime}(t)\right)\left(u_{n}^{\prime}(t)-u^{\prime}(t)\right)\right)^{\frac{p(t)}{2}} \\
& \quad \times\left(\left|u_{n}^{\prime}(t)\right|^{p(t)}+\left|u^{\prime}(t)\right|^{p(t)}\right)^{\frac{2-p(t)}{2}} d t \\
& \leq c\left|\left(\left(\left|u_{n}^{\prime}(t)\right|^{p(t)-2} u_{n}^{\prime}(t)-\left|u^{\prime}(t)\right|^{p(t)-2} u^{\prime}(t)\right)\left(u_{n}^{\prime}(t)-u^{\prime}(t)\right)\right)^{\frac{p(t)}{2}}\right|_{\frac{2}{p(t)}, I_{1}} \\
& \quad \times\left|\left(\left|u_{n}^{\prime}(t)\right|^{p(t)}+\left|u^{\prime}(t)\right|^{p(t)}\right)^{\frac{2-p(t)}{2}}\right|_{\frac{2}{2-p(t)}, I_{1}},
\end{aligned}
$$

where $c=\frac{\sqrt{2}\left(2+p^{+}-p^{-}\right)}{2\left(p^{-}-1\right)}$. From (2.9) we get

$$
\left|\left(\left(\left|u_{n}^{\prime}(t)\right|^{p(t)-2} u_{n}^{\prime}(t)-\left|u^{\prime}(t)\right|^{p(t)-2} u^{\prime}(t)\right)\left(u_{n}^{\prime}(t)-u^{\prime}(t)\right)\right)^{\frac{p(t)}{2}}\right|_{\frac{2}{p(t)}, I_{1}} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty .
$$

Now using $\int_{I_{1}}\left(\left|u_{n}^{\prime}(t)\right|^{p(t)}+\left|u^{\prime}(t)\right|^{p(t)}\right) d t$ is bounded we get

$$
\begin{equation*}
\int_{I_{1}}\left|u_{n}^{\prime}(t)-u^{\prime}(t)\right|^{p(t)} d t \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty . \tag{2.10}
\end{equation*}
$$

On I_{2}, from the inequality (1.4) we have
$\int_{I_{2}}\left|u_{n}^{\prime}(t)-u^{\prime}(t)\right|^{p(t)} d t \leq 2^{p^{+}} \int_{I_{2}}\left(\left|u_{n}^{\prime}(t)\right|^{p(t)-2} u_{n}^{\prime}(t)-\left|u^{\prime}(t)\right|^{p(t)-2} u^{\prime}(t)\right)\left(u_{n}^{\prime}(t)-u^{\prime}(t)\right) d t$,
so

$$
\begin{equation*}
\int_{I_{2}}\left|u_{n}^{\prime}(t)-u^{\prime}(t)\right|^{p(t)} d t \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty . \tag{2.11}
\end{equation*}
$$

From (2.10) and (2.11) and by Proposition 1.4, we conclude that $\left\|u_{n}-u\right\| \rightarrow 0$ as $n \rightarrow \infty$, so φ satisfies the Palais-Smale condition.

Notice that $W_{0}^{1, p^{+}}(0, T) \subset W_{0}^{1, p(t)}(0, T)$. Consider $\left\{e_{1}, e_{2}, \ldots\right\}$, a Schauder basis of the space $W_{0}^{1, p^{+}}(0, T)$ (see [18]), and for each $k \in \mathbb{N}$, consider X_{k}, the subspace of $W_{0}^{1, p^{+}}(0, T)$ generated by the k vectors $\left\{e_{1}, e_{2}, \ldots, e_{k}\right\}$. Clearly X_{k} is a subspace of $W_{0}^{1, p(t)}(0, T)$.

For $r>0$, consider

$$
K_{k}(r)=\left\{u \in X_{k}:\|u\|^{2}=\sum_{i=1}^{k} \xi_{i}^{2}=r^{2}\right\} .
$$

For any $r>0$. We consider the odd homeomorphism $\chi: K_{k}(r) \rightarrow S^{k-1}$ defined by $\chi(u)=\left(\xi_{1}, \xi_{2}, \ldots, \xi_{k}\right)$, where S^{k-1} is the sphere in \mathbb{R}^{k}. From Theorem 1.7 and Proposition 1.8, we conclude that $\gamma\left(K_{k}(r)\right)=k$. Let $0<r<\frac{1}{c_{0}}$ where c_{0} is the best constant of the embedding of X in $C([0, T])$, so $\|u\|_{\infty} \leq c_{0}\|u\|<1$. It follows from hypothesis $\left(h_{2}\right)$ that $\int_{0}^{T} H(t, u(t)) d t>0$ for any $u \in K_{k}(r)$. Then

$$
\mu_{k}=\inf _{u \in K_{k}(r)} \int_{0}^{T} H(t, u(t)) d t
$$

is strictly positive (note the compactness of $K_{k}(r)$). If we set

$$
\nu_{k}=\inf _{u \in K_{k}(r)} \sum_{j=1}^{l} \int_{0}^{u\left(t_{j}\right)} I_{j}(s) d s
$$

we see that $\nu_{k} \leq 0$. Let

$$
\lambda_{k}=\frac{1}{\mu_{k}}\left(\frac{a}{p^{-}} r^{p^{-}}+\frac{b}{2\left(p^{-}\right)^{2}} r^{2 p^{-}}-\nu_{k}\right)
$$

and note $\lambda_{k}>0$. Then when $\lambda>\lambda_{k}$, we take $0<r \leq 1$, and then for any $u \in K_{k}(r)$ we have $\|u\| \leq 1$ and

$$
\begin{aligned}
\varphi(u) & \leq \frac{a}{p^{-}} \int_{0}^{T}\left|u^{\prime}(t)\right|^{p(t)} d t+\frac{b}{2\left(p^{-}\right)^{2}}\left(\int_{0}^{T}\left|u^{\prime}(t)\right|^{p(t)} d t\right)^{2}-\nu_{k}-\lambda \mu_{k} \\
& \leq \frac{a}{p^{-}}\|u\|^{p^{-}}+\frac{b}{2\left(p^{-}\right)^{2}}\|u\|^{2 p^{-}}-\nu_{k}-\lambda \mu_{k} \\
& <\frac{a}{p^{-}} r^{p^{-}}+\frac{b}{2\left(p^{-}\right)^{2}} r^{2 p^{-}}-\nu_{k}-\lambda_{k} \mu_{k}=0
\end{aligned}
$$

Theorem 1.10 guarantees that the functional φ has at least k pairs of different critical points. Hence, Problem (1.1) has at least k distinct pairs of nontrivial solutions.

Corollary 2.2. Assume that $\left(h_{2}\right)$ and $\left(h_{3}\right)$ hold, and
$\left(h_{4}\right) h(t, u)$ is bounded.
Then for any $k \in \mathbb{N}$, there exists a λ_{k} such that for any $\lambda>\lambda_{k}$, Problem (1.1) has at least k distinct pairs of nontrivial solutions.
Theorem 2.3. Assume that $\left(h_{1}\right)$ holds, and assume the following are satisfied.
$\left(h_{5}\right)$ There exist $\alpha_{j}, \beta_{j}>0$ and γ_{j} with $0<\gamma_{j}<2 p^{-}-1(j=1,2, \ldots, l)$ such that

$$
\left|I_{j}(u)\right| \leq \alpha_{j}+\beta_{j}|u|^{\gamma_{j}} \quad \text { for any } u \in \mathbb{R} \quad(j=1, \ldots, l)
$$

(h_{6}) $h(t, u)$ and $I_{j}(u)(j=1,2, \ldots, l)$ are odd with respect to u and $H(t, u)>0$ for every $(t, u) \in[0, T] \times \mathbb{R} \backslash\{0\}$.
Then for any $k \in \mathbb{N}$, there exists a λ_{k} such that for any $\lambda>\lambda_{k}$, Problem (1.1) has at least k distinct pairs of nontrivial solutions.
Proof. From assumptions $\left(h_{1}\right)$ and $\left(h_{6}\right)$, we see that $\varphi \in C^{1}(X, \mathbb{R})$ is an even functional and $\varphi(0)=0$. We now show that φ is bounded from below. Let $\alpha_{0}=\max \left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{l}\right\}, \beta_{0}=\max \left\{\beta_{1}, \beta_{2}, \ldots, \beta_{l}\right\}$. We have for any $u \in X$ with $\|u\|>1$ that

$$
\begin{align*}
\varphi(u)= & a \int_{0}^{T} \frac{1}{p(t)}\left|u^{\prime}(t)\right|^{p(t)} d t+\frac{b}{2}\left(\int_{0}^{T} \frac{1}{p(t)}\left|u^{\prime}(t)\right|^{p(t)} d t\right)^{2} \\
& -\lambda \int_{0}^{T} H(t, u(t)) d t-\sum_{j=1}^{l} \int_{0}^{u\left(t_{j}\right)} I_{j}(s) d s \\
\geq & \frac{a}{p^{+}}\|u\|^{p^{-}}+\frac{b}{2\left(p^{+}\right)^{2}}\|u\|^{2 p^{-}}-\int_{0}^{T}(\alpha(t)|u(t)|+\beta(t)|u(t)|)^{\gamma(t)+1} \tag{2.12}\\
& -\sum_{j=1}^{l}\left(\alpha_{j}\left|u\left(t_{j}\right)\right|+\beta_{j}\left|u\left(t_{j}\right)\right|^{\gamma_{j}+1}\right) \\
\geq & \frac{a}{p^{+}}\|u\|^{p^{-}}+\frac{b}{2\left(p^{+}\right)^{2}}\|u\|^{2 p^{-}}-|\alpha|_{L^{1}} c_{0}\|u\|-|\beta|_{L^{1}} c\|u\|^{\gamma^{+}+1} \\
& -\alpha_{0} l c_{0}\|u\|-\beta_{0} c^{\prime} \sum_{j=1}^{l}\|u\|^{\gamma_{j}+1} .
\end{align*}
$$

Now, we show that φ satisfies the Palais-Smale condition. For any $u \in X$ with $\|u\| \leq 1$, we have

$$
\begin{align*}
\varphi(u) \geq & \frac{a}{p^{+}}\|u\|^{p^{+}}+\frac{b}{2\left(p^{+}\right)^{2}}\|u\|^{2 p^{+}}-|\alpha|_{L^{1}} c_{0}\|u\|-|\beta|_{L^{1}} c\|u\|^{\gamma^{-}+1} \\
& -\alpha_{0} l c\|u\|-\beta_{0} c^{\prime} \sum_{j=1}^{l}\|u\|^{\gamma_{j}+1} . \tag{2.13}
\end{align*}
$$

Let $\left(u_{n}\right) \subset X$ be a sequence such that $\left(\varphi\left(u_{n}\right)\right)$ is a bounded sequence and $\varphi^{\prime}\left(u_{n}\right) \rightarrow 0$ in X^{\prime}. From (2.12), (2.13), and since $\gamma^{+}, \gamma_{j}<2 p^{-}-1$, in all cases we deduce that $\left(u_{n}\right)$ is bounded in X. The rest of the proof of the Palais-Smale condition is similar to that in Theorem 2.1.

Consider $K_{k}(r)$ as in Theorem 2.1. For any $r>0$, there exits an odd homeomorphism $\chi: K_{k}(r) \rightarrow S^{k-1}$. From assumption $\left(h_{6}\right)$ we have

$$
\mu_{k}=\inf _{u \in K_{k}(r)} \int_{0}^{T} H(t, u(t)) d t>0
$$

Let
$\nu_{k}=\inf _{u \in K_{k}(r)} \sum_{j=1}^{l} \int_{0}^{u\left(t_{j}\right)} I_{j}(s) d s \quad$ and $\quad \lambda_{k}=\max \left\{0, \frac{1}{\mu_{k}}\left(\frac{a}{p^{-}} r^{p^{-}}+\frac{b}{2\left(p^{-}\right)^{2}} r^{2 p^{-}}-\nu_{k}\right)\right\}$.
Then when $\lambda>\lambda_{k}$, we take $0<r \leq 1$, and then for any $u \in K_{k}(r)$ we have $\|u\| \leq 1$ and

$$
\begin{aligned}
\varphi(u) & \leq \frac{a}{p^{-}} r^{p^{-}}+\frac{b}{2\left(p^{-}\right)^{2}} r^{2 p^{-}}-\nu_{k}-\lambda \mu_{k} \\
& <\frac{a}{p^{-}} r^{p^{-}}+\frac{b}{2\left(p^{-}\right)^{2}} r^{2 p^{-}}-\nu_{k}-\lambda_{k} \mu_{k} \leq 0
\end{aligned}
$$

From Theorem 1.10, φ has at least k pairs of different critical points. Consequently, Problem (1.1) has at least k distinct pairs of nontrivial solutions.

Corollary 2.4. Assume that the assumptions $\left(h_{4}\right),\left(h_{6}\right)$ hold, and
$\left(h_{7}\right) I_{j}(u)(j=1,2, \ldots, l)$ are bounded.
Then for any $k \in \mathbb{N}$, there exists a λ_{k} such that for any $\lambda>\lambda_{k}$, Problem (1.1) has at least k distinct pairs of nontrivial solutions.

Theorem 2.5. Assume that $\left(h_{3}\right)$ holds, and
$\left(h_{8}\right)$ There exists a constant $\sigma>0$ such that $h(t, \sigma)=0, h(t, u)>0$ for every $u \in(0, \sigma)$,
$\left(h_{9}\right) h(t, u)$ is odd with respect to u.
Then for any $k \in \mathbb{N}$, there exists a λ_{k} such that when $\lambda>\lambda_{k}$, Problem (1.1) has at least k distinct pairs of nontrivial solutions.

Proof. Define the bounded function

$$
f(t, u)= \begin{cases}0, & \text { if }|u|>\sigma \\ h(t, u), & \text { if }|u| \leq \sigma\end{cases}
$$

Consider

$$
\left\{\begin{array}{l}
-\left(a+b \int_{0}^{T} \frac{1}{p(t)}\left|u^{\prime}(t)\right|^{p(t)} d t\right)\left(\left|u^{\prime}(t)\right|^{p(t)-2} \cdot u^{\prime}(t)\right)^{\prime}=\lambda f(t, u(t)), \quad t \neq t_{j}, t \in[0, T], \tag{2.14}\\
-\Delta u^{\prime}\left(t_{j}\right)=I_{j}\left(u\left(t_{j}\right)\right), \quad j=1,2, \ldots, l, \\
u(0)=u(T)=0,
\end{array}\right.
$$

and we now show that solutions of Problem (2.14) are also solutions of Problem (1.1). Let u_{0} be a solution of Problem (2.14). We now prove that $-\sigma \leq u_{0}(t) \leq \sigma$. Suppose
that $\max _{0 \leq t \leq T} u_{0}(t)>\sigma$, then there exists an interval $\left[d_{1}, d_{2}\right] \subset[0, T]$ such that $u_{0}\left(d_{1}\right)=u_{0}\left(d_{2}\right)=\sigma$ and for any $t \in\left(d_{1}, d_{2}\right)$ we have $u_{0}(t)>\sigma$, and so

$$
-\left(a+b \int_{0}^{T} \frac{1}{p(t)}\left|u^{\prime}(t)\right|^{p(t)} d t\right)\left(\left|u^{\prime}(t)\right|^{p(t)-2} \cdot u^{\prime}(t)\right)^{\prime}=\lambda f(t, u(t))=0, \quad t \in\left(d_{1}, d_{2}\right)
$$

We deduce that there is a constant c such that $\left|u_{0}^{\prime}(t)\right|^{p(t)-2} \cdot u_{0}^{\prime}(t)=c$ for any $t \in\left[d_{1}, d_{2}\right]$, and since $u_{0}^{\prime}\left(d_{1}\right) \geq 0$ and $u_{0}^{\prime}\left(d_{2}\right) \leq 0$, then we have

$$
\begin{aligned}
& \left|u_{0}^{\prime}\left(d_{1}\right)\right|^{p\left(d_{1}\right)-2} \cdot u_{0}^{\prime}\left(d_{1}\right)=c \geq 0 \\
& \left|u_{0}^{\prime}\left(d_{2}\right)\right|^{p\left(d_{2}\right)-2} \cdot u_{0}^{\prime}\left(d_{2}\right)=c \leq 0
\end{aligned}
$$

so, $u_{0}^{\prime}(t)=0$ for any $t \in\left[d_{1}, d_{2}\right]$, i.e. $u_{0}(t)=\sigma$ for any $t \in\left[d_{1}, d_{2}\right]$, which is a contradiction. From a similar argument we see that $\min _{0 \leq t \leq T} u_{0}(t) \geq-\sigma$.

The functional $\varphi_{1}: X \rightarrow \mathbb{R}$ defined by

$$
\begin{align*}
\varphi_{1}(u)= & a \int_{0}^{T} \frac{1}{p(t)}\left|u^{\prime}(t)\right|^{p(t)} d t+\frac{b}{2}\left(\int_{0}^{T} \frac{1}{p(t)}\left|u^{\prime}(t)\right|^{p(t)} d t\right)^{2} \\
& -\sum_{j=1}^{l} \int_{0}^{u\left(t_{j}\right)} I_{j}(s) d s-\lambda \int_{0}^{T} F(t, u(t)) d t \tag{2.15}
\end{align*}
$$

is continuously Fréchet differentiable at any $u \in X$, where $F(t, u)=\int_{0}^{u} f(t, s) d s$. We have

$$
\begin{align*}
\varphi_{1}^{\prime}(u) \cdot v= & \left(a+b \int_{0}^{T} \frac{1}{p(t)}\left|u^{\prime}(t)\right|^{p(t)} d t\right) \int_{0}^{T}\left|u^{\prime}\right|^{p(t)-2} u^{\prime}(t) v^{\prime}(t) d t \\
& -\sum_{j=1}^{l} I_{j}\left(u\left(t_{j}\right)\right) v\left(t_{j}\right)-\lambda \int_{0}^{T} f(t, u(t)) v(t) d t \tag{2.16}
\end{align*}
$$

for all $v \in X$. It is clear that φ_{1} is an even functional, $\varphi_{1}(0)=0$ and bounded from below. To see this note for $u \in X$ with $\|u\| \geq 1$ we have

$$
\begin{aligned}
\varphi_{1}(u) & \geq \frac{a}{p^{+}} \int_{0}^{T}\left|u^{\prime}(t)\right|^{p(t)} d t+\frac{b}{2\left(p^{+}\right)^{2}}\left(\int_{0}^{T}\left|u^{\prime}(t)\right|^{p(t)} d t\right)^{2}-\lambda \int_{0}^{T} \int_{0}^{u(t)} f(t, s) d s d t \\
& \geq \frac{a}{p^{+}} \int_{0}^{T}\left|u^{\prime}(t)\right|^{p(t)} d t+\frac{b}{2\left(p^{+}\right)^{2}}\left(\int_{0}^{T}\left|u^{\prime}(t)\right|^{p(t)} d t\right)^{2}-\lambda \underbrace{\int_{0}^{T} \int_{0}^{\sigma} f(t, s) d s d t}_{=\tau>0}
\end{aligned}
$$

$$
\geq \frac{a}{p^{+}}\|u\|^{p^{-}}+\frac{b}{2\left(p^{+}\right)^{2}}\|u\|^{2 p^{-}}-\lambda \tau,
$$

so it follows that φ_{1} is bounded from below. Let $\left(u_{n}\right)$ be a Palais-Smale sequence. It is easy to see that $\left(u_{n}\right)$ is bounded in X and the rest of the proof of the Palais-Smale condition is similar to that in the proof in Theorem 2.1.

Consider $K_{k}(r)=\left\{u \in X_{k}:\|u\|=r\right\}$. For any $r>0$ the odd homeomorphism $\chi: K_{k}(r) \rightarrow S^{k-1}$ gives $\gamma\left(K_{k}(r)\right)=k$. Let $0<r<\min \left\{1, \frac{\sigma}{c_{0}}\right\}$, where c_{0} is the best constant of the embedding of X in $C([0, T])$, so $\|u\|_{\infty} \leq c_{0}\|u\|<\sigma$ for any $u \in K_{k}(r)$. Using assumptions $\left(h_{8}\right)$ and $\left(h_{9}\right)$, we have $F(t, u(t))>0$ as $u(t) \neq 0$. Then $\int_{0}^{T} F(t, u(t)) d t>0$ for any $u \in K_{k}(r)$. If we set

$$
\mu_{k}=\inf _{u \in K_{k}(r)} \int_{0}^{T} F(t, u(t)) d t \quad \text { and } \quad \nu_{k}=\inf _{u \in K_{k}(r)} \sum_{j=1}^{l} \int_{0}^{u\left(t_{j}\right)} I_{j}(s) d s
$$

then $\mu_{k}>0$ and $\nu_{k} \leq 0$. Let

$$
\lambda_{k}=\frac{1}{\mu_{k}}\left(\frac{a}{p^{-}} r^{p^{-}}+\frac{b}{2\left(p^{-}\right)^{2}} r^{2 p^{-}}-\nu_{k}\right),
$$

so $\lambda_{k}>0$, and for any $\lambda>\lambda_{k}$ and any $u \in K_{k}(r)$ with $\|u\|<1$ we have

$$
\begin{aligned}
\varphi(u) & \leq \frac{a}{p^{-}} r^{p^{-}}+\frac{b}{2\left(p^{-}\right)^{2}} r^{2 p^{-}}-\nu_{k}-\lambda \mu_{k} \\
& <\frac{a}{p^{-}} r^{p^{-}}+\frac{b}{2\left(p^{-}\right)^{2}} r^{2 p^{-}}-\nu_{k}-\lambda_{k} \mu_{k}=0
\end{aligned}
$$

From Theorem 1.10, φ_{1} has at least k pairs of different critical points. Then, Problem (2.14) has at least k distinct pairs of nontrivial solutions. Consequently, Problem (1.1) has at least k distinct pairs of nontrivial solutions.

A similar argument to that in Theorem 2.5, yields the following result.
Theorem 2.6. Let conditions $\left(h_{5}\right)$, $\left(h_{8}\right)$ hold and
$\left(h_{10}\right) h(t, u)$ and $I_{j}(u)(j=1,2, \ldots, l)$ are odd with respect to u.
Then for any $k \in \mathbb{N}$, there exists a λ_{k} such that for any $\lambda>\lambda_{k}$, Problem (1.1) has at least k distinct pairs of nontrivial solutions.

Theorem 2.7. Suppose that $\left(h_{5}\right)$ holds, and
$\left(h_{11}\right)$ There exist a constant $\sigma_{1}>0$ such that $h\left(t, \sigma_{1}\right) \leq 0$,
$\left(h_{12}\right) h(t, u)$ and $I_{j}(u)(j=1,2, \ldots, l)$ are odd with respect to u and $\lim _{u \rightarrow 0} \frac{h(t, u)}{u}=1$ uniformly for $t \in[0, T]$.

Then for any $k \in \mathbb{N}$, there exists a λ_{k} such that for any $\lambda>\lambda_{k}$, Problem (1.1) has at least k distinct pairs of nontrivial solutions.

Proof. Define the bounded function

$$
g(t, u)= \begin{cases}h\left(t, \sigma_{1}\right), & \text { if } u>\sigma_{1} \\ h(t, u), & \text { if }|u| \leq \sigma_{1} \\ h\left(t,-\sigma_{1}\right), & \text { if } u<-\sigma_{1}\end{cases}
$$

We will verify that the solutions of the problem

$$
\left\{\begin{array}{l}
-\left(a+b \int_{0}^{T} \frac{1}{p(t)}\left|u^{\prime}(t)\right|^{p(t)} d t\right)\left(\left|u^{\prime}(t)\right|^{p(t)-2} \cdot u^{\prime}(t)\right)^{\prime}+\lambda g(t, u(t))=0, t \neq t_{j}, t \in[0, T] \\
-\Delta u^{\prime}\left(t_{j}\right)=I_{j}\left(u\left(t_{j}\right)\right), \quad j=1,2, \ldots, l, \\
u(0)=u(T)=0,
\end{array}\right.
$$

are solution of Problem (1.1). Let u_{0} be a solution of Problem (2.17). We prove that $-\sigma_{1} \leq u_{0}(t) \leq \sigma_{1}$ for any $t \in[0, T]$. Suppose that $\max _{0 \leq t \leq T} u_{0}(t)>\sigma_{1}$, then there exists an interval $\left[d_{1}, d_{2}\right] \subset[0, T]$ such that $u_{0}\left(d_{1}\right)=u_{0}\left(d_{2}\right)=\sigma_{1}$ and for any $t \in\left(d_{1}, d_{2}\right)$ we have $u_{0}(t)>\sigma_{1}$, and then when $t \in\left(d_{1}, d_{2}\right)$ we obtain

$$
\left(a+b \int_{0}^{T} \frac{1}{p(t)}\left|u_{0}^{\prime}(t)\right|^{p(t)} d t\right)\left(\left|u_{0}^{\prime}(t)\right|^{p(t)-2} \cdot u_{0}^{\prime}(t)\right)^{\prime}=-\lambda g\left(t, u_{0}(t)\right)=-\lambda h\left(t, \sigma_{1}\right) \geq 0
$$

Therefore, we deduce that

$$
\left(\left|u_{0}^{\prime}(t)\right|^{p(t)-2} \cdot u_{0}^{\prime}(t)\right)^{\prime} \geq 0, \quad t \in\left(d_{1}, d_{2}\right)
$$

thus $t \mapsto\left|u_{0}^{\prime}(t)\right|^{p(t)-2} \cdot u_{0}^{\prime}(t)$ is nondecreasing in $\left(d_{1}, d_{2}\right)$, so then

$$
0 \leq\left|u_{0}^{\prime}\left(d_{1}\right)\right|^{p\left(d_{1}\right)-2} u_{0}^{\prime}\left(d_{1}\right) \leq\left|u_{0}^{\prime}(t)\right|^{p(t)-2} u_{0}^{\prime}(t) \leq\left|u_{0}^{\prime}\left(d_{2}\right)\right|^{p\left(d_{2}\right)-2} u_{0}^{\prime}\left(d_{2}\right) \leq 0
$$

for every $t \in\left[d_{1}, d_{2}\right]$. Hence $u_{0}^{\prime}=0$ on $\left[d_{1}, d_{2}\right]$, so, since $u_{0}\left(d_{1}\right)=u_{0}\left(d_{2}\right)=\sigma_{1}$, then $u(t)=\sigma_{1}$ for every $t \in\left[d_{1}, d_{2}\right]$, which is a contradiction. From a similar argument we see that $\min _{0 \leq t \leq T} u_{0}(t) \geq-\sigma_{1}$, i.e. u_{0} is a solution of Problem (1.1).

We consider the functional $\varphi_{2}: X \rightarrow \mathbb{R}$ defined by

$$
\begin{align*}
\varphi_{2}(u)= & a \int_{0}^{T} \frac{1}{p(t)}\left|u^{\prime}(t)\right|^{p(t)} d t+\frac{b}{2}\left(\int_{0}^{T} \frac{1}{p(t)}\left|u^{\prime}(t)\right|^{p(t)} d t\right)^{2} \\
& -\sum_{j=1}^{l} \int_{0}^{u\left(t_{j}\right)} I_{j}(s) d s-\lambda \int_{0}^{T} G(t, u(t)) d t \tag{2.18}
\end{align*}
$$

where $G(t, u)=\int_{0}^{u} g(t, s) d s$. Obviously, φ_{2} is continuously Fréchet differentiable at any $u \in X$ and

$$
\begin{align*}
\varphi_{2}^{\prime}(u) \cdot v= & \left(a+b \int_{0}^{T} \frac{1}{p(t)}\left|u^{\prime}(t)\right|^{p(t)} d t\right) \int_{0}^{T}\left|u^{\prime}(t)\right|^{p(t)-2} u^{\prime}(t) v^{\prime}(t) d t \\
& -\sum_{j=1}^{l} I_{j}\left(u\left(t_{j}\right)\right) v\left(t_{j}\right)-\lambda \int_{0}^{T} g(t, u(t)) v(t) d t, \tag{2.19}
\end{align*}
$$

for all $v \in X$. It is clear that critical points of φ_{2} are solutions of Problem (2.17). Now $\varphi_{2} \in C^{1}(X, \mathbb{R})$ is an even functional and $\varphi_{2}(0)=0$.

Let $\alpha_{0}=\max \left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{l}\right\}, \beta_{0}=\max \left\{\beta_{1}, \beta_{2}, \ldots, \beta_{l}\right\}$, and we see that

$$
\begin{equation*}
\int_{0}^{T} G(t, u(t)) d t=\int_{0}^{T} \int_{0}^{u(t)} g(t, s) d s d t \leq \int_{0}^{T} \int_{0}^{\sigma_{1}} g(t, s) d s d t=\eta . \tag{2.20}
\end{equation*}
$$

Using assumption (h_{5}) and (2.20), we have for any $u \in X$ with $\|u\|>1$ that

$$
\begin{align*}
\varphi_{2}(u)= & a \int_{0}^{T} \frac{1}{p(t)}\left|u^{\prime}(t)\right|^{p(t)} d t+\frac{b}{2}\left(\int_{0}^{T} \frac{1}{p(t)}\left|u^{\prime}(t)\right|^{p(t)} d t\right)^{2} \\
& -\sum_{j=1}^{l} \int_{0}^{u\left(t_{j}\right)} I_{j}(s) d s-\lambda \int_{0}^{T} G(t, u(t)) d t \tag{2.21}\\
\geq & \frac{a}{p^{+}}\|u\|^{p^{-}}+\frac{b}{2\left(p^{+}\right)^{2}}\|u\|^{2 p^{-}}-\sum_{j=1}^{l}\left(\alpha_{j}\left|u\left(t_{j}\right)\right|+\beta_{j}\left|u\left(t_{j}\right)\right|^{\gamma_{j}+1}\right)-\lambda \eta \\
\geq & \frac{a}{p^{+}}\|u\|^{p^{-}}+\frac{b}{2\left(p^{+}\right)^{2}}\|u\|^{2 p^{-}}-\alpha_{0} l c_{0}\|u\|-\beta_{0} c^{\prime} \sum_{j=1}^{l}\|u\|^{\gamma_{j}+1}-\lambda \eta
\end{align*}
$$

so it follows that φ_{2} is bounded from below.
Now we show that φ_{2} satisfies the Palais-Smale condition. For any $u \in X$ with $\|u\| \leq 1$, we have

$$
\begin{align*}
\varphi(u) \geq & \frac{a}{p^{+}}\|u\|^{p^{+}}+\frac{b}{2\left(p^{+}\right)^{2}}\|u\|^{2 p^{+}}-\alpha_{0} l c_{0}\|u\| \\
& -\beta_{0} c^{\prime} \sum_{j=1}^{l}\|u\|^{\gamma_{j}+1}-\lambda \eta . \tag{2.22}
\end{align*}
$$

Let $\left(u_{n}\right) \subset X$ be a sequence such that $\left(\varphi\left(u_{n}\right)\right)$ is a bounded sequence and $\varphi^{\prime}\left(u_{n}\right) \rightarrow 0$ as $n \rightarrow+\infty$. From (2.21), (2.22), and since $\gamma, \gamma_{j}<2 p^{-}-1$, in all cases we deduce
that $\left(u_{n}\right)$ is bounded in X. The proof of the Palais-Smale condition is now similar to that in Theorem 2.1.

Consider $K_{k}(r)$ as in Theorem 2.1. From assumption $\left(h_{12}\right)$, for any $\varepsilon>0$, there exists $\delta>0$, when $|u| \leq \delta$, we have $h(t, u) \geq u-\varepsilon|u|$. Take $0<r \leq 1$ sufficiently small such that $\|u\|_{\infty}<\min \left\{\sigma_{1}, \delta\right\}$ for any $u \in K_{k}(r)$. Then, taking $0<\varepsilon<1$ we have

$$
\int_{0}^{T} G(t, u(t)) d t=\int_{0}^{T} \int_{0}^{u(t)} g(t, s) d s d t \geq \frac{1}{2} \int_{0}^{T}(1-\varepsilon)|u(t)|^{2} d t>0
$$

for any $u \in K_{k}(r)$.
Set

$$
\mu_{k}=\inf _{u \in K_{k}(r)} \int_{0}^{T} G(t, u(t)) d t \quad \text { and } \quad \nu_{k}=\inf _{u \in K_{k}(r)} \sum_{j=1}^{l} \int_{0}^{u\left(t_{j}\right)} I_{j}(s) d s
$$

Let $\lambda_{k}=\max \left\{0, \frac{1}{\mu_{k}}\left(\frac{a}{p^{-}} r^{p^{-}}+\frac{b}{2\left(p^{-}\right)^{2}} r^{2 p^{-}}-\nu_{k}\right)\right\}$, then for all λ such that $\lambda>\lambda_{k}$ and every $u \in K_{k}(r)$, we have

$$
\begin{aligned}
\varphi_{2}(u) & \leq \frac{a}{p^{-}} r^{p^{-}}+\frac{b}{2\left(p^{-}\right)^{2}} r^{2 p^{-}}-\nu_{k}-\lambda \mu_{k} \\
& <\frac{a}{p^{-}}\|u\|^{p^{-}}+\frac{b}{2\left(p^{-}\right)^{2}}\|u\|^{2 p^{-}}-\nu_{k}-\lambda_{k} \mu_{k} \leq 0 .
\end{aligned}
$$

Theorem 1.10 guarantees that φ_{2} has at least k pairs of different critical points. That is, Problem (2.17) has at least k distinct pairs of nontrivial solutions. Therefore we have the same result for Problem (1.1).

Theorem 2.8. Assume that $\left(h_{11}\right)$ and $\left(h_{12}\right)$ hold, and $\left(h_{13}\right) \int_{0}^{u} I_{j}(s) d s \leq 0$ for any $u \in \mathbb{R}(j=1, \ldots, l)$.

Then for any $k \in \mathbb{N}$, there exists a λ_{k} such that for any $\lambda>\lambda_{k}$, Problem (1.1) has at least k distinct pairs of nontrivial solutions.

Proof. The argument is similar to that in Theorem 2.7.

REFERENCES

[1] A. Ambrosetti, A. Malchiodi, Nonlinear Analysis and Semilinear Elliptic Problems, Cambridge University Press, Cambridge, 2007.
[2] A. Castro, Metodos Variacionales y Analisis Funcional no Lineal, X Coloquio Colombiano de Matematicas, 1980.
[3] J. Chabrowski, Y. Fu, Existence of solutions for $p(t)$-Laplacian problems on a bounded domain, J. Math. Anal. Appl. 306 (2005), 604-618.
[4] H. Chen, J. Li, Variational approach to impulsive differential equation with Dirichlet boundary conditions, Bound. Value Probl. 2010 (2010), 1-16.
[5] D.C. Clarke, A variant of the Lusternik-Schnirelmann theory, Indiana Univ. Math. J. 22 (1972), 65-74.
[6] F.J.S.A. Corrêa, G.M. Figueiredo, On an elliptic equation of p-Kirchhoff-type via variational methods, Bull. Aust. Math. Soc. 74 (2006), 263-277.
[7] F.J.S.A. Corrêa, G.M. Figueiredo, On a p-Kirchhoff equation via Krasnoselskii's genus, Appl. Math. Lett. 22 (2009), 819-822.
[8] G. Dai, J. Wei, Infinitely many non-negative solutions for a $p(t)$-Kirchhoff-type problem with Dirichlet boundary condition, Nonlinear Anal. 73 (2010), 3420-3430.
[9] L. Diening, P. Harjulehto, P. Hastö, M. Ružička, Lebesgue and Sobolev spaces with variable exponents, Lectures Notes in Mathematics, 2011.
[10] X.L. Fan, Q.H. Zhang, Existence of solutions for $p(t)$-Laplacian Dirichlet problem, Nonlinear Anal. 52 (2003), 1843-1852.
[11] X.L. Fan, D. Zhao, On the spaces $L^{p(t)}$ and $W^{m, p(t)}$, J. Math. Anal. Appl. 263 (2001), 424-446.
[12] M. Galewski, D. O'Regan, Impulsive boundary value problems for $p(t)$-Laplacian's via critical point theory, Czechoslovak Math. J. 62 (2012), 951-967.
[13] M. Galewski, D. O'Regan, On well posed impulsive boundary value problems for $p(t)$-Laplacian's, Math. Model. Anal. 18 (2013), 161-175.
[14] O. Kavian, Introduction à la Théorie des Points Critiques et Applications aux Problèmes Elliptiques, Springer-Verlag, 1993.
[15] M.A. Krasnoselskii, Topological Methods in the Theory of Nonlinear Integral Equations, MacMillan, New York, 1964.
[16] I. Peral, Multiplicity of solutions for the p-Laplacian, Second School of Nonlinear Functional Analysis and Applications to Differential Equations, ICTP, Trieste, 1997.
[17] P.H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, Conference board of the mathematical sciences, American Mathematical Society, Providence, Rhode Island, 1984.
[18] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam, 1978.
A. Mokhtari
mokhtarimaths@yahoo.fr

Laboratory of Fixed Point Theory and Applications
Department of Mathematics
E.N.S. Kouba, Algiers, Algeria
T. Moussaoui
moussaoui@ens-kouba.dz

Laboratory of Fixed Point Theory and Applications
Department of Mathematics
E.N.S. Kouba, Algiers, Algeria
D. O'Regan
donal.oregan@nuigalway.ie
School of Mathematics, Statistics and Applied Mathematics
National University of Ireland
Galway, Ireland
Received: January 20, 2016.
Revised: March 12, 2016.
Accepted: March 30, 2016.

