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Abstract—This paper presents a novel type-2 fuzzy model for 
nonlinear dynamical systems. This method can deal with the curve 
fitting and computational time problems of type-2 fuzzy systems. 
It is based on interval type-2 fuzzy systems and it is comprised of 
a parallel interconnection of two type-2 sub fuzzy models. The first 
sub fuzzy model is the primary model, which represents an 
ordinary model with low resolution for the nonlinear dynamical 
system under consideration. To overcome resolution quality 
problem, and obtain a model with higher resolution, we will 
introduce a second type-2 fuzzy sub model called error model 
which will represent a model for the error modelling between the 
primary model and the real nonlinear dynamical system. As the 
error model represents uncertainty in the primary model, it’s 
suitable to minimize this uncertainty by simple subtraction of the 
error model output from the primary model output, which will 
lead to a parallel interconnection between them, giving then a 
unique whole final model possessing higher resolution. To apply 
this approach successfully, the model’s representation and 
identification are considered in this investigation using type-2 
fuzzy auto regressive (T2FAR) and type-2 fuzzy auto regressive 
moving average (T2FARMA) models. Identification is achieved by 
innovative metaheuristic optimization algorithms, like as firefly 
and biogeography-based optimization algorithms. To evaluate the 
effectiveness of the proposed method, it will be tested on three 
types of nonlinear dynamical systems. Computer investigations 
indicate that the proposed model may significantly improves 
convergence and resolution. 

Keywords-dynamical system; fuzzy logic; modelling & 
identification; meta-heuristic algorithm. 

I.  INTRODUCTION  

Fuzzy modelling uses the concepts of fuzzy logic to 
represent a given system. Fuzzy identification and fuzzy 
modelling are effective tools of approximating nonlinear 
dynamical systems, because of their universal approximation 
capability. The increasing demand for intelligent systems to 
solve complex real-world problems has highlighted the 
importance of fuzzy logic and it has been the focus of attention 
for many science and engineering researchers. A fuzzy 
identification system is a computational model founded upon the 
concepts of fuzzy set theory, fuzzy If-Then rules and fuzzy 
reasoning [1]. Fuzzy identification can be categorized as 
linguistic fuzzy modelling, fuzzy relational modelling and 
Takagi-Sugeno-Kang (TSK) modelling [2]. 

Fuzzy identification is constituted of two key steps; structure 
identification and parameter identification. The first step is very 

important and has to address the issue of constructing the 
framework for the fuzzy model using the input-output 
measurement pairs. There are many fuzzy methods described in 
the literature; these uses fuzzy partition based on particular 
objective functions with the aim of establishing suitable model 
structures [3], [4], [5], [6], [7]. Many different approaches have 
been put forward to identify parameters including gradient 
descent, Kalman filtering and nonlinear least squares. 

In this investigation, a straightforward and effective 
identification method is proposed. It aims to offer a type-2 fuzzy 
model for nonlinear dynamical systems. A primary model is 
initially devised using input-output training data. Then the error 
between the measurements and the primary model output are 
modelled to create the error model. This latter model represents 
the uncertainties within the primary model; it can readily be 
modified by removing the error model output from the primary 
model output; these two models are interconnected in a parallel 
configuration. Having corrected the model output, there is a 
consequential improvement in resolution. Latest contributions in 
this subject are reported in [8], [9], [10], [11], [12], [13]. 

In this study, metaheuristic calculations or evolutionary 
computations such as GA, FA, PSO and BBO, which are 
families of stochastic algorithms, will be used to tune the fuzzy 
parameters adaptively. These algorithms are well suited to 
solving hard optimization problems and are frequently applied 
to numerous fields in diverse areas, as they are typically 
effective. The optimal solution is acquired through parallel 
processing in the population. These techniques are often inspired 
by biological and biogeographical evolution mechanisms. A 
population of individuals exposed to a particular environment 
will exhibit a range of behaviors [1]. To determine which 
optimization algorithm will provide optimal parameters for the 
proposed type-2 fuzzy system, a short comparative study of 
various optimization algorithm will be performed. This study 
will compare BBO and FA, a comparison, which according to 
the literature [14], [15], [16], [17], [18], [19], [20], [21], [22], 
[23], [24], does not appear to have been conducted. Note that in 
literature, references [23] and [24] focus mostly on the 
motivation behind the algorithms and differences in 
performance when they were applied only to particular 
benchmarks functions. By applying these algorithms to 
problems such as nonlinear dynamical systems modelling, this 
study will perform comprehensive comparisons. 

Type-2 fuzzy models and evolutionary algorithms are briefly 
reviewed in sections II of this paper. Section III outlines the 
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proposed technique and the experimental results of the 
simulation studies are presented in section IV. 

II. THEORY 

A. Type-2 fuzzy model 

Zadeh first proposed type-n fuzzy sets in 1975 [25]. These 
are characterized by a membership function (MF) that ranges 
over fuzzy sets of type-(n-1). Note that MF of a fuzzy set of type-
1 ranges over the interval [0, 1]. This was followed up in 1999, 
when Karnik and Mendel introduced some basic definitions, 
mechanisms and algorithms for type-2 fuzzy sets [26]. A type-2 
fuzzy set is where the membership is itself a type-1 fuzzy set. 
Compared to type-1 fuzzy logic systems (T1FLSs), type-2 
systems (T2FLSs) are more efficient, particularly when dealing 
with noisy data and ambiguity [27]. A comparative study of 
T2FLSs and T1FLSs in real-world applications that exhibit 
measurement noise and modelling uncertainty, found the former 
to be superior [28], [29], [30]. 

1) Parameter update rules: The design of a type-2 fuzzy 
system for modelling includes determination of the unknown 
parameters of the antecedent and the consequent parts of the 
fuzzy if-then rules. In the antecedent parts, the input space is 
divided into a set of fuzzy regions and in the consequent parts 
the system behavior in those regions is designed automatically. 
In Gaussian type-2 fuzzy sets, uncertainties can be associated 
to the mean (center) and the standard deviation (STD). In this 
paper, the Gaussian MFs were chosen due to their utility in 
universal approximation and their ability to uniformly estimate 
continuous functions [31]. Fig. 1 (a) and (b) show Gaussian 
type-2 fuzzy sets with uncertain STD and uncertain mean, 
respectively. The mathematical expression for the Gaussian 
membership function (MF) is expressed as follows: 

෤ߤ  = ቀ12 2ߪ2(ܿ−ݔ) ቁ,                                  (1) 
 

where c and σ are the center and width of the MF and x is the 
input vector. In this study, type-2 fuzzy sets are formed by only 
considering the uncertainty on the mean, i.e., c= [c1, c2] with a 
fixed STD σ, where c1  and  c2 are the lower and upper bounds 
of the uncertainty interval, respectively.  

B. Méta-heuristic Algorithms 

  This section provides a brief overview of PSO, BBO, FA   
meta-heuristic algorithms. 

 
Figure 1. Gaussian type-2 fuzzy set with  (a) uncertain standard deviation, (b) 

uncertain mean (center). 

1) Particle swarm optimization (PSO): This meta-heuristic 
computation technique has been stimulated by the social 
behavior of congregating animals, such as bird flocks, fish 
schools and insect colonies, in which a group can effectively 
achieve an objective by using the common information of every 
element. In response to solving optimization problems, 
Eberhart and Kennedy introduced the PSO algorithm in 1995 as 

an alternative to population-based search approaches (like 
genetic algorithms) [32]. 

2) Biogeography-based optimization (BBO): Inspired by 
studies of the spatial distribution of species of plants and 
animals together with the causes of their distribution and 
extinctions, BBO is a global optimization algorithm [33]. The 
algorithm considers island habitats and species populations, and 
the habitat’s ability to support the populations. When an island 
is unable to sustain the population of a species easily, some 
members migrate to new islands and undergo speciation. Each 
island is a potential solution to the problem. 

3) Firefly algorithms (FA): The firefly algorithm is another 
swarm intelligence algorithm [34]. FA was inspired by the 
flashing of fireflies. Each firefly species has a unique pattern of 
flashes; whilst the full range of flash functions have yet to be 
determined, it is known that flashing attracts mates. In some 
firefly species, males are attracted to sedentary females. In other 
species, the female copies the signal of a different species to 
lure males of that species, which the female then preys on. The 
flashing can also be used to send information between fireflies. 
The FA algorithm was inspired by idea of this attraction and 
passing of information. 

III. PROPOSED TYPE2-FUZZY MODELLING 

APPROACH 

The proposed framework constitutes of three stages: 

 Stage 1: Primary model identification. 
 Stage 2: Error process identification. 
 Stage 3: Final model design. 

The free parameters of the type-2 fuzzy system to be 
identified are: 

 The centers of the premise Gaussian type-2 fuzzy 
membership functions from the data available, using the 
constant standard deviation σ = 0.75, lower membership 
function with constant amplitude 0.8 and higher 
membership function with constant amplitude 1. 

 The centers of the consequence intervals, having a constant 
width equal to 0.5. 

The fitness function that will be used throughout the 
study will be a mean square error (MSE) criterion that uses 
the actual and estimated values as follows: ܧܵܯ = ∑ (௬ೖି௬ොೖ)మೖಿసభ ே = ∑ ௘మೖಿసభே ,                      (2) 

with ݕ௞  is the actual measure, ݕො௞  its estimate and N the 
length of data. 

1) Primary model identification: For the first stage, the data 
set (ݑଵ,  ଵ) is used to determine a type-2 fuzzy primary modelݕ
(T2FPM) መ݂௣  for the process (the considered nonlinear 
dynamical system). The scheme of the T2FPM identifier is 
mainly an online adaptation of  መ݂௣ where the lower script ݌ is 
used to denote “Primary”. The optimization algorithm which 
can be either the BBO, PSO, FA or GA algorithm, adjusts the 
model’s parameters መ݂௣  such that the error e1 between the 
process output ݕଵ  and the T2FPM output ݕො௣ଵ  reaches its 
minimum value. Using a fuzzy auto regressive moving average 
(ARMA) model, which is a very popular stochastic time series 
modelling technique, we intend to identify መ݂௣ . The ARMA 
model is one of a group of prediction formulas that attempt to 
predict an output of a system based on the previous outputs 
(new input). 
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Assuming there are NR1 fuzzy rules of a fuzzy ARMA 
model, the T2FPM መ݂௣ is described as follows: ܴ௜: 	࢙࢏	(݇)ଵݑ	ࢌ࢏ ௜ܷ(ݑଵ)	ࢊ࢔ࢇ	(݇)ݕ	࢙࢏	 ௜ܻ(ݕ௞)	ࢊ࢔ࢇ…ࢊ࢔ࢇ	ݕ(݇− ݊ + 	ݏ݅	(1 ௜ܻ(ݕ௞ି௡ାଵ)࢚ݕ ࢔ࢋࢎො௣ = ݅												ത௜ݕ = 1,2, … , ܴܰଵ, 
where ௜ܷ(ݑଵ) is the premise type-2 membership function that is 
relative to regressor  ݑଵ(݇) , ௜ܻ(ݕ௞ି௝)  is the premise type-2 
membership function that is relative to regressor ݕ(݇ − ݆) and ݕത௜  is an interval output membership function for the ݅௧௛  rule.  
The parameters of መ݂௣ to be trained by the optimization algorithm 
are the Gaussian centers of the type-2 fuzzy premise 
membership function ௜ܷ(ݑଵ), ௜ܻ(ݕ௞), …	 , ௜ܻ(ݕ௞ି௡ାଵ)  and the 
consequence intervals തܻଵ, തܻଶ, … , തܻேோଵ. 

2) Error process identification: For generalization purpos-
es, the primary model መ݂መ௣  is validated with a new input ݑଶ to 
obtain a new general output signal ݕො௣ଶ for T2FPM. Defining 
the error process (ܧ௣ ) by the parallel interconnection of the 
process and T2FPM with input ݑଶ and output ݁ଶ. 

 ݁ଶ = ො௣ଶݕ −  ଶ,                                     (3)ݕ
 

where ݁ଶ  is the general error, ݕଶ  is the new process output 
corresponding to the input ݑଶ and ݕො௣ଶ is the new T2FPM output 
corresponding to input ݑଶ. Once the error process output ݁ଶ is 
obtained (Equation. 3), a second type-2 fuzzy system can be 
designed to model the general error signal ݁ଶ. This model is 
denoted as the type-2 fuzzy general error model (T2FGEM). As  ݁ଵ is time series, it is appropriate to design a model that uses a 
fuzzy AR model that attempts to predict the new output based 
on the previous outputs. Thus, a given time series of data ݁ଶ, is 
identified by the following fuzzy AR model: 
 ݁̂ଶ(݇ + 1) = ݇)݁ଶ			෠௣ሾ݁ଶ(݇),ܧ − 1), …,			݁ଶ(݇ − ݊ + 1)ሿ. (4) 

 

 ܴܰଶ fuzzy rules describe the time series ݁ଶ as follows:  
 ܴ௜: ݇)ଶ݁	ࢊ࢔ࢇ	௜൫݁ଶ,௞൯ܧ	࢙࢏	(݇)ଶ݁	ࢌ࢏ − ,ࢊ࢔ࢇ	௜൫݁ଶ,௞ିଵ൯ܧ	࢙࢏	(1 . . ݇)ଶ݁	ࢊ࢔ࢇ,. − ݊ + ଶ̂݁ 	࢔ࢋࢎ࢚	௜(݁ଶ,௞ି௡ାଵ)ܧ	࢙࢏	(1 = ݅											ത௜ܧ = 1,2, … ,ܴܰଶ,  
 

where ܧ௜(݁ଶ,௞)  is the premise type-2 membership function 
relative to regressor ݁ଶ(݇)  and ܧത௜  an interval output 
membership function for the ݅௧௛ rule. The task is to train the 
T2FGEM parameters to minimize the error ݁ଷ. The parameters 
of T2FGEM to be trained by the optimization algorithms are 
Gaussian centers of the type-2 fuzzy premise membership 
functions ܧ൫݁ଶ,௞൯, ,൫݁ଶ,௞ିଵ൯ܧ …	 , (ଶ,௞ି௡ାଵ݁)ܧ  and the output 
intervals ܧതଵ, ,തଶܧ …	,    .തேோଶܧ
 

3) Final model design: The third and the final step is to 
obtain the final model መ݂ி  by interconnecting the type-2 fuzzy 
primary model መ݂௣  and the type-2 fuzzy general error ܧ෠௣  in a 
parrallel configuration. This framework enables the error 
modelling obtained in the T2FPM to be decreased; therfore, a 
sharper model መ݂ி  will be acquire. Thus, the output ݕොଶ  of the 
final model can be given by: 

ොଶݕ  = ො௣ଶݕ − ݁̂ଶ.                                       (5) 
 

IV. RESULTS AND DISCUSSION 

 
In this section, three models for the representation of SISO 

systems are used for testing the ability of our approach to 

approximate large classes of nonlinear dynamical systems and 
to assess the effectiveness and efficiency of the cited 
evolutionary algorithms for the optimization of the dynamical 
models [35]. 

• Model I ݕ௣(݇ + 1) = ,(݇)௣ݕൣ݂ ݇)௣ݕ − 1), … , ݇)௣ݕ − ݊ + 1)൧ +∑ ݇)ݑ௜ߚ − 1)௠ିଵ௜ୀ଴ .      (6) 

• Model II 

݇)௣ݕ + 1) = 	෍ ݇)௣ݕ௜ߙ − 1)௡ିଵ
௜ୀ଴ + +݃ሾݑ(݇), ݇)ݑ − 1) , …	, ݇)ݑ − ݉ + 1)ሿ.      (7) 

• Model III ݕ௣(݇ + 1) = ,(݇)௣ݕൣ݂ ݇)௣ݕ − 1), … , ݇)௣ݕ − ݊ + 1)൧ +݃ሾݑ(݇), ݇)ݑ − 1), … , ݇)ݑ − ݉ + 1)ሿ.   (8) 

A. Determination of the metaheuristic algorithms paramaters 

Population size is an important factor in determining the 
optimal solution. Where the population size increases, the 
solution in exploration space will be improved, but it increases 
the computation complexity. In order to make fair comparison, 
the corresponding population size for each algorithm is set at 
200. The setting values of algorithmic control parameters of the 
mentioned algorithms adopted in this paper are given as follows. 
In PSO, self and swarm confidences ܿଵ = ܿଶ = 2 and the inertia 
factor ߱ = 0.75 . In BBO algorithm, the mutation rate ݉ =0.001, immigration rate ߜ௞	and emigration rate ߤ௞ take like the 
linear migration curves (Fig. 2). In FA algorithm, light 
absorption coefficient ߪ = 1, the degree of attractiveness of the 
firefly at ݎ = 0	 is ߚ଴ = 2 , mutation coefficient damping 
ratio ߙ	 = 0.98 . In GA algorithm, crossover probability and 
mutation probability are set to 0.8 and 0.05, respectively. 

 

Figure 2.  Linear migration curves for BBO where ߜ is the immigration rate 
and ߚ the emigration rate. 

B. Modelling and identification of system I 

The process to be identified is described by the following 
second-order difference equation: ݕ௣(݇ + 1) = ,(݇)௣ݕൣ݂ ݇)௣ݕ − 1)൧ + ,(݇)௣ݕൣ݂ (9)         ,(݇)ݑ ݇)௣ݕ − 1)൧ = ௬೛(௞)௬೛(௞ିଵ)ൣ௬೛(௞)ାଶ.ହ൧ଵା௬೛మ(௞)ା௬೛మ(௞ିଵ) .	   (10) ݂ is the part of equation. 9 to be identified in the first stage 
by the primary model መ݂௣ according to the following second order 
fuzzy AR model: ܴ௜: 	࢙࢏	(݇)ݕ	ࢌ࢏ ௜ܻ(ݕ௞)	ࢊ࢔ࢇ	ݕ(݇ − 	࢙࢏	(1 ௜ܻ(ݕ௞ିଵ)	࢚࢔ࢋࢎ መ݂௣௜ = ݂௜																݅ = 1,2, … . , ܴܰଵ,     

Fitness 

Rate

 ߤ 1

 ߜ
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where ݕ(݇)  and ݕ(݇ − 1)  are the regressors and ௜ܻ(ݕ௞),	   ௜ܻ(ݕ௞ିଵ)  are type-2 fuzzy premise membership functions and ݂௜are the adjustable intervals of the consequences. 

During the second stage, the error process ܧ෠௣  is identified 
with a second order type-2 fuzzy AR as follows: ܴ௜: ݇)	ଶ݁	ࢊ࢔ࢇ	௜൫݁ଶ,௞൯ܧ	࢙࢏	(݇)ଶ݁	ࢌ࢏ − ଶ̂݁				 ࢔ࢋࢎ࢚	௜൫݁ଶ,௞ିଵ൯ܧ	࢙࢏	(1 = ݅						ത௜ܧ = 1,2, …	 , ܴܰଶ,	 
 

where ݁ଶ(݇) and ݁ଶ(݇ − 1) are the regressors and ܧ௜(݁ଶ,௞) and ܧ௜(݁ଶ,௞ିଵ) are type-2 fuzzy premise membership functions and ܧ௜ are the adjustable intervals of the consequences.  
 
     We simulated the proposed method with ܴܰଵ = ܴܰଶ =40	rules therefore the identifier will be made up of 80 rules (40 
rules for the T2FPM model and 40 rules for the T2FGEM 
model) which gives a total of 80 × 3 = 240  adjustable 
parameters. For the first stage we have two regressors, and one 
interval output for each rule, which gives 2 × 40  premise 
parameters and 1 × 40  consequence parameters (120 free 
parameters for the first stage). Same statistics for the second 
stage, therefore, giving us then 240 free parameters in all. 
 
     Fig. 3 and 4 present the primary model output and the final 
model output respectively corresponding to PSO, BBO, FA and 
GA for the following input data. 
ݑ  = (݇)ଶݑ = ݊݅ݏ ቀଶగ௞ଶହ ቁ 1	ݎ݋݂	 ≤ ݇ ≤ 50	&	150 ≤ ݇ ≤ ݑ  (11)  .200 = (݇)ଶݑ = ݊݅ݏ0.5 ቀଶగ௞ଵ଴ ቁ + 0.5 sin ቀଶగ௞ହ ቁ 50	ݎ݋݂	 ≤ ݇ ≤ 150.	 (12) 

 

By a visual inspection of Fig. 3 and 4, we clearly see that the 
final model is much better than the primary model with all 
discussed optimization methods. We confirm this fact by the 
visual comparison given in Fig. 5 where we present a 
superposition of error curves showing that the result obtained 
with BBO algorithm is the better one compared to the other 
techniques.  

 

 

 

 

 

 

 

 

 

 

 

    

 Figure 3. Primary model output: (a) PSO, (b) BBO, (c) FA and (d) GA. 

In the following, we compare quantitatively the perform-
ances of the method in terms of a fitness function using 
optimization algorithms PSO, BBO, FA and GA. We run our 
algorithm 20 times as independent trials. Statistical performance 
measures like Worst, Mean, Best, Standard Deviation (SD) and 
Convergence Rate of the fitness function (Equation. 2) are 

estimated and indicated in Table. I, where, BBO algorithm was 
able  to  get  the  best  over  the  20  independent  trials   for   the  

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4. Final model output: (a) PSO, (b) BBO, (c) FA and (d) GA. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5. Comparison between the primary and the final models in terms of 
errors with (a) PSO method (b) BBO method (c) FA method (d) GA method. 

 
discussed techniques, in terms of best cost function value, mean 
of fitness function for 20 independent trails, and lowest value of 
standard deviation. System identification based on PSO 
optimization has the second lowest best cost function value, 
mean and standard deviation, but FA and GA have failed in 
terms of mean and standard deviation. BBO and PSO seems to 
produce better results after every new iteration, which leads to 
decreased the standard deviations and mean values contrary to 
the FA and GA. In terms of convergence rate, we note that FA 
and GA have faster convergence rates compared to PSO and 
BBO, but BBO has faster convergence speed compared to PSO. 

TABLE I. RESULTS OF FITNESS FUNCTION AFTER 200 ITERATIONS 

FOR 20 RUNS INDEPENDENTLY. 

Algorithm Worst Mean Best SD Converge-
nce rate

PSO 7.8820e-4 1.6196e-4 3.1008e-5 1.6196e-4 1 

BBO 7.7998e-5 2.2326e-5 1.2501e-5 6.9036e-5 0.9782 

FA 0.5896 0.0331 5.8206e-5 0.1319 0.7861 

GA 0.1036 0.0289 0.0017 0.0387 0.95 

 

       For more statistical analysis, let’s consider  some  statistical  

0 5 0 1 0 0 1 5 0 2 0 0
-2

-1

0

1

2

3

4

5

S a m p les

S
ig

na
l A

m
pl

itu
de

 

 

P la nt O u tp u t M o d e l O u tp u t

0 5 0 1 0 0 1 50 2 0 0

-1

0

1

2

3

4

5

S am p les

S
ig

na
l A

m
pl

itu
de

 

 

P la nt O u tp u t M o d e l O u tp u t

0 5 0 1 0 0 1 5 0 2 0 0

-1

0

1

2

3

4

5

S am p les

S
ig

na
l A

m
pl

itu
de

 

 

P la nt  O u tp u t  M o d e l O u tp u t

0 5 0 10 0 15 0 2 00

-1

0

1

2

3

4

5

S am p les

S
ig

na
l A

m
pl

itu
de

 

 

P la n t o u tp u t M o d e l  o u tp u t

0 5 0 1 0 0 1 5 0 2 0 0

-1

0

1

2

3

4

5

S am p les

S
ig

na
l A

m
pl

itu
de

 

 
P lan t O u tp u t M o d e l O u tp u t

0 5 0 1 0 0 1 5 0 2 00
-2

-1

0

1

2

3

4

5

S am p les

S
ig

na
l A

m
pl

itu
de

 

 

P la nt O u tp u t M o d e l O u tp u t

0 5 0 1 0 0 1 5 0 2 0 0

-1

0

1

2

3

4

5

S am p les

S
ig

na
l A

m
pl

itu
de

 

 

P la nt O u tp u t M o d e l O u tp u t

0 5 0 1 0 0 1 5 0 2 0 0

-1

0

1

2

3

4

5

S am p les

S
ig

na
l A

m
pl

itu
de

 

 

P la nt  o u tp u t M o d e l  o u tp u t

0 5 0 1 0 0 1 5 0 2 0 0
-0 . 6

-0 . 4

-0 . 2

0

0 . 2

0 . 4

S am p les

E
rr

or
 A

m
pl

itu
de

 

 

P rim a ry  M o d e l e rro r
F ina l  M o d e l e rro r

0 5 0 1 0 0 1 5 0 2 0 0

-1

-0 .5

0

0 .5

S a m p les

E
rr

or
 A

m
pl

itu
de

 

 

P rim a ry  M o d e l e rro r
F ina l  M o d e l e r ro r

0 50 10 0 1 50 2 00
-0 .5

0

0 .5

1

1 .5

S am p les

E
rr

or
 A

m
pl

itu
de

 

 

P rim a ry  M o d e l  e rro r
F ina l M o d e l e rro r

0 50 100 150 20 0
-1 0

-5

0

5

S a m p les

E
rr

or
 A

m
pl

itu
de

 

 

P rim a ry  M o d e l e rro r
F ina l  M o d e l  e rro r

-a- -b- 

-c- -d- 

-a- -b-

-c- -d-

-a- -b- 

-c- -d- 



 

978-1-5090-4508-2/17/$31.  

measures like means and confidence intervals for the 83௧௛ 
parameter over 20 independent trials (Table. II). 

TABLE II. MEAN VALUES AND CONFIDENCE INTERVALS OF THE 

83TH PARAMETER OVER 20 TRIALS. 

Algorithm  Mean Confidence interval [95%] 
Stage 1 Stage 2 Stage 1 Stage 2

PSO -0.4124 -2.0840 [-1.6427 : 0.8179] [-3.2614:-0.9062]

BBO 6.6136 0.9665 [tends to zero] [0.4568:1.4762]

FA 0.8611 -0.1887 [-1.7125:3.4347] [-2.8145:2.4371]

GA 0.4773 -0.2173 [-1.7996:2.7542 ] [ -3.4451:30105]

 

Depending on the above statistical measures and simulation 
results, we consider BBO to be the best optimization algorithm 
for this problem of type-2 fuzzy system identification, due to it 
leads to more precise reconstruction for the parameters of the 
type-2 fuzzy identifier. 

C. Validation and generalization tests  

Let’s now test the effectiveness of the method on more 
complicated system (Equation. 7) by considering the special 
case governed by the following difference equation: ݕ௣(݇ + 1) = 0.3 × (݇)௣ݕ + 0.6 × ݇)௣ݕ − 1) + ݂ሾݑ(݇)ሿ,  (13) 

where the unknown function ݂ to be identified has the following 
form: ݂(ݑ) = 0.6 × sin(ݑߨ) + 0.3 × sin(3ݑߨ) + 0.1 × sin	(5ݑߨ). (14) 

the input signal ݑ  to both plant and model is chosen to be a 
sinusoid: ݑ(݇) = ݊݅ݏ ቀଶగ௞ଶହ଴ቁ.                              (15) 

We simulated the method with the same number of rules as 
with system I. In Fig. 6 (a), (b), (c), (d) we give the final results 
of the type2-fuzzy identifier using PSO, BBO, FA and GA, 
respectively. By inspecting the zooms, we confirm the 
superiority of BBO algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 6. System II identification results using: (a) PSO (b) BBO  
(c) FA (d) GA. 

 
We consider in what follows the identification of a more 

complicated plant for which both input and output are present in 
the nonlinearity. In this case, the plant is described by Model III 
(Equation. 8) for which we consider the following example: 

݇)௣ݕ + 1) = ௬೛(௞)ଵା௬೛(௞)మ + ݇)௣ݕ ଷ(݇).                  (16)ݑ + 1) = ,(݇)௣ݕ)݂  (17)                     .((݇)ݑ

where in this case the unknown function ݂ to be identified has 
more general form due to that its independent variables are the 
input and output signals. The input signal ݑ is chosen to be: ݑ(݇) = ݊݅ݏ ቀଶగ௞ଶହ ቁ + ݊݅ݏ ቀଶగ௞ଵ଴ ቁ.                      (18) 

We simulated this case with the same number of rules as with 
system I. In Fig. 7 (a), (b), (c) and (d) we present a superposition 
of the plant output and the final output of the type2-fuzzy 
identifier using PSO, BBO, FA and GA, respectively. Always, 
the superiority of BBO algorithm is confirmed (see the zooms in 
Fig. 7). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. System III identification results using: (a) PSO (b) BBO  
(c) FA and (d) GA. 

 
We summarize in Table. III the performances in terms of 

goodness for the used optimization techniques where we show 
that the BBO algorithm maintains absolutely its superiority 
whether for nonlinear dynamical systems identification 
compared to PSO, FA and GA. PSO algorithm proved its 
superiority for nonlinear dynamical systems, compared to FA 
and GA, Finally, the worst results in this investigation were 
obtained with GA. 

TABLE III. PERFORMANCES IN TERMS OF GOODNESS FOR THE 

USED OPTIMIZATION TECHNIQUES. 

Algorithm Nonlinear dynamical systems
Model I Model I Model I

PSO Very good Very good Very good
BBO Excellent Excellent Excellent
FA good good good
GA fair fair fair

 

V. CONCLUSION 

In this paper, we have presented a method to solve the 
classical problem of nonlinear dynamical systems identification. 
The proposed technique is based on type-2 fuzzy models using 
metaheuristic algorithms. This approach allows to generalize the 
notion of identification by adding a new identification module, 
called error model. The introduced type-2 fuzzy error model was 
used as a complement of the primary identified model in order 
to improve the fitting quality, which gave a more precise fitting. 
Optimization in type-2 fuzzy logic identification has been 
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assured by applying some metaheuristic algorithms (GA, PSO, 
FA and BBO). Experimental results and comparative studies 
showed the effectiveness of the proposed approach for the 
problem of nonlinear dynamic systems modelling, and the best 
optimization results was obtained with BBO method.  
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