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Magneto-Photonic Crystal Micro-Cavities in One
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In this paper, we present a study on the photonic band gap of one-dimensional photonic crystals made by
SiO2/ZrO2 or SiO2/TiO2 doped with magnetic nanoparticles using the sol–gel process. The studied structure
consists of a multilayer of SiO2/ZrO2 or SiO2/TiO2 and air gap with lattice constant a= 0.70 �m. The structure
is characterized by a background refractive index of 1.51. We started by introducing one defect at different
locations, then we followed by two and three defects at different locations. The results obtained show clearly
that these magnetic micro-cavities may serve as a fundamental structure in a variety of ultra-compact magneto
photonic devices such as optical isolators and modulators in the future.
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1. INTRODUCTION
In recent years, there had been a lot of interest magneto-
photonic crystals made by sol–gel process and their poten-
tial application [1–5]. The integration of magneto-optical
devices, such as isolators and circulators, remains a major
challenge, due to the difficulties encountered in integrat-
ing magneto-optical materials with conventional integrated
technologies. Yttrium Iron Garnet (YIG), widely used in
bulk optical isolators, requires an annealing temperature of
up to 700 �C to be magneto-active.

To overcome this problem, a new approach based on a
magneto-optical composite matrix compatible with a glass
substrate [6]. The films made by a soft chemical sol–gel
process showed promising potentialities illustrated by a
specific Faraday rotation of 200�/cm and an index of 1.51
(@1550 nm) [7–12]. In this way, many efforts have been
made to obtain such materials compatible with the semi-
conductor substrate [13, 14], but few concern the glass
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substrate. Unlike conventional techniques, high tempera-
ture is not required to achieve magnetic behavior. The pur-
pose of this study is to provide a framework, is to describe
the latest improvements of the approach used to develop
magneto-optical structures with a wavelength of the order
of (1550 nm). The advantage of this technique is the total
compatibility of the sol–gel coating with the conventional
integrated treatment technologies and in particular the
technology on the ion exchange glass [15–18], it is consid-
ered a versatile, flexible and inexpensive technique, useful
in the realization of integrated photonic systems [19–24].
In this paper, we study the effect of position and num-

ber of defects on the bandgap of 1D MPCs made by
SiO2/ZrO2 or SiO2/TiO2 doped with magnetic nanoparti-
cles using sol–gel process in different geometrical param-
eter configurations. We started by introducing a defect at
different locations, then we followed by two defects and
to finish three has variable locations. The results obtained
give the designs of magneto photonic crystal devices.

2. STRUCTURE DESIGN
The 1D MPCs structure is very favored for studying the
properties of photonic bandgaps, it gives a large open-
ing bandgap and it is a good compromise, especially for
high slaughter factors and the incidence angle [25, 26].
The MPCs 1D studied and analyzed in the present
work, consists of a multilayer structure in periodic lattice
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Fig. 1. Structure of 1D photonic crystal made with magneto optic layers with one defect.

SiO2/ZrO2 or SiO2/TiO2 with air gaps, of period a =
0�70 �m. The structure is characterized by a back-
ground index of 1.51 to 1.57 and an air-to-air (refractive
index= 1). The thickness of the layers of material is d1

and the gap width is d2 with (a= d1+d2). Figure 1 illus-
trates the 1D MPCs structure used for the study, it is char-
acterized by the introduction of a defect width (ddef = 2∗
d1) within the structure.

3. RESULTS AND DISCUSSION
In order to study the influence of the material on the
photonic bandgap 1D, we introduced a defect to different

Fig. 2. Transmittance versus wavelength of 1D photonic crystal made with magneto optic layers with one defect.

locations, then two defects and finally three. The simula-
tion is carried out under the Rigorous Coupled Wave Anal-
ysis (RCWA) (RSoft Design Group, DiffractMode, Inc.
200 Executive Blvd. Ossining, NY 10562). Firstly, before
any simulation, we are fixed geometrical parameters (num-
ber of layers 10 and the period of lattice a = 0�70 �m,
a= d1+d2�.
In the representation of the spectral transmission curves

of Figure 2, we have introduced a defect at different posi-
tions and we have observed a resonance of the value of
the transmittance in the near infrared region (1500 nm
to 1950 nm). The results show that the transmittance
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Fig. 3. Transmittance versus wavelength of 1D photonic crystal made with magneto optic layers with two defects.

varies according to the location of the defect from
0 to 0.96 [27].

Figure 2 shows the spectral response of the micro-cavity
formed by defecting one layer obtained with the RCWA
method of the impulse response for values of refrac-
tive index 1.51. The spectrum calculated by TM polar-
ization can be observed one cavity mode for different

Fig. 4. Transmittance versus wavelength of 1D photonic crystal made with magneto optic layers with three defects.

defects at different positions. From the simulated results,
we observe that the best resonance value of the transmit-
tance is obtained for the defect located in the center of the
structure, namely at the 6th layer.
The results obtained for this case show us an improved

transmittance compared to the results obtained in the dif-
ferent works carried out [28–31].
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Fig. 5. Comparisons of the three structures configurations.

In the following, we study the optical properties of the
behavior of one dimensional photonic bandgap when two
or three defects are inserted at different locations in the
structure.
A resonance of the value of the transmittance is

observed in the bandgap which obtained without defects.
The value of transmittance is strongly influenced by the
presence of the defects and their locations. From the
results obtained, we observe that the most regular value is
obtained for the defects located in the third layer and ninth
layer.
As seen, the structures have not only a high trans-

mittance, but also provide the flat top resonance peaks.
Therefore, these matrices doped with MPCs magnetic
nanoparticles based on be used in integrated MOs, since
the operating bandwidth is one of the most important
functional characteristics of MPC-based devices [28–31].
Devices built on narrowband CPM would face instability
due to frequency fluctuations; a flat-topped resonance is
necessary in practice.
For different positions of three defects, we show in

Figure 4 the simulation results of the resonant wavelength
which hardly changes dependence on position of defects.
For a multi-cavity structure a significant improvement of

the transmittance is obtained for a variable localization of
the defects which is in adequacy with the work previously
carried out [30, 31].
Now, we make a comparison of the three structures con-

figurations used with the best values of the transmittance
resonance obtained.
For a single defect, the best value corresponds to the 6th

layer, then for two defects the best value is obtained for
the 3rd and the 9th layer. For three defects, the best value

is obtained for the 1st, the 6th and the 11th layer like us
mentioned in Figure 5. It is clear that the three configura-
tions give good results however the first configuration (one
defect at the 6th layer) remains the one that gives the best
value of the resonance. Therefore, these SiO2/ZrO2 matrix
doped with CoFe2O4 magnetic nanoparticles-based MPCs
can be used in integrated MO devices such as filters and
isolators.

4. CONCLUSION
This work presents a new design for magneto-photonic
crystal platform cavity. We have utilized a new kind of arti-
ficial magneto optical materials (SiO2/ZrO2 or SiO2/TiO2

matrix doped with magnetic nanoparticles) in magneto-
photonic crystals as a magnetic defect layer, characterized
by low refractive index material 1.51. In addition, we have
studied the effect of the defects at different locations on
the resonance of the value of the transmittance of micro-
cavities in a one dimensional magneto-photonic crystal.
The resonance of the value of the transmittance in the
bandgap is sensitive to the locations and number of pho-
tonic crystal cavity. Hence, we have also investigated the
influence of defects at different locations on the optical
response of transmission-type one-dimensional MPCs.
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