
J. Intell. Syst. 2017; 26(3): 531–543

Hemmak Allaoua* and Bouderah Brahim

New Properties for Solving the Single-
Machine Scheduling Problem with
Early/Tardy Jobs
DOI 10.1515/jisys-2016-0063
Received May 23, 2016; previously published online July 12, 2016.

Abstract: This paper presents a mathematically enhanced genetic algorithm (MEGA) using the mathematical
properties of the single-machine scheduling of multiple jobs with a common due date. The objective of the
problem is to minimize the sum of earliness and tardiness penalty costs in order to encourage the completion
time of each job as close as possible to the common due date. The importance of the problem is derived from
its NP-hardness and its ideal modeling of just-in-time concept. This philosophy becomes very significant in
modern manufacturing and service systems, where policy makers emphasize that a job should be completed
as close as possible to its due date. That is to avoid inventory costs and loss of customer’s goodwill. Five math-
ematical properties are identified and integrated into a genetic algorithm search process to avoid premature
convergence, reduce computational effort, and produce high-quality solutions. The computational results
demonstrate the significant impact of the introduced properties on the efficiency and effectiveness of MEGA
and its competitiveness to state-of-the-art approaches.

Keywords: Genetic algorithm, single machine scheduling, early/tardy jobs, common due date, mathematical
properties.

1 Introduction
The spectacular development in computational power in recent years demonstrated that using the generic
search concept alone of any meta-heuristic (such as genetic algorithm, GA) for solving NP-hard combinatorial
optimization problems is insufficient to obtain good results due to the generic nature of such methods. This
observation led many researchers to embed domain-specific properties within the generic search concept to
clearly improve GA effectiveness, avoid its premature convergence, and reduce its required processing time.
The topic of this work is tracking single-machine early/tardy scheduling against a common due date with a
variant of GA in which two new properties of this problem will be presented, proofed, then integrated.

Thus, a new variant of GA is proposed to solve the single-machine scheduling problem of independent
jobs where the objective is to minimize the sum of earliness and tardiness penalties of jobs having a common
due date (ETCDD). The theoretical importance of the single-machine ETCDD problem is due to its complexity
as an NP-hard problem [4, 7, 20, 22] and due to its practical importance in just-in-time (JIT) modern produc-
tion and service processing. In JIT, policy makers emphasize that a job should be completed as close as pos-
sible to its common due date to avoid inventory cost and loss of customer’s goodwill. This concept is actually
adopted by many economic and industrial companies around the world. The goal is to realize better results
than existing works in the field and to reduce time processing that is required to compute results.

*Corresponding author: Hemmak Allaoua, Computer Science Department, University of Bejaia, 06000 Bejaia, Algeria,
e-mail: hem_all@yahoo.fr
Bouderah Brahim: Computer Science Department, University of M’sila, M’sila, Algeria

Authenticated | hem_all@yahoo.fr author's copy
Download Date | 10/12/17 7:23 PM

mailto:hem_all@yahoo.fr

532      H. Allaoua and B. Brahim: New Properties for Solving the Single-Machine Scheduling Problem with Early/Tardy Jobs

In scheduling on a single machine against a common due date, there are two classes of common due
date problems that have proven to be NP-hard, namely the restrictive and non-restrictive common due date
problem. As one job at most can be completed exactly at the due date, some of the jobs might be completed
earlier than the common due date (d), while other jobs finish late. In this work, the treated problem is such as
the restrictive case of the problem where the common due date is less than the sum of the processing times of
all the jobs and each job possesses different earliness/tardiness penalties.

This problem has proven to be the most difficult problem in this area of research.
Reviewing the single-machine ETCDD literature, it was found that three different properties were embed-

ded into various constructive heuristics to obtain good approximation results [4, 7, 8, 10, 14, 20]. However, to
capitalize on the potential of such properties, two new additional propensities are proposed with support-
ing proofs. The set of all mathematical properties are integrated inside a GA search process to derive what
is called a mathematically enhanced GA (MEGA) procedure. The quality of MEGA is demonstrated on a set
of 200 benchmark instances available in Refs. [7, 8] and compared to the state-of-the-art algorithms for the
problem in Refs. [7, 12, 11, 13, 20].

The remaining parts of the paper are organized as follows: Sections 2 to 4 provide background on the
problem, including a statement, literature review, and mathematical properties. In Section 5, the implementa-
tion details of our proposed MEGA approach are presented. Computational results and discussions are provided
in Section 6. Finally, we conclude with a summary of findings and perspectives on future work in Section 7.

2 Literature Review
In recent years, the single-machine ETD problem has received a lot of attention from researchers and practi-
tioners. Its importance arises from its NP-hard complexity and its practical importance within the JIT context
as in intelligent scheduling [21]. The large earliness and tardiness times of jobs are highly discouraged in
order to minimize the inventory storage and late delivery costs to meet the JIT principle, which calls for the
right amount of goods/services to be produced and delivered at exactly the right time and the right quantity.

A literature search on the single-machine ETD problem was conducted, and the following studies were
found. They are arranged from the earliest to the latest as follows: Biskup [5], Gordon et al. [9], Feldmann and
Biskup [8], Hino et al. [15], Lin et al. [19], Liao and Cheng [18], Nearchou [20], Ronconi and Kawamura [22],
Alvarez-Valdes et al. [1], Lassig et al. [17], as well as Ying [25], Baker and Scudder [4], Vallée and Yiltizogli [24],
and Cha et al. [6]. Lässig et al. has presented a study on the general case of the common due date scheduling
problem. A linear algorithm for a given gob sequence was presented to optimize a given job sequence with a
run-time complexity of O(n), where n is the number of jobs [17].

Jafarnejad et al. elaborated a study to develop a goal function for optimizing single-machine scheduling
problems, that combines both earliness and tardiness penalties. This study is also determined to minimize
the earliness and tardiness penalties in this area [16]. Baker and Scudder developed a branch and bound algo-
rithm to find optimal solutions to an ETCDD problem and reported the results of computational experiments.
They also tested some heuristic procedures and found that surprisingly good performance can be achieved
by a list schedule followed by an adjacent pairwise interchange procedure [3]. Shahriari et al. investigated a
JIT single-machine scheduling problem with a periodic preventive maintenance. Also to maintain the quality
of the products, there is a limitation on the maximum number of allowable jobs in each period. The proposed
bi-objective mixed-integer model minimizes total earliness/tardiness and make span simultaneously [23].

Awasthi et al. considered the problem of scheduling jobs on single and parallel machines where all the
jobs possess different processing times but a common due date. There was a penalty involved with each job if
it is processed earlier or later than the due date. The objective of the problem was to find the assignment of jobs
to machines, the processing sequence of jobs, and the time at which they are processed, which minimizes the
total penalty incurred due to tardiness or earliness of the jobs. An exact polynomial algorithm was presented
for optimizing a given job sequence for single and parallel machines with the run-time complexities of O(n log
n) and O(mn2 log n), respectively, where n is the number of jobs and m the number of machines [2].

Authenticated | hem_all@yahoo.fr author's copy
Download Date | 10/12/17 7:23 PM

H. Allaoua and B. Brahim: New Properties for Solving the Single-Machine Scheduling Problem with Early/Tardy Jobs      533

3 Background of the Problem
The single-machine scheduling problem with early/tardy jobs around a common due date involves a set of
jobs; each job has its own processing time requirements. All jobs must be processed on a single machine, and
a penalty cost is incurred when a job is completed before (earliness) or after (tardiness) the common due date.
The objective is to minimize the summation of earliness and tardiness penalty costs in order to encourage the
completion time of each job to be as close as possible to the common due date. The following notations and
statements are proposed to understand better the properties of the problem. The following notations define
the problem statement:

n:	 integer number of jobs to be scheduled;
I:	 set of n jobs: I  =  {1, 2, …, n};
d:	 common due date of all the n jobs;
Ci:	 complete time of job i;
pi:	 processing time of job i;
Ei  =  max {d – Ci, 0} (earliness of job i);
Ti  =  max {Ci – d, 0} (tardiness of job i);
αi:	 penalty per unit time of earliness for job i;
βi:	 penalty per unit time of tardiness for job i;
h:	� parameter of common due date tightness used as follows: d  =  h * T, where

1
;n
ik

T p
=

= ∑ h ∈ {0.2, 0.4,
0.6, 0.8};

B:	 the set of jobs to complete at or before the common due date d;
A:	 the set of jobs to complete after d;

 −+ = 


1 if there are a straddled job
| | | | ;

 else
n

A B
n

A straddled job is a job that starts before d and completes after d. If, in a given sequence, there is a job
that completes exactly at d, there will be no straddled job.
1.	 Each job has to be processed on the single machine without interruption.
2.	 Each job is available at time 0.
3.	 Each job must be processed just once.
4.	 For each job i, the processing time pi, the cost per unit time of earliness αi, and the cost per unit time of

tardiness βi are given and assumed integers. The objective function to be minimized can be expressed as

the sum of weighted penalties of earliness and tardiness as follows:
1
().n

i i i ik
E Tα β

=
+∑ Any permutation

of n jobs will be a feasible solution to the problem, and there are exponential numbers of such permuta-
tions (O(n!)). The optimal sequence is the permutation that has the minimum objective value among all
permutations.

The optimal solution for the single-machine ETD problem satisfies the following three optimality properties:

Property 1: It does not contain any idle time between any consecutive jobs.

Property 2: It is V-shaped around the common due date: the jobs completing before or on the common due
date are sorted in decreasing order of the ratios pi/αi, and the jobs starting on or after the common due date
are sorted in increasing order of the ratios pi/βi.

Property 3: In an optimal schedule, either the first job starts at time zero or the completion time of one job
coincides with the common due date.

The proofs of these properties are established using proof by contradiction in Baker and Scudder [3],
Jafarnejad et al. [16], Gordon et al. [9], Feldmann and Biskup [8], Lin et al. [24], Biskup [23], and Hall and Posner [3].

Authenticated | hem_all@yahoo.fr author's copy
Download Date | 10/12/17 7:23 PM

534      H. Allaoua and B. Brahim: New Properties for Solving the Single-Machine Scheduling Problem with Early/Tardy Jobs

4 New Mathematical Properties
The most difficult part of the ETCDD problem usually focuses on how to find the beginning time of optimal
sequence, because that will multiply the time complexity of the problem by d – 1 (where d is the common due
date for all jobs). That means that the beginning time t0 belongs to [0, d – 1].

The three problem properties presented above describe just the optimal sequence without specifying any
details about the beginning time of the optimal sequence. That is happening often when h  =  0.6 or h  =  0.8
(in these cases, the common due date d is equal to 0.6*sum_pi or 0.8*sum_pi, so it is quite possible that
scheduling starts at t0  >  0). Therefore, in this work, two new properties were developed and then proofed for
determining the beginning time t0 of the optimal sequence. On one hand, that will considerably improve the
solution quality, and, on the other hand, that will reduce clearly the time computing of the algorithm. These
properties are called 4 and 5, respectively.

Property 4: There is an optimal schedule in which the arithmetic mean
i i i i

i B i A

i i
i B i A

C C
m

α β

α β

∈ ∈

∈ ∈

  +   
= 

 +     

∑ ∑

∑ ∑
 is equal to

the common due date d.
where

–– αi, βi, Ci, A, and B are such as defined in the problem statement above;
–– αi: penalty per unit time of earliness for job i;
–– βi: penalty per unit time of tardiness for job i;
–– Ci: complete time of job i (here, the completion times Cis are computed with starting time t0  =  0 for any

given sequence);
–– B: the set of jobs to complete at or before the common due date d;
–– A: the set of jobs to complete after d;
–– m: the arithmetic mean of (Ci, μi);
–– μi is defined such as μi  =  αi if Ci   ≤   d and μi  =  βi if Ci  >  d, ∀i ∈ I;
–– d: the common due date for all jobs.

Proof. The arithmetic mean is average of values (Ci, μi) is defined by

.
i i i i

i B i A

i i
i B i A

C C
m

α β

α β

∈ ∈

∈ ∈

  +   
= 

 +     

∑ ∑

∑ ∑

Then, the mean difference of the (Ci, μi) values is expressed by

.
i i i i

i B i A

i i
i B i A

m C C mα β

∆
α β

∈ ∈

∈ ∈

 − + −  
=

 +  

∑ ∑

∑ ∑

Let consider the function Gp as follows:

() .
i i i i

i B i A

P
i i

i B i A

p C C p
G x

α β

α β

∈ ∈

∈ ∈

 − + −  
=

 +  

∑ ∑

∑ ∑

From the arithmetic mean properties [the above ratio Gp(x) reaches its minimum when p  =  m], we can deduce
the relationship in Eq. (1) that

	 = =Min{ }() (.)p mG x G x D � (1)

Authenticated | hem_all@yahoo.fr author's copy
Download Date | 10/12/17 7:23 PM

H. Allaoua and B. Brahim: New Properties for Solving the Single-Machine Scheduling Problem with Early/Tardy Jobs      535

Let consider the function F as follows:

1
() (),n

i i i ik
F x E Tα β

=
= +∑ where x is a permutation sequence of jobs in set I.

As Ei  =  d – Ci for Ci   ≤   d and Ti  =  Ci – d for Ci  >  d, then Ei  =  |d – Ci| and Ti  =  |Ci – d|; thus, replacing them in
F(x), we get

() ,i i i i
i B i A

F x d C C dα β
∈ ∈

 = − + −  
∑ ∑ and consequently,

	

α β

α β α β

∈ ∈

∈ ∈ ∈ ∈

 − + −  
= =

   + +      

∑ ∑

∑ ∑ ∑ ∑
() ().

i i i i
i B i A

d
i i i i

i B i A i B i A

d C C d
F x G x

�

(2)

As i i
i B i A

α β
∈ ∈

 +  
∑ ∑ is a constant value, we conclude from Eqs. (1) and (2) that F(x) becomes minimal when

d  =  m. It should be noted that when the above ratio reaches a minimum value, F(x) also reaches its minimum

value, because F(x) and Gd(x) are proportional and the denominator i i
i B i A

α β
∈ ∈

 +  
∑ ∑ is a constant value.� □

Corollary:
1.	 If d   ≤   m, then the optimal schedule may start at time t0  =  0.
2.	 If d  >  m, then the optimal schedule may start at time t0  =  d – m.

Consequence of using property 4: The main difficulty of the early/tardy scheduling problem is always to
determine the starting time of jobs. Therefore, in this paper, an approach is proposed to solve this difficulty
based on the above corollary as follows:
1.	 Compute the value of the above average m. If d   ≤   m, just the sequences that start at time 0 may be sought;

else, if d  >  m, only the sequences that start at d – m will be examined.
2.	 Then, property 3 is applied, i.e. either of the jobs may complete at time d.

Therefore, it must choose the starting time of the schedule to be as close as possible to d – m. Note that
m can be moved but never d, as d is constant and m is depending on Ci. That means that when m  <  d,
the starting time t0 can be delayed to obtain m  =  d, because the arithmetic mean is a linear function [i.e.
mean (xi + c)  =  mean (xi) + c]. On the other hand, when m  ≥  d, m cannot coincide with d because of the
time limit (0), as it is shown in Figure 1. It should be noted that m is computed with the starting time
t0  =  0; if m  <  d, the starting time can be taken as t0  =  d – m to have m coinciding with d (i.e. m is moved
to d).

However, if d   ≤   m, the stating time t0 can be chosen to make m coincide with d; the best sequences may
have a starting time t0  =  0 (Figure 1).

Property 5: If m  <  d, then there is an optimal schedule in which .i i
i B i A

α β
∈ ∈

=∑ ∑
Where

–– d, αi, βi, A, B are such as defined in the problem statement above;
–– m: the arithmetic mean of (Ci, μi);
–– μi is defined such as μi  =  αi if Ci   ≤   d and μi  =  βi if Ci  >  d, ∀i ∈ I.

0 m d

m < d

Time

t0

Time

0 d m

m ≥ d

Figure 1: Possible Positions of d against m.

Authenticated | hem_all@yahoo.fr author's copy
Download Date | 10/12/17 7:23 PM

536      H. Allaoua and B. Brahim: New Properties for Solving the Single-Machine Scheduling Problem with Early/Tardy Jobs

Proof. Let
1

() ().n
i i i ik

F x E Tα β
=

= +∑ As, Ei  =  d – Ci for Ci   ≤   d and Ti  =  Ci – d for Ci  >  d, replacing the terms Ei and Ti

in F(x), we would get () .i i i i i i
i B i A i A i B

F x d C Cα β β α
∈ ∈ ∈ ∈

   = ∗ − + −      
∑ ∑ ∑ ∑

Let) ;(i i i i
i A i B

CF x Cβ α
∈ ∈

= −′ ∑ ∑ if m   ≤   d, we can easily find two sets A and B such as .i i
i B i A

α β
∈ ∈

≥∑ ∑ This can be done

by setting initially A  =  Φ and B  =  I, then muting iteratively jobs from A to B until reaching .i i
i B i A

α β
∈ ∈

≥∑ ∑ As
consequence, F(x) becomes the sum of two positive integers:

i i
i B i A

d α β
∈ ∈

 ∗  
−∑ ∑ and i i i i

i A i B
C Cβ α

∈ ∈

 −  
∑ ∑ (because F(x) and i i

i B i A
α β

∈ ∈

−∑ ∑) are positive.

As F(x)  ≥  0 and ,i i
i B i A

α β
∈ ∈

≥∑ ∑ then F′(x)  ≥  0; then F(x) becomes minimal when α β
∈ ∈

=∑ ∑ .i i
i B i A

� □

Corollary: To reduce the size of the space of solutions, it may just seek solutions having .i i
i B i A

α β
∈ ∈

≈∑ ∑

Consequence of using property 5: This type of problem becomes more difficult when d is large (i.e. often
especially when d is given greatest). Therefore, this property is useful to find the starting time according the
following algorithm (Algorithm 1):

Algorithm 1: Computing starting time using property 5.

1. For each sequence of jobs, x  =  (1, 2, …, n)
2.  Ci  =  d; i  =  1; sum_αi  =  0; 1sum_ ;n

i i iβ β==∑
3.  While (sum_αi  <  sum_βi and Ci  ≥  0)
4.   Ci  =  Ci – pi;
5.   sum_αi  =  sum_αi + αi;
6.   sum_βi  =  sum_βi – βi;
7.   i  =  i + 1;
8.  end while
9. starting_time  =  Ci.

This algorithm starts by making all jobs after d, then the jobs are moved before d one by one until realizing
.i i

i B i A
α β

∈ ∈

≈∑ ∑
That will allow to choose the starting time as close as possible to the value Ci, which realizes .i i

i B i A
α β

∈ ∈

=∑ ∑
Note that the two properties are more used in the most difficulty cases where h  =  0.6 and h  =  0.8, i.e. when

there is a large margin to choose the starting time.

Example
Size n  =  10 jobs; instance k  =  1 (source: Biskup and Feldman benchmarks) [7].
Job i  1  2  3  4  5  6  7  8  9  10
pi   20  6  13  13  12  12  12  3  12  13
αi   4  1  5  2  7  9  5  6  6  10
βi   5  15  13  13  6  8  15  1  8  1

Sum
1

116;n
ikip T p

=
== =∑ d  =  T ∗ h; h ∈ {0.2, 0.4, 0.6, 0.8}.

Results
h   d   t0   Opt.   Optimal sequence
0.2  23   0   1936   4 2 7 3 9 6 5 8 1 10
Time  =    0 d (straddled job 7)
0.4  46   0   1025   4 2 3 7 9 6 5 8 1 10
Time  =    0 d (straddled job 9)
0.6  69   1   841   4 2 3 7 9 6 5 8 1 10
Time  =    1 d (no straddled job)
0.8  92   16   818   4 2 1 3 7 6 9 5 8 10
Time  =    16 d (no straddled job)

Authenticated | hem_all@yahoo.fr author's copy
Download Date | 10/12/17 7:23 PM

H. Allaoua and B. Brahim: New Properties for Solving the Single-Machine Scheduling Problem with Early/Tardy Jobs      537

Straddled job means a job starts just before d and completes after d.
It is easy to verify that

1.	 There is no idle time in the optimal schedule. That is because Ci + 1  =  Ci + pi (property 1).
2.	 Jobs in B are sorted by decreasing order of ratio pi/αi and jobs in set A are sorted by increasing order of

ratio pi/βi (property 2) (V-shaped property), with B set of jobs completing at or before d and A set of jobs
completing after d.

3.	 In an optimal job, there is a job that starts at 0 or a job completes at d (property 3).
4.	 If d   ≤   mean, then the optimal time must start at 0 (as in h  =  0.2 and h  =  0.4 above). Else, the optimal

schedule may start at t0  =  d – mean (as in h  =  0.6 and h  =  0.8 above). Note that it is not always t0  =  0 for
h  =  0.2, 0.4 and t0  >  0 for h  =  0.6, 0.8. However, it is depending on the instance data (property 4).

5.	 In each optimal sequence above, we have i i
i B i A

α β
∈ ∈

≈∑ ∑ (property 5).

5 MEGA
In this section, a variant implementation of GA will be presented that is used to solve the ETCDD problem.
The five properties described above are integrated, as will be clarified later. However, implementing GA needs
firstly to choose

–– A good individual encoding process;
–– A suitable fitness function for evaluating individuals;
–– An adequate selection policy;
–– Crossover and mutation probabilities;
–– Empirically stopping criterion.

The GA algorithm process starts by generating a randomly initial population, then genetic operators (selec-
tion, crossover, mutation) [23, 24] are applied with certain probabilities to produce a new generation of off-
springs. These offsprings are supposed to inherit the characteristics of their parents and evolve into better
individuals. At each generation, the best individuals replace the weakest fit individuals. The GA process
is iteratively repeated for a number of generations, and the best-found individual is declared as the final
obtained solution. The GA process is generally described as follows (Algorithm 2):

Algorithm 2: GA for ETCDD.

1. Begin
2.  Population and parameters’ initializations;
3.  Fitness evaluation;
4.  Repeat
5.   Pair selection of individuals;
6.   Crossover;
7.   Mutation;
8.   Fitness evaluation;
9.  Until (stopping criterion);
10. End.

However, the design of the GA algorithm depends on the designer’s choices for the GA components to solve
the problem at hand. Such components include individual’s encoding, definition of fitness function for indi-
viduals’ evaluation, selection of pairs of individuals, probability crossover, probability mutation, and criteria
for stopping. The components’ choices must be carefully defined and their parameter values must be care-
fully chosen, as they both considerably determine the solution quality of the proposed GA algorithm. There-
fore, such components will be individually explained next.

Authenticated | hem_all@yahoo.fr author's copy
Download Date | 10/12/17 7:23 PM

538      H. Allaoua and B. Brahim: New Properties for Solving the Single-Machine Scheduling Problem with Early/Tardy Jobs

5.1 Individual’s Encoding

Traditionally, characteristics (also called genetic phenotypes) of an individual solution are represented
using binary strings of 0s and 1s; however, other encodings are also possible. The whole abstract repre-
sentation of a solution is often called chromosome (or genotypes of individuals). In our implementation,
a chromosome is a feasible solution that consists of an array of (n + 1) integer numbers; the first entry rep-
resents the starting time to begin the processing of the sequence of jobs, and the other remaining n entries
represent the sequence of jobs. Example: the following vector encodes a sequence of jobs (2, 6, 1, 4, 5, 3) that
begins at time 4:

4 2 6 1 4 5 3

A population of m individuals will be represented by a two-dimensional matrix, m∗(n + 1).

5.2 Individual’s Fitness Function

The fitness function is defined over the genetic representation of a solution. It measures the quality of the
generated solution in each chromosome. The fitness function is always problem dependent. An ideal fitness
function should correlate closely with the algorithm’s goal, and should be quickly computed. However, it
should not favor solutions to avoid converging quickly toward a local solution. Many processes are possible to
adjust the fitness function to prevent premature convergence or to diversify the population. The linearization
and exponentiation function defines our fitness function:

= ∗ − +Fitness() (1 obj()/sum_ bj)^0 1o .1 .x h x

where h is the common due date rate, x is a chromosome, and obj(x) is the objective value solution/
chromosome.

Note that obj(x) is inversely proportional to fitness(x), that is because obj(x) is to be minimized and
fitness(x) is to be maximized.

The used factor h, the exponent 0.1, and the term +1 are used here to realize a compromise between the
intensification and diversification processes generally used in meta-heuristics. Thus, this rule will provide
different values and allow a chance to weak individuals. In short, this rule was tested and used in many
related works and had justified its efficiency [12, 14].

5.3 Population’s Initialization

The initial population is initialized using randomly generated individuals. Traditionally, a uniform law of
probability must be used to cover all space of solutions (space search). The aim is to prevent premature con-
vergence of the algorithm to local solutions. The size of the population depends on the nature of the problem.
Occasionally, the population may be “seeded” with solutions in areas where optimal solutions are likely to be
found. The population size is chosen sufficiency great to represent the evolutionary phenomenon as much
as possible, and it is almost proportional to the problem size n (number of jobs). For reporting our computa-
tional results, the population size, Population_size  =  50 ∗ n, is chosen.

5.4 Population’s Evaluation

The evaluation of population at every generation computes the objective for each individual, then its fitness
function. It also determines the minimum population value (best among all objective values) and saves the

Authenticated | hem_all@yahoo.fr author's copy
Download Date | 10/12/17 7:23 PM

H. Allaoua and B. Brahim: New Properties for Solving the Single-Machine Scheduling Problem with Early/Tardy Jobs      539

corresponding solution. At the last generation, this step allows to determine the best individual in the popu-
lation and to declare it as the best obtained solution during the whole search process.

5.5 Selection of Individuals

The selection process determines which individuals are to participate in the production of new individuals
(off-springs) to include in the next generation. Individual solutions are selected based on a fitness-based
process, where solutions with highest fitness values are more likely to be selected for reproduction. The selec-
tion process evaluates the fitness of each solution in the whole population (or a random sample of solutions
in the population when time consuming) to select the best solutions for reproduction. In our implementation,
a fortune wheel method is used to select individuals among those having great fitness. The random roulette
function uses the following implementation (Algorithm 3):

Algorithm 3: Roulette implementation

1. Int Function roulette();
2.  Int i;
3.  Float r, s1;
4.  r  =  Rnd() * sum_fitness;
5.  s  =  0;
6.  i  =  0;
7.  While s  <  r
8.   i  =  i + 1;
9.   s  =  s + fitness(i);
10. End While
11. Return I;
12. End Function.

This random roulette process is applied twice whenever a pair of parents is needed for breeding.

5.6 Crossover Operator

The crossover operator allows the production of new off-springs (child solutions) from a couple of parent
solutions. For each new couple of off-springs to be produced, a couple of solutions is selected for breed-
ing from the population pool and the crossover operator is executed as shown below. Given two selected
parents (parent 1 and parent 2), a two-point crossover is implemented. It randomly selects two positions,
and exchanges the middle parts between parents to create two new children. In the proposed implementa-
tion, the first point is chosen before the common due date d, and the second point is chosen after d for better
efficiency. In addition, the probability rate is set to call the crossover operator at pc  =  0.75, for reporting our
experimental results and best solutions.

Parent 1 4 2 6 1 4 5 3

Parent 2 0 1 4 2 3 6 5

Crossover

Child 1 4 6 4 2 3 5 1

Child 2 0 2 6 1 4 3 5

When the crossover operation generates a gene called “lethal gene” composed of repeated job, it is
certain that another job is missing from the sequence. In such case, a repair mechanism is initiated to include
the missing one and replaces the lethal job.

Authenticated | hem_all@yahoo.fr author's copy
Download Date | 10/12/17 7:23 PM

540      H. Allaoua and B. Brahim: New Properties for Solving the Single-Machine Scheduling Problem with Early/Tardy Jobs

5.7 Mutation

The mutation genetic operator is normally introduced to produce small modifications to the obtained child
by the crossover operator. The aim is to introduce into the population new characters that do not exist among
the parents to assure the diversity of search into new solutions space, hopefully of better quality. In the pro-
posed implementation, the mutation probability rate at which two random jobs will switch positions is set to
pm  =  0.01 as follows:

Child k 0 3 4 2 1 6 5

After mutation

Child k 0 3 6 2 1 4 5

It should be noted that the switched jobs are executed randomly in a similar way to the crossover opera-
tor; the first position is selected before the common due date d, and the second position is after d. Otherwise,
the mutation operator will not have any effect on the solution because of property 2.

5.8 Mathematical Property Usage

The mathematical properties are used to evaluate the sequence at each generation whenever a new sequence
is generated, for which the mean (m) is computed as indicated in Section 2.4 (property 4) to determine the
starting time of the schedule. Then, the jobs in the sequence are sorted as described in property 2. Property
1 is always applied in the evaluation phase, which means there is no idle time between two jobs. Properties
3 and 5 are often used when there are opportunities to start the sequence at time  > 0 (i.e. the cases when d
is large at h  =  0.6 or h  =  0.8). These mathematical properties are applied on each sequence at the following
moments:

–– After generating each sequence at the initialization phase;
–– After generating each child at the crossover phase;
–– After muting the individual at the mutation phase.

5.9 Termination Criterion

In the literature, many forms of termination criteria to stop an algorithm can be used, including execution
of a fixed number of iterations; a prefixed computational effort is reached; the best solution is not improved
after a given number of iterations; and the optimal solution is found (when known). For the current imple-
mentation, a fixed number of generations is invoked, with values proportional to the size of problem n. The
computational results are reported when the number of iterations is reached, (number_of_iterations  =  n2).

Note that the GA parameters (population size, crossover probability) were defined by Goldeberg, but in
broad ranges for more flexibility of the algorithm when applied to a problem. These intervals are of course
inspired by the natural phenomenon of the meta-heuristic. In addition, the values chosen here were tested
and used in related works and had justified their efficiency [12, 14].

6 Computational Results
The set of benchmarks that was developed by Biskup and Feldman [7, 8] was employed to demonstrate the
efficiency and effectiveness of the proposed MEGA approach. The benchmark set consisted of instances with
variable sizes, n  =  10, 20, 50, 100, 200 jobs. The produced results (MEGA) were compared to those obtained

Authenticated | hem_all@yahoo.fr author's copy
Download Date | 10/12/17 7:23 PM

H. Allaoua and B. Brahim: New Properties for Solving the Single-Machine Scheduling Problem with Early/Tardy Jobs      541

by Nearchou [20]. It was found that Nearchou’s results are the best results in the literature in most cases, and
they were selected for comparison with the proposed algorithm. For each size of n  =  10 to n  =  200, there were
10 different instances with different values of rate h  =  0.2, 0.4, 0.6, 0.8 to determine the common due date (i.e.
there were 80 benchmarks for each size).

Table 1 summarizes the comparative results, starting from the problem’s characteristics in column one
followed by our CPU time, associated MEGA average solutions over the 10 instances per size, Nearchou’s
average solutions, the average of the differences per instance, and to the comments on the number of the
new best solutions obtained by the proposed approach (B), the number of equal solutions (E), and the
number of our worst solutions. The results were obtained on a PC with Intel Core 2 Duo 2.4 GHz CPU and
4 G RAM.

The summary results in Table 1 show clearly that for smaller-sized instances of n  =  10 and n  =  20, both
our MEGA approach and that of Nearchou obtained the optimal solutions for such instances, which were
validated using our approach. For the largest-sized instances, Nearchou’s approach becomes ineffective for
tight due dates with h  =  0.6 and h  =  0.8. For n  =  50, n  =  100, and n  =  200, these results show 4 new best solu-
tions, 18 new best solutions, versus 12 worse solutions, and 30 new best solutions versus 9 worse solutions,
respectively.

In order to show the gap, the results are reported in Figure 2.
Table 2 summarizes the percentages of the obtained results compared to Nearchou’s results. These results

are then reported in Figure 3 to show the efficiency of our approach.
These results allow noting that

–– For n   ≤   20, both MEGA and Nearchou’s approach give optimal solutions.
–– In both approaches, the objective is inversely proportional to h. Indeed, when h increases, d increases,

and we will have more opportunities to choose the starting time t0.
–– For n  =  50, all results are better than those of Nearchou. As our algorithms, EDGA provides the same

results as those of Nearchou except for the case n  =  50, h  =  0.2, k  =  3, for which MEGA is better.
–– From n  ≥  100, Nearchou’s approach is more efficient than that of Feldmann when h  =  0.2 and h  =  0.4, and

the opposite when h  =  0.6 and h  =  0.8. However, the algorithm is EDGA in a uniform manner.

Table 1: MEGA Results Compared with Nearchou’s Average of Best Results.

Size, Instance   CPU Time   MEGA  Nearchou  Gap  Comments

n  =  10, h  =  0.2   459.5 ms   1674.4  1674.4  0 
n  =  10, h  =  0.4   462.6 ms   973.1  973.1  0 
n  =  10, h  =  0.6   475.7 ms   734.3  734.3  0 
n  =  10, h  =  0.8   483.1 ms   715.3  715.3  0  All optimal
n  =  20, h  =  0.2   1.592 s   6178.3  6178.3  0 
n  =  20, h  =  0.4   1.555 s   3635  3635  0 
n  =  20, h  =  0.6   1.582 s   2811.4  2811.4  0 
n  =  20, h  =  0.8   1.606 s   2724.8  2724.8  0  All optimal
n  =  50, h  =  0.2   8.821 s   35,492.7  35,496.1  –3.4  (2B)
n  =  50, h  =  0.4   8.474 s   20,432.5  20,432.8  –0.3  (1B)
n  =  50, h  =  0.6   8.872 s   15,896.5  15,898.9  –2.4  (1B)
n  =  50, h  =  0.8   8.969 s   15,847.2  15,847.2  0 
n  =  100, h  =  0.2  1.325 min   132,417.4  132,435.3  –17.9  (9B, 1E)
n  =  100, h  =  0.4  1.301 min   78,112.4  78121  –8.6  (4B, 2E, 4W)
n  =  100, h  =  0.6  1.409 min   64,935.1  64,933  2.1  (2B, 2E, 6W)
n  =  100, h  =  0.8  1.481 min   64,904  64,906.5  –2.5  (3B, 6E, 1W)
n  =  200, h  =  0.2  4.302 min   512,282.9  512,319.7  –36.8  (3B, 1E, 6W)
n  =  200, h  =  0.4  4.335 min   303,374.6  303,503.1  –128.5  (7B, 3W)
n  =  200, h  =  0.6  4.528 min   256,356.3  257,208.7  –852.4  (10B)
n  =  200, h  =  0.8  4.445 min   256,255.4  257,152  –896.6  (10B)

B, MEGA finds a new best solution; E, equal solution values; W, MEGA is worse than Nearchou’s.

Authenticated | hem_all@yahoo.fr author's copy
Download Date | 10/12/17 7:23 PM

542      H. Allaoua and B. Brahim: New Properties for Solving the Single-Machine Scheduling Problem with Early/Tardy Jobs

1,200,000

1,000,000

800,000

600,000

400,000

200,000

0

MEGA Nearchou

n
=

10
, h

=
0.

2
n

=
10

, h
=

0.
4

n
=

10
, h

=
0.

6
n

=
10

, h
=

0.
8

n
=

20
, h

=
0.

2
n

=
20

, h
=

0.
4

n
=

20
, h

=
0.

6
n

=
20

, h
=

0.
8

n
=

50
, h

=
0.

2
n

=
50

, h
=

0.
4

n
=

50
, h

=
0.

6
n

=
50

, h
=

0.
8

n
=

10
0,

 h
=

0.
2

n
=

10
0,

 h
=

0.
4

n
=

10
0,

 h
=

0.
6

n
=

10
0,

 h
=

0.
8

n
=

20
0,

 h
=

0.
2

n
=

20
0,

 h
=

0.
4

n
=

20
0,

 h
=

0.
6

n
=

20
0,

 h
=

0.
8

Figure 2: Graphical Representation of Results.

Table 2: Summary Results.

  Better  Equal  Worse

Number of instances  51  129  20
Percentages   25.5%  64.5%  10%

Number of instances

Better Equal Worster

Figure 3: Graphical Representation of Results.

7 Conclusion and Perspectives
In this paper, a new mathematically enhanced variant of GA was proposed for solving single-machine sched-
uling problems with the objective of minimizing the sum of earliness and tardiness penalty costs for the
deviation from a common due date. This type of problems are known and proofed as NP-hard. That is why an
approximate method such as GA is necessary to adopt. Two new properties for the problem were identified,
and their associated proofs were provided.

The already existing three properties might stay insufficient, because they only describe the optimal
sequence structure without giving any details about the beginning time of the optimal sequence.

It should be noted that these new properties allow confirming that the sequence may start at time zero or
be delayed to minimize the early/tardy penalties against the common due date. They also allow computing
exactly the starting time of the optimal sequence. The experimental results show that these properties have a
significant contribution in terms of solution quality and the time complexity of the approach. They are espe-
cially used to compute the beginning time of the optimal sequence. The results were compared to the best
ones of the literature in the field of combinatorial optimization.

As for future perspectives and based on the encouraging results, it is suggested to study the impact of
each property alone on the required computational effort and quality of solutions. Further, we will investigate

Authenticated | hem_all@yahoo.fr author's copy
Download Date | 10/12/17 7:23 PM

H. Allaoua and B. Brahim: New Properties for Solving the Single-Machine Scheduling Problem with Early/Tardy Jobs      543

the new proposed approach to solutions of other related scheduling programs like single-machine schedul-
ing with multiple due dates, as well as parallel machine scheduling problems.

Bibliography
[1]	 R. Alvarez-Valdes, E. Crespo, J. M. Tamarit and F. Villa, Minimizing weighted earliness-tardiness on a single machine with a

common due date using quadratic models, TOP 20 (2012), 754–767.
[2]	 A. Awasthi, J. Lassig and O. Kramer, Common due-date problem: exact polynomial algorithms for a given job sequence,

15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing. Data Structures and
Algorithms (cs.DS); Combinatorics (math.CO). Timisoara, Romania (2013).

[3]	 K. R. Baker and G. D. Scudder, Scheduling with earliness and tardiness penalties: a review, Eur. J. Oper. Res. 160 (2005),
190–201.

[4]	 K. R. Baker and G. D. Scudder, Minimizing earliness and tardiness costs in stochastic scheduling, Eur. J. Oper. Res. 236
(2013), 445–452.

[5]	 D. Biskup, Single-machine scheduling with learning considerations, Eur. J. Oper. Res. 115 (1999), 173–178.
[6]	 C. N. Cha, S. Lim and Y. K. Jeong, Single-machine job scheduling about a common due date with arbitrary earliness/tardi-

ness penalties using a genetic algorithm, Asia Pacific Management Review 7 (2002), 239–254.
[7]	 M. Feldman and D. Biskup, Benchmarks for scheduling on a single machine against restrictive and unrestrictive common

due dates, Comput. Ind. Eng. 28 (2001), 787–801.
[8]	 M. Feldman and D. Biskup, Single-machine scheduling for minimizing earliness and tardiness penalties by meat-heuristic

approaches, Comput. Ind. Eng. 44 (2003), 307–323.
[9]	 V. Gordon, J. M. Proth and C. Chu, Invited review: A survey of the state-of-the-art of common due date assignment and

scheduling research, Eur. J. Oper. Res. 139 (2002), 1–25.
[10]	 R. Hassin and M. Shani, Machine scheduling with earliness and tardiness and non-execution penalties, Comput. Ind. Eng.

32 (2005), 683–705.
[11]	 A. Hemmak and B. Bouderah, Hybrid algorithm for optimization problems applied to single machine scheduling, Int J.

Comput. Appl. 66 (2013), 7–11.
[12]	 A. Hemmak and B. Bouderah, Sieve algorithm – a new method for optimization problems, Int. J. Advance. Soft Comput.

Appl. 5 (2013), 1–15.
[13]	 A. Hemmak and B. Bouderah, A mono crossover genetic algorithm for TSP, Global J. Tech. 7 (2015), 109–115.
[14]	 A. Hemmak and I. H. Osman, Variable parameters lengths genetic algorithm for minimizing earliness-tardiness penalties of

single machine scheduling with a common due date, Electron. Notes Discrete Math. 36 (2010), 471–478.
[15]	 C. M. Hino, D. P. Ronconi and A. B. Mendes, Minimizing earliness and tardiness penalties in a single machine problem with

a common due date, Eur. J. Oper. Res. 160 (2005), 190–201.
[16]	 A. Jafarnejad, S. M. Abtahi and S. M. R. Davoodi, Optimizing the earliness and tardiness penalties in the single-machine

scheduling problems with focus on the just in time, Int. J. Acad. Res. Bus. Soc. Sci. 3 (2013), 315–322.
[17]	 J. Lassig, A. Awasthi and O. Kramer, Common due-date problem: linear algorithm for a given job sequence, in: 2014 IEEE

17th International Conference on Computational Science and Engineering, University of Electronic Science and Technology
of China, 2014.

[18]	 C. J. Liao and C. C. Cheng, A variable neighborhood search for minimizing single machine weighted earliness and tardiness
with common due date, Comput. Ind. Eng. 52 (2007), 404–413.

[19]	 S. W. Lin, S. Y. Chou and K. C. Ying, A sequential exchange approach for minimizing earliness-tardiness penalties of single
machine scheduling with a common due date, Eur. J. Oper. Res. 177 (2007), 1294–1301.

[20]	 A. C. Nearchou, A differential evolution approach for the common due date early/tardy job scheduling problem, Comput.
Oper. Res. 35 (2008), 1329–1343.

[21]	 Z. Ning, C. Tao and L. Fei, A hybrid heuristic algorithm for the intelligent transportation scheduling problem of the BRT
system, J. Intell. Syst. 24 (2015), 437–448.

[22]	 D. P. Ronconi and M. S. Kawamura, The single machine earliness and tardiness scheduling problem: lower bounds and a
branch-and-bound algorithm, Comput. Appl. Math. 29 (2010), 107–124.

[23]	 M. Shahriari, N. Shoja, A. E. Zade, S. Barak and M. Sharifi, JIT single machine scheduling problem with periodic preventive
maintenance, J. Ind. Eng. Int. (2016), 1–12.

[24]	 T. Vallée and M. Yiltizogli, Présentation des algorithmes génétiques et leurs applications en économie, Mai 5 (2004),
Rapport technique.

[25]	 K. C. Ying, Minimizing earliness-tardiness penalties for common due date single-machine scheduling problems by a recov-
ering beam search algorithm, Comput. Ind. Eng. 55 (2008), 494–502.

Authenticated | hem_all@yahoo.fr author's copy
Download Date | 10/12/17 7:23 PM

