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Abstract 

    This paper presents a combination of Genetic Algorithm (GA) with 
Dynamic Programming (DP) to solve the well-known Travelling 
Salesman Problem (TSP). In this work, DP is integrated as a GA 
operator with a certain probability. In specific, at a given GA 
generation, the individuals are subdivided into a number of equal 
segments of genes, and the shortest path on each segment is obtained 
by applying a DP algorithm. Since the computational complexity of 
the DP is O (k22k), it becomes of O(1) when k is small. Experimental 
analyses are conducted to investigate the impact and trade-offs among 
DP probability, segment size and time processing on the solution 
quality and computational effort. In addition, we will implement a 
basic GA approach to compare results and show the contribution of 
combination of combination approach. Experimental results on 
benchmark instances showed that the combined GA-DP algorithm 
reduces significantly the computational effort, produces a clearly 
improved solution quality and avoids early premature convergence of 
GA. 

Keywords: Combinatorial Optimization, Dynamic Programming, Evolutionary 
Computing, Genetic Algorithm, Traveling Salesman Problem. 

1 Introduction 

It is clear that hybridizing methods to solve many cases of  NP-Hard problems 

becomes a metaheuristics alone. Since the near aspect of metaheuristics, 

hybridizing exact method as DP with meta heuristic as GA give certainly good 

results that hybridizing just meta heuristics between each other, despite the time 

cost inducted by using exponential complexity method as DP. In the other hand, the 
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use of a model of NP-Hard problem such as TSP still necessary to show the 

efficiency of the proposed approach. Traveling Salesman Problem (TSP) is a well-

known NP-hard problem. Many algorithms were developed to solve this problem 

and gave the nearly optimal solutions within reasonable time. This paper presents a 

combination Genetic Algorithm (GA) with Dynamic Programming (DP) for 

solving TSP on 10 Euclidean instances derived from TSP-lib. Experimental results 

are reported to show the efficiency of the experimented algorithm comparing to, on 

one hand to basic GA results, and, in other hand, to the existing results. In this 

paper, we present a combination of GA with DP (called GA-DP) for solving this 

problem. In GA-DP, DP is used as genetic operator as crossover and mutation. 

Therefore, in each generation, according a specific probability PDP, each solution is 

subdivided on equal segments of size k, (we will take k=10; 15; 20 and PDP = 0.5, 

0.6, 0.7, 0.8). For each segment, DP is applied to compute the shortest path for this 

segment. We experiment this approach on 10 Euclidean instances derived from 

TSP-lib [22] and compare the result with basic GA. Because of the stochastic aspect 

of GA, for each TSP instance, both GA-DP and basic GA are applied for five times 

and average values are reported on result tables. 

Our motivation emanate from that traveling salesman problem is an important 

problem in computing fields and has many applications in the real-world such as 

scheduling, vehicle routing, economic models, VLSI layout design… The problem 

was first formulated in 1930 and became one of the most intensively studied 

problems in optimization. Until now, researchers have obtained many significant 

results for this problem. 

The next section introduces the literature of the hybridizing Genetic Algorithms 

with Dynamic Programming for Solving TSP. In section III, we propose basic GA 

approach. Section VI presents the combination GA-DP approach for solving TSP. 

The details of our experiments and the computational and comparative results are 

given in section V. The paper concludes with section VI with some discussions on 

the future perspectives of this work. 

2 Literature 

TSP is stated as following: Let 1, 2, …, n be the labels of the n cities and C = [ci,j] 

be an n x n cost matrix where ci,j denotes the cost of traveling from city i to city j. 

TSP is the problem of finding the n-city closed tour having the minimum cost such 

that each city is visited exactly once. The total cost A of a tour is: 

A(n)=  ∑ 𝑐𝑖,𝑖+1 +𝑛−1
𝑖=1 𝑐1,𝑛       (1) 

TSP is formulated as finding a permutation of n cities, which has the minimum cost. 

This problem is known to be NP-hard [2, 4, 5]. Many algorithms have been 

proposed to solve this problem [2, 3, 4, 5, 7, 10, 11, 12, 14, 15, 17]. There are two 

main approaches for solving TSP: exact and approximate. 



 

 

 

 

 

33                                                             Combination Of Genetic Algorithm with 

Exact approaches are usually based on Dynamic Programming, Branch and Bound, 

Integer Linear Programming…and all gave the optimal solutions for TSP. 

However, the algorithms basing on these approaches have exponential running time 

as M. Held and R. M. Karp [1] pointed out Dynamic Programming takes O(n2.2n) 

running time. Hence, they can only solve TSP with small number of the vertices as 

algorithms using branch and bound method are only able to give solutions for 40 – 

60 cities sets and ones using linear programming solve with maximum for 200 cities 

sets. 

In an attempt to solve larger instances, especially in such the NP-hard problem, 

researchers have concerned approximation approaches in recent years. Many 

approximation approaches were proposed for solving TSP such as 2- opt, 3-opt [2], 

simulated annealing [3], tabu search [4,28]; nature based optimization algorithms 

and population based optimization algorithms: genetic algorithm [16, 19, 20], 

evolutionary computation [5], neural networks [6], DNA computing [9]; swarm 

optimization algorithms: ant colony optimization [7], bee colony optimization [8]. 

The algorithms basing on these approaches can solve large instances and give 

approximate solutions near to the optimal solution within reasonable time [26,27]. 

In addition to above original approximation approaches, there is a different one 

combining basic heuristic methods called meta-heuristics. In [18], the authors 

applied local search heuristics to GA for solving TSP. The local search method they 

used is 2-opt. They presented three crossover operators (PMX, OX, POS) and two 

mutation operators (IVM, EM), then combine 2-opt with one pair of crossover and 

mutation operator in turn. After experimenting their algorithms on kroA100, 

kroB100 and kroC100 instances, they found that the combination of two genetic 

operators (IVM and POS) with 2-opt gave better solutions than the others did for 

solving TSP problem. They also implemented this combination but with 3-opt 

instead of 2-opt and came to the conclusion that the combination with 3-opt gave 

better solutions but converged to global optimum in more time.  

Also using local search, Bernd Freisleben et al. proposed Genetic Local Search 

(GLS) for the TSP [20]. Their algorithm used the idea of hill climber to develop 

local search in GA. Their experiment showed that GLS is more effective in terms 

of not only running time, but also cost than ones in [21]. Besides exact and 

approximate approaches, a different one that is the combination of these two 

approaches, in which the combination GA with DP is most popular and it will be 

introduced in the next section. 

3 Basic GA presentation 

Genetic algorithms, introduced by J. Holland (1975), are inspired from the Darwin 

evolution theory: in the population evolution, the best individuals, which are more 

adapted to their environment, can outlive for a long time, on the on other hand, the 

individuals, which are not fits to their environment, disappear with the passage of 
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generations. Therefore, its chromosome and an appropriate fitness function to be 

defined to evaluate individuals code each individual. Firstly, GA consists to 

randomly generate initial population, then, genetic operators (selection, crossover, 

mutation), within specified probabilities, are applied to produce a new generation 

that considered best than its previous. This process must be iterative for a great 

number of generations as shown as follow: 

Begin 

      Initialization; 

     Evaluation; 

     Repeat  

           Selection; 

          Crossover; 

          Mutation; 

          Evaluation; 

     Until (Criteria Stopping); 

End. 

However, the individuals encoding, fitness function, selection method, probability 

crossover, probability mutation and criteria stopping depend of the treated problem. 

These are the GA parameters. So they must be carefully chosen, because they can 

considerably affect the solution quality and the rate of GA convergence. Good 

choice of these parameters often avoids premature convergence of GA. 

4 Proposed approach GA-DP 

As we have reported in the literature above, there are many ways for hybridizing 

GA with DP. In our case, we integrate DP as a GA operator with specific probability 

PDP. Exactly like crossover and mutation operators. This new phase will be added 

just before evaluation phase as follow: 

Begin 

      Initialization; 

     Evaluation; 

     Repeat  

           Selection; 

          Crossover; 
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          Mutation; 

          Apply_DP; 

          Evaluation; 

     Until (Criteria Stopping); 

End. 

However, the essential of our work consists to subdivide the individual on equal 

segments sized k (k {5,10,15,20}) and applying DP to compute the shortest path 

of each segment. General algorithm of this step will be as follow: 

Algorithm Apply_DP (integer i; PDP) 

Begin 

    Generate a probability P i; 

    If (Pi ≤ PDP) For (each segment S of individual i) Compute_shortest_path(S); 

End. 

The DP algorithm (Compute_shortest_path(S)) consists to run through the current 

generation.  For each individual i, we generate a probability Pi. If Pi ≤ PDP, the 

following process is applied. 

For a subset of k cities (k=5,10, 15 or 20) S ⊆ {1,2,...,n}, S= {i1,,...,ik} that includes 

i1, and j∈S, let C(S,j) be the length of the shortest path visiting each node in S 

exactly once, starting at i1 and ending at j. 

When |S| > 1, we define C(S, 1) = ∞ since the path cannot both start and end at i1. 

Now, let’s express C(S,j) in terms of smaller sub-problems (Bellman principle). We 

need to start at i1 and end at j; what should we pick as the second-to-last city? It has 

to be some i ∈ S, so the overall path length is the distance from i1 to i, namely, 

C(S−{j}, i), plus the length of the final edge, di,j. We must pick the best such i: 

C(S,J) = min
𝑖∈𝑆−{𝐽}

𝐶(𝑆 − {𝑗}, 𝑖) + 𝑑𝑖;𝑗  (Bellman principle) 

The sub-problems are ordered by |S|. Here is the code : 

C({i1},i1) = 0 

for m = 2 to k: 

    for all subsets S ⊆ {1,2,...,k} of size m and containing i1:  

        C(S,i1) = ∞ 

        for all jS, j≠i1: C(S, j) = 𝑚𝑖𝑛
𝑖∈𝑆−{𝐽}

𝐶(𝑆 − {𝑗}, 𝑖) + 𝑑𝑖;𝑗 : 𝑖𝑆 , 𝑖 ≠ 𝑗}   

return  permutation(S) having  𝑚𝑖𝑛
𝑖

𝐶({𝑖1, … , 𝑘}, 𝑗}) 



 

 

 

 

 

Hemmak Allaoua                                                                                                   36                                                       

There are at most k.2k  sub-problems, and each one takes linear time to solve. The 

total running time is therefore  O(k22k). . 

5 Computational results and comments 

5.1 Instances 

The results are reported for the symmetric TSP by extracting benchmark 

instances from the TSP-lib [22]. The instances chosen for our experiments are:  

eil51.tsp, eil76.tsp, eil101, kroA100, kroA150, kroA200,  lin318,  rat575,  rat783,  

pr1002. Their weights are Euclidean distance in 2-D. 

5.2 System configuration 

In the experiment, the system was run 10 times for each problem instance. All the 

programs were run on a machine with Intel i3 2.3 GHz, 4 GB RAM, and were 

installed by C# language. 

5.3 Implementation setting 

In order to evaluate GA-DP approach, compare it with basic GA and use TSP-Lib, 

according the well-known GA parameters values and our own results obtained for 

other problems, we have opted for the following configuration: 

Input:  

 Let n the size of the TSP instance, the number of cities. According the 

instances chosen below, according to chosen TSP instances, we have : 

 n {51,76,100, 101, 150, 200 , 318 , 575 , 783 , 1002}. 

Parameters:  

 Population Initialization in GA: by uniform law. 

 Population size (number of individuals in each generation) = 10000 log n. 

 Number of generations (iterations in GA) =50000 log n. (criteria stopping). 

 Selection operator in GA: by fortune wheel method. 

 Crossover probability, pc=0.8. 

 Mutation probability, pm=0.03. 

 Fitness function(i) = 1-Obj(i)/Obj(i) 

Variables: 

 Size of segment in GA-DP, k  {5,10,15, 20}. 

 DP probability PDP, PDP { 0.5 , 0.6 , 0.7, 0.8}. 
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Output:  

 Opt.= optimal solution provided by TSP-LIB. 

 Sol.= near solution obtained by our approaches (GA or GA-DP). 

 T CPU = average of times processing in second for 10 runs of each TSP 

instance. 

 Ratio of Performance to Deviation = RPD = {(Sol − Opt)/Opt} ∗ 100. 

5.4 Experimental results 

In the first step, we show in table 1 below, sample example of using DP to find 

shortest path of set S with smaller size k: 

Table 1: Processing time of DP algorithm with smaller size. 

k 5 10 15 20 

CPU time (s) 0.12 0.020 0.641 21.748 

This table shows clearly that DP is an exponential algorithm but it is O(1) for 

smaller size. When used in GA as operator that will add in worst case:  

Number of generations * number of genes*k22k = k22k (n2 log2n) elementary 

operations.                                  

This proves that when integrating DP in GA as operator, the hybrid approach 

obtained still polynomial as GA despite of its cost in time processing. 

In the second step, we show in table 2, the results obtained by basic GA using 

parameters described above;  

Table 2: Results of basic GA. 
Instance Opt. Sol. RPD         T. cpu 

eil51 426 451 5.87 40.54 

eil76 538 574 6.69 66.52 

eil101 629 660 4.93 94.02 

kroA100 21282 36345 70.78 88.58 

kroA150 26524 42615 60.67 140.8 

kroA200 29368 51541 75.50 179.05 

lin318 42029 73202 74.17 345.29 

rat575 6773 20798 207.07 944.6 

rat783 8806 24862 182.33 1190.3 

pr1002 259045 856431 230.61 1446 

This table shows clearly that, when n is bigger, RDP becomes larger. These results 

will be later compared to both the best and worst cases of hybrid approach GA-DP. 

The third step consists to look for the impact of k (segment size) on solution quality 

and time processing in GA-DP approach (Tables 3 to 5):  
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Table 3: Results of GA-DP approach for k=5. 
  PDP=0.6 PDP=0.7 PDP=0.8 

instance Opt. Sol. RPD T. cpu Sol. RPD T. cpu Sol. RPD T. cpu 

eil51 426 449 5.40 53.55 449 5.40 54.33 442 3.76 55.11 

eil76 538 569 42.94 95.40 568 5.58 97.13 544 1.12 98.87 

eil101 629 654 3.97 145.03 652 3.66 148.09 641 1.91 151.15 

kroA100 21282 34201 60.70 138.58 33547 57.63 141.58 33129 55.67 144.58 

kroA150 26524 39650 49.49 253.30 39186 47.74 260.05 36775 38.65 266.80 

kroA200 29368 49021 66.92 379.05 48857 66.36 391.05 47360 61.26 403.05 

lin318 42029 57005 35.63 850.91 52491 24.89 881.25 53087 26.31 911.58 

rat575 6773 15128 123.36 2597.73 15005 121.54 2696.91 15018 121.73 2796.10 

rat783 8806 14200 61.25 4255.75 14100 60.12 4439.67 13825 57.00 4623.60 

pr1002 259045 589681 127.64 6466.02 541806 109.16 6767.22 487365 88.14 7068.42 

 

Table 4: Results of GA-DP approach for k=10. 
  PDP=0.6 PDP=0.7 PDP=0.8 

instance Opt. Sol. RPD T. cpu Sol. RPD T. cpu Sol. RPD T. cpu 

eil51 426 443 3.99 79.56 441 3.52 81.12 438 2.82 81.90 

eil76 538 551 2.42 153.16 552 2.60 156.63 544 1.12 158.36 

eil101 629 645 2.54 247.04 645 2.54 253.16 641 1.91 256.22 

kroA100 21282 34167 60.54 238.58 33594 57.85 244.58 32518 52.80 247.58 

kroA150 26524 37508 41.41 478.30 36843 38.90 491.80 36408 37.26 498.55 

kroA200 29368 47891 63.07 779.05 47210 60.75 803.05 46337 57.78 815.05 

lin318 42029 55843 32.87 1862.15 53008 26.12 1922.82 52994 26.09 1953.16 

rat575 6773 14120 108.47 5903.98 13975 106.33 6102.35 13412 98.02 6201.54 

rat783 8806 13914 58.01 10386.64 14250 61.82 10754.49 12807 45.43 10938.42 

pr1002 259045 550890 112.66 16506.06 528045 103.84 17108.46 467290 80.39 17409.66 

 

Table 5: Results of GA-DP approach for k=20. 

 

Results reported in these tables show that GA-DP becomes more efficient for 

biggest TSP instances size. On the other hand, when k increase, near solution is 

better but processing time becomes more important. Also, the same remark when 

PDP increase. The next step consists to show what is the best configuration in term 

  PDP=0.6 PDP=0.7 PDP=0.8 

instance Opt. Sol. RPD T. cpu Sol. RPD T. cpu Sol. RPD T. cpu 

eil51 426 439 3.05 92.56 436 2.35 94.12 433 1.64 94.90 

eil76 538 551 2.42 182.04 548 1.86 185.51 548 1.86 187.24 

eil101 629 645 2.54 298.04 646 2.70 304.16 639 1.59 307.22 

kroA100 21282 32837 54.29 288.58 30856 44.99 294.58 30890 45.15 297.58 

kroA150 26524 38652 45.72 590.80 34278 29.23 604.30 33081 24.72 611.05 

kroA200 29368 42673 45.30 979.05 41941 42.81 1003.05 41150 40.12 1015.05 

lin318 42029 50558 20.29 2367.77 48792 16.09 2428.44 45552 8.38 2458.78 

rat575 6773 12590 85.89 7557.10 11780 73.93 7755.48 11499 69.78 7854.66 

rat783 8806 13666 55.19 13452.08 13251 50.48 13819.93 12074 37.11 14003.86 

pr1002 259045 511211 97.34 21526.08 499802 92.94 22128.48 451007 74.10 22429.68 
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of two components (k,PDP). To find the best combination of these parameters, we 

will choose three instances from the above ten instances used in our work, and then 

we build the curves that represent solution and time processing in function of the 

couple (k,PDP)  (fig. 1 to 6). 

 

 
Fig.1: Representation of near solution depending on (k, PDP) for eil51. 

 

 

 
Fig.2: Representation of processing time depending on (k, PDP) for eil51. 

 

 

 
Fig.3: Representation of near solution depending on (k, PDP) for kroA100. 
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Fig.4: Representation of processing time depending on (k, PDP) for kroA100. 

 

 
 

Fig.5: Representation of near solution depending on (k, PDP) for rat575. 

 

 
 

Fig.6: Representation of near solution depending on (k, PDP) for rat575. 
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compromise of segment size and DP probability that realize acceptable results in 

terms of solution quality and time processing. 

In the last step of our comparative study, we will dress the curves (figure 7) of near 

solutions of both basic GA and case of GA-DP depending on 10 TSP instances 

treated in this work. That to compare GA-DP with DP approaches efficiency. 

 
 

Fig.7: Representation of near solution depending on TSP instances for basic GA 

and best GA-DP. 

This curve shows that for instances with biggest size, the gap between GA and GA-

DP becomes more significant, certainly that has a significant cost in term of time 

but it still polynomial. For smaller instances with smaller size, this gap becomes 

weaker. 

6 Conclusion and perspectives 

In this work, we have treated a variant of hybridizing genetic algorithm with 

dynamic programming. We have chosen TSP since its significance in optimization 

field in many situations where it can be used as a model to solve NP-Hard 

optimization problems. In our approach, DP is integrated as a phase in the genetic 

algorithm process with studied probability called PDP exactly like other genetic 

operators such as selection, crossover, and mutation. Therefore, when this phase is 

applied on an assumed generation, each chromosome is subdivided on a great 

number of segments of size k, which was studied here. Since the exponential 

complexity of DP, only small sizes of k are tested, that keep the hybrid approach in 

polynomial class. Each segment is ordered by DP algorithm just before evaluation 

phase of GA. According the results shown above we note that: 

- Integrating DP improve considerably the quality solution, in contrast it has an 

impact on the processing time compared to basic GA. 

- The adjustment of both size of segment k and DP probability can clearly 

converge to good compromise between solution quality and time processing. 
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- In general, cases, hybridizing exact method with metaheuristic give certainly 

best results than hybridizing only metaheuristics. 

In other hand, according the cases treated here and the tests achieved, we propose 

the following perspectives: 

- The proposed approach can be used on other NP-Hard problems of operational 

research as scheduling, linear programming, transport problems; it could give 

good results better than existing metaheuristics. 

- The fast evolution of computer power will allow treating biggest sizes of 

segment that could open new horizons of this kind of hybridization. 

- The introduction of scaling and sharing operations in GA will clearly improve 

the GA efficiency despite their impact against time processing o GA. 

Finally, we conclude that, by the present work,  we have tried to provide a modest 

contribution in the field of hybridization of exact method with meta heuristic as GA 

and DP to seek for the best configuration that give better than using only meta 

heuristic. We consider that the technology evolution will favorite hybridizing 

approach as alternative to metaheuristics in optimization problems. We aimed to 

provide a new tool at the disposal of researchers in the field that could participate 

to improve their work results. 
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