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Abstract
The asymmetric encryption methods are based on difficult problems in mathematics. 

Let G be a group, A group word in G on a set G of generators is a string 1 2

1 2
...

n

n
i i i

mm mg g g  where 
, , { 1,1},1 .

ki in k ng mÎ ÎG Î - £ £
The word problem in a group G with respect to a subset G is the question of telling 

whether two words in G are equal. It is known that in general the word problem is 
undecidable, meaning that there is no algorithm to solve it.

In this paper, we introduce a cryptosystem based on the word problem in a group G.

Subject Classification:  (2010) 68Q42, 20M05.

Keywords: Group, Word in a group, Word problem in a group, Public key cryptography.

1.  Introduction

The creation of public key cryptography by Diffie and Hellman in 
1976 and the subsequent invention of the RSA public key cryptosystem 
by Rivest, Shamir and Adleman in 1978 are watershed events in the long 
history of secret communications. Public key cryptography draws on many 
areas of mathematics, including number theory[13], abstract algebra, and 
information theory.

A secure public key cryptosystem requires a mathematical operation 
which is easy to compute (encryption) but computationally difficult to 
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reverse (decreption) in a realistic time without knowing a special secret 
information, called the trapdoor, which is the private key[7].

Recall that if G is a group and X ¹ Æ  a subset of G,

1
1( ) = { ... : , {1, 1}}n

n i igp X x x x Xee
eÎ Î -  

If 1
1 ... n

nx xee  and 1
1 ... m

my ymm  are two words with ,i ix y XÎ  and 
, {1, 1},i ie m Î -  then they are said to be identytical if = , =i in m x y  and 
=i ie m  for = 1, ..., .i m

The word problem in a group G with respect to a subset 1= { , ..., }nS s s  
is the question of telling whether two words in S are equal. It is known 
that in general the word problem is undecidable, meaning that there is no 
algorithm to solve it.

The remainder of this paper is organized as follows. In Section 
2, we begin with some elementary material concerning of group and 
word problem in a group. In Section 3, we investigate the public-key 
cryptosystem based on The word problem in a group. Finally, we draw 
our conclusions in Section 4.

2.  Preliminaries

A group G is an ordered pair ( , )G ×  consisting of a non-empty set G 
together with a binary operation " "×  defined on G suth that:

(i) If ,x y  and z in G, then ( ) = ( );xy z x yz
(ii) There exists an element 1G in G such that, for all ,x GÎ  1 = 1 = ;G Gx x x
(iii) For each x in G, there exists x–1 in G such that 1 1= = 1 .Gx x xx- -

A subset H of a group G is a subgroup of G, if and only if H ¹ Æ  and 
for all x, y in H, xy in H H  and x–1 in H. The subgroup H of a group G is 
denoted by .H G£

If a and b are any two elements of G, we have that 
1 1 1 1( )( ) = = 1,ab b a abb a- - - -  whence, by the uniqueness of the inverse, 

1 1 1( ) = .ab b a- - -

In a finite group of order m there are m2 such products, which may be 
conveniently listed in a m × m multiplication table, as was first suggested 
by A. Cayley [6].

For a fixed set of elements 1= { , ..., }nS s s  in group G, a word in S is 
any expression of the sort 1 2

1 2
... n

n

kk k
i i is s s  where the exponents kj are positive 
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or negative integers, and 
1
, ..., .

ni is s SÎ  For example, 3 5
1 2 1 2s s s s-  is a word in 

1 2,s s  and their inverses.
The set S generates G if every element of G is expressible as a word in 

the elements of S and their inverses.
Fix a group G and a set S of generators 1 , ..., ns s  for G. For an 

element ,w GÎ  choose an expression of w in terms of the si’s that is 
as possible 1 2

1 2
= ... ,n

n

kk k
i i iw s s s  that is, we choose such an expression with 

minimal 1 2 ... .nk k k+ + +  Then the length of w (with respect to S) is 

1 2( ) = ... .nl w k k k+ + +

Public key cryptography (or asymmetric cryptography) has been the 
most significant and striking development in the history of cryptography. 
This revolutionary concept has been introduced in the famous paper 
“New Directions in Cryptography” [3]. Public Key cryptography, was 
invented by Diffie And Hellman more than forty years ago. In Public Key 
cryptography, a user U has a pair of related keys (pK, sK): the key pK is 
public and should be available to everyone, while the key sK must be kept 
secret by U. The fact that sK is kept secret by a single entity creates an 
asymmetry, hence the name asymmetric cryptography.

3.  Results

In the following proposition we present the public-key cryptosystem 
based on the word problem in a group.

Proposition 1 
Public-Key (pK)

 
: a group G and two lists 1= { , ..., },A mS a a  

1= { , ..., }B nS b b  of elements of G. 
Alice : choose a secret word ,= pr Aa k  in SA where 

1
, 1= = ... ,m

pr A ma k a aee
 for all 1 , , = 1i A ii m a S e£ £ Î  or = 1.ie -  

Alice transmits to Bob the list 1 1
1{ , ..., }.nab a ab a- -

Bob: choose a secret word ,= pr Bb k  in SB where 

1
, 1= = ... ,n

pr B nb k b bmm  for all 1 , , = 1i B ii n b S m£ £ Î  or = 1.im -  

Bob transmits to Alice the list 1 1
1{ , ..., }.mba b ba b- -

Encryption: to encrypt ,m GÎ  Alice compute 
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1 1 11 1
1 1= ( ) ( ) ...( ) .m m

m mc a ba b ba b ba b me e e- - -- - --
-

Decryption: upon receipt c, Bob compute 

1 11 1 1
1 1( ) ( ) ...( ) = .n n

n nb ab a ab a ab a c mm m m-- - -- - -
-  

Proof : Let 2 1,i m£ £ -  we compute 11 1
1( ) ( ) ,i i

i iba b ba be e+- -- -
+  there is only 

four cases to be considered.

· 	� If 1 = 1, = 1,i ie e+  then 11 1
1( ) ( )i i

i iba b ba be e+- -- -
+  

	  
1 1 1 1 1 1 1

1 1= ( ) ( ) = .i i i iba b ba b ba a b- - - - - - -
+ +

· 	 If 1 = 1, = 1,i ie e+ -  then 1 1 1 1 1 1 1 11
1 1 1( ) ( ) = ( ) ( ) = .i i

i i i i i iba b ba b ba b ba b ba a be e- -- - - - - - -+
+ + +

	
1 1 1 1 1 1 1 11

1 1 1( ) ( ) = ( ) ( ) = .i i
i i i i i iba b ba b ba b ba b ba a be e- -- - - - - - -+
+ + +

· 	 If 1 = 1, = 1,i ie e+ -  then 1 1 1 1 1 1 1 11
1 1 1( ) ( ) = ( ) ( ) = .i i

i i i i i iba b ba b ba b ba b ba a be e- -- - - - - - -+
+ + + 

	
1 1 1 1 1 1 1 11

1 1 1( ) ( ) = ( ) ( ) = .i i
i i i i i iba b ba b ba b ba b ba a be e- -- - - - - - -+
+ + +

· 	 If 1 = 1, = 1,i ie e+ - -  then 1 1 1 1 1 1 11
1 1 1( ) ( ) = ( ) ( ) = .i i

i i i i i iba b ba b ba b ba b ba a be e- -- - - - -+
+ + +

	
1 1 1 1 1 1 11

1 1 1( ) ( ) = ( ) ( ) = .i i
i i i i i iba b ba b ba b ba b ba a be e- -- - - - -+
+ + +

We have 

1 1 1 1 11 1
1 1= ( ) ( ) ...( ) = ( ) .m m

m mc a ba b ba b ba b m aba b me e e- - -- - - - --
-

A similar argument shows that
Let 2 1,i n£ £ -  we compute 1 11

1( ) ( ) ,i i
i iab a ab am m- -- -+
+  there is only 

four cases to be considered.
· 	 If 1 = 1, = 1,i im m+  then 1 1 1 1 1 1 1 1 11

1 1 1( ) ( ) = ( ) ( ) = .i i
i i i i i iab a ab a ab a ab a ab b am m- -- - - - - - - - -+
+ + +

	
1 1 1 1 1 1 1 1 11

1 1 1( ) ( ) = ( ) ( ) = .i i
i i i i i iab a ab a ab a ab a ab b am m- -- - - - - - - - -+
+ + +

· 	 If 1 = 1, = 1,i im m+ -  then 11 1 1 1 1 1 1 1
1 1 1( ) ( ) = ( ) ( ) = .i i

i i i i i iab a ab a ab a ab a ab b am m+- -- - - - - - -
+ + +

	
11 1 1 1 1 1 1 1

1 1 1( ) ( ) = ( ) ( ) = .i i
i i i i i iab a ab a ab a ab a ab b am m+- -- - - - - - -
+ + +

· 	 If 1 = 1, = 1,i im m+ -  then 11 1 1 1 1 1 1 1
1 1 1( ) ( ) = ( ) ( ) = .i i

i i i i i iab a ab a ab a ab a ab b am m+- -- - - - - - -
+ + +

	
11 1 1 1 1 1 1 1

1 1 1( ) ( ) = ( ) ( ) = .i i
i i i i i iab a ab a ab a ab a ab b am m+- -- - - - - - -
+ + +

· 	 If 1 = 1, = 1,i im m+ - -  then 11 1 1 1 1 1 1
1 1 1( ) ( ) = ( ) ( ) = .i i

i i i i i iab a ab a ab a ab a ab b am m+- -- - - - -
+ + +

	
11 1 1 1 1 1 1

1 1 1( ) ( ) = ( ) ( ) = .i i
i i i i i iab a ab a ab a ab a ab b am m+- -- - - - -
+ + +
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We have 1 11 1 1 1 1 1 1 1 1
1 1( ) ( ) ...( ) = = ( ) = .n n

n nb ab a ab a ab a c bab a c bab a aba b m mm m m-- - -- - - - - - - - -
-

1 11 1 1 1 1 1 1 1 1
1 1( ) ( ) ...( ) = = ( ) = .n n

n nb ab a ab a ab a c bab a c bab a aba b m mm m m-- - -- - - - - - - - -
-  							                   

Example 2 : Let 2 2= ({1, , , , , }, )G x x y xy x y ×  The Cayley table of 
2 2= ({1, , , , , }, )G x x y xy x y ×  is defined as follows 

(see Table 1): 
.  1 x x2 y xy x2y 
 1 1 x x2 y xy x2y
x x x2 1 xy x2y y
x2 x2  1 x x2y y xy
y y x2y xy 1 x2 x
xy xy y x2y x 1 x2

x2y x2y xy y x2 x 1
 

Public-Key (pK)
 
: a group 2 2= ({1, , , , , }, )G x x y xy x y ×  and two lists 

2= { , , },AS x x y  2= { , }BS xy x y  of elements of G. 
Alice : choose a secret word ,= pr Aa k  in SA where 1 2 1 2 2

,= = = = .pr Aa k x x y x x y xy- -

 1 2 1 2 2
,= = = = .pr Aa k x x y x x y xy- -  

Alice transmits to Bob the list 1 2 1{( )( )( ) , ( )( )( ) } = { , }.xy xy xy xy x y xy xy y- -

Bob : choose a secret word ,= pr Bb k  in SB where 2 1 2 2
,= = ( )( ) = ( )( ) = .pr Bb k xy x y xy x y x-

 2 1 2 2
,= = ( )( ) = ( )( ) = .pr Bb k xy x y xy x y x-

Bob transmits to Alice the list 
2 2 1 2 2 2 1 2 2 1 2{( )( )( ) , ( )( )( ) , ( )( )( ) } = { , , }.x x x x x x x y x x x xy- - -

Encryption: to encrypt ,y GÎ  Alice compute 
2 1 2= ( )( ) ( ) = .c xy xy x x y x y-

Decryption: upon receipt c Bob compute 

2 1 2 1 2 3( )( ) = ( )( ) = = .x y xy c x y xy x y x y y- -  

4.  Conclusion

In this work, based on the hardness of the word problem in a group, 
we investigate the public key cryptosystem.
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