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Abstract

In this work we study the existence and regularity of the solutions of unilateral problems


u ≥ 0, a.e.inΩ,

〈Au,u − v〉 ≤ ∫
Ω f (u − v),

∀v ∈ H 1
0 (Ω), v ≥ 0, a.e.in Ω,

(1)

Here Ω is a bounded, open subset of RN , with N > 2, and Au = −di v(a(x,u)Du) with a(x, s) :

Ω×R→R is a Carathéodory function, satisfying the following conditions:

α

(1+|s|)θ ≤ a(x, s) ≤β. (2)

for some real number θ such that.

0 ≤ θ < 1 (3)

for almost every x ∈ Ω, for every s ∈ R, where α and β are positive constants. The objective of

this contribution is to study the existence and regularity of the solutions of unilateral problems (1)

associated to A under assumptions (2)-(3) and with data f belonging to various Lebesgue space

Lm(Ω) , for some m > 1.

Key words: Unilateral Problems, Degenerate Coercivity, Existence, Regularity.

iv



�
	

jÊ�Ó

I.
	
KAm.

Ì'@
�
éK
XAg



B@ É



KA�ÖÏ @ ÈñÊg ÐA

	
¢

�
J
	
K @



ð Xñk. ð �PY
	
K ÉÒªË@ @

	
Yë ú




	
¯

u ≥ 0, a.e.i n Ω,

〈Au,u − v〉 ≤ ∫
Ω f (u − v),

∀v ∈ H 1
0 (Ω), v ≥ 0, a.e.i n Ω,

(4)

ð Au =−di v(a(x,u)Du) ð , N > 2 ©Ó RN 	áÓ hñ
�
J
	
®Ó ù






K 	Qk. ÈAm.

× Ω A
	
Jë

: ú


ÍA

�
JË @  Qå

�
�Ë @

�
�J


�
®m�

�
' ©Ó , Carathéodory

�
éË @X ù



ë a(x, s) :Ω×R→R

α

(1+|s|)θ ≤ a(x, s) ≤β.

θ ù



�
®J


�
®mÌ'@ XYªË

�
éJ.�

	
�ËAK.

0 ≤ θ < 1.

ÉÒªË@ è
	
Yë 	áÓ

	
¬YêË@ .

	á�
J.k. ñÓ
	á�


�
JK. A

�
K β ð α É

�
JÖß


�
IJ
k , s ∈R É¾Ëð , x ∈Ω É¾Ë

(1) I.
	
KAm.

Ì'@
�
éK
XAg



B@ É



KA�ÖÏ @ ÈñÊmÌ ÐA

	
¢

�
J
	
KB



@ ð Xñk. ñË@
�
é�@PX ñë

. m > 1 �
IJ
k , Lm 	

©J
K. ñË ZA
	

�
	
¯ úÍ@ ù



Ò
�
J
	
�
�
K f ©Óð (3) - (2) �

HAJ

	

�Q
	
®ËAK.

�
é¢J.

�
KQÖÏ @

�
éK
Qê

�
®Ë @ , éÓA

	
¢

�
J
	
K @



ð ÉmÌ'@ Xñk. ð , I.
	
KAm.

Ì'@
�
éK
XAg



B@ É



KA�ÖÏ @ :

�
éJ
��




KQË @

�
HAÒÊ¾Ë@

�
éJ
ËCm�

	
'B



@

v



Résumé

Dans ce travail, nous étudions l’existence et la régularité des solutions du problèmes unilatéraux
u ≥ 0, a.e.inΩ,

〈Au,u − v〉 ≤ ∫
Ω f (u − v),

∀v ∈ H 1
0 (Ω), v ≥ 0, a.e.in Ω,

AvacΩun sous-ensemble borné et ouvert deRN , avec N > 2, et Au =−di v(a(x,u)Du) avec a(x, s) :

Ω×R→R est une fonction de Carathéodory, satisfaisant les conditions suivantes:

α

(1+|s|)θ ≤ a(x, s) ≤β.

pour un nombre réel θ tel que.

0 ≤ θ < 1.

pour presque tout x ∈ Ω,pour tout s ∈ R, oú α et β sont des constantes positives. L’objectif de

cette contribution est d’étudier l’existence et la régularité des solutions du problème unilatéraux

(1) associès á A sous les hypothèses (3)-(3) et avec des données f appartenant á des espaces de

Lebesgue Lm , pour un certain m > 1.

mots-clés: problèmes unilatéraux, coercivité dégénérée, la régularité, l’existence
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List of Symbols

In what follows, we will use the following notations.

Rn Euclidean, n-dimensional space.

x Vecteur de Rn , x = (x1, x2, ..., xn), xi ∈R, 1 ≤ i ≤ n.

dµ or d x Lebesgue measure N -dimensional.

|Ω| Measure of the setΩ.

Ω Open set in Rn .

Ω The closure set of in Rn .

∂Ω The border of Ω.

B Open ball.

B(x,r ) Open ball with center x and radius r > 0.

BE The closed unit ball of E .

BE = {x ∈ E in which ‖x‖ = 1}.

W k,p (Ω) =
{
u ∈ Lp (Ω) : Dαu ∈ Lp (Ω) ∀α ∈Nn such that |α| ≤ j

}
.

W k,p
0 (Ω) Sobolev space with 0 on ∂Ω.

W −k,p ′
(Ω) Dual space of W k,p

0 (Ω).

Di u = ∂u
∂xi

The partial derivative of u with respect to xi .

D(Ω) Space of indefinitely differentiable functions on Ω.

p ′ The conjugate exponent of p.

p∗ = N p
N−p Sobolev conjugate.

C∞(Ω) Is the set of functions in C k (Ω) for all k.

C∞
0 (Ω) or D(Ω) The space of smooth functions with compact support inΩ.

D ′(Ω) The dual space of D(Ω); space of real distributions on Ω.

supp f =
{

x ∈Ω : f (x), 0
}

The support of f .

∇u The gradient of u.

∆u The Laplacian of u.

C (Ω) Is the set of functions continuous inΩ.

C (Ω̄) Is the set of functions continuous in Ω̄.

C k (Ω) Is the set of functions which have derivatives of or der ≤ k that are continuous inΩ.

C k (Ω̄) Is the set of functions in C (Ω̄) which have derivatives inΩ of order is lass than or equals k.
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Introduction

This memory master is devoted to the study of the existence and regularity of the solutions of

unilateral problems like 
u ≥ 0, a.e.inΩ,

〈Au,u − v〉 ≤ ∫
Ω f (u − v),

∀v ∈ H 1
0 (Ω), v ≥ 0, a.e.in Ω,

Here Ω is a bounded, open subset of RN , with N > 2, and Au = −di v(a(x,u)Du) with a(x, s) :

Ω×R→ R is a Caratheodory function (i.e. is measurable with respect to x for every s ∈ R, and

continuous with respect to s for almost every x ∈Ω), satisfying the following conditions:

α

(1+|s|)θ ≤ a(x, s) ≤β

for some real number θ such that.

0 ≤ θ < 1

for almost every x ∈Ω, for every s ∈R, whereα,β are positive constants, and f belonging to various

Lebesgue space Lm(Ω), for some m > 1. The regularity of solutions of the unilateral problems in

terms of the summability of the datum f can be summarized as follows (look at [11])

• If f ∈ Lm(Ω),m > N
2 , then u ∈ H 1

0 (Ω)∩L∞(Ω).

• If f ∈ Lm(Ω), 2N
N+2−θ(N−2) ≤ m < N

2 , then u ∈ H 1
0 (Ω)∩Lr (Ω) ,with r = N m(1−θ)

N−2m .

• If f ∈ Lm(Ω), N (2−θ)
N+2−Nθ ≤ m < 2N

N+2−θ(N−2) , then u ∈W 1,q
0 (Ω) , with q = N m(1−θ)

N−m(1+θ) .

• If f ∈ Lm(Ω), N
N+1−θ(N−1) < m < N (2−θ)

N+2−Nθ
, then u ∈W 1,q

0 (Ω) , with q = N m(1−θ)
N−m(1+θ) .

1



The first chapter deals with Sobolev spaces constitute one of the most relevant functional set-

tings for the treatment of boundary value problems. These spaces also allows us to study an exis-

tence result for the problem in Chapter 2. We refer to [33] and [32] for the theory of these spaces.

In the second chapter of the memory we study an existence and uniqueness theorem for the so-

lution of unilateral problems with L1 data associated to differential operators Au =−di v a(x,Du)

of monotone satisfies some conditions. Moreover, we give more details about the regularly of the

solutions of problem. The principal and more interesting subject of the second chapter of this

memory concerns the regularity of solutions. We recall that problems have been studied by [10].

In Chapter 3, we study the question of existence and regularity of the solutions of unilateral

problems associated to (2.1) and with data f belonging to various Lebesgue space Lm(Ω), for some

m > 1, we will discuss the cases as mentioned before.

We highlight that all the results in Chapter 3 can be found in [11]. As already mentioned in [11],

the classical method used in order to prove the existence of solutions to unilateral problems can-

not be applied, although the datum f is regular. So we can get the best of this difficulty by consid-

ering a sequence of nondegenerate Dirichlet problems, having nonnegative solutions. However,

there is another difficulty appears when Lm(Ω), for some m > 1. To overcome this difficulty we use

another formulation that introduced in [11]. We highlight that all studies of the results in Chapter

2 and 3, are different if we substitute the operator Au with another one ( see [4] or [28] ).

2



Chapter 1

Some Results about Sobolev Spaces

In this chapter we recall some facts on Sobolev spaces and we give some of their properties. For

further details on the Lebesgue and Sobolev spaces, we refer to [33],[20],[23],[3] ,and [32]. We re-

mind that Sobolev spaces constitute one of the most relevant functional settings for the treatment

of boundary value problems.

1.1 The spaces W j ,p(Ω) and W j ,p
0 (Ω)

Definition 1.1.1.

let 1 ≤ p <∞, such that

Lp (Ω) = {
f :Ω−→R; f measurable in addition

∫
Ω

∣∣ f
∣∣p <∞}

Note ∥∥ f
∥∥

Lp (Ω) =
(∫
Ω

∣∣ f (x)
∣∣p d x

) 1
p

.

L∞(Ω) = {
f :Ω−→R; f measurable in addition ∃C such that

∣∣ f
∣∣<C a.e

}
Note ∥∥ f

∥∥
L∞(Ω) = supess

∣∣ f
∣∣ .

Definition 1.1.2.

Suppose 1 ≤ p <∞. Then

• Lp
l oc (Ω) = {

u : u ∈ Lp (K ) for every compact subset K of Ω
}
,

• u is locally integrable in Ω if u ∈ L1
l oc (Ω).

• Let u and v be locally integrable functions defined in Ω. We define vas the weak derivative

of u with respect to α if, for every φ ∈C∞
0 (Ω)∫

Ω
uDαφd x = (−1)|α|

∫
Ω

vφd x.

and we say that Dαu = v in the weak sense.

• Let u and v be in Lp
loc (Ω). We define v as the strong derivative of u with respect to α if, for

every compact subset K of Ω, there exists a sequence {φ j } in C |α|(K ) such that φ j → u in

Lp (K ) and Dαφ j → v in Lp (K ).

3



Theorem 1.1.1.

If Dαu = v and Dβv = w in the weak sense then Dα+βu = w

in the weak sense.

Proof. let ψ ∈C∞
0 (Ω) and φ= Dβψ.Then∫

Ω
uDα+βψd x = (−1)|α|

∫
Ω
φvd x = (−1)|α|

∫
Ω

vDβψd x = (−1)|α|+|β|
∫
Ω
ψwd x.

�

Definition 1.1.3.

Let µ ∈C∞
0 (Rn) be such that

1. suppµ⊂ B1(0) ,( recall that "supp" denotes the support of a function, and Br (c) denotes an

open ball of radius r and center c).

2.
∫
µ(x)d x = 1.

3. µ(x) ≥ 0.

if ε> 0 then we set (provided that the integral exists)

Jεu(x) = 1

εn

∫
Ω
µ(

x − y

ε
)u(y)d y.

Jεu is called a mollifier of u. Note that if u is locally integrable in Ω and if K is a compact subset

of Ω then Jεu ∈C∞(K ) provided that ε< di st (K ,∂Ω).Suppose now that u ∈ Lp
loc (Ω).

Jεu(x) =
∫

B1(0)
µ(y)u(x −εy)d y,

so for p > 1 we have (if 1
p + 1

q = 1)

|Jεu(x)| ≤
∫

B1(0)

{
µ(y)

} 1
q
{
µ(y)

} 1
p |u(x −εy)|d y

≤ (
∫

B1(0)
(
{
µ(y)

} 1
q )q d x)

1
q (

∫
B1(0)

(
{
µ(y)

} 1
p |u(x −εy)|)p d y)

1
p .

Hence |Jεu(x)|p ≤ ∫
B1(0)µ(y)|u(x −εy)|p d y , and this trivially holds if p = 1 too. Integrating this, we

see that ∫
K
|Jεu(x)|p d x ≤

∫
B1(0)

µ(y)
∫

K
|u(x −εy)|p d xd y

≤
∫

B1(0)
µ(y)

∫
K0

|u(x)|p d xd y

=
∫

K0

|u(x)|p d x,

where K0 is a compact subset of Ω, K ⊂ Inter i or (K0) and ε< di st (K ,∂K0) i.e. we have

‖Jεu‖Lp (K ) ≤ ‖u‖Lp (K0) . (1.1)

4



Lemma 1.1.1.

If u ∈ LP
loc (Ω) and K is a compct subset of Ω then ‖Jεu −u‖Lp (K ) → 0 as ε→ 0

Proof. Let K0 be a compact subset ofΩwhere K ⊂ Inter i or (K0) and let ε< di st (K ,∂K0). Let δ> 0

and let w ∈C∞(K0) be such that ‖u −w‖LP (K0) < δ. Then applying (1.1) to u −w , we get

‖Jεu − Jεw‖LP (K ) < δ. (1.2)

However Jεw(x)−w(x) = ∫
B1(0)µ(y)

{
w(x −εy)−w(x)

}
d y , and this goes to zero uniformly on K as

ε→ 0. Hence, if ε is sufficiently small, we have

‖Jεw −w‖LP (K ) < δ. (1.3)

Hence, by (1.2) and (1.3)

‖Jεu −u‖LP (K ) ≤ ‖w −u‖LP (K ) +‖Jεu − Jεw‖LP (K ) +‖Jεw −w‖LP (K ) < 3δ. (1.4)

Since δ is arbitrary, ‖Jεu −u‖LP (K ) → 0 as ε→ 0. �

Theorem 1.1.2.

Suppose that u and v are in Lp
loc (Ω). Then Dαu = v in the weak sense if and only if Dαu = v in the

strong LP (Ω) sense.

Proof. Suppose that Dαu = v . Let φ ∈C∞
0 (Ω) and let K = suppφ. Let ε> 0 and take ψ ∈C |α|(K ) so

that
∥∥ψ−u

∥∥
Lp (K ) < ε and

∥∥Dαψ− v
∥∥

Lp (K ) < ε. Then∣∣∣∣∫
K

uDαφd x − (−1)|α|
∫

K
vφd x

∣∣∣∣≤ ∣∣∣∣∫
K
ψDαφd x − (−1)|α|

∫
K
φDαψd x

∣∣∣∣
+

∣∣∣∣∫
K

(u −ψ)Dαφd x

∣∣∣∣+ ∣∣∣∣∫
K

(v −Dαψ)φd x

∣∣∣∣
≤ ∥∥u −ψ∥∥

Lp (K )

∥∥Dαφ
∥∥

Lq (K ) +
∥∥v −Dαψ

∥∥
Lp (K )

∥∥φ∥∥
Lq (K )

≤ ε(
∥∥Dαφ

∥∥
Lq (K ) +

∥∥φ∥∥
Lq (K )),

where q is the conjugate exponent of p (if p = 1 then q =∞ and if p > 1 then 1
p + 1

q = 1). But ε is

arbitrary, so the LHS must be zero. So Dαu = v in the weak sense.

Conversely, suppose that Dαu = v in the weak sense and let K be a compact subset of Ω. Then

Jεu ∈C∞(K ) if ε< di st (K ,∂Ω) and we have for all x in K

Dα Jεu(x) = ε−n
∫
Ω

Dα
xµ(

x − y

ε
)u(y)d y

= ε−n(−1)|α|
∫
Ω

Dα
yµ(

x − y

ε
)u(y)d y

= ε−n
∫
Ω
µ(

x − y

ε
)v(y)d y

= Jεv(x).

But by Lemma 1.1.1, ‖Jεu −u‖LP (K ) → 0 and ‖Dα Jεu − v‖LP (K ) = ‖Jεv − v‖LP (K ) → 0 as ε→ 0.

Thus Dαu = v in the strong sense. �

5



Definition 1.1.4.

1. ‖u‖H j ,p (Ω)=

( ∑
|α|≤ j

∫
Ω
|Dαu(x)|p d x

)1/p

.

2. Ĉ j ,p (Ω) = {
u ∈C j (Ω) : |u|H j ,p (Ω) <∞}

.

3. H j ,p (Ω) =completion of Ĉ j ,p (Ω) with respect to the norm | |H j ,p (Ω).

H j ,p (Ω) is called a Sobolev space. We will encounter other such spaces as well. Recall that for

1 ≤ p <∞, Lp (Ω) is the completion of C∞
0 (Ω) with respect to the usual "p norm". This knowledge

allows us to see what members of H j ,p (Ω). Suppose that um is a Cauchy sequence in Ĉ j ,p (Ω)

.Then for |α| ≤ j , Dαum is a Cauchy sequence in Lp (Ω). Hence, there are members uα of Lp (Ω)

such that Dαum → uα in Lp (Ω) . Hence, according to our definition of strong derivatives, u0 is in

Lp (Ω) and uα is the α strong derivative of u0. Hence we see that,

H j ,p (Ω) = {
u ∈ Lp (Ω) : u has strong Lp (Ω) derivatives of order is less than or equals j in Lp (Ω)

and there exists a sequence um in Ĉ j ,p (Ω) such that Dαum → Dαu in Lp (Ω)
}

.

Definition 1.1.5.

W j ,p (Ω) = {
u ∈ Lp (Ω) : Dαu ∈ Lp (Ω) ∀α ∈Nn such that |α| ≤ j

}
Note

‖u‖W j ,p (Ω) = ‖u‖Lp (Ω) +
∑

|α|≤ j

∥∥Dαu
∥∥

Lp (Ω) (1.5)

Lemma 1.1.2.

Let E ⊂ Rn and let G be a collection of open sets U such that E ⊂ {
⋃

U : U ∈G}. Then there exists a

family F of non-negative functions f ∈C∞
0 (Rn) such that 0 ≤ f (x) ≤ 1 and

(i) for each f ∈ F , there exists U ∈G such that supp f ⊂U

(ii) if K ⊂ E is compact then supp f ∩K is non-empty for only finitely many f ∈ F ,

(iii)
∑
f ∈F

f (x) = 1 for each x ∈ E ,

(IV) if G = {Ω1,Ω2, . . .} where each Ωi is bounded and Ω̄i ⊂ E then the family F of such functions

can be constructed so that F = {
f1, f2, . . .

}
and supp f j ⊂Ωi .

The family of functions F is called a partition of unity subordinate to the cover G .

6



Theorem 1.1.3. (Meyers and Serrin, 1964) H j ,p (Ω) =W j ,p (Ω).

Proof. We already know that H j ,p (Ω) ⊂W j ,p (Ω).The opposite inclusion follows if we can show that

for every u ∈W j ,p and for every ε> 0 we can find w ∈ Ĉ j ,p such that for |α| ≤ j ,‖Dαw −Dαu‖Lp (Ω) <
ε.

For m ≥ 1 let

Ωm =
{

x ∈Ω : ‖x‖ < m ,di st (x,∂Ω) > 1

m

}

and letΩ0 =Ω−1 =®. let
{
ψm

}
be the partition of unity of part (iv), Theorem (1.1.3) ,subordinate to

the cover
{
Ωm+2 −Ωm

}
.Each uψm is j times weakly differentiable and has support in Ωm+2 −Ωm

.As in the "conversely" part of the proof of Theorem (1.1.2), we can pick εm > 0 so small that wm =
Jεm(uψm) has support in Ωm+3 −Ωm−1 and

∥∥wm −uψm
∥∥

W j ,p (Ω) < ε
2m . Let w =

∞∑
m=1

wm .This is a

C∞ function because on each set Ωm+2 −Ωm we have w = wm−2 +wm−1 +wm +wm+1 +wm+2.

Further . ∥∥Dαw −Dαu
∥∥

LP (Ω) =
∥∥∥∥ ∞∑

m=1
Dα(wm −uψm)

∥∥∥∥
Lp (Ω)

≤
∞∑

m=1

∥∥Dα(wm −uψm)
∥∥

Lp (Ω)

≤
∞∑

m=1

ε

2m
= ε.

�

Remarks 1.1.1.

(i) The proof shows that in fact C∞(Ω)∩ Ĉ j ,p (Ω) is dense in W j ,p (Ω) .

(ii) Clearly members of C∞(Ω)∩Ĉ j ,p (Ω) are not necessarily continuous on ∂Ω or even bounded

near ∂Ω . It would be very useful to have the knowledge that C∞(Ω̄)∪ Ĉ j ,p (Ω)

or C j (Ω̄)∪ Ĉ j ,p (Ω) is also dense in W j ,p (Ω) .

Theorem 1.1.4.

If Ω has the segment property then the set of restrictions to Ω of functions in C∞
0 (Rn) is dense in

W m,p (Ω) .

Theorem 1.1.5. Change of Variables and the Chain Rule.

Let V , Ω be domains in Rn and let T : V →Ω be invertible. Suppose that T and T −1 have contin-

uous, bounded derivatives of order is j . Then if u ∈ W j ,p (Ω)we have v = u ◦T ∈ W j ,p (V ) and the

derivatives of v are given by the chain rule.
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Proof. Let y denote coordinates in Ω and let x denote coordinates in V (y = T (x)). If f ∈ Lp (Ω)

then f ◦T ∈ Lp (V ) because∫
V
| f ◦T |p d x =

∫
Ω
| f |p Jd y ≤ const .

∫
Ω
| f |p d y (1.6)

(Here J is the Jacobian of T −1).

If u ∈W j ,p (Ω), let {um} be a sequence in Ĉ j ,p (Ω) converging to u in W j ,p (Ω) and set vm = um ◦T .

By the chain rule, if |α| ≤ j

Dα
x vm = ∑

β≤α
(Dβ

y um)◦T Rα,β

Where the Rα,β are bounded terms involving T and its derivatives. But for |β| ≤ j Dβ
y u ∈

Lp (Ω) ⇒ (Dβ
y u)◦T ∈ Lp (V ) ⇒ (Dβ

y u)◦T Rα,β ∈ Lp (V ) since the Rα,β are bounded.

Further, ∥∥∥∥∥Dα
x vm − ∑

β≤α
(Dβ

y u)◦T Rα,β

∥∥∥∥∥
Lp (V )

=
∥∥∥∥∥ ∑
β≤α

(Dβ
y um −Dβ

y u)◦T Rα,β

∥∥∥∥∥
Lp (V )

≤ ∑
β≤α

∥∥∥(Dβ
y um −Dβ

y u)◦T Rα,β

∥∥∥
Lp (V )

≤ const .
∑
β≤α

∥∥∥(Dβ
y um −Dβ

y u)◦T
∥∥∥

Lp (V )

≤ const .
∑
β≤α

∥∥∥(Dβ
y um −Dβ

y u)
∥∥∥

Lp (V )

by (1.6). So (α = 0 case), vm → v = u ◦T in Lp (V ) and Dα
x vm → ∑

β≤α
(Dβ

y u) ◦T Rα,β in Lp (V ). This

shows that v ∈W j ,p (V ) and Dα
x v = ∑

β≤α
(Dβ

y u)◦T Rα,β. �

Definition 1.1.6.

W j ,p
0 (Ω) = {

completion of C∞
0 (Ω) with respect to the norm | |W j ,p (Ω)

}
Proposition 1.1.1.

LetΩ⊂RN be an open set. Then, the following statemente hold :

(i) For each 1 ≤ p ≤∞,W 1,p (Ω) is a Banach space.

(ii) For each 1 < p <∞,W 1,p (Ω) is refelexive.

(iii) For each 1 ≤ p <∞,W 1,p (Ω) is a separable.
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Proof. 1

(i) Let {un}n∈N be a Cauchy sequence in W 1,p (Ω), with 1 ≤ p ≤∞, Then, from (1.5) it follows that

{un}n∈N and
{
(un)xi

}
n∈N , with 1 ≤ i ≤ N , are Cauchy sequences in Lp (Ω) . Thus, since Lp (Ω) is a

Banach space , it follows that un → n and (un)xi
→ gi in Lp (Ω) with u, gi ∈ Lp (Ω) Therefore, since∫

unϕxi =−
∫
Ω

(un)xi
ϕ ∀ϕ ∈C∞

0 (Ω).

Letting n →+∞ ∫
uϕxi =−

∫
Ω

giϕ ∀ϕ ∈C∞
0 (Ω)

Therefore, we obtain that u ∈W 1,p (Ω), uxi = gi and thus

‖un −u‖W 1,p (Ω) = ‖un −u‖Lp (Ω) +
N∑

i=1

∥∥Un − gi
∥∥

Lp (Ω) → 0

as desired.

(ii) Consider the space E = Lp (Ω) × Lp (Ω) which is reflexive since it is the product of reflexive

spaces. Set the operator T : W 1,p (Ω) → E defined by Tu = (u,∇u) Then, T is an isometry, and

since W 1,p (Ω) is a Banach space, M = T
(
W 1,p (Ω)

)
is a closed subspace of E since E is reflexive, BE

is compact in the weak topology σ
(
E ,E?

)
, and M is closed in the topology σ

(
E ,E?

)
Therefore, BM

is compact in σ
(
E ,E?

)
, and Therefore T

(
W 1,p (Ω)

)
is reflexive .As a consequence, W 1,p (Ω) is also

reflexive .

(iii) Under the notation of (ii), and taking into account that E is separable , it follows that T
(
W 1,p (Ω)

)
is separable and therefore W 1,p (Ω) is also separable . �

Remarks 1.1.2.

(i) Saying that f ∈ W j ,p
0 (Ω) is a generalized way of saying that f and its derivatives of order is

less than or equals j −1 vanish on ∂Ω. e.g. W 1,p
0 (Ω)∩W 2,p (Ω) is a useful space for studying

solutions of the Dirichlet problem for second order elliptic PDE’s.

(ii) C j
0 (Ω) ⊂W j ,p

0 (Ω) because if f ∈C j
0 (Ω), we know that if ε is sufficiently small then

Jε f ∈C∞
0 (Ω) and Jε f → f in | |W j ,p (Ω) norm.

1As mentioned in the Preface, whenever a black circle precedes some content, this content is original.
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1.2 Extension Theorems

Most of the important Sobolev inequalities and imbedding theorems that we will derive in the next

section are most easily derived for the space W j ,p
0 (Ω) which can be viewed as being a subspace of

W j ,p (Rn).

Lemma 1.2.1.

Let u ∈Rn and f ∈ Lp (Rn). Set fδ(x) = f (x +δu) . Then lim
δ→0

fδ = f in Lp (Rn).

Proof. Given ε > 0, let φ ∈ C∞
0 (Rn) be such that

∥∥ f −φ∥∥
Lp (Rn ) < ε . Since φδ → φ uniformly on a

sufficiently large ball containing the supports of all φδ (say, for δ≤ 1), we can pick δ so small that∥∥φ−φδ
∥∥

Lp (Rn ) < ε . Then

∥∥ f − fδ
∥∥

Lp (Rn ) ≤
∥∥ f −φ∥∥

Lp (Rn ) +
∥∥φ−φδ

∥∥
Lp (Rn ) +

∥∥φδ− fδ
∥∥

Lp (Rn ) < 3ε.

�

Lemma 1.2.2.

Let Rn+ = {
x ∈Rn : xi > 0

}
.C∞(R̄n+)∩ Ĉ j ,p (Rn+) is dense in W j ,p (Rn+).

Proof. Suppose f is in W j ,p (Rn+) let ε> 0 and pick φ ∈C∞(Rn+)∩ Ĉ j ,p (Rn+)

so that
∥∥Dαφ−Dα f

∥∥
Lp (Rn+) < ε for all |α| ≤ j .We take the vector of Lemma (1.2.1) to be u = (0,0,0, ...,1)

and define functions ψα ∈ Lp (Rn) as

ψα(x) =
{

Dαφ(x) , xi > 0

0 , xi ≤ 0

Observe that for each δ> 0 ,φδ ∈C∞(R̄n+)∩ Ĉ j ,p (Rn+) . By Lemma (1.2.1), we can pick δ> 0 so that,

for all |α| ≤ j ,
∥∥ψα

δ
−ψα

∥∥
Lp (Rn )

< ε. But this implies that
∥∥Dαφδ−Dαφ

∥∥
Lp (Rn+) < ε.

Hence ∥∥Dαφδ−Dα f
∥∥

Lp (Rn+) ≤
∥∥Dαφδ−Dαφ

∥∥
Lp (Rn+) +

∥∥Dαφ−Dα f
∥∥

Lp (Rn+) < 2ε.

�

Lemma 1.2.3.

There exists a linear mapping E0 : W j ,p (Rn+) →W j ,p (Rn) such that E0 f = f in Rn+
and

∥∥E0 f
∥∥

W j ,p (Rn ) ≤C
∥∥ f

∥∥
W j ,p (Rn+) , where C depends on only n and p.

Proof. If f ∈C∞(R̄n+), define

E0 f (x) =


f (x) , xn ≥ 0
j+1∑
k=1

ck f (x1, x2, . . . , xn−1,−kxn) , xn < 0
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Where the constants ck are chosen so that E0 f (x) ∈C j (Rn) , i.e.

j+1∑
k=1

(−k)mck = 1, m = 0,1,2, . . . , j .

It is easy to check that there is a constant C depending on only n and p such that

∥∥DαE0 f
∥∥

Lp (Rn ) ≤C
∥∥Dα f

∥∥
Lp (Rn+) . (1.7)

If now f ∈W j ,p (Rn+) , take a sequence fm ∈C∞(R̄n+)∩Ĉ j ,p (Rn+) converging to f in W j ,p (Rn+) (we can

do this by Lemma 1.2.2). Then fm is a Cauchy sequence and (1.7) implies that E0 fm is a Cauchy

sequence in W j ,p (Rn). We denote the limit by E0 f . Since
∥∥DαE0 fm

∥∥
Lp (Rn ) ≤C

∥∥Dα fm
∥∥

Lp (Rn+) taking

limits shows that f satisfies (1.7). �

Definition 1.2.1.

A domain Ω is of class C m if ∂Ω can be covered by bounded open sets Ω j such that there are

mappings ψ j : Ω̄ j → B̄ ,where B is the unit ball centered at the origin and

(i) ψ j (Ω j ∩Ω) = B ∩Rn+

(ii) ψ j (Ω j ∩∂Ω) = B ∩∂Rn+

(iii) ψ j ∈C m(Ω̄ j ) and ψ−1
j ∈C m(B̄).

(Because of (iii), all derivatives of order is less than or equals m ofψ j and its inverse are bounded).

Theorem 1.2.1.

If Ω is a bounded domain of class C m then there exists a bounded linear extension operator E :

W m,p (Ω) →W m,p (Rn).

Definition 1.2.2.

A domain Ω is said to satisfy the cone property if there exist positive constants α , h such that for

each x ∈Ω there exists a right spherical cone Vx ⊂Ω with height h and opening α.

1.3 Sobolev Inequalities and Imbedding Theorems

Theorem 1.3.1.

If Ω ⊂ Rn satisfies the cone condition (with height h and opening α ) and if P > 1, mp > n then

W m,p (Ω) ⊂ CB (Ω) and there is a constant C depending on only α , h,n and p such that for all

u ∈W m,p (Ω), sup |u| ≤C ‖u‖W m,p (Ω).
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Proof. Initially, suppose that u is in Ĉ m,p (Ω) .Let g ∈C∞(R) be such that g (t ) = 1 if t ≤ 1
2 and g (t ) =

0 if t ≥ 1.Let x ∈Ω and let (r,θ) denote polar coordinates centered at x. Here, θ = (θ1,θ2, . . . ,θn−1)

denotes the angular coordinates and we can describe the cone with vertex x in polar coordinates

as Vx = {(r,θ) : 0 ≤ r ≤ h,θ ∈ A} .Clearly, we have

u(x) =−
∫ h

0

∂

∂r

{
g (

r

h
)u(r,θ)

}
dr,

= (−1)m

(m −1)!

∫ h

0
r m−1 ∂

m

∂r m

{
g (

r

h
)u(r,θ)

}
dr,

After m −1 integrations by parts. Next, we integrate with respect to the angular measure dSθ ,not-

ing that the left-hand-side becomes a constant times u(x).

u(x) = c
∫

A

∫ h

0
r m−1 ∂

m

∂r m

{
g (

r

h
)u(r,θ)

}
dr dSθ

= c
∫

A

∫ h

0
r m−n ∂m

∂r m

{
g (

r

h
)u(r,θ)

}
r n−1dr dSθ

=
∫

Vx

r m−n ∂m

∂r m

{
g (

r

h
)u(r,θ)

}
dV.

Applying Hölder’s inequality to this, we obtain

|u(x)| ≤ c
∥∥r m−n

∥∥
Lq (Vx )

∥∥∥∥ ∂m

∂r m

{
g (

r

h
)u(r,θ)

}∥∥∥∥
Lq (Vx )

≤ c
∥∥r m−n

∥∥
Lq (Vx ) ‖u‖W m,p (Ω) .

But r m−n is in Lq (Vx) if n−1+ (m−n)q >−1, which is the case because q = p
p−1 and mp > n Thus,

we obtain sup |u| ≤ C ‖u‖W m,p (Ω) . To extend this result to arbitrary u ∈ W m,p (Ω),take a sequence

{uk } of functions in Ĉ m,p (Ω) converging to u in the | |W m,p (Ω) norm.

Then sup |u j−uk | ≤C
∥∥u j −uk

∥∥
W m,p (Ω) , showing that the sequence is a Cauchy sequence in CB (Ω).

Thus u is in CB (Ω) and taking the limit of sup |u j | ≤ C
∥∥u j

∥∥
W m,p (Ω)shows that u satisfies the same

inequality. �

Corollary 1.3.1.

If Ω ⊂ Rn satisfies the cone condition (with height h and opening α ) and if p > 1,(m − k)p > n

then W m,p (Ω) ⊂ C k
B (Ω)and there is a constant C depending on only α,h,n,k and p such that for

all u ∈W m,p (Ω) sup
|α|≤k

|Dαu| ≤C ‖u‖W m,p (Ω) .

Theorem 1.3.2.

If Ω ⊂ Rn is any domain and p > n then W 1,p
0 (Ω) ⊂ C 0,α(Ω̄), where α = 1− n

p and there exists α

constant C depending on only p and n such that for all u ∈W 1,p
0 (Ω)

|u(x)−u(y)|∥∥x − y
∥∥α ≤C

n∑
i=1

‖Di u‖Lp (Ω) .
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Theorem 1.3.3.

IfΩ⊂Rn is any domain and p < n then W 1,p
0 (Ω) ⊂ Lr (Ω) where r = np

n−p and there exists a constant

C depending on only p and n such that for all u ∈W 1,p
0 (Ω)

‖u‖Lr (Ω) ≤C
n∑

i=1
‖Di u‖Lp (Ω) .

Remark 1.3.1.

Suppose that a,b ≥ 0 and 1 < p, q <∞ in addition 1
p + 1

q = 1, the Young inequality is expressed by

ab ≤ ap

p
+ bq

q
.

which is more general than the previous one

ab ≤ (aε)p

p
+ ( b

ε )q

q
= δap +C (δ)bq .

for all δ= εp

p

Remark 1.3.2.

Suppose that ui ∈ Lpi (Ω), i = (1,2,3, . . . ,m) and 1
p1

+ 1
p2

+ 1
p3

+ . . .+ 1
pm

= 1.

The Hölder’s inequality is expressed by∫
Ω
|u1u2u3 . . .um |d x ≤ ‖u1‖Lp1 (Ω) ‖u2‖Lp2 (Ω) . . .‖um‖Lpm (Ω) (1.8)

Proof. of Theorem1.3.3 It suffices to prove the result for u ∈ C 1
0 (Rn). First we prove the result for

the case p = 1. For each i we have

|u(x)| ≤
∫ xi

−∞
|Di u|d xi ≤

∫ ∞

−∞
|Di u|d xi .

Multiplying these n inequalities together and taking the n −1 the root gives

|u(x)| n
n−1 ≤

n∏
i=1

(∫ ∞

−∞
|Di u|d xi

) 1
n−1

(1.9)

Observe that
∫ ∞

−∞
|Di x|d xi does not depend on xi , but it does depend on all n −1 of the remain-

ing variables. We integrate each side of (1.9) with respect to x1 and use the generalized Hölder

inequality with pi = m = n −1 to obtain

∫ ∞

−∞
|u(x)| n

n−1 d x1 ≤
(∫ ∞

−∞
|D1u|d x1

) 1
n−1

∫ ∞

−∞

n∏
i=2

(∫ ∞

−∞
|Di u|d xi

) 1
n−1

d x1

≤
(∫ ∞

−∞
|D1u|d x1

) 1
n−1 n∏

i=2

(∫ ∞

−∞

∫ ∞

−∞
|Di u|d xi d x1

) 1
n−1

.
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The RHS is still a product of n − 1 functions of x2 , so we integrate each side with respect to x2,

again applying (1.8) with pi = m = n −1.Continuing in this manner, we finally obtain

∫
Rn

|u(x)| n
n−1 d x ≤

(
n∏

i=1

∫
Rn

|Di u|d x

) 1
n−1

i.e.

‖u‖
L

n
n−1 (Rn )

≤
(

n∏
i=1

∫
Rn

|Di u|d x

) 1
n

≤ 1

n

n∑
i=1

∫
Rn

|Di u|d x

Here we have used the fact that an arithmetic mean is no less than a geometric mean of the same

numbers. This proves the result for the case p = 1.

For p > 1, let γ= (n−1)p
n−p = 1+ n(p−1)

n−p ,Since γ> 1 and u ∈C 1
0 (Rn) , it follows that |u|γ ∈C 1

0 (Rn).

Di |u|γ = (n −1)p

n −p
|u|

n(p−1)
n−p (±Di u).

We apply the p = 1 case to |u|γ and obtain(∫
Rn

|u|
np

n−p d x

) n−1
n ≤

n∑
i=1

1

n

∫
Rn

(n −1)p

n −p
|u|

n(p−1)
n−p |Di u|d x

≤ (n −1)p

n(n −p)

n∑
i=1

(∫
Rn

(|u|
n(p−1)

n−p )
p

p−1 d x

) p−1
p ‖Di u‖Lp (Rn )

= (n −1)p

n(n −p)

n∑
i=1

(∫
Rn

|u|
np

n−p d x

) p−1
p ‖Di u‖Lp (Rn )

Hence (∫
Rn

|u|
np

n−p d x

) n−p
np ≤ (n −1)p

n(n −p)

n∑
i=1

‖Di u‖Lp (Rn )

which is the desired result. As usual, to obtain the same result for a function u ∈ W 1,p
0 (Ω),we just

take a sequence of functions in C 1
0 (Rn) converging to u. �

Remark 1.3.3.

W 1,p
0 (Ω) ⊂ Lr (Ω),where r is given above. But obviously W 1,p

0 (Ω) ⊂ Lp (Ω),so by the following inter-

polation lemma, W 1,p
0 (Ω) ⊂ Lq (Ω) for all q satisfying p ≤ q ≤ r . If Ω is bounded then clearly this

holds for all q satisfying 1 ≤ q ≤ r .

Lemma 1.3.1. If s ≤ q ≤ r and φ ∈ Ls(Ω)∩Lr (Ω) , then φ ∈ Lq (Ω) and

∥∥φ∥∥
Lq (Ω) ≤

∥∥φ∥∥λ
Ls (Ω)

∥∥φ∥∥1−λ
Lr (Ω) ,

where λ= s(r−q)
q(r−s) .
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Corollary 1.3.2.

For every domain Ω in Rn there exists a constant C depending on only n and p such that

(i) if kp < n then W k,p
0 (Ω) ⊂ L

np
n−kp (Ω) and for each u ∈W k,p

0 (Ω)

‖u‖
L

np
n−kp (Ω)

≤C ‖u‖W k,p (Ω)

(ii) if kp > n then W k,p
0 (Ω) ⊂ C m,α(Ω̄) , where m is the integer satisfying 0 < k −m − n

p < 1 and

α= k −m − n
p . Further, if u ∈W k,p

0 (Ω) then

‖u‖C m,α(Ω̄) ≤C ‖u‖W k,p (Ω) .

Remarks 1.3.1.

(i) If kp = n and p > 1 then W k,p
0 (Ω) ⊂ Lq (Ω) for all q satisfying p ≤ q <∞

(ii) If kp > n, p > 1 and n
p is an integer then W k,p

0 (Ω) ⊂W
k− n

p ,q

0 (Ω) for all q satisfying p ≤ q <∞.

(iii) If kp > n and p = 1 (so n
p is obviously an integer) then W k,p

0 (Ω) ⊂C k−n
β

(Ω̄).

Corollary 1.3.3.

IfΩ is a bounded C 1 domain inRn (or any other domain such that there exists a bounded extension

operator E : W 1,p (Ω) →W 1,p (Rn)) then the statements concerning the spaces W k,p
0 (Ω) in Corollary

(1.3.2) and in the remark following the corollary also apply to the spaces W k,p (Ω). However, the

constant C may also depend onΩ.

Proof. The cases for k = 1 dealt with in Theorems (1.3.2) and (1.3.3) are easily seen to have their

counterparts here because of the extension operator. Inspection of the proof of Corollary (1.3.2)

shows how the results for k > 1 may be derived from the results for k = 1 without any additional

assumptions on the domain. �

Definition 1.3.1.

Let A and B be Banach spaces. If A ⊂ B , we say that A is continuously imbedded in B ((in symbols,

this is written A ,→ B) if there is a constant C such that ‖x‖B ≤C ‖x‖A.

The theorems in this section provide examples of imbeddings and are called Sobolev Imbedding

Theorems.e.g. W 1,p
0 (Ω) ,→ L

np
n−p (Ω) for p > n.

It is easy to see that A ,→ B is equivalent to the identity mapping from A into B being continuous.

15



1.4 Compactness Theorems

Lemma 1.4.1.

Suppose that Ω is a bounded domain. If

1. 0 <λ≤ 1 then C m,λ(Ω̄) is compactly imbedded in C m(Ω̄).

2. 0 < ν<λ≤ 1 then C m,λ(Ω̄) is compactly imbedded in C m,ν(Ω̄) .

Proof. It suffices to prove the results for m = 0 because, once this is done, we can apply this case

to the derivatives of the functions and deduce the result for general m. Let
{

f j
}

be a sequence in

C 0,λ(Ω̄) such that
∥∥ f j

∥∥
C 0,λ(Ω̄) ≤ M . But this implies

∣∣ f j (x)− f j (y)
∣∣ ≤ M

∥∥x − y
∥∥λ , showing that the

sequence is a bounded, equicontinuous set of functions. By the Arzela-Ascoli Theorem, there ex-

ists a subsequence
{

f j k
}

that converges in C (Ω̄). Thus C 0,λ(Ω̄) is compactly imbedded in C (Ω̄).

We show below that the same subsequence also converges in C 0,ν(Ω̄). Suppose that ψ ∈ C 0,λ(Ω̄).

Then [
ψ

]
0,ν = sup

|ψ(x)−ψ(y)|∥∥x − y
∥∥ν

= sup

(∣∣ψ(x)−ψ(y)
∣∣∥∥x − y

∥∥λ
) ν
λ ∣∣ψ(x)−ψ(y)

∣∣1− ν
λ

≤ 21− ν
λ

([
ψ

]
0,λ

) ν
λ (

max
∣∣ψ∣∣)1− ν

λ

We apply this to f j k − f j r , noting that [ f j k − f j r ]0,λ ≤ [ f j k ]0,λ+ [ f j r ]0,λ ≤ 2M , and obtain[
f j k − f j r

]
0,ν ≤ 2M

ν
λ (max

∣∣ f j k − f j r
∣∣)1− ν

λ ,

showing that the subsequence is a Cauchy sequence in C 0,ν(Ω̄) (because it converges in C (Ω̄)).

Thus the subsequence converges in C 0,ν(Ω̄). �

Corollary 1.4.1.

If Ω is bounded, kp > n and 0 < k −m − n
p < 1 then W k,p

0 (Ω) is compactly imbedded in C m,β(Ω̄) if

β< k −m − n
p .

Proof. Letα= k−m− n
p Then W k,p

0 (Ω) ,→C m,α(Ω̄) ,→C m,β(Ω̄),and the second, imbedding is com-

pact. �

Corollary 1.4.2.

IfΩ is a bounded C 1 domain (or any other domain for which there is a bounded extension operator

E : W 1.p (Ω) → W 1.p (Rn)),K p > n and 0 < k −m − n
p < 1 then W k,p (Ω)is compactly imbedded in

C m,β
(
Ω

)
i f β< k −m − n

p .
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Proof. Let φ ∈C∞
0 (Rn) be such that supp φ is contained in some ball B containing Ω

and φ= 1 onΩ.Then we can define Ẽ : W 1,p (Ω) →W 1.p
0 (B) by Ẽ

(
f
)=φE

(
f
)
.

By Corollary (1.4.1),W 1,p
0 (B) is compactly imbedded in C 0,β(B).Hence W 1,p (Ω)is compactly imbed-

ded in C 0,β(Ω).The result for general k can be deduced from the k = 1 case by considering deriva-

tives of the functions (as in the proof of Corollary (1.3.2) (b), deduce that if u ∈W k,p (Ω) and |β| ≤ m

then Dβu ∈W 1, n
(1−α) (Ω),which is contained in C 0,α(Ω)). �

Definition 1.4.1.

A subset E of a metric space is said to be totally bounded if ∀ε > 0, E can be covered by finitely

many balls of radius ε .

Theorem 1.4.1.

Let E be a subset of a complete metric space X . Then the following statements are equivalent.

(i) E is compact.

(ii) Every sequence in E has a convergent subsequence.

(iii) E is totally bounded.

Theorem 1.4.2.

if Ω is bounded and p < n, then W 1,p
0 (Ω) is compactly imbedded in Lq (Ω) for all q = np

n−p .

Proof. Consider first the case q = 1. Let A be a bounded set in W 1,p
0 (Ω).We may consider the

members of A as members of W 1,p (Rn)with supports contained in Ω. let Ah = {Jhu : u ∈ A}.Note

that we have

|Jhu (x)| ≤ h−n
∫
Ω
ρ

(x − z

h

)
|u (z) |d z ≤ h−n(maxρ)‖u‖L1(Ω)

and

|Di Jhu(x)| ≤ h−n−1
∫
Ω

∣∣∣Diρ
(x − z

h

)∣∣∣ |u (z)|d z ≤ h−n−1(max |Diρ|)‖u‖L1(Ω) .

SinceΩ is bounded, ‖u‖L1(Ω) ≤ const .‖u‖Lp (Ω) . The inequalities above show that Ah is a bounded

equicontinuous set of functions in C (Ω̄). By the Arzela-Ascoli Theorem, every sequence in Ah has

a subsequence that converges in C (Ω̄). Obviously, such subsequences also converge in L1(Ω), so

we see that Ah is totally bounded in L1(Ω).

If u ∈ A then

u(x)− Jhu(x) =
∫
|z|≤1

ρ(z)(u(x)−u(x −hz))d z

=
∫
|z|≤1

ρ(z)
∫ h‖z‖

0
− ∂

∂r
u

(
x − r

z

‖z‖
)

dr d z.
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Thus

|u(x)− Jhu(x)| ≤
∫
|z|≤1

ρ(z)
∫ h‖z‖

0

n∑
i=1

∣∣∣∣Di u

(
x − r

z

‖z‖
)∣∣∣∣dr d z.

Integrating this with respect to x, we find∫
Ω
|u(x)− Jhu(x)|d x ≤

∫
|z|≤1

ρ(z)
∫ h‖z‖

0

n∑
i=1

∫
Rn

∣∣∣∣Di u

(
x − r

z

‖z‖
)∣∣∣∣d xdr d z

=
∫
|z|≤1

ρ(z)
∫ h‖z‖

0

n∑
i=1

∫
Ω
|Di u(x)|d xdr d z

=
∫
|z|≤1

ρ(z)h ‖z‖
n∑

i=1

∫
Ω
|Di u(x)|d xd z

≤ h
n∑

i=1

∫
Ω
|Di u(x)|d x

≤ hB ,

(1.10)

Where B is a constant depending on our bound of members of A in W 1,p
0 (Ω).

Let ε > 0. Since Ah is totally bounded in L1 (Ω), we can cover Ah by a finite number of balls Bi of

radius ε
2 . Let h = ε

2B .By (1.10), if Jhu ∈ Bi ,then u is contained in a ball of radius ε centered at the

center of Bi . Thus, A is covered by a finite number of balls of radius ε. i.e. A is totally bounded in

L1 (Ω). Thus W 1,p
0 (Ω) is compactly imbedded in L1 (Ω).

Suppose φ ∈W 1,p
0 (Ω). Then φ ∈ L

np
n−p (Ω) by Theorem 1.3.3 and we get from Lemma 1.3.1(

with s = 1 and r = np
n−p

)
that

∥∥φ∥∥
Lq (Ω) ≤

∥∥φ∥∥λ
L1(Ω)

∥∥φ∥∥1−λ
L

np
n−p (Ω)

≤C
∥∥φ∥∥λ

L1(Ω)

(
n∑

i=1

∥∥Diφ
∥∥

Lp (Ω)

)1−λ

Now let {um} be a bounded sequence in W 1,p
0 (Ω) and assume ‖um‖

W
1,p
0 (Ω)

≤ M .Since W 1,p
0 (Ω) is

compactly imbedded in L1 (Ω), we can extract a subsequence {um} that converges in L1 (Ω).

Applying the inequality above to um f −umk ,noting that
∥∥∥um f −umk

∥∥∥
W

1,p
0 (Ω)

≤ 2M ,

We obtain ∥∥∥um f −umk

∥∥∥
Lq (Ω)

≤ const .
∥∥∥um f −umk

∥∥∥λ
L1(Ω)

,

showing that the subsequence is a Cauchy sequence in Lq (Ω). Hence the subsequence converges

in Lq (Ω) and W 1,p
0 (Ω) is compactly imbedded in Lq (Ω). �

Corollary 1.4.3.

If kp < n and Ω is bounded then W k,p
0 (Ω) is compactly imbedded in Lq (Ω) for all q < np

n−kp .

Proof. W k,p
0 (Ω) is continuously imbedded in W

1, np
n−(k−1)p

0 (Ω), which is compactly imbedded in Lq (Ω)

if q < np
n−kp ,by Theorem (1.4.2). �
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Corollary 1.4.4.

The same compactness results hold for W k,p (Ω) if Ω is a bounded, C 1 domain (or any other type

of bounded domain for which there is an extension operator E : W 1,p (Ω) →W 1,p (Rn)).

1.5 Interpolation Results

The following results are very useful in PDE theory. We make use of Theorem 1.5.1 in our proof of

Gårding’s Inequality in our study of elliptic problems.

Theorem 1.5.1.

Let u ∈W k,p
0 (Ω).Then for any ε> 0 and any 0 < |β| < k∥∥∥Dβu

∥∥∥
Lp (Ω)

< ε‖u‖W k,p (Ω) +Cε
−|β|

k−|β| ‖u‖Lp (Ω)

Where C is a constant depending only on k.

Proof. We prove the result for |β| = 1 , k = 2. The general result is easily obtained from this case by

induction. In fact, we show that for each i∥∥∥∥ ∂u

∂xi

∥∥∥∥
Lp

≤ ε
∥∥∥∥∥∂2u

∂x2
i

∥∥∥∥∥
Lp

+ 72

ε
‖u‖Lp (1.11)

First suppose that u ∈C 2
0 (R) and consider an interval (a,b) of length b −a = ε . If y ∈ (a, a+ε

3 ) and

z ∈ ( b−ε
3 ,b), then by the Mean Value Theorem there is a p ∈ (a,b) such that

|u′ (p
) | = ∣∣∣∣u(z)−u(y)

z − y

∣∣∣∣≤ 3

ε

(|u(z)|+ |u(y)|)
Consequently, for every x ∈ (a,b), we obtain

|u′(x)| =
∣∣∣∣u′(p)+

∫ x

p
u′′(t )d t

∣∣∣∣≤ 3

ε

(|u(z)|+ |u(y)|)+∫ b

a
|u′′(t )|d t .

Integrating with respect to y and z over the intervals
(
a, a+ε

3

)
and

(
b−ε

3 ,b
)

respectively, we obtain

∣∣u′(x)
∣∣≤ ∫ b

a

∣∣u′′(t )
∣∣d t + 18

ε2

∫ b

a
|u(t )|d t ,

so by Hölder’s inequality and the inequality (A+B)p ≤ 2p−1(Ap +B p ),

∣∣u′(x)
∣∣p ≤ 2p−1

((∫ b

a

∣∣u′′(t )
∣∣d t

)p

+ (18)p

ε2p

(∫ b

a
|u(t )|d t

)p)
≤ 2p−1

((∫ b

a

∣∣u′′(t )
∣∣p d t

)(∫ b

a
1d t

)p−1

+ (18)p

ε2p

(∫ b

a
|u(t )|p d t

)(∫ b

a
1d t

)p−1)

= 2p−1
(
εp−1

∫ b

a

∣∣u′′(t )
∣∣p d t + (18)p

εp+1

∫ b

a
|u(t )|p d t

)
.
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Integrating this with respect to x over the interval (a,b) gives∫ b

a

∣∣u′(x)
∣∣p d x = 2p−1

(
εp

∫ b

a

∣∣u′′(t )
∣∣p d t + (18)p

εp

∫ b

a
|u(t )|p d t

)
.

We now subdivide R into intervals of length ε and obtain by adding all of these inequalities that∫ ∞

−∞

∣∣u′(x)
∣∣p d x ≤ 2p−1

(
εp

∫ ∞

−∞

∣∣u′′(t )
∣∣p d t + (18)p

εp

∫ ∞

−∞
|u(t )|p d t

)
. (1.12)

Suppose now that u ∈ C∞
0 (Rn) . Then we can apply (1.12) to u regarded as a function of xi and

integrate with respect to the remaining variables to obtain

∫
Rn

∣∣∣∣ ∂u

∂xi

∣∣∣∣p

d x ≤ 2p−1

(
εp

∫
Rn

∣∣∣∣∣∂2u

∂x2
i

∣∣∣∣∣
p

d x + (18)p

εp

∫
Rn

|u|p d x

)

Taking the pth root of this and using (Ap+B p )1/p ≤ A+B , we obtain (1.11). (Actually, we don’t quite

obtain (1.11). We actually obtain the inequality (1.11) for 2ε instead of ε . But since ε is an arbitrary

positive constant, (1.11) holds). Finally, to obtain the result for u ∈W ∞
0 (Ω) , we take a sequence of

functions in C∞
0 converging to u. �

Corollary 1.5.1.

The interpolation inequality stated in Theorem 1.5.1 also applies to members of W k,p (Ω), provided

that Ω is a bounded C 2 domain (or any other domain for which there is a bounded extension

operator E : W 2,p (Ω) −→W 2,p (Rn). Here the constant C may also depend on p and Ω.

Proof. Because of the extension operator, an inequality of the form (1.11) holds for functions in

W 2,p (Ω). �

1.6 The Spaces H m(Ω) and H m
0 (Ω)

The following abstract theorem is a flexible tool for generating Sobolev Spaces. The ingredients of

the construction are:

(i) The space D ′(Ω;Rn), in particular, for n = 1,D ′(Ω).

(ii) Two Hilbert spaces H and Z with Z ,→ D ′(Ω;Rn) for some n ≥ 1. In particular

vk −→ v in Z implies vk −→ v in D ′(Ω;Rn). (1.13)

(iii) A linear continuous operator L : H −→ D ′(Ω;Rn) (such as a gradient or a divergence).
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Theorem 1.6.1.

Define

W = {v ∈ H : Lv ∈ Z }

and

(u, v)W = (u, v)H + (Lu,Lv)Z . (1.14)

Then W is a Hilbert space with inner product given by (1.14). The embedding of W in H is contin-

uous and the restriction of L to W is continuous from W into Z .

Proof. Thus W is an inner-product space. It remains to check its completeness. Let {vk } be a

Cauchy sequence in W . We must show that there exists v ∈ H such that

vk −→ v in H

and

Lvk −→ Lv in Z .

Observe that {vk } and {Lvk } are Cauchy sequences in H and Z , respectively. Thus, there exist v ∈ H

and z ∈ Z such that

vk −→ v in H and Lvk −→ z in Z .

The continuity of L and (1.13) yield

Lvk −→ Lv in D ′(Ω;Rn)andLvk −→ z in D ′(Ω;Rn).

Since the limit of a sequence in D ′(Ω;Rn) is unique, we infer that Lv = z. Therefore

Lvk −→ Lv in Z

and W is a Hilbert space.

The continuity of the embedding W ⊂ H follows from

‖u‖H ≤ ‖u‖W

while the continuity of L|W : W −→ Z follows from

‖Lu‖Z ≤ ‖u‖W .

�
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The space H 1(Ω)

LetΩ⊆Rn be a domain. Choose in Theorem 1.6.1:

H = L2 (Ω) , Z = L2 (
Ω;Rn)

,→ D ′ (Ω;Rn)
and L : H → D ′ (Ω;Rn)given by

L =∇

where the gradient is considered in the sense of distributions. Then, W is the Sobolev space of the

functions in L2(Ω), whose first derivatives in the sense of distributions are functions in L2(Ω). For

this space we use the symbol H 1(Ω). Thus:

H 1(Ω) = {
v ∈ L2(Ω) : ∇v ∈ L2(Ω;Rn)

}
.

In other words, if v ∈ H 1(Ω), every partial derivative ∂xi v is a function vi ∈ L2(Ω). This means that

〈
θxi v,ϕ

〉=−(
v,θxiϕ

)
L2 (Ω) = (

vi ,ϕ
)

L2 (Ω), ∀ϕ ∈ D(Ω)

Or, more explicitly, ∫
Ω

v(x)θxiϕ(x)d x =−
∫
Ω

vi (x)ϕ(x)d x, ∀ϕ ∈ D(Ω).

In many applied situations, the Dirichlet integral∫
Ω
|∇v |2

represents an energy. The functions in H 1(Ω) are therefore associated with configurations having

finite energy. From Theorem 1.6.1 and the separability of L2(Ω), we have:

Proposition 1.6.1.

H 1(Ω) is a separable Hilbert space, continuously embedded in L2(Ω). The gradient operator is

continuous from H 1(Ω) into L2(Ω;Rn).

The inner product and the norm in H 1(Ω) are given, respectively, by

(u, v)H 1(Ω) =
∫
Ω

uvd x +
∫
Ω
∇u.∇vd xand ‖u‖2

H 1(Ω) =
∫
Ω

u2d x +
∫
Ω
|∇u|2d x.

Exemple 1.6.1.

Let Ω = B1/2(O) = {
x ∈R2 : |x| < 1/2

}
and u(x) = (−log |x|)a , x , O. We have, using polar coordi-

nates, ∫
B1/2(0)

u2d x = 2π
∫ 1/2

0
(− logr )2ar dr <∞, for every a ∈R,
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so that u ∈ L2(B1/2(0)) for every a ∈R. Also:

uxi =−axi |x|−2(− log |x|)a−1, i = 1,2

and therefore

|∇u| = ∣∣a(− log |x|)a−1
∣∣ |x|−1.

Using polar coordinates, we get∫
B1/2(0)

|∇u|2d x = 2πa2
∫ 1/2

0
| logr |2a−2r−1dr.

This integral is finite only if 2−2a > 1 or a < 1/2. In particular, ∇u represents the gradient of u in

the sense of distribution as well. We conclude that u ∈ H 1(B1(0)) only if a < 1/2. We point out that

when a > 0, u is unbounded near 0.

Proposition 1.6.2.

Let u ∈ L2(a,b) . Then u ∈ H 1(a,b) if and only if u is continuous in [a,b] and there exists

w ∈ L2(a,b) such that

u(y) = u(x)+
∫ y

x
w(s)d s, ∀x, y ∈ [a,b]. (1.15)

Also u′ = w

Proof. Assume that u is continuous in [a,b] and that (1.15) holds with w ∈ L2(a,b). Choose x = a.

Replacing, if necessary, u by u −u(a), we may assume u(a) = 0, so that

u(y) =
∫ y

a
w(s)d s, ∀x, y ∈ [a,b].

Let ϕ ∈ D(a,b). We have:

〈
u′,ϕ

〉=−〈
u,ϕ′〉=−

∫ b

a
u(s)ϕ′(s)d s

=−
∫ b

a

[∫ b

a
w(t )d t

]
ϕ′(s)d s

(exchanging the order of integration)

=−
∫ b

a

[∫ b

a
ϕ′(s)d s

]
w(t )d t

=
∫ b

a
ϕ(t )w(t )d t = 〈

w,ϕ
〉

.

Thus u′ = w in D ′(a,b) and therefore u ∈ H 1(a,b). From the Lebesgue Differentiation Theorem we

deduce that u′ = w a.e. as well. Viceversa, let u ∈ H 1(a,b). Define

v(x) =
∫ x

a
u′(s)d s, x ∈ [a,b]. (1.16)

The function v is continuous in [a,b] and the above proof shows that v ′ = u′ in D ′(a,b).

u = v +C , C ∈R,
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and therefore u is continuous in [a,b] as well. Moreover, (1.16) yields

u(y)−u(x) = v(y)− v(x) =
∫ y

x
u′(s)d s

which is (1.15). �

Since a function u ∈ H 1(a,b) is continuous in [a,b], the value u(x0) at every point x0 ∈ [a,b] makes

perfect sense. In particular the trace of u at the end points of the interval is given by the values

u(a) and u(b).

The space H 1
0 (Ω)

LetΩ⊆Rn be a domain. We study an important subspace of H 1(Ω).

Definition 1.6.1.

We denote by H 1
0 (Ω) the closure of D(Ω) in H 1(Ω).

Thus u ∈ H 1
0 (Ω) if and only if there exists a sequence

{
ϕk

}⊂ D(Ω) such thatϕk −→ u in H 1(Ω), that

is, such that both
∥∥ϕk −u

∥∥
L2(Ω) −→ 0 and

∥∥∇ϕk −∇u
∥∥

L2(Ω;Rn ) −→ 0 as k −→∞.

Since the test functions in D(Ω) have zero trace on ∂Ω, every u ∈ H 1
0 (Ω) inherits this property and

it is reasonable to consider the elements H 1
0 (Ω) as the functions in H 1(Ω) with zero trace on ∂Ω.

Clearly, H 1
0 (Ω) is a Hilbert subspace of H 1(Ω).

An important property that holds in H 1
0 (Ω), particularly useful in the solution of boundary value

problems, is expressed by the following inequality of Poincaré. Recall that the diameter of a set Ω

is given by

di am(Ω) = sup
x,y∈Ω

|x − y |.

Theorem 1.6.2.

Let Ω ⊂ Rn be a bounded domain. There exists a positive constant CP (a Poincaré’s constant)

depending only on n and di am(Ω), such that, for every u ∈ H 1
0 (Ω),

‖u‖L2(Ω) ≤Cp ‖∇u‖L2(Ω;Rn ) . (1.17)

Proof. We use a strategy which is rather common for proving formulas in H 1
0 (Ω). First, we prove

the formula for v ∈ D(Ω); then, if u ∈ H 1
0 (Ω), we select a sequence vk ⊂ D(Ω) converging to u in

the H 1(Ω) norm as k →∞, that is

‖vk −u‖L2(Ω) → 0, ‖∇vk −∇u‖L2(Ω;Rn ) → 0
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In particular

‖vk‖L2(Ω) →‖u‖L2(Ω) , ‖∇vk‖L2(Ω;Rn ) →‖∇u‖L2(Ω;Rn )

Since (1.17) holds for every vk , we have

‖vk‖L2(Ω) ≤C p ‖∇vk‖L2(Ω;Rn )

Letting k → ∞ we obtain (1.17) for u. Thus, it is enough to prove (1.17) for v ∈ D(Ω). Assume

without loss of generality that 0 ∈ Ω, and set max
x∈Ω

|x| ≤ M = di am(Ω) < ∞. Applying the Gauss

Divergence Theorem, we can write ∫
Ω

di v(v2x)d x = 0, (1.18)

Since v = 0 on θΩ. Now,

di v(v2x) = 2v∇v · x +nv2

So that (1.18) yields ∫ 2

Ω
d x =− 2

n

∫
Ω

v∇v · xd x

Since Ω is bounded, using Schwarz’s inequality, we get

∫
Ω

v2d x = 2

n
|
∫
Ω

v∇v · xd x| ≤ 2M

n

(∫
Ω

v2d x

)1/2 (∫
Ω
|∇v |2d x

)1/2

Simplifying, it follows that

‖v‖L2(Ω) ≤C p ‖∇v‖L2(Ω;Rn )

with C p = 2M
n . Inequality (1.17) implies that in H 1

0 (Ω) the norm ‖u‖H 1(Ω) is equivalent to ‖∇u‖L2(Ω;Rn ).Indeed

‖u‖H 1(Ω) =
√
‖u‖2

L2 (Ω)+‖∇u‖2
L2 (Ω;Rn)

and from (1.17),

‖∇u‖L2(Ω;Rn ) ≤ ‖u‖H 1(Ω) ≤
√

C 2p +1‖∇u‖L2(Ω;Rn )

Unless explicitly stated, we will choose in H 1
0 (Ω)

(u, v)H 1
0 (Ω) = (∇u,∇v)L2(Ω;Rn ) and ‖u‖H 1

0 (Ω) = ‖∇u‖L2(Ω;Rn )

as inner product and norm, respectively.

�
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The dual of H 1
0 (Ω)

In the applications of the Lax-Milgram theorem to boundary value problems, the dual of H 1
0 (Ω)

plays an important role. In fact it deserves a special symbol.

Definition 1.6.2.

We denote by H−1(Ω) the dual of H 1
0 (Ω) with the norm

‖F‖H−1(Ω) = sup
{
|F v | : v ∈ H 1

0 (Ω),‖v‖H 1
0 (Ω) ≤ 1

}
.

The first thing to observe is that, since D(Ω) is dense (by definition) and continuously embedded

in H 1
0 (Ω), H−1(Ω) is a space of distributions. This means two things:

(a) If F ∈ H−1(Ω), its restriction to D(Ω) is a distribution.

(b) If F,G ∈ H−1(Ω) and Fϕ=Gϕ for every ϕ ∈ D(Ω), then F =G .

To prove (a) it is enough to note that if ϕk −→ ϕ in D(Ω), then ϕk −→ ϕin H 1
0 (Ω) as well, and

therefore Fϕk −→ Fϕ Thus F ∈ D(Ω). To prove (a) let u ∈ H 1
0 (Ω) and ϕk −→ u in H 1

0 (Ω), with

ϕk ∈ D(Ω). Then, since Fϕk =Gϕk , we may write

Fu = lim
h−→+∞

Fϕk = lim
h−→+∞

Gϕk =G

whence F =G .

Thus, H−1(Ω) is in one-to-one correspondence with a subspace of D ′(Ω) and in this sense we

will write H−1(Ω) ⊂ D ′(Ω) . Which distributions belong to H−1(Ω)? The following theorem gives a

satisfactory answer.

Theorem 1.6.3.

H 1(Ω) is the set of distributions of the form

F = f0 +di v f (1.19)

where f0 ∈ L2(Ω) and f = ( f1, · · · , fn) ∈ L2(Ω;Rn). Moreover:

‖F‖H−1(Ω) ≤
{

Cp
∥∥ f0

∥∥
L2(Ω) +

∥∥ f
∥∥

L2(Ω;Rn )

}
. (1.20)

Proof. Let F ∈ H−1(Ω). From Riesz’s Representation Theorem, there exists a unique u ∈ H 1
0 (Ω)

such that

(u, v)H 1
0 (Ω) = F v, ∀v ∈ H 1

0 (Ω)

Since

(u, v)H 1
0 (Ω) = (∇u,∇v)L2(Ω;Rn ) =−〈di v∇u, v〉
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in D ′(Ω) , it follows that (1.19) holds with f0 = 0 and f =−∇u. Moreover,

‖F‖H−1(Ω) = ‖u‖H 1
0 (Ω) =

∥∥ f
∥∥

L2(Ω;Rn )

Viceversa, let F = f0 +di v f , with f0 ∈ L2(Ω) and f = L2(Ω;Rn) . Then F ∈ D ′(Ω) and,

letting 〈F, v〉 = F v , we have,

F v =
∫
Ω

f0vd x +
∫
Ω

f ·∇vd x, ∀v ∈ D(Ω)

From the Schwarz and Poincaré inequalities, we have

|F v | ≤
{

C p
∥∥ f0

∥∥
L2(Ω) +

∥∥ f
∥∥

L2(Ω;Rn )

}
‖v‖H 1

0 (Ω) . (1.21)

Thus, F is continuous in the H 1
0 -norm. It remains to show that F has a unique continuous exten-

sion to all H 1
0 (Ω) . Take u ∈ H 1

0 (Ω) and {vk } ⊂ D(Ω) such that ‖vk −u‖H 1
0 (Ω). Then, (1.21) yields

|F vk −F vh | ≤
{

C p
∥∥ f0

∥∥
L2(Ω) +

∥∥ f
∥∥

L2(Ω;Rn )

}
‖vk − vh‖H 1

0 (Ω)

Therefore {F vk } is a Cauchy sequence in R and converges to a limit we may denote by Fu, which

is independent of the sequence approximating u, as it is not difficult to check. Finally, since

|Fu| = lim
k→∞

|F vk | and ‖u‖H 1
0 (Ω) = lim

k→∞
‖vk‖H 1

0 (Ω) ,

from (1.21) we get:

|Fu| ≤
{

C p
∥∥ f0

∥∥
L2(Ω) +

∥∥ f
∥∥

L2(Ω;Rn )

}
‖u‖H 1

0 (Ω)

showing that F ∈ H−1(Ω). �

Theorem 1.6.4.

says that the elements of H−1(Ω) are represented by a linear combination of functions in L2(Ω)

and their first derivatives (in the sense of distributions). In particular, L2(Ω) ,→ H−1(Ω).

The spaces H m(Ω),m > 1

By involving higher order derivatives, we may construct new Sobolev spaces. LetN be the number

of multi-indexes α= (α1, · · · ,αn) such that |α| =
n∑

i=1
αi ≤ m. Choose in Theorem (1.6.1)

H = L2(Ω), Z = L2(Ω;RN ) ⊂ D ′(Ω;RN ),

and L : L2(Ω) −→ D ′(Ω;RN ) given by

Lv = {
Dαv

}
|α|≤m .

Then W is the Sobolev space of the functions in L2(Ω), whose derivatives (in the sense of distribu-

tions) up to order m included, are functions in L2(Ω). For this space we use the symbol H m(Ω).

Thus:

H m(Ω) = {
v ∈ L2 : Dαv ∈ L2(Ω), ∀α≤ m

}
.
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From Theorem (1.6.1) and the separability of L2(Ω), we deduce:

Proposition 1.6.3.

H m(Ω) is a separable Hilbert space, continuously embedded in L2(Ω). The operators Dα, |α| ≤ m,

are continuous from H m(Ω) into L2(Ω).

The inner product and the norm in H m(Ω) are given, respectively, by

(u, v)H m (Ω) =
∑

|α|≤m

∫
Ω

DαuDαvd x.

and

‖u‖2
H m (Ω) =

∑
|α|≤m

∫
Ω

∣∣Dαu
∣∣2 d x.

If u ∈ H m(Ω), any derivative of u of order k ≤ m

belongs to H m−k (Ω) and H m(Ω) ,→ H m−k (Ω),k ≥ 1.

1.7 Trace Theorems

In the following results, a vector x in Rn is denoted by x = (x ′, xn) , where x ′ belongs to Rn−1.

Lemma 1.7.1.

If u ∈W 1,1(Rn) , then for every ζ ∈R, the function v(x ′) = u(x ′,ζ) is in L1(Rn−1) , and

‖v‖L1(Rn−1) ≤ ‖u‖L1(Rn ) +‖Dnu‖L1(Rn )

Proof. It suffices to prove the result for the case ζ= 0 and u ∈C∞
0 (Rn). By the Mean Value Theorem

for integrals ∫ 1

0

∫
Rn−1

∣∣u(x ′, xn)
∣∣d x ′d xn =

∫
Rn−1

∣∣u(x ′,σ)
∣∣d x ′

for some σ ∈ [0,1]. But

|u(x ′,0)| = |u(x ′,σ)−
∫ σ

0
Dnu(x ′, t )d t |

≤ |u(x ′,σ)|+
∫ 1

0
|Dnu(x ′, t )|d t .

Integrating this over Rn−1 gives

‖v‖L1(Rn−1) ≤
∫
Rn−1

|u(x ′,σ)|d x ′+
∫
Rn−1

∫ 1

0
|Dnu(x ′, t )|d td x ′

=
∫ 1

0

∫
Rn−1

|u(x ′,σ)|d x ′d t +
∫
Rn−1

∫ 1

0
|Dnu(x ′, t )|d td x ′.

�
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Lemma 1.7.2.

If u ∈W 1,p (Rn) where p < n, then for every ζ ∈R, the function v(x ′) = u(x ′,ζ) is in Lr (Rn−1), where

r = (n −1)p

n −p
= 1+ n(p −1)

n −p

and there is a constant C depending on only n and p such that

‖v‖Lr (Rn−1) ≤C ‖u‖W 1,p (Rn ) .

Proof. We can assume that p > 1 because the p = 1 case is dealt with in the previous lemma.

We first show that if u ∈W 1,p (Rn) then w = |u|r ∈W 1,1(Rn) and

‖w‖L1(Rn ) ≤C ‖Du‖r−1
Lp (Rn ) ‖u‖Lp (Rn ) ,‖Di w‖L1(Rn ) ≤C ‖Du‖r

Lp (Rn ) . (1.22)

It suffices to prove this result for the case u ∈ C∞
0 (Rn). Let q = p

(p−1) .Then (r −1) q = np
(n−p) , so by

the Sobolev Imbedding Theorem 1.3.3,

∥∥|u|r−1
∥∥q

Lp (Rn ) ≤ const .‖Du‖
np

(n−p)

Lp (Rn )

and combining this with Hölder’s Inequality, we get the first of (1.22):

‖w‖L1(Rn ) =
∫

|u|r d x =
∫

|u|r−1|u|d x ≤ ‖u‖Lp (Rn )
∥∥|u|r−1

∥∥
Lq (Rn ) ≤ const .‖Du‖r−1

Lp (Rn ) ‖u‖Lp (Rn ) .

Since Di w =±r |u|r−1Di u , we obtain the second of (1.22):

‖Di w‖L1(Rn ) = r
∥∥|u|r−1

∥∥
Lp (Rn ) ‖Di u‖Lp (Rn ) ≤ const .‖Du‖r

Lp (Rn ) .

We now apply Lemma 1.7.1 to w and immediately obtain the inequality

‖v‖Lr (Rn−1) ≤ const .
(
‖Du‖r−1

Lp (Rn−1) ‖u‖Lp (Rn−1) +‖Du‖r
Lp (Rn−1)

) 1
r

≤ const .

(
‖Du‖1− 1

r

Lp (Rn−1)
‖u‖

1
r

Lp (Rn−1)
+‖Du‖Lp (Rn−1)

)
≤ const .

(‖u‖Lp (Rn−1) +‖Du‖Lp (Rn−1)

)
.

�

Lemma 1.7.3.

If u ∈ W k,p (Rn) where kp < n , then for every ξ ∈ R,the function v
(
x ′) = u

(
x ′,ξ

)
is in Lr

(
Rn−1

)
,

where

r = (n −1) p

n −kp

and there is a constant C depending on only n,k and p such that

‖v‖Lr (Rn−1) ≤C ‖u‖W k,p (Rn ) .
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1.8 Penalization operators

Let E be a reflexive Banach space, we will always assume that the norm of E and that of its dual E
′

are strictly convex.

Definition 1.8.1.

We call penalization operator (attached to K ) any operatorβ of E −→ E
′

having the following prop-

erties:

β is monotone bounded and semicontinuous of E −→ E
′

S = {
β(v) = 0, v ∈ E

}
.

Theorem 1.8.1.

We assume E defined as above and let F a duality operator of E −→ E
′

related to Φ we therefore

have (F (u),u) = ‖F (u)‖∗ ‖u‖ , ‖F (u)‖∗ =Φ(‖u‖), where ‖·‖∗ is the norm in E
′

,dual of ‖·‖ .So if PS

denotes the projection operator of E −→ S such that u ∈ E ,PSu is the only element of S such as

‖u −PSu‖ ≤ ‖u − s‖ ∀s ∈ S.

the operator β given by

β(u) = F (u −PSu),

is a penalty operator.

Penalty application

Theorem 1.8.2.

We assume E defined as before. Let A be an operator of E −→ E
′

,pseudomonotonic and coercive

in the sense : {
∃v0 ∈ S such as
〈A(v),v−v0〉

‖v‖ −→+∞, if ‖v‖ −→∞.

So for everything f ∈ E
′

,∃u ∈ S such as

〈A(u), v −u〉 ≥ 〈
f , v −u

〉 ∀v ∈ S.

Remark 1.8.1.

Let W be a Banach space of strictly convex norm as well as that of its dual and suppose that

1. V ⊂W with continuous injection , V ⊂W (so W ′ ⊂V ′ )
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2. K is a closed convex set in V and in W . We can then consider a penalization operator at-

tached to K in the space W , such that:

β is monotone bounded and semicontinuous of W −→W ′

k = {
β(w) = 0, w ∈W

}
.

Exemple 1.8.1.

We take V = H 1
0 (Ω), A given by

A(ϕ) =−∑n
i , j=1

∂
∂xi

(ai j
∂ϕ
∂x j

)+a0ϕ, a0, ai j ∈ L∞(Ω),∑n
i , j=1 ai jξiξ j ≥α(ξ2

1 +·· ·+ξ2
n),α> 0, ∀ξi ∈R, a.e. ofΩ,

a0(x) ≥α0, a.e. ofΩ,

and either

k = {
β(w) = 0, w ∈ H 1

0

}
.

We can still apply the remark 1.8.1.

we project in L2(Ω), with W = L2(Ω) and k = {
β(w) = 0, w ∈ L2(Ω)

}
.

we choose

β(w) = F (w −Pk w)

with

F = i denti t y

and Pk w = w+ such as {
w(x) if w(x) ≥ 0

0 if w(x) < 0

The corresponding equation is therefore:

{
Auε− 1

ε
u−
ε = f

uε ∈ H 1
0 (Ω).
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Chapter 2

Unilateral Problems with L1 Data

In this chapter, we study an existence and uniqueness theorem for the solution of unilateral prob-

lems with L1 data. Also, we discuss on details the existence and regularity of distributional so-

lutions in appropriate Sobolev spaces. The results of this chapter, that have been published by

[10].

2.1 Statement of the results

The problem we are considering is as follows.{
Au = f in Ω,

u = 0 on ∂Ω
(2.1)

Where Ω be an open bounded subset of RN where N ≥ 2, The operator A is defined as a nonlinear

operator

Au =−di v a(x,Du) (2.2)

Let a : Ω×RN → RN be a Caratheodory function satisfying the following assumptions for almost

every x ∈Ω and for all ξ,η ∈RN where ξ, η and 1 < p <∞ :

a(x,ξ)ξ≥α|ξ|p (2.3)

|a(x,ξ)| ≤β[
h(x)+|ξ|p−1] (2.4)[

a(x,ξ)−a(x,η)
][
ξ−η]> 0 (2.5)

With α,β> 0 and h(x) ∈ Lp ′
(Ω)(where p ′ denotes the conjugate exponent of p ).

Let’s assume that

f ∈ L1(Ω) (2.6)

and

ψ ∈W 1,p
0 (Ω)∩L∞(Ω) (2.7)

We will define the set K as follows:

K =
{

v ∈W 1,p
0 (Ω)∩L∞(Ω) : v(x) ≥ψ(x) in Ω

}
.
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In the following, we will denote by Tk (s) the truncation defined by

Tk (s) =


k if s > k

s if |s| ≤ k

−k if s <−k

Our main purpose in this session is to study the proof the following theorems.

Theorem 2.1.1.

For 2− 1
N < p < N . assuming conditions (2.3),· · · ,(2.7) there exists a unique solution u of the prob-

lem 
u ∈W 1,q

0 (Ω) , 1 < q < N (p−1)
N−1 with 2− 1

N < p < N

u(x) ≥ψ(x) i n Ω

Tk (u) ∈W 1,p
0 (Ω) ∀K > 0

〈Au,Tk (u − v)〉 ≤ ∫
Ω f Tk (u − v) ∀v ∈ K

(2.8)

The problem we are considering is Au =−di v(a(x,Du)), f ∈ L1(Ω) where A satisfies the assump-

tions mentioned in 2.1

Theorem 2.1.2.

Let’s assume that the hypotheses of Theorem 2.1.1 hold and that

Aψ ∈ L1 (Ω) . (2.9)

Assuming that u is the solution of problem (2.8), the following inequality holds

f ≤ Au ≤ f + (
f − Aψ

)− . (2.10)

2.2 The compactness method

Step01: Approximation

We define the following.

Consider a sequence
{

fn
}

of smooth functions satisfying the following conditions:{
fn → f in L1(Ω)∥∥ fn

∥∥
L1(Ω) ≤

∥∥ f
∥∥

L1(Ω) , ∀n ∈N (2.11)

Consider un as the solution of the problem:
un ∈W 1,p

0 (Ω) un(x) ≥ψ(x) inΩ

〈Aun ,un − v〉 ≤ ∫
Ω fn(un − v)

∀v ∈W 1,p
0 (Ω), v(x) ≥ψ(x) in Ω.

(2.12)

Thanks to the hypotheses (2.3),(2.4),(2.5) A is a nonlinear operator of Leray-Lions type, so the ex-

istence of un follows from the classical results of [25].
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Step02: Uniform estimates

We consider the following proof

Lemma 2.2.1.

There exists a constant c0(q), independent on n, such that:

‖un‖W
1,q
0 (Ω)

≤ c0(q) ∀n ∈N,1 < q < N (p −1)

N −1
. (2.13)

Proof. Let k ∈N∗ and ϕk :R→R be the function defined by:

ϕk (s) =


1 if s ≥ k +1

s −k if k ≤ s < k +1

0 if 0 ≤ s < k

−ϕk (−s) if s < 0

(2.14)

Let k ≥ ∥∥ψ∥∥
L∞(Ω):taking as test function in (2.12) v = un −ϕk (un), We find

〈Aun , (un − v)〉 ≤
∫
Ω

fn(un − v)〈
Aun , (un −un +ϕk (un))

〉≤ ∫
Ω

fn(un −un +ϕk (un))〈
Aun ,ϕk (un)

〉≤ ∫
Ω

fnϕk (un) ∀k ≥ ∥∥ψ∥∥
L∞(Ω) .

Thanks to assumption (2.3) we obtain〈
Aun ,ϕk (un)

〉≤ ∫
Ω

fnϕk (un)∫
Ω

a(x,Dun)Dϕk (un) ≤
∫
Ω

fnϕk (un)

We have ϕk (s) = s −k/ϕk (s) ∈ B n
k∫

B n
k

a(x,Dun)D(un −k) ≤
∫

B n
k

fn(un −k)∫
B n

k

a(x,Dun)Dun ≤
∫

B n
k

fn(un −k)

Applying (2.3) we obtain

α

∫
B n

k

|Dun |p ≤
∫

B n
k

fn(un −k)

We have k ≤ |un | < k +1, |un | < k +1

α

∫
B n

k

|Dun |p ≤
∫

B n
k

fn(un −k) ≤
∫

B n
k

fn

α

∫
B n

k

|Dun |p ≤
∫

B n
k

fn ≤
∫

B n
k

| fn |

α

∫
B n

k

|Dun |p ≤
∫

B n
k

| fn | ≤
∥∥ fn

∥∥
L1(Ω)
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Applying (2.11) we obtain ∫
B n

k

|Dun |p ≤
∥∥ f

∥∥
L1(Ω)

α
∀k ≥ ∥∥ψ∥∥

L∞(Ω) , (2.15)

Where

B n
k = {x ∈Ω : k ≤ |un(x)| < k +1} . (2.16)

Let v ∈W 1,p
0 (Ω) and v(x) ≥ψ(x) in Ω, taking as test function in (2.12), v = un −Tk (un −ψ), k > 0

〈Aun , (un − v)〉 ≤
∫
Ω

fn(un − v)〈
Aun , (un −un −Tk (un −ψ))

〉≤ ∫
Ω

fn(un −un −Tk (un −ψ))〈
Aun , (Tk (un −ψ))

〉≤ ∫
Ω

fn(Tk (un −ψ))∫
Ω

a(x,Dun)D(Tk (un −ψ)) ≤
∫
Ω

fn(Tk (un −ψ))

Applying un <ψ+k and (2.11) we obtain∫
{un−ψ<k}

a(x,Dun)D(un −ψ) ≤ k
∥∥ f

∥∥
L1(Ω) .

By virtue of hypotheses (2.3),(2.4) and using Young’s inequality (with exponents p, p ′) we get

α

∫
{un−ψ<k}

|Dun |p ≤

k
∥∥ f

∥∥
L1(Ω) +

α

2

∫
{un−ψ<k}

(|h(x)|p ′ +|Dun |p )+ c1
∥∥ψ∥∥p

W
1,p
0 (Ω)

and finally ∫
{|un |<k}

|Dun |p ≤
∫
{

un−ψ<k+‖ψ‖L∞(Ω)

} |Dun |p

≤ c2(k +∥∥ψ∥∥
L∞(Ω) +

∥∥ψ∥∥p

W
1,p
0 (Ω)

+‖h‖p

Lp′ (Ω)
),∀k > 0

(2.17)

Let 1 < q < N (p−1)
N−1 and k̄ ≥ ∥∥ψ∥∥

L∞(Ω).

It results: ∫
Ω
|Dun |q ≤

(∫
{
un<k̄

} |Dun |p
) q

p |Ω|1−
q
p +

∞∑
j=k̄

(
1

(1+ j )λ

∫
B n

j

|Dun |p
) q

p
(∫

B n
j

(1+|un |)
λq

p−q

)1− q
p

Where λ= N (p−q)
N−q , observe that λ> 1, since 1 < q < N (p−1)

N−1 .

From this inequality, using (2.15) in addition (2.17) we get∫
Ω
|Dun |q ≤ c3 + c4

(∫
Ω
|un |q∗

)1− q
p

. (2.18)

Where q∗ = N q
N−q , From this estimate, by Sobolev’s inequality, we obtain∫

Ω
|un |q∗ ≤ c5.

Finally, from (2.18) we get (2.13). �
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Step03: Passage to the limit

First Proof of Theorem 2.1.1 The estimate (2.13) ensures the existence of a subsequence, denoted

as {un}, for which the following condition holds for all q < N (p−1)
(N−1) :

un * u weakl y − W 1,q
0 (Ω)

un → u str ong l y − Lq (Ω)

un → u almost everywhere inΩ

(2.19)

Since un ≥ψ (x) in Ω ,∀n ∈N
u(x) ≥ψ (x) i n Ω.

Additionally, we have looked at or investigated the idea that

Dun → Du almost everywhere inΩ (2.20)

We take un −Tk (un −um) and then um +Tk (un −um), as test function in (2.12) we get

〈Aun ,un −un +Tk (un −um)〉 ≤
∫
Ω

fn(un −un +Tk (un −um))

〈Aun ,Tk (un −um)〉 ≤
∫
Ω

fnTk (un −um)

in addition

〈Aum ,um −um −Tk (un −um)〉 ≤
∫
Ω

fn(um −um −Tk (un −um))

−〈Aum ,Tk (un −um)〉 ≤−
∫
Ω

fmTk (un −um) .

The following expression can be derived or obtained by adding together these inequalities.

〈Aun − Aum ,Tk (un −um)〉 ≤
∫
Ω

(
fn − fm

)
Tk (un −um) (2.21)

The right-hand side of equation (2.21) tends to zero as (n,m) −→∞ .As a result, we can infer that

〈Aun − Aum ,Tk (un −um)〉 −→ 0 due to the monotonicity of the operator A.

Therefore, according to Lemma 1 in [16] ,it follows that

Dun → Du a.e. in Ω. (2.22)

Consider w ∈W 1,p
0 (Ω)∩L∞(Ω). We note that for any k > 0, the sequence

‖T k(un −w)‖
W

1,p
0 (Ω)

≤C . This can be shown as follows:∫
Ω
|DTk (un −w) |p ≤ c6

∫
{|un |<k+‖w‖L∞(Ω)}

|Dun |p + c7

∫
Ω
|Dw |p

Equation (2.15) imposes a restriction on the upper limit of the right-hand side of the preceding

inequality, ensuring its bounded nature.

Consider w ∈W 1,p
0 (Ω)∩L∞(Ω) such that w(x) ≥ψ(x) in Ω. The function

un −Tk (un −w)
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Is an admissible test function in (2.12).

This choice yields

〈Aun ,un −un +Tk (un −w)〉 ≤
∫
Ω

fn(un −un +Tk (un −w))

〈Aun − Aw + Aw,Tk (un −w)〉 ≤
∫
Ω

fnTk (un −w)

〈Aun − Aw,Tk (un −w)〉+〈Aw,Tk (un −w)〉 ≤
∫
Ω

fnTk (un −w)

(2.23)

Since ‖Tk (un −w)‖
W

1,p
0 (Ω)

≤Const and in L∞(Ω), we deduce:

liminf〈Aun − Aw,Tk (un −w)〉 ≥ 〈Au − Aw,Tk (u −w)〉

lim〈Aw,Tk (un −w)〉 = 〈Aw,Tk (u −w)〉

lim
∫
Ω

fnTk (un −w) =
∫
Ω

f Tk (u −w)

Thus, taking the limit as n →∞ in (2.23),From this, it follows that u is a solution of (2.8).

2.3 The penalization method

We assume that

ψ= 0. (2.24)

Let
{

fn
}

be a sequence of smooth functions such that{
fε→ f in L1(Ω)∥∥ fε

∥∥
L1(Ω) ≤

∥∥ f
∥∥

L1(Ω) ∀ε> 0.
(2.25)

In addition

β(s) = |s|p−2s. (2.26)

We consider the following problem: {
uε ∈W 1,p

0 (Ω)

Auε−β
(

(uε)−
ε

)
= fε.

(2.27)

Then the result in [25], provide us with the existence of uε

For continue, we shall study the prove of following lemma:

Lemma 2.3.1.

There exists a constant c(q) > 0, independent on ε, such that:

‖uε‖W
1,q
0

(Ω) ≤ c(q), ∀ε> 0 (2.28)

With 1 < q < N (p−1)
N−1 .
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Proof. Let k > 0. We select the test function in the weak formulation of (2.27)

v =ϕk (uε),

Where ϕk (s) is the function defined in the proof of Lemma 2.2.1.

This selection leads to

〈Auε, v〉−
∫
Ω
β

(
(uε)−

ε

)
v =

∫
Ω

fεv

〈
Auε,ϕk (uε)

〉−∫
Ω
β

(
(uε)−

ε

)
ϕk (uε) =

∫
Ω

fε,ϕk (uε)

〈
Auε,ϕk (uε)

〉−∫
Ω

(
(uε)−

ε

)p−2

(uε)−ϕk (uε) =
∫
Ω

fεϕk (uε)

So that ϕk (uε) ∈ Bε
k〈

Auε,ϕk (uε)
〉−∫

Ω

(
(uε)−

ε

)p−1

ϕk (uε) ≤
∫

Bε
k

fε(uε−k)

〈
Auε,ϕk (uε)

〉−∫
Ω

(
(uε)−

ε

)p−1

ϕk (uε) ≤
∫

Bε
k

fε(uε−k) ≤
∫

Bε
k

fε(|uε|−k)

〈
Auε,ϕk (uε)

〉−∫
Ω

(
(uε)−

ε

)p−1

ϕk (uε) ≤
∫

Bε
k

fε(k +1−k) ≤
∫

Bε
k

| fε| ≤
∫
Ω
| fε| ≤

∥∥ fε
∥∥

L1(Ω)

Applying (2.11) we get

〈
Auε,ϕk (uε)

〉−∫
Ω

(
(uε)−

ε

)p−1

ϕk (uε) ≤ ∥∥ f
∥∥

L1(Ω) . (2.29)

Since k > 0, we have: ∫
Ω

(
(uε)−

ε

)p−1

ϕk (uε) ≤ 0.

and from (2.29) we deduce ∫
Bε

k

|Duε|p ≤ c1 ∀k > 0,∀ε> 0, (2.30)

Where Bε
k is the set defined in (2.16) and c1 > 0 independent on ε.

We take v = Tk (uε) as test function in (2.27) , we find

〈Auε, v〉−
∫
Ω
β

(
(uε)−

ε

)
v =

∫
Ω

fεv

〈Auε,Tk (uε)〉−
∫
Ω
β

(
(uε)−

ε

)
Tk (uε) =

∫
Ω

fε,Tk (uε)

〈Auε,Tk (uε)〉−
∫
Ω

(
(uε)−

ε

)p−2

(uε)−Tk (uε) =
∫
Ω

fεTk (uε)∫
Ω

a(x,Duε)DTk (uε)−
∫
Ω

(
(uε)−

ε

)p−1

Tk (uε) =
∫
Ω

fεTk (uε)

Since Tk (uε) ∈ |uε| < k ⇒ Tk (uε) = uε we find∫
|uε|<k

a(x,Duε)DTk (uε)−
∫
|uε|<k

(
(uε)−

ε

)p−1

Tk (uε) =
∫
|uε|<k

fεTk (uε)∫
|uε|<k

a(x,Duε)Duε−
∫
|uε|<k

(
(uε)−

ε

)p−1

uε ≤
∫
|uε|<k

∣∣ fεuε
∣∣
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Applying (2.11) we get ∫
|uε|<k

a(x,Duε)Duε ≤
∫
|uε|<k

∣∣ fε
∣∣ |uε|∫

|uε|<k
a(x,Duε)Duε ≤

∫
|uε|<k

k
∣∣ fε

∣∣< k
∥∥ fε

∥∥
L1(Ω)∫

{|uε|<k}
a(x,Duε)Duε ≤ k

∥∥ f
∥∥

L1(Ω) .

From this estimate, by the ellipticity condition (2.3), we obtain:∫
Ω
|DTk (uε) |p ≤ c4K ∀K > 0. (2.31)

Let 1 < q < N (p−1)
N−1 and k̄ ≥ ∥∥ψ∥∥

L∞(Ω).

It results: ∫
Ω
|Dun |q ≤

(∫
{
un<k̄

} |Dun |p
) q

p |Ω|1−
q
p +

∞∑
j=k̄

(
1

(1+ j )λ

∫
B n

j

|Dun |p
) q

p
(∫

B n
j

(1+|un |)
λq

p−q

)1− q
p

Where λ= N (p−q)
N−q , observe that λ> 1, since 1 < q < N (p−1)

N−1 .

From this inequality, using (2.30) in addition (2.31) we get∫
Ω
|Dun |q ≤ c3 + c4

(∫
Ω
|un |q∗

)1− q
p

. (2.32)

Where q∗ = N q
N−q , From this estimate, by Sobolev’s inequality, we obtain∫

Ω
|un |q∗ ≤ c5.

Finally, from (2.32) we obtain the estimate (2.28). �

Second proof of Theorem 2.1.1. Since ‖uε‖W
1,q
0 (Ω)

≤ c, there exists a subsequence, still denoted by

{uε}, such that ∀q < N(p−1)
(N−1) : 

uε* u Weakly- W 1,q
0 (Ω)

uε→ u Strongly- Lq (Ω)

uε→ u almost everywhere inΩ

(2.33)

Now, we will move forward with the proof in order to show that

u ≥ψ a.e. inΩ (2.34)

Consider a sequence of increasing functions {θn (s)} that converges to

θ (s) =


1 if s > 0

0 if s = 0

−1 if s < 0
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We choose v = θn
(
uε−ψ

)
as test function in the weak formulation of problem (2.27); then, there

exists ν ∈ N such that :

〈Auε, v〉−
∫
Ω
β

(
(uε)−

ε

)
v =

∫
Ω

fεv

〈
A(uε−φ),θn

(
uε−ψ

)〉−∫
Ω
β

(
(uε−φ)−

ε

)
θn

(
uε−ψ

)= ∫
Ω

fεθn
(
uε−ψ

)
So that

−
∫
Ω
β

(
(uε−φ)−

ε

)
θn

(
uε−ψ

)≤ ∫
Ω

fεθn
(
uε−ψ

)
−

(
1

ε

)p−1 ∫
Ω

(
(uε−ψ)−

)p−1
θn

(
uε−ψ

)≤ ∥∥ f
∥∥

L1(Ω) ∀n > ν

Passing to the limit as n →∞ we get:∫
Ω

(
(uε−ψ)−

)p−1 ≤ εp−1
∥∥ f

∥∥
L1(Ω) . (2.35)

From this inequality we deduce(
(uε−ψ)−

)p−1 → 0 strongly in L1 (Ω) .

Thanks to (2.33) we obtain: (
u −ψ)− = 0 a.e. inΩ

Which proves (2.34).

Moreover, by (2.35),
∥∥∥β(

(uε−ψ)−
ε

)
+ fε

∥∥∥
L1(Ω)

≤C , and from the results of [16] it thus follows

Duε→ Du a.e. in Ω (2.36)

Let v ∈W 1,p
0 (Ω)∩L∞(Ω), v ≥ψ a.e.in Ω, and k > 0.

Using the estimate (2.28) In our study, we have examined ‖Tk (uε− v)‖
W

1,p
0 (Ω)

≤ c, moreover, we

take Tk (uε− v) as test function in the weak formulation of problem (2.27), We obtain:

〈Auε,Tk (uε− v)〉−
∫
Ω
β

(
(uε)−

ε

)
Tk (uε− v) =

∫
Ω

fεTk (uε− v)

〈Auε− Av,Tk (uε− v)〉+〈Av,Tk (uε− v)〉 ≤
∫
Ω

fεTk (uε− v)

〈Auε+ Av − Av,Tk (uε− v)〉 ≤
∫
Ω

fεTk (uε− v)

〈Auε,Tk (uε− v)〉 ≤
∫
Ω

fεTk (uε− v),

Taking the limit as ε→ 0 in the last inequality we conclude the proof of Theorem 2.1.1

2.4 The omographic approximation

Let λ> 0 and
{

fλ
}

be a sequence of smooth function such that ∀q < N(p−1)
(N−1) :{

fλ→ f i n L1 (Ω)∥∥ fλ
∥∥

L1(Ω) ≤
∥∥ f

∥∥
L1(Ω) ∀λ> 0
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Let us consider the following problem:{
uλ ∈W 1.p

0 (Ω)

Auλ+ g uλ−ψ
λ+|uλ−ψ| = fλ+ g i n Ω

(2.37)

Shat that

g = (
fλ− Aψ

)− .

We observe that g positive and
∥∥g

∥∥
L1(Ω) ≤

∥∥ f
∥∥

L1(Ω) +
∥∥∥(

Aψ
)+∥∥∥

L1(Ω)
.

The existence of uλ follows from the results of [24].

In order to prove Theorem (2.1.1) we need the following:

Lemma 2.4.1.

Assume that hypotheses (2.3),(2.4),(2.5) and (2.9) are satisfied.

then:

uλ ≥ψ ∀λ> 0 a.e. inΩ (2.38)

Also, ∃c
(
q
)> 0, independent on λ, we have:

‖uλ‖W
1.q
0 (Ω)

≤ c
(
q
) ∀1 < q < N

(
p −1

)
N −1

. (2.39)

Proof. We take
(
uλ−ψ

)− as test function in the weak formulation of (2.37) , such that ∀v ∈W 1,p
0

〈Auλ, v〉+
∫
Ω

g (v)
(uλ−ψ)−

λ+|uλ−ψ| =
〈

fλ+ g , v
〉

〈
Auλ, (uλ−ψ)−

〉+∫
Ω

g (uλ−ψ)
(uλ−ψ)−

λ+|uλ−ψ| =
〈

fλ+ g , (uλ−ψ)−
〉

Since ∫
Ω

g (uλ−ψ)
(uλ−ψ)−

λ+|uλ−ψ| ≤ 0,

Furthermore 〈
fλ+ g − Aψ, (uλ−ψ)−

〉≥ 0,

We get ∫
{uλ−ψ<0}

(a(x,Duλ)−a(x,Dψ))D(uλ−ψ) ≤ 0.

From this estimate, using also assumption (2.5)

We have

D(uλ(x)−ψ(x)) = 0 a.e. in
{

x ∈Ω : uλ(x) <ψ(x)
}

.

Then we obtain: ∥∥(uλ−ψ)−
∥∥

W
1,p
0 (Ω)

= 0

From which easily follows(2.38).

Thanks to (2.38), uλ is solution of the following equation

Auλ− g
λ

λ+ (uλ−ψ)
= fλ in Ω (2.40)
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Let k > 0 , choosing ϕk (uλ)(ϕk (s) is the function defined (2.14)) as test function in the weak for-

mulation of the last equation, we have

〈Auλ, v〉−
∫
Ω

g
λ

λ+ (uλ−ψ)
(v) = 〈

fλ, v
〉

〈
Auλ,ϕk (uλ)

〉−∫
Ω

g
λ

λ+ (uλ−ψ)
(ϕk (uλ)) = 〈

fλ,ϕk (uλ)
〉

∫
Ω

a(x,Duλ)D(ϕk (uλ))−
∫
Ω

g
λ

λ+ (uλ−ψ)
(ϕk (uλ)) =

∫
Ω

fλϕk (uλ)∫
Bλ

k

a(x,Duλ)D(uλ)−
∫

Bλ
k

g
λ

λ+ (uλ−ψ)
(uλ) =

∫
Bλ

k

fλ(uλ)∫
Bλ

k

a(x,Duλ)Duλ ≤
∫

Bλ
k

(∣∣∣∣ fλ+ g
λ

λ+ (uλ−ψ)

∣∣∣∣) (k +1)∫
Bλ

k

a(x,Duλ)Duλ ≤Const

∥∥∥∥ fλ+ g
λ

λ+ (uλ−ψ)

∥∥∥∥
L1(Ω)

We get
(∥∥∥ fλ+ g λ

λ+(uλ−ψ)

∥∥∥
L1(Ω)

≤C
)

and using also assumption (2.3)

∫
Bλ

k

|Duλ|p ≤ c1,

Where Bλ
k is the set defined (2.16) .

From this estimate, we get the proof of (2.39).

�

Proof of Theorem 2.1.1 We point out that we shall use Aψ ∈ L1(Ω). Using Lemma (2.4.1) there

exists a subsequence, still denoted by {uλ}. such that:
uλ* u weakly -W 1,q

0 (Ω)

uλ→ u strongly -Lq (Ω)

uλ→ u almost everywhere inΩ.

(2.41)

Also, since uλ is solution of (2.40) and
∥∥∥ fλ+λ g

λ+(uλ−ψ)

∥∥∥
L1(Ω)

≤C , reasoning as before we obtain

Duλ→ Du a.e. in Ω (2.42)

Let k > 0. Choosing Tk (uλ) as test function in the weak formulation of (2.40),and using also as-
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sumption (2.3)

〈Auλ, v〉−
∫
Ω

g
(λ

λ+ (uλ−ψ)
(v) = 〈

fλ+ g , v
〉

〈Auλ,Tk uλ〉−
∫
Ω

g
(λ

λ+ (uλ−ψ)
(Tk (uλ)) = 〈

fλ+ g ,Tk (uλ)
〉

∫
Ω

a(x,Duλ)DTk (uλ)−
∫
Ω

g
(λ

λ+ (uλ−ψ)
(Tk (uλ)) =

∫
Ω

fλTk (uλ)∫
Ω

a(x,Duλ)DTk (uλ) ≤
∫

Bλ
k

(∣∣∣∣ fλ+ g
λ

λ+ (uλ−ψ)

∣∣∣∣) (k)∫
Ω

a(x,Duλ)DTk (uλ) ≤ k

∥∥∥∥ fλ+ g
λ

λ+ (uλ−ψ)

∥∥∥∥
L1(Ω)∫

Ω
|DTk (uλ)|p ≤ constk

α

‖DTk (uλ)‖Lp (Ω) ≤ c

We get

‖Tk (uλ)‖
W

1,p
0 (Ω)

≤ ck ∀k > 0. (2.43)

From this estimate we can prove that

‖Tk (uλ− v)‖
W

1,p
0 (Ω)

≤C , (2.44)

For any v ∈W 1,p
0 (Ω)∩L∞(Ω).

Let v ∈W 1,p
0 (Ω)∩L∞(Ω), v ≥ψ a.e. in Ω, then

〈Auλ− Av,Tk (uλ− v)〉+〈Av,Tk (uλ− v)〉 =
∫
Ω

fλTk (uλ− v)+
∫
Ω
λ

g

λ+ (uλ−ψ)
Tk (uλ− v).

Letting λ→ 0, and taking into account (2.41),(2.42) and (2.44) we can conclude the proof of Theo-

rem (2.1.1)

Proof of Theorem 2.1.2

Since uλ satisfies (2.37) shat that

Auλ ≤ fλ+ ( fλ− Aψ)−. (2.45)

Also, thanks to (2.40) we get

Auλ ≥ fλ. (2.46)

Taking the limit as λ→ 0 in (2.45) and (2.46) we obtain (2.10).
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Chapter 3

Unilateral Problems with Lm Data, m > 1

This chapter deals with whose main results are contained in [11], where we study the proof of some

existence and regularity results for unilateral problems with degenerate coercivity.

3.1 Main results

The problem we are considering is as follows.{
Au = f in Ω,

u = 0 on ∂Ω

Here Ω is a bounded, open subset of RN , with N > 2, and Au =−di v(a(x,u)Du) with

a(x, s) :Ω×R→R is a Carathéodory function , satisfying the following conditions:

α

(1+|s|)θ ≤ a(x, s) ≤β (3.1)

For some real number θ such that.

0 ≤ θ < 1 (3.2)

For almost every x ∈Ω, for every s ∈R, where α and β are positive constants. we define

Au =−di v(a(x,u)Du). Here, we assume that hypotheses (3.1) and (3.2) holds.

Theorem 3.1.1.

Let f ∈ Lm(Ω),m > N
2 .

In that case, a function u ∈ H 1
0 (Ω)∩L∞(Ω) exists as a solution to the following unilateral problem

u ≥ 0 a.e.inΩ

〈Au,u − v〉 ≤ ∫
Ω f (u − v)

∀v ∈ H 1
0 (Ω), v ≥ 0 a.e. in Ω.

(3.3)

Additionally, u fulfills the inequality

f ≤ Au ≤ f + (3.4)

The following result pertains to data f that yield unbounded solutions in H 1
0 (Ω).
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Theorem 3.1.2.

Let f ∈ Lm(Ω), with m such that

2N

N +2−θ(N −2)
≤ m < N

2
. (3.5)

In that case, there exists a function u ∈ H 1
0 (Ω)∩Lr (Ω),with

r = N m(1−θ)

N −2m
(3.6)

That serves as a solution to problem (3.3).

Additionally u satisfies the inequality (3.4).

Theorem 3.1.3.

Let f ∈ Lm(Ω), with
N (2−θ)

N +2−Nθ
≤ m < 2N

N +2−θ(N −2)
. (3.7)

In that case, there exists a function u ∈W 1,q
0 (Ω), with

q = N m(1−θ)

N −m(1+θ)
. (3.8)

Such that

a(x,u)|Du|2 ∈ L1(Ω). (3.9)

Furthermore, u is a solution to the unilateral problem (3.3) and simultaneously satisfies the in-

equality (3.4).

Remark 3.1.1.

In order to introduce the new formulation of unilateral problem let us recall the definition of the

truncature function.

Given a constant k > 0 let Tk :R→R the function defined by

Tk (s) = max{−k,min{k, s}} .

Our focus of study will be on the following result.

Theorem 3.1.4. [11]

Let f ∈ Lm(Ω), with m > 1 such that

N

N +1−θ(N −1)
< m < N (2−θ)

N +2−Nθ
. (3.10)

In that case, there exists a function u ∈W 1,q
0 (Ω), with q as in (3.8) we have

u(x) ≥ 0 a.e. x ∈Ω
Tk (u) ∈ H 1

0 ∀k > 0

〈Au,Tk (u − v)〉 ≤ ∫
Ω f Tk (u − v)

∀v ∈ H 1
0 ∩L∞(Ω), v ≥ 0 a.e. in Ω.

(3.11)

Additionally u satisfies the inequality (3.4).
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3.2 A priori estimates.

Let f ∈ Lm(Ω), where m is defined in the statement of the theorems, and let fn be a sequence of

smooth functions such that

fn ∈ L
2N

N+2 (Ω) fn → f strongly in Lm(Ω) (3.12)

We have 2∗ = 2N
N−2 ,L2∗′ (Ω) = L

2N
N+2 (Ω), and H 1

0 (Ω) ⊂ L2∗(Ω) ⊂ L2∗′ (Ω) ⊂ H−1(Ω)

∥∥ fn
∥∥

Lm (Ω) ≤
∥∥ f

∥∥
Lm (Ω) ,∀n ∈N. (3.13)

We define the following sequence of Dirichlet problemsAnun + f −
n

un
1
n +|un | = f +

n in Ω

un = 0 on ∂Ω.
(3.14)

Where

Anun =−di v(a(x,Tn(un))Dun).

For every n ∈N, the function a(x,Tn(s)) satisfies the condition (3.1). Also, since

a(x,Tn(s)) ≥ α

(1+n)θ
, for a.e. x ∈Ω,∀s ∈R, (3.15)

and since fn ∈ H−1, by well-known results (look at [25]) there exists at least a solution un of prob-

lem (3.14) in the sense that
un ∈ H 1

0 (Ω)∫
Ω a(x,Tn(un))DunDv +∫

Ω f −
n

un
1
n +|un |v = ∫

Ω f +
n v

∀v ∈ H 1
0 (Ω).

(3.16)

Note that, ∀n ∈N
un(x) ≥ 0 for a.e. x ∈Ω. (3.17)

We choose as test function in (3.16) v = u−
n , we obtain∫

Ω
a(x,Tn(un))DunDv +

∫
Ω

f −
n

un
1
n +|un |

v =
∫
Ω

f +
n v∫

Ω
a(x,Tn(un))DunDu−

n +
∫
Ω

f −
n

un
1
n +|un |

u−
n =

∫
Ω

f +
n u−

n

−
∫
Ω

a(x,Tn(un))|Du−
n |2 =

∫
Ω

f +
n u−

n +
∫
Ω

f −
n

(u−
n )2

1
n +|un |

.

Since the right hand side is non negative and using condition (3.15), we have

α

(1+n)θ

∫
Ω
|Du−

n |2d x ≤ 0,
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This leads to the implication of (3.17), thereby establishing that un is a solution to the problem.
un ∈ H 1

0 (Ω)∫
Ω a(x,Tn(un))DunDv +∫

Ω f −
n

un
1
n +un

v = ∫
Ω f +

n v

∀v ∈ H 1
0 (Ω).

(3.18)

In order to prove Theorem (3.1.1) we need the following L∞ a priori estimate

Lemma 3.2.1. [11]

Let f ∈ Lm(Ω), with m > N
2 and let un be a solution of (3.14). Then, there exist two positive con-

stants c1,c2, depending on N ,m,α,θ, |Ω|,∥∥ f
∥∥

Lm (Ω), such that, for any n ∈N,

‖un‖L∞(Ω) ≤ c1, (3.19)

‖un‖H 1
0 (Ω) ≤ c2, (3.20)

Proof. Let us define, for s in R and k > 0,

Gk (s) = s −Tk (s),

and set, for n inN

Ak = {x ∈Ω : un(x) > k} . (3.21)

We take Gk (un) as test function in (3.18),and using Hölder’s inequality (with exponents m, m′)

∫
Ω

a(x,Tn(un))DunDv +
∫
Ω

f −
n

un
1
n +un

v =
∫
Ω

f +
n v∫

Ω
a(x,Tn(un))DunDGk (un)+

∫
Ω

f −
n

un
1
n +un

Gk (un) =
∫
Ω

f +
n Gk (un)∫

Ak

a(x,Tn(un))|Dun |2 ≤
∫
Ω
| f |Gk (un)

∫
Ak

a(x,Tn(un))|Dun |2 ≤
∥∥ f

∥∥
Lm (Ω)

(∫
Ω

(Gk (un))m′
) 1

m′
,

and use assumption (3.1) and condition (3.17), we obtain

α

∫
Ak

|Dun |2
(1+un)θ

≤
∫
Ω
| f |Gk (un)

≤ ∥∥ f
∥∥

Lm (Ω)

(∫
Ω

(Gk (un))m′
) 1

m′
,

(3.22)

Where m′ = m
m−1 . Thanks to estimate (3.22) we get the L∞-estimate as in the proof of Lemma 2.2

of [12].
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We study proof the estimate (3.20), we take un as test function in (3.18), we obtain∫
Ω

a(x,Tn(un))DunDv +
∫
Ω

f −
n

un
1
n +un

v =
∫
Ω

f +
n v∫

Ω
a(x,Tn(un))DunDun +

∫
Ω

f −
n

un
1
n +un

un =
∫
Ω

f +
n un∫

Ω
a(x,Tn(un))|Dun |2 =−

∫
Ω

f −
n

un
1
n +un

un +
∫
Ω

f +
n un∫

Ω
a(x,Tn(un))|Dun |2 ≤−

∫
Ω

f −
n

un
1
n +un

un +
∫
Ω

f +
n un

Using hypothesis (3.1) we get

α

∫
Ω

|Dun |2
(1+un)θ

≤
∫
Ω

f +un −
∫
Ω

f − un
1
n +un

un ≤
∫
Ω
| f |un .

From this estimate, using (3.19) we obtain∫
Ω
|Dun |2 ≤ (1+ c1)θ+1

α

∥∥ f
∥∥

Lm (Ω) .

�

The subsequent result will be utilized in the proof of Theorem 3.1.2.

Lemma 3.2.2.

Let f ∈ Lm(Ω), with m satisfying hypothesis (3.5), and let un be a solution of problem (3.14).

Subsequently, there exist two positive constants, namely c3 and c4, depending on N ,m,α,θ, |Ω|,∥∥ f
∥∥

Lm (Ω),

such that, for any n ∈N,

‖un‖Lr (Ω) ≤ c3, (3.23)

‖un‖H 1
0 (Ω) ≤ c4, (3.24)

Where r is defined by 3.6.

Proof. Let k > 0. Following the outline of the proof of Lemma 2.3 of [12] we have to prove the

following estimate

α

∫
Bk

|Dun |2 ≤ (2+k)θ
∫

Ak

| f |, (3.25)

Where Ak is the set defined in (3.21) and

Bk = {x ∈Ω : k ≤ un < k +1} . (3.26)

If we take in (3.18) v = T1(Gk (un)),∫
Ω

a(x,Tn(un))DunDv +
∫
Ω

f −
n

un
1
n +un

v =
∫
Ω

f +
n v∫

Ω
a(x,Tn(un))DunDT1(Gk (un))+

∫
Ω

f −
n

un
1
n +un

T1(Gk (un)) =
∫
Ω

f +
n T1(Gk (un))
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∫
Bk

a(x,Tn(un))DunD(Gk (un)) ≤
∫
Ω

f +
n T1(Gk (un))−

∫
Ω

f −
n

un
1
n +un

T1(Gk (un))∫
Bk

a(x,Tn(un))DunDun =≤
∫

Ak

f +
n T1(Gk (un))−

∫
Ak

f −
n

un
1
n +un

T1(Gk (un))∫
Bk

a(x,Tn(un))|Dun |2 ≤
∫

Ak

f +
n T1(Gk (un))−

∫
Ak

f −
n T1(Gk (un))∫

Bk

a(x,Tn(un))|Dun |2 ≤
∫

Ak

| fn |T1(Gk (un))

Thanks to hypothesis (3.1), (3.17) and un ≤ k +1 we get

α

∫
Bk

|Dun |2
(1+un)θ

≤
∫

Ak

| f |T1 (Gk (un))

α

∫
Bk

|Dun |2
(1+k +1)θ

≤
∫

Ak

| f |T1 (Gk (un)) ,

Which implies (3.25). �

The next lemma deals with the case in which the sequence {un} is not bounded in H 1
0 and will be

used in the proof of Theorems (3.1.3), (3.1.4).

Lemma 3.2.3.

Assume f ∈ Lm(Ω) with
N

N +1−θ(N −1)
< m < 2N

N +2−θ(N −2)
. (3.27)

Let
{

fn
}

be a sequence of functions satisfying (3.12) and (3.13), and let un be a solution of (3.14).

Then, for any n ∈N and K > 0 we obtain∫
Ω
|DTk (un)|2d x ≤

∥∥ f
∥∥

L1(Ω)

α
(1+K )θ+1 . (3.28)

Also

‖un‖W
1,q
0 (Ω)

≤ c5, ∀n ∈N, (3.29)

Where c5 depends on N ,m,θ,α, |Ω|,∥∥ f
∥∥

Lm (Ω) and q is defined by (3.8).

Proof. Let us take Tk (uu) as test function in (3.18)∫
Ω

a(x,Tn(un))DunDv +
∫
Ω

f −
n

un
1
n +un

v =
∫
Ω

f +
n v∫

Ω
a(x,Tn(un))DunDTk (uu)+

∫
Ω

f −
n

un
1
n +un

Tk (uu) =
∫
Ω

f +
n Tk (uu)

∫
Bk

a(x,Tn(un))DunDun ≤
∫
Ω

f +
n Tk (uu)−

∫
Ω

f −
n

un
1
n +un

Tk (uu)∫
Bk

a(x,Tn(un))DunDun ≤
∫
Ω

f +
n Tk (uu)−

∫
Ak

f −
n

un
1
n +un

Tk (uu)∫
Bk

a(x,Tn(un))|Dun |2 ≤
∫
Ω

f +
n Tk (uu)−

∫
Ak

f −
n Tk (uu)∫

Bk

a(x,Tn(un))|Dun |2 ≤
∫
Ω
| fn |Tk (uu)
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Using (3.1) and condition (3.17) we get

α

∫
Bk

|Dun |2
(1+un)θ

≤
∫
Ω
| f |Tk (un)

α

(1+k)θ

∫
Ω
|DTk (un)|2 ≤

∫
Ω
| fn |(k +1)∫

Ω
|DTk (un)|2 ≤

∥∥ f
∥∥

L1(Ω)

α
(1+k)θ+1

Which implies (3.28).

The estimate (3.29) follows working as in the proof of Lemma 2.5 of [12]. �

Before proving the theorems we state the following result (for the proof see Lemma 2.8, [12]).

Lemma 3.2.4.

Let {vn} be a sequence of functions which is weakly convergent to v in H 1
0 (Ω), and let un be a

sequence of functions which is almost everywhere convergent to some function u in Ω. Then∫
Ω

a(x,u)|Dv |2 ≤ liminf
n→+∞

∫
Ω

a(x,Tn(un))|Dvn |2 ≤ c.

We are now in position to prove the Theorems.

3.3 Proof of the Theorems

Let f ∈ Lm(Ω), with m as in the statements of the theorems and let {un} be a sequence of solutions

of (3.14). Using the results of Lemmas (3.2.1) in addition (3.2.2) we get that the sequence {un} is

bounded in H 1
0 (Ω) and in the Lebesgue spaces as in the statements of the theorems.

Then, there exists a subsequence, still denoted by {un}, which is weakly convergent to some func-

tion u in H 1
0 (Ω). Moreover, {un} converges to u almost everywhere in Ω as a consequence of the

Rellich theorem.

Let us prove that u is a solution of the unilateral problem 3.3.

Since un(x) ≥ 0 a.e. x ∈Ω for any n ∈Nwe have

u(x) ≥ 0 a.e. x ∈Ω.

Let w ∈ H 1
0 (Ω), w ≥ 0, and take un −w as test function in (3.18). We obtain

∫
Ω

a(x,Tn(un))DunDv +
∫
Ω

f −
n

un
1
n +un

v =
∫
Ω

f +
n v∫

Ω
a(x,Tn(un))DunD(un −w)+

∫
Ω

f −
n

un
1
n +un

(un −w) =
∫
Ω

f +
n (un −w)

∫
Ω

a(x,Tn(un))DunD(un −w) =
∫
Ω

fn(un −w)+ 1

n

∫
Ω

f −
n (un −w). (3.30)
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Applying Lemma (3.2.4), with vn = un , we have∫
Ω

a(x,u)|Du|2 ≤ liminf
n→+∞

∫
Ω

a(x,Tn(un))|Dun |2.

Thanks to the boundeness and the continuity of a(x, s), and since un converges to u weakly in

H 1
0 (Ω) and almost everywhere in Ω we have

lim
n→+∞

∫
Ω

a(x,Tn(un))DunDw =
∫
Ω

a(x,u)DuDw.

Hence, taking the limit as n →+∞ in (3.30), since the right hand side converges to∫
Ω

f (u −w)d x,

u is a solution of (3.3).

In order to prove the inequality (3.4) we note that, since un is non negative, from (3.14) we derive

f ≤ Anun ≤ f +.

Thanks to the linearity of Anun with respect to Dun , letting n →+∞ in the previous inequality, we

obtain inequality (3.4).

Proof. of Theorem 3.1.3

Let
{

fn
}

be a sequence of functions satisfying (3.12) and (3.13), with m as in the statement of The-

orem (3.1.3),and let {un} be a sequence of solutions of problem (3.14). By Lemma (3.2.3) the se-

quence {Tk (un)} is bounded in H 1
0 (Ω). Also the sequence {un} is bounded in W 1,q

0 (Ω) and in Lr (Ω),

with q and r defined by (3.8), (3.6), respectively. Thus, there exists a subsequence, denoted by {un}

such that 
un * u weakl y −W 1,q

0 (Ω)

un → u str ong l y −Lq , and a.e.x ∈Ω,

Tk un → Tk u weakl y −H 1
0 (Ω) .

(3.31)

Let’s study proof that u satisfies (3.9).

Taking Tk (un) as test function in (3.18),∫
Ω

a(x,Tn(un))DunDv +
∫
Ω

f −
n

un
1
n +un

v =
∫
Ω

f +
n v∫

Ω
a(x,Tn(un))DunDTk (un)+

∫
Ω

f −
n

un
1
n +un

Tk (un) =
∫
Ω

f +
n Tk (un)∫

Ω
a(x,Tn(un))|DTk (un)|2 ≤

∫
Ω

f +
n un −

∫
Ω

f −
n

un
1
n +un

un∫
Ω

a(x,Tn(un))|DTk (un)|2 ≤
∫
Ω

fn(Tn(un))+ 1

n

∫
Ω

f −
n (Tn(un))

We have ∫
Ω

a (x,Tn(un)) |DTk (un)|2 ≤
∫
Ω

fnTk (un)+ 1

n

∥∥ f −
n

∥∥
L1(Ω) . (3.32)
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Applying Lemma (3.2.4) with vn = Tk (un), we thus have∫
Ω

a (x,u) |DTk (u)|2 ≤ liminf
n→+∞

∫
Ω

a (x,Tnun) |DTk (un)|2. (3.33)

Passing to the limit as n →+∞ in 3.32 we obtain∫
Ω

a (x,u) |DTk (u)|2 ≤
∫
Ω

f Tk (u).

Letting k −→∞, we obtain ∫
Ω

a (x,u) |Du|2 ≤
∫
Ω

f u ≤ c. (3.34)

Now we can prove that u is a solution of the unilateral problem (3.3). First of all we note that

u(x) ≥ 0 almost everywhere x ∈Ω.

Let ϕ be a function in C∞
0 (Ω), ϕ(x) ≥ 0 a.e. x ∈Ω and k > 0. Taking Tk (un)−ϕ as test function in

(3.18) ∫
Ω

a(x,Tn(un))DunDv +
∫
Ω

f −
n

un
1
n +un

v =
∫
Ω

f +
n v∫

Ω
a(x,Tn(un))DunD(Tk (un)−ϕ)+

∫
Ω

f −
n

un
1
n +un

(Tk (un)−ϕ) =
∫
Ω

f +
n (Tk (un)−ϕ)∫

Ω
a(x,Tn(un))DTk (un)−Dϕ=

∫
Ω

f +
n (Tk (un)−ϕ)−

−
∫
Ω

f −
n

un
1
n +un

(Tk (un)−ϕ)∫
Ω

a(x,Tn(un))DTk (un)−
∫
Ω

a(x,Tn(un))Dϕ≤
∫
Ω

fn(Tk (un)−ϕ)+

+ 1

n

∫
Ω

f −
n (Tk (un)−ϕ)

We obtain ∫
Ω

a (x,Tn(un)))DunDTk (un)−
∫
Ω

a (x,Tn(un)))DunDϕ≤

≤
∫
Ω

fn
(
Tk (un)−ϕ)+ 1

n

∥∥ f −
n

∥∥
L1(Ω) .

(3.35)

The right hand side easily passes to the limit as n tends to infinity. As for the left hand side, we note

that condition (3.33) holds; moreover a (x,Tnun)Dϕ converges to a (x,u)Dϕ in any Lp (Ω) . Thus,

it is possible to pass to the limit in (3.35) to obtain∫
Ω

a (x,u) |DTk u|2 −
∫
Ω

a (x,u)DuDϕ≤
∫
Ω

f
(
Tk u −ϕ)

.

A further limits on k →+∞ yelds∫
Ω

a (x,u)Du
(
Du −Dϕ

)≤ ∫
Ω

f
(
u −ϕ)

, (3.36)

∀ϕ ∈ C∞
0 (Ω),ϕ(x) ≥ 0 a.e. x ∈ Ω. At least, by standard density argument we can prove that 3.36

holds also for non negative test functions in H 1
0 (Ω).

The proof of the inequality (3.4) follows as in Theorems 3.1.1 and 3.1.2. �
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Proof. of Theorem 3.1.4. Let
{

fn
}

be a sequence of functions satisfying (3.12) and (3.13), with m as

in the statement of Theorem 3.1.4, and let {un} be a sequence of solutions of problem (3.14). As

in the proof of Theorem 3.1.3, {un} has a subsequence, still denoted by sati {un}satisfying (3.31).

Moreover, u(x) ≥ 0 a.e. x ∈Ω.

Let v ∈ H 1
0 (Ω)∩L∞(Ω), v(x) ≥ 0 a.e.x ∈Ω.

Taking Tk (un − v) as test function in (3.18)∫
Ω

a(x,Tn(un))DunDv +
∫
Ω

f −
n

un
1
n +un

v =
∫
Ω

f +
n v∫

Ω
a(x,Tn(un))DunDTk (un − v)+

∫
Ω

f −
n

un
1
n +un

Tk (un − v) =
∫
Ω

f +
n Tk (un − v)∫

Ω
a(x,Tn(un))DunDTk (un − v) ≤

∫
Ω

fnTk (un − v)+ 1

n

∫
Ω

f −
n Tk (un − v)

We obtain ∫
Ω

a (x,Tnun)DunDTk (un − v) ≤
∫
Ω

fnTk (un − v)+ 1

n

∥∥ f −
n

∥∥
L1(Ω) . (3.37)

The left hand side of the previous inequality can be rewritten as follows∫
Ω

a (x,Tn(un)) |DTk (un − v) |2 −
∫
Ω

a (x,Tn(un))Dv DTk (un − v) .

Since the sequence {Tk (un − v)} is weakly convergent to Tk (u − v) in H 1
0 by Lemma (3.2.4) with

vn = Tk (un − v) we have∫
Ω

a (x,u) |DTk (u − v) |2 ≤ liminf
n→+∞

∫
Ω

a (x,Tn(un)) |DTk (un − v) |2.

Also, due to the boundedness and continuity of a we obtain∫
Ω

a (x,u)Dv DTk (u − v) = lim
n→+∞

∫
Ω

a (x,Tn(un))Dv DTk (un − v) .

Then the first member of (3.37) passes to the limit, as well as the second member.

Hence u satisfies ∫
Ω

a (x,u)DuDTk (u − v) ≤
∫
Ω

f Tk (u − v) ,

For every v in H 1
0 ∩ L∞(Ω), v(x) ≥ 0 a.e. x ∈ Ω, that is u is a solution of the unilateral problem

(3.11). �

As for as the inequality (3.4) is concerned, we can prove it as in Theorems (3.1.1) and (3.1.2).
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Conclusion and Further Prospects

In this memory, we have studied some results on a class of nonlinear elliptic equations with de-

generate coercivity of the form {
Au = f in Ω,

u = 0 on ∂Ω
(3.38)

Where Ω be an open bounded subset of RN , N ≥ 2, A is defined as a nonlinear operator

Au =−di v a(x,Du)

Where Ω is a bounded Lipschitz domain in RN with N > 2 , f ∈ Lm , m > 1 and a :Ω×RN → RN is

a Caratheodory function such that for a.e. x ∈Ω and ∀ξ,η ∈RN , (ξ, η) the following assumptions

hold:

a(x,ξ)ξ≥α|ξ|p

|a(x,ξ)| ≤β(
h(x)+|ξ|p−1)

(
a(x,ξ)−a(x,η)

)(
ξ−η)> 0

With α,β > 0 and h(x) is a non-negative function in Lp ′
(Ω)(here p ′ denotes the conjugate expo-

nent of p ).

• If f ∈ Lm(Ω),m > N
2 , then u ∈ H 1

0 (Ω)∩L∞(Ω).

• If f ∈ Lm(Ω), 2N
N+2−θ(N−2) ≤ m < N

2 , then u ∈ H 1
0 (Ω)∩Lr (Ω) ,with r = N m(1−θ)

N−2m .

• If f ∈ Lm(Ω), N (2−θ)
N+2−Nθ

≤ m < 2N
N+2−θ(N−2) , then u ∈W 1,q

0 (Ω) , with q = N m(1−θ)
N−m(1+θ)

• If f ∈ Lm(Ω), N
N+1−θ(N−1) < m < N (2−θ)

N+2−Nθ
, then u ∈W 1,q

0 (Ω) , with q = N m(1−θ)
N−m(1+θ)

This thesis memory contributes to the understanding of nonlinear elliptic equations with degen-

erate coercivity, providing important theoretical insights and establishing conditions for the exis-

tence and regularity of solutions. The results obtained in this study lay the groundwork for further
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investigations in this field and can serve as a valuable resource for researchers and practitioners

working in related areas.

This study raises some questions for researchers to explore in further studies: We suggest to study

the following problem {
Au = f in Ω,

u = 0 on ∂Ω

Where Ω is a bounded Lipschitz domain in RN with N > 2, A is defined as a nonlinear operator

Au =−di v a(x,Du)

With a :Ω×RN →RN is a Caratheodory function such that for a.e. x ∈Ω and ∀ξ,η ∈RN , (ξ, η) the

following assumptions hold:

a(x,ξ)ξ≥α|ξ|p

|a(x,ξ)| ≤β(
h(x)+|ξ|p−1)

(
a(x,ξ)−a(x,η)

)(
ξ−η)> 0

With α,β> 0, h(x) is a non-negative function in Lp ′
(Ω)(here p ′ denotes the conjugate exponent of

p ) ,and f ∈ Lρ(Ω)

Let ρ : [0,+∞) −→ [0,+∞) be an N-function, i.e, a convex function such that

lim
η−→0+

ρ(η)

η
= 0 and lim

η−→+∞
ρ(η)

η
=+∞.

Then it is possible to define the Orlicz space

Lρ(Ω) =
{

f measurable onΩ | ∃M > 0 :
∫
Ω
ρ(

| f |
M

) <+∞
}

.

where Lρ(Ω) is a Banach space under the norm

∥∥ f
∥∥

Lρ(Ω) = inf

{
M > 0 :

∫
Ω
ρ(

| f |
M

) ≤ 1

}
( more details about it look at [7])
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