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List of Symbols

Everywhere in the sequel we use the following notations:

• Rn : Euclidean, n-dimensional space.

• dµ or dx : Lebesgue measure n-dimensional .

• χE : Characteristic function of the set E

χE =

{
1, x ∈ E
0, elsewhere,

• Ω: Open set in Rn.

• Df : The distribution function.

• ρp(.) : Modular function.

ρp(.)
(f) =

∫
Ω\Ω∞

|f(x)|p(x)dx <∞

• p′: The conjugate exponent
1

p
+

1

p′
= 1.

• Z: The set of all integer numbers.

• p+, p−: Essential supremum and infimum of p,

p−(Ω) = essΩ∗ inf p(x),

p+(Ω) = essΩ∗ sup p(x)

• τh : Translation operator .

• ‖‖p : norm .

• L1
loc (Rn) : The collection of all locally integrable function on Rn.

• Lp(.)(Ω): The variable exponent Lebesgue space.

• Lp)(Ω): The grand Lebesgue space.
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• f ∗ g: The convolution is defined by

f ∗ g(x) =
∫
Rn f(x− y)g(y)dy. f, g ∈ L1(Rn).

• C∞0 (Ω): the space of smooth functions with compact support in Ω.

• C0
+(Ω) =

{
p ∈ C(Ω) : minx∈Ω p(x) > 0

}
• "i.e": Stands simply for "in other words".

• "a.e": Stands simply for "almost every were".
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Introduction

This memory master is devoted to the study of some basic properties of Marcinkiewicz spaces

( weak Lebesgue ) with variable exponents which is necessary to treat some nonlinear par-

tial differential equations. Its name comes from the Polish mathematician Józef Marcinkiewicz

(1910–1940) who worked in real analysis and partial differential equations ( look at [13] ).

In the first chapter we study some definitions and elementary properties of Lebesgue spaces

and weak Lebesgue spaces which includes the distribution function, convergence in measure,

a first glimpse at interpolation. This chapter has been illustrated by simple examples to clarify

the use these spaces in PDE. As already mentioned by [4] and [5] , these spaces has been already

used to studying nonlinear partial differential equations ( the reader can look at [14]).

Chapter 2 is devoted to study some definitions and elementary properties of variable expo-

nent Lebesgue spaces involving weak Lebesgue spaces with variable exponents, Luxemburg-

Nakano type norm, another version of the Luxemburg-Nakano norm, Hölder inequality, con-

vergence, completeness, embeddings, and Dense Sets. In addiction, we give the main differ-

ences between spaces with variable exponent and constant exponent which has been studied in

[3] [9], and [12]. In conclusion, we study the Hardy’s inequality that introduced in [5]. Also, on

a personal level, Marcinkiewicz spaces with variable exponents are one of the generalizations

of the Lebesgue spaces with variable exponents.

vi



CHAPTER 1

LEBESGUE SPACES AND WEAK LEBESGUE
SPACES

In this chapter, we study some definition and properties of Lebesgue Spaces and Weak Lebesgue

Spaces .

1.1 Lebesgue Spaces

This section is devoted to some definition and properties of Lp spaces.

1.1.1 Definition and elementary properties of Lp spaces

Definition 1.1.1. Let p ∈ R with 1 < p <∞; we set

Lp(Ω) =
{
f : Ω→ R; f is measurable and |f |p ∈ L1(Ω)

}
with

‖f‖Lp = ‖f‖p =

(∫
Ω

|f(x)|p dµ
) 1

p

Definition 1.1.2. We set

L∞(Ω) = {f : Ω→ R; f is µ measurable and ∃c : |f(x)| ≤ c for µ - a.e . x ∈ Ω, c > 0}

with

‖f‖L∞ = ‖f‖∞ = inf {c; |f(x)| ≤ c for µ-a.e. x ∈ Ω}

Remark 1.1.3. see [4]

Theorem 1.1.4 ( Hölder’s inequality). Assume that f ∈ Lp and g ∈ Lp′ with p′ =
p− 1

p
, 1 ≤ p ≤ ∞.

Then fg ∈ L1 and ∫
|fg| ≤ ‖f‖p ‖g‖p′ . (1.1)

Theorem 1.1.5. Lp is a vector space and ‖.‖p is a norm for any p, 1 ≤ p ≤ ∞.
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Proof. For 1 < p <∞ and let f, g ∈ Lp. We have

|f(x) + g(x)|p ≤ (|f(x)|+ |g(x)|)p ≤ 2p (|f(x)|p + |g(x)|p) .

So that, f + g ∈ Lp. Whereas,

‖f + g‖pp =

∫
|f + g|p−1 |f + g| ≤

∫
|f + g|p−1 |f |+

∫
|f + g|p−1 |g| .

But |f + g|p−1 ∈ Lp′ , and by Hölder’s inequality we obtain

‖f + g‖pp ≤ ‖f + g‖p−1
p

(
‖f‖p + ‖g‖p

)
,

i.e, ‖f + g‖p ≤ ‖f‖p + ‖g‖p.

Theorem 1.1.6 (Fischer-Riesz). [4] Lp is a Banach space for any p, 1 ≤ p ≤ ∞.

Proof. See [4]

1.2 Weak Lebesgue spaces

We start with a simple observation that will be used when defining the weak Lebesgue space.

Lemma 1.2.1. [5] Let (E,A, µ) be a measure space and f be an a -measurable function that satisfies

µ ({x ∈ E : |f(x)| > λ}) ≤
( c
λ

)p
(1.2)

for some C > 0. Then

inf
{
c > 0 : Df (λ) ≤

( c
λ

)p}
=

(
sup
λ>0

λpDf (λ)

) 1
p

= sup
λ>0

λ (Df (λ))
1
p

Proof. We set

λ = inf
{
c > 0 : Df (λ) 6

( c
λ

)p}
,

and

B =

(
sup
λ>0

λpDf (λ)

) 1
p

.

Since f satisfies 1.2 then

Df (λ) ≤
( c
λ

)p
for some C > 0, then {

c > 0 : Df (λ) ≤
( c
λ

)p
,∀λ > 0

}
6= 0.

On the other hand λpDf (λ) ≤ Bp, thus λpDf (λ) : λ > 0 is bounded above by Bp and so B ∈ R.

Therefore

α = inf
{
c > 0 : Df (λ) ≤

( c
λ

)p
λ > 0

}
≤ B. (1.3)

Now, let ε > 0, then there exists C such that

2



λ ≤ C < λ+ ε

and thus

Df (λ) ≤ cp

λp
<

(λ+ ε)p

λp

from which we get

supλ>0 λ
pDf (λ) < (λ+ ε)p.

By the arbitrariness of ε > 0, we obtain B < λ which, together with 1.3, we obtain B = λ.

We now introduce the weak Lebesgue space.

1.2.1 The distribution function

Definition 1.2.2. [10] For f a measurable function on E, the distribution function of f is the

function Df defined on [0,∞) as follows:

Df (λ) = µ({x ∈ E : |f(x)|> λ}). (1.4)

The distribution function Df provides information about the size of f but not about the behav-

ior of f it self near any given point. For instance, a function on Rn and each of its translates have

the same distribution function. It follows from Definition 1.2.2 that Df is a decreasing function

of λ (not necessarily strictly).

Proposition 1.2.3. [10] Let f and g be measurable functions on (E, µ). Then for all α, β > 0 we have

1. |g| 6 |f | µ -a.e. implies that Dg 6 Df ;

2. Dcf (α) = Df (α/|c|), for all c ∈ R \ {0};

3. Df+g(α + β) 6 Df (α) +Dg(β);

4. Dfg(αβ) 6 Df (α) +Dg(β).

Proposition 1.2.4. [10] Let (X,µ) be a σ -finite measure space. Then for f in Lp(X,µ), 0 < p < ∞,

we have

‖f‖pLp = p

∫ ∞
0

λp−1Df (λ)dλ. (1.5)

Remark 1.2.5. For any increasing continuously differentiable function ϕ on [0,∞) with ϕ(0) = 0

and every measurable function f on E with ϕ(|f |) integrable on X , we have∫
X

ϕ(|f |)dµ =

∫ ∞
0

ϕ′(λ)Df (λ)dλ. (1.6)
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Proof. we have

p

∫ ∞
0

λp−1Df (λ)dλ = p

∫ ∞
0

λp−1

∫
X

χ{x:|f(x)|>λ}dµ(x)dλ

=

∫
X

∫ |f(x)|

0

pλp−1dλdµ(x)

=

∫
X

|f(x)|pdµ(x)

= ‖f‖pLp

Definition 1.2.6. [10] For 0 < p < ∞, the space weak Lp(X,µ) is defined as the set of all µ-

measurable functions f such that

‖ f ‖Lp.∞= inf

{
C > 0 : Df (λ) 6

Cp

λp
, λ > 0

}
(1.7)

= sup
{
γDf (γ)

1
p : γ > 0

}
(1.8)

is finite.

Remark 1.2.7. Note that the assumptions 1.8 and 1.7 are in fact equal according to Lemma 1.2.1.

Remark 1.2.8. The weak Lp spaces are denoted by Lp,∞(X,µ).

Two functions in Lp,∞(X,µ) are considered equal if they are equal µ-a.e. The notation Lp,∞(Rn)

is reserved for Lp,∞(Rn, |.|).

Using Proposition 1.2.3 (2), we can easily show that

‖ kf ‖Lp,∞= |k|‖ f ‖Lp,∞ (1.9)

for any complex constant k. The analogue of (1.2.3) is

‖ f + g ‖Lp,∞6 cp(‖ f ‖Lp,∞ + ‖ g ‖Lp,∞), (1.10)

where cp = max(2, 2
1
p ), a fact that follows from Proposition (1.2.3) (3), taking both α and β equal

to
α

2
. We also have that

‖ f ‖Lp,∞(X,µ)= 0⇒ f = 0 µ− a.e. (1.11)

In view of 1.9, 1.10, and 1.11, Lp,∞ is a quasi-normed linear space for 0 < p < ∞. The weak Lp

spaces are larger than the usual Lp spaces. We have the following:

4



Proposition 1.2.9. For any 0 < p <∞ and any f in Lp(X,µ) we have

‖ f ‖Lp,∞6‖ f ‖Lp . Than the embedding Lp(X,µ) j Lp,∞(X,µ) holds.

Proof. This is just a trivial consequence of Chebyshev’s inequality:

λpDf (λ) =

∫
{x:|f(x)|>λ}

λpdµ(x) 6
∫
{x:|f(x)|>λ}

|f(x)|pdµ(x) 6
∫
X

|f(x)|pdµ(x) =‖ f ‖pLp .

Exemple 1.1. We put

f(x) = x−
1
p then

∫ +∞

−∞

∣∣∣∣ 1

x
1
p

∣∣∣∣p dx =

∫ +∞

−∞

1

|x|
dx.

Is divergent but for ∀α > 0;

αpDf (α) = αpµ
{
x :
∣∣∣x− 1

p

∣∣∣ > α
}

= αpµ

{
x : |x| < 1

αp

}
= αp.

2

αp
= 2.

1.2.2 Convergence in measure

We present some convergence notions. The following notion is important in probability theory.

Definition 1.2.10. Let f, fn;n = 1, 2, ... be measurable functions on the measure

space (E, µ). The sequence fn is said to converge in measure to f if for all ε > 0 there exists an

n0 ∈ Z+ such that

n > n0 =⇒ µ({x ∈ E : |fn(x)− f(x)|> ε}) < ε. (1.12)

Remark 1.2.11. The preceding definition is equivalent to the following statement, for all ε > 0 :

lim
n→∞

µ({x ∈ E : |fn(x)− f(x)|> ε}) = 0. (1.13)

Clearly 1.13 implies 1.12. To see the converse given ε > 0, pick 0 < δ < ε and apply 1.12 for this

δ.

There exists an n0 ∈ Z+ such that :

µ({x ∈ E : |fn(x)− f(x)|> δ}) < δ

holds for n > n0. Since

µ({x ∈ E : |fn(x)− f(x)|> ε}) 6 µ({x ∈ E : |fn(x)− f(x)|> δ})

5



we short that

µ({x ∈ E : |fn(x)− f(x)|> ε}) < δ

for all n > n0. Let n −→∞ to deduce that

lim
n→∞

supµ({x ∈ E : |fn(x)− f(x)|> ε}) 6 δ. (1.14)

Due to 1.14 holds for all 0 < δ < ε, 1.13 follows by letting δ −→ 0. Convergence in measure is a

weaker notion than convergence in either Lp or Lp,∞, 0 < p 6 ∞, as the following proposition

indicates:

Proposition 1.2.12. Let 0 < p 6∞ and fn , f be in Lp,∞(E, µ).

(1) If fn, f are in Lp and fn −→ f in Lp, then fn −→ f in Lp,∞.

(2) If fn −→ f in Lp,∞, then fn converges to f in measure.

Proof. Fix 0 < p <∞. Proposition1.2.9 gives that for all ε > 0 we have

µ({x ∈ E : |fn(x)− f(x)|> ε}) 6 1

εp

∫
X

|fn − f |pdµ.

This shows that convergence in Lp implies convergence in weak Lp. The case p = ∞ is tauto-

logical. Given ε > 0 find an n0 such that for n > n0, we have

‖ fn − f ‖Lp,∞= supαµ({x ∈ X : |fn(x)− f(x)|> α})
1
p < ε

1
p

+1.

Taking α = ε, we conclude that convergence in Lp,∞ implies convergence in measure.

Theorem 1.2.13. Let fn and f be complex-valued measurable functions on a measure space (E, µ) and

suppose that fn converges to f in measure. Then some subse-quence of fn converges to f µ-a.e.

Definition 1.2.14. We say that a sequence of measurable functions fn on the measure space

(E, µ) is Cauchy in measure if for every ε > 0, there exists an n0 ∈ Z+ such that for n,m > n0

we have

µ({x ∈ E : |fm(x)− fn(x)|> ε}) < ε.

6



Theorem 1.2.15. Let (E, µ) be a measure space and let fn be a complex-valued sequence on X that is

Cauchy in measure. Then some subsequence of fn converges µ -a.e.

Proof. The proof is very similar to that of Theorem1.2.13.Forall k = 1, 2, ... choose nk inductively

such that

µ(
{
x ∈ E : |fnk(x)− f(x)|> 2−k

}
) < 2−k (1.15)

We define the sets

Ak =
{
x ∈ E : |fnk(x)− f(x)|> 2−k

}
. For n1 < n2 < ... < nk < ...

As shown in the proof of Theorem 1.2.13 1.15 implies that

µ(∩∞m=1 ∪∞k=m Ak) = 0 (1.16)

For x /∈ ∪∞k=mAk and i ≥ j ≥ j0 ≥ m (and j0 large enough) we have

|fni(x) − fnj(x)|≤
∑i−1

l=j |fnl(x) − fnl+1
(x)|≤

∑i−1
l=j 2−l ≤ 21−j ≤ 21−j0 . This implies that the

sequence {fni(x)}i is Cauchy for every x in the set (
⋃∞
k=mAk)

c and therefore converges for all

such x. We define a function

f(x) =

{
limj−→∞ fnj(x) x /∈

⋂∞
m=1

⋃∞
k=mAk;

0 x ∈
⋂∞
m=1

⋃∞
k=mAk

Then fnj −→ f almost everywhere.

A First glimpse at interpolation

Remark 1.2.16. It is a useful fact that if a function f is in Lp(E, µ) and in Lq(E, µ), then it also

lies in Lr(E, µ) for all p < r < q .

The usefulness of the spaces Lp,∞ can be seen from the following sharpening of this statement:

Proposition 1.2.17. Let 0 < p < q 6 ∞ and let f in Lp,∞(E, µ) ∩ Lq,∞(E, µ), where X is a σ-finite

measure space. Then f is in Lr(X,µ) for all p < r < q and

‖ f ‖Lr6
(

r

r − p
+

r

q − r

) 1
r

‖ f ‖

1
r
− 1

q

1
p
− 1

q
Lp,∞ ‖ f ‖

1
p
− 1

r

1
p
− 1

q
Lq,∞ (1.17)

with the interpretation that 1/∞ = 0 .

Definition 1.2.18. [10] For K ⊂ Rn, 0 < p < ∞, the space Lploc(Rn, |.|) or simply Lploc(Rn) is the

set of all Lebesgue-measurable functions f on (Rn) that satisfy∫
K

|f(x)|p dx <∞. (1.18)

7



Functions that satisfy 1.18 with p = 1 are called locally integrable functions on Rn . The union

of all Lp(Rn) spaces for 1 ≤ p ≤ ∞ is contained in L1
loc(Rn)

Proposition 1.2.19. More generally, for 0 < p < q <∞ we have the following:

Lq(Rn) j Lqloc(Rn) j Lploc(Rn) .

Remark 1.2.20. Functions in Lp(Rn) for 0 < p < 1 may not be locally integrable.

Exemple 1.2. Take f(x) = |x|−n−αχ|x|≤1 hich is in Lp(Rn) when α > 0 and p < n/(n + α), and

observe that f is not integrable over any open set in Rn containing the origin.

Theorem 1.2.21. Let {aj}j∈N be a sequence of positives reals.

1.
(∑∞

j=1 aj

)θ
≤
∑∞

j=1 a
θ
j , for any 0 ≤ θ ≤ 1.

2.
∑∞

j=1 a
θ
j ≤

(∑∞
j=1 aj

)θ
, for any 1 ≤ θ <∞ .

3.
(∑N

j=1 aj

)θ
≤ N θ−1

∑N
j=1 a

θ
j , when 1 ≤ θ <∞ .

4.
(∑N

j=1 a
θ
j

)
≤ N1−θ

(∑N
j=1 aj

)θ
, when 0 ≤ θ ≤ 1 .

8



CHAPTER 2

NONSTANDARD LEBESGUE SPACES

This chapter is devoted to study of variable exponent space and Weak Lebesgue space with

variable exponent, Grand Lebesgue Spaces.

2.1 Variable exponent Lebesgue spaces

In this section we define the so-called variable exponent Lebesgue spaces Lp(.)
(Ω), introduce an

appropriate norm and study some fundamental properties of the space, for simplicity we will

work only on a measurable subset Ω of Rn with the Lebesgue measure. By P (Ω) we denote the

family of all measurable functions p : Ω −→ [1,∞]. For p ∈ P (Ω) we define the following sets

Ω1(p) := Ω1 = {x ∈ Ω : p(x) = 1} ,
Ω∞(p) := Ω∞ = {x ∈ Ω : p(x) =∞} ,
Ω+(p) := Ω∗ = {x ∈ Ω : 1 < p(x) <∞} .

Definition 2.1.1. The variable exponent Lebesgue space are note by Lp(.)
(Ω), as the set of all

measurable functions f : Ω −→ R such that

ρp(.)
(f) :=

∫
Ω\Ω∞

|f(x)|p(x)dx <∞ (2.1)

and

ess max
x∈Ω∞

|f(x)|<∞.

Where the measurable function p : Ω −→ (0,∞] is called variable exponent. The functional ρp(.)
is known as a modular.

Remark 2.1.2. If m(Ω∗) > 0, and p− = p+ = 1 if m(Ω∗) = 0. For p ∈ P (Ω) we define the dual

exponent or the conjugate exponent has

p′(x) =


∞, x ∈ Ω1

p(x)

p(x)− 1
, x ∈ Ω∗,

1, x ∈ Ω∞

9



which implies the pointwise inequality

1

p(x)
+

1

p′(x)
= 1.

If a measurable function p : Rn −→ [1,∞) satisfies

1 < p−, p+ <∞, (2.2)

then the conjugate function

p′(x) :=
p(x)

p(x)− 1

is well defined and moreover it satisfies 2.2. Working with the definition of p−, p+ and the

conjugate exponent, we have the following relations

1. (p′(.))+ = (p−)′;

2. (p′(.))− = (p+)′.

Lemma 2.1.3. The space Lp(.)(Ω) is linear if and only if p+ <∞.

Proof. Suppose that p+ = ∞. We will show that there exists a function f0 ∈ Lp(.)(Ω) such that

2f0 /∈ Lp(.)(Ω). Let Am = x ∈ Ω \ Ω∞ : m− 1 ≤ p(x) ≤ m. Since p+ = ∞, there exists a sequence

mk −→∞, k ∈ N such that m(Amk) > 0. We now construct a step function

f0 ; i.e, f0(x) = cm for x ∈ Am, where cm is given by the relation∫
Am

cp(x)
m dx = m−2,

this defines cm univocally if m(Am) 6= 0 . We then have

ρp(.)(f0) =
∞∑
m=1

∫
Am

cp(x)
m dx =

∞∑
m=1

m−2 <∞.

which entails that f0 ∈ Lp(.)(Ω). On the other hand,

ρp(.)(2f0) ≥
∞∑
k=1

∫
Amk

(2cmk)
p(x)dx

≥
∞∑
k=1

2mk−1

∫
Amk

cp(x)
mk

dx

=
∞∑
k=1

2mk−1m−2
k =∞,

10



which means that 2f0 /∈ Lp(.)(Ω).

Let p+ <∞ . We have

ρp(.)(cf) ≤ max {|c|p+ , 1} ρp(.)(f)

and

ρp(.)(f + g) ≤ 2p+ [ρp(.)(f) + ρp(.)(g)]

for all function f and g in Lp(.)(Ω).

The next result tells us that the definition of the variable Lebesgue space is not void, in the sense

that it always contains the set of step functions, whenever p+ <∞ .

2.1.1 Luxemburg-Nakano type norm

We already know from Lemma 2.1.3 that the space is linear if and only if p + . We now want to

study a norm in the Lebesgue space with variable exponents.

Lemma 2.1.4. Let f ∈ Lp(.)(Ω), 0 ≤ p(x) ≤ ∞ . The function

F (λ) = ρp(.)(
f

λ
), λ > 0 (2.3)

Take finite values for all λ ≥ 1. Moreover, this function is continuous, decreasing, and

limλ−→∞ F (λ) = 0 . If p+ <∞, the same is true for all λ > 0 .

Proof. By definition we have that F (1) <∞. It is clear that the function 2.3 is

decreasing, which immediately entails that F (λ) <∞ for all λ ≥ 1. The continuity follows from

lim
λ→λ0

|F (λ)− F (λ0)| ≤ lim
λ→λ0

∫
Ω\Ω∞

|f(x)|p(x)
∣∣∣λ−p(x) − λ−p(x)

0

∣∣∣ dx
≤

∫
Ω\Ω∞

lim
λ−→λ0

|f(x)|p(x)
∣∣∣λ−p(x) − λ−p(x)

0

∣∣∣ dx (2.4)

where we used the Lebesgue dominated convergence theorem since λp(x) ≤ 1 for λ ≥ 1. Using

again the Lebesgue dominated convergence theorem we obtain limλ−→∞ F (λ) = 0.

When p+ <∞, for λ < 1 we have that F (λ) ≤ F (1)λ−p+ <∞. The continuity follow, once again,

from 2.4 since λ−p(x) ≤ cλ
−p+

0 for λ near λ0 . We now introduce a norm in the space Lp(.)(Ω)

11



Theorem 2.1.5. Let 0 ≤ p(x) ≤ ∞, for any f ∈ Lp(.)(Ω) the functional

‖ f ‖(p)= inf

{
λ > 0 :

∫
Ω\Ω∞

∣∣∣∣f(x)

λ

∣∣∣∣p(x)

dx ≤ 1

}
(2.5)

takes finite values and

ρp(.)

(
f

‖ f ‖(p)

)
≤ 1, ‖ f ‖(p) 6= 0. (2.6)

If the exponent satisfies p+ <∞ or ‖ f ‖(p)≥ 1, then

ρp(.)

(
f

‖ f ‖(p)

)
= 1, ‖ f ‖(p) 6= 0. (2.7)

Moreover, if 1 ≤ p(x) ≤ p+ <∞, x ∈ Ω \ Ω∞, we have that

‖ f ‖Lp(.)(Ω)=‖ f ‖(p) +ess sup
x∈Ω∞

|f(x)| (2.8)

is a norm in the space Lp(.)(Ω).

Proof. By Lemma 2.3we have that ‖f‖(p) is finite whenever f ∈ Lp(.)(Ω) and2.6- 2.7 are conse-

quences of the definition given in 2.5 and Lemma 2.3. To show that 2.8 is a norm, it suffices to

show the triangle inequality for ‖f‖(p), which follows from the inequality

|λy1 + (1− λ)y2|p ≤ λ |y1|p + (1− λ) |y2|p , (2.9)

for 0 ≤ λ ≤ 1 and p ≥ 1, since t 7→ tp is a convex function.

We now obtain upper and lower bounds for the modular ρp(.) via the functional ‖.‖(p) .

Corollary 2.1.6. The functional 2.5 and the modular ρp(.) are related by the following estimates(
‖f‖(p)

λ

)p+

≤ ρp(.)

(
f

λ

)
≤

(
‖f‖(p)

λ

)p−

, λ ≥ ‖f‖(p) , (2.10)

(
‖f‖(p)

λ

)p−

≤ ρp(.)

(
f

λ

)
≤

(
‖f‖(p)

λ

)p+

, 0 < λ ≤ ‖f‖(p) . (2.11)

where the extreme cases p− = 0 or p+ =∞ are admitted.

Proof. Let us rewrite 2.10 and 2.11 as

λp+ ≤ ρp(.)

(
λ

‖f‖(p)

f

)
≤ λp− , 0 < λ ≤ 1, (2.12)

and

λp− ≤ ρp(.)

(
λ

‖f‖(p)

f

)
≤ λp+ , λ ≥ 1. (2.13)

12



We now have that2.12 and 2.13 are a consequence of 2.7 if p+ < ∞ or p+ = ∞ with ‖f‖(p) ≥ 1.

If p+ = ∞ and ‖f‖(p) ≤ 1, the right-hand side of the inequality in 2.12 is a consequence of 2.6,

and the left-hand side of 2.13 holds since

‖g‖(p) = λ ≥ 1 for g(x) = λf(x)/ ‖f‖(p).

Corollary 2.1.7. Let p be a measurable function, 0 ≤ p− ≤ p(x) ≤ p+ < ∞, x ∈ Ω \ Ω∞, we have the

following estimates

‖f‖p+

(p) ≤ ρp(.)(f) ≤ ‖f‖p−(p) , ‖f‖(p) ≤ 1, (2.14)

‖f‖p−(p) ≤ ρp(.)(f) ≤ ‖f‖p+

(p) , ‖f‖(p) ≥ 1. (2.15)

Remark 2.1.8. Corollary 2.1.7 states that in questions related to convergence, ρp(.)(.) and ‖.‖(p)

are equivalent. This observation is quite useful due to the fact that the norm is given by a

supremum and calculating explicitly the norm can be impossible, except in trivial cases. With

these estimates at hand, we can get an upper and lower bound for the norm of an indicator

function of a set.

Corollary 2.1.9. Let E be a measurable set in Ω \ Ω∞. If 0 < p− ≤ p+ <∞ we have the estimate

m(E)1/p− ≤ ‖χE‖(p) ≤ m(E)1/p+ ,

when m(E) ≤ 1. In the case m(E) ≥ 1, the signs of the inequality are reversed. As a particular case, we

have that ‖χE‖(p) = 1 is equivalent to m(E) = 1 .

Remark 2.1.10. The space Lp(.)(Ω) is ideal; i.e. , it is a complete space and the inequality

|f(x)| ≤ |g(x)| , g ∈ Lp(.)(Ω) implies that ‖f‖Lp(.)(Ω) ≤ ‖g‖Lp(.)(Ω) . Let 1 ≤ p(x) ≤ ∞ be such that

p+ <∞ . The semi-norm ‖f‖(p) can be represented in the form

‖f‖(p) =

∫
Ω\Ω∞

φ(x)f(x)dx, φ ∈ Lp′(.)(Ω) (2.16)

where φ(x) =

∣∣∣∣∣ f(x)

‖f‖(p)

∣∣∣∣∣
p(x)−1

f(x)

|f(x)|
, x /∈ Ω∞ and ‖φ‖(p′) ≤ 1. In reality 2.16 is simply 2.7, the

inequality ‖φ‖(p′) ≤ 1 is immediate.

Lemma 2.1.11. Let 0 < p− ≤ p+ ≤ ∞. If

ρp(.)

(
f

a

)
≤ b, a > 0, b > 0, (2.17)

then ‖f‖(p) ≤ abv with v = 1/p− if b ≥ 1 and v = 1/p+ if b ≤ 1.

13



Proof. By 2.17 we have the inequality ρp(.)(f/(ab
v)) ≤ 1, and now by the definition 2.5 we get

that ‖f‖(p) ≤ abv. The next result generalizes the property

‖fγ‖p = ‖f‖γγp

for the variable setting.

Lemma 2.1.12. Let 0 < γ(x) ≤ p(x) ≤ p+ <∞, x ∈ Ω\Ω∞. Then

‖f‖γ−(p) ≤ ‖f
γ‖( pγ ) ≤ ‖f‖

γ+

(p) , ‖f‖(p) ≥ 1, (2.18)

‖f‖γ+

(p) ≤ ‖f
γ‖( pγ ) ≤ ‖f‖

γ−
(p) , ‖f‖(p) ≤ 1. (2.19)

where fγ = |f(x)|γ(x). If p and γ are continuous functions, there exists a point x0 ∈ Ω\Ω∞ such that

‖fγ‖( pγ ) = ‖f‖γ(x0)
(p) (2.20)

Corollary 2.1.13. Let 0 ≤ p− ≤ p(x) ≤ p+ <∞, x ∈ Ω \Ω∞. If p is a continuous function in Ω \Ω∞,

there exists a point x0 ∈ Ω \ Ω∞ (which depends on f ) such that

‖f‖(p) =

{∫
Ω\Ω∞

|f |p(x) dx

} 1
p(x0)

. (2.21)

Proof. Taking γ(x) = p(x) in the equality 2.20 we get 2.21.

Definition 2.1.14. We define the sum space Lp(Ω) + Lq(Ω) as

Lp(Ω) + Lq(Ω) := {f = g + h : g ∈ Lp(Ω), h ∈ Lq(Ω)} .
which is a Banach space with the norm

‖f‖Lp(Ω)+Lq(Ω) = inf
f=g+h

{
‖g‖Lp(Ω) + ‖h‖Lq(Ω)

}
The intersection space Lp(Ω) ∩ Lq(Ω) is defined as

‖f‖Lp(Ω)∩Lq(Ω) = max
{
‖f‖Lp(Ω) , ‖f‖Lq(Ω)

}
which is a Banach space.

We now show that the variable exponent Lebesgue space is embedded between the sum and

intersection spaces of the spaces Lp− and Lp+ .

Lemma 2.1.15. [5] Let 1 ≤ p− ≤ p(x) ≤ p+ ≤ ∞, x ∈ Ω,m(Ω∞) = 0. Then

Lp(.)(Ω) ⊆ Lp−(Ω) + Lp+(Ω). (2.22)

Moreover,
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‖f‖Lp(.)(Ω) ≤ max
{
‖f‖p− , ‖f‖p+

}
The result follows from the splitting f(x) = f1(x) + f2(x) where f1(x) = f(x) if |f(x)| ≤ 1 and

f1(x) = 0 otherwise. The Lemma 2.1.15 admits the following natural generalization.

Lemma 2.1.16. [5] Let 1 ≤ p1(x) ≤ p(x) ≤ p2(x) ≤ ∞ and m(Ω∞(p2)) = 0. Then

Lp(.)(Ω) ⊆ Lp1(.)(Ω) + Lp2(.)(Ω).

In the previous lemmas, splitting the function in an appropriate way we were able to obtain embedding

results. We now want to obtain embedding results where the splitting is applied to the underlying set Ω.

Lemma 2.1.17. Let Ω = Ω1

⋃
Ω2 and let p be a function in Ω, p(x) ≥ 1 with p+ <∞ . Then

max
{
‖f‖Lp(.)(Ω1) , ‖f‖Lp(.)(Ω2)

}
≤ ‖f‖Lp(.)(Ω) ≤ ‖f‖Lp(.)(Ω1) + ‖f‖Lp(.)(Ω2) (2.23)

for all functions f ∈ Lp(.)(Ω).

Proof. Let us take m(Ω∞) = 0 for simplicity. Without loss of generality, let

a = ‖f‖Lp(.)(Ω1) , b = ‖f‖Lp(.)(Ω2) with a ≥ b. We have

∫
Ω

∣∣∣∣ f(x)

max {a, b}

∣∣∣∣p(x)

dx ≥
∫

Ω1

∣∣∣∣f(x)

a

∣∣∣∣p(x)

dx = 1.

Therefore ‖f‖Lp(.)(Ω) ≥ max {a, b}. To show the right-hand side inequality, we write

f(x)

a+ b
=

a

a+ b

X1(x)f(x)

a
+

b

a+ b

X2(x)f(x)

b

where Xi(x) are the characteristic functions of the sets Ωi, i = 1, 2. Using 2.9 we get∫
Ω

∣∣∣∣ f(x)

a+ b

∣∣∣∣p(x)

dx ≤ 1,

which shows the right-hand side inequality in 2.23. For the case m(Ω∞) > 0, the arguments

are similar if we take into account the fact that the lemma was already proved for the case

Ω \ Ω∞ = Ω∗1
⋃

Ω∗2 where Ω∗i = Ωi \ Ω∞, i = 1, 2.
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Another version of the Luxemburg-Nakano norm

The Luxemburg-Nakano type norm can be study directly with respect to all the set Ω in the

following form

‖f‖1
p = inf

{
λ > 0 : ρp(.)

(
f

λ

)
+ ess supx∈Ω∞

∣∣∣∣f(x)

λ

∣∣∣∣ ≤ 1

}
, (2.24)

which is well defined for f ∈ Lp(.)(Ω) and any variable exponent p with 0 ≤ p(x) ≤ ∞. It is a

norm if 1 ≤ p(x) ≤ ∞, which can be shown in the same way as Theorem 2.1.5. In an analogous

way to 2.7 it is possible to show that

∫
Ω\Ω∞

∣∣∣∣∣f(x)

‖f‖1
p

∣∣∣∣∣
p(x)

dx+
‖f‖L∞(Ω∞)

‖f‖1
p

= 1. (2.25)

if p+ <∞ or p+ =∞, but ‖f‖1
p ≥ 1.

Theorem 2.1.18. The norms 2.8 and 2.25 are equivalent, i.e.

1

2
‖f‖Lp(.)(Ω) ≤ ‖f‖

1
p ≤ ‖f‖Lp(.)(Ω) (2.26)

where f ∈ Lp(.)(Ω), 1 ≤ p(x) ≤ ∞, p+ <∞.

Proof. The right-hand side inequality in 2.26 is equivalent to

inf {λ > 0 : F (λ) + c/λ ≤ 1} ≤ λ0 + c,

where F (λ) is defined by 2.3 and

c = ‖f‖L∞(Ω∞) , λ0 = ‖f‖(p) .

From the above, it is sufficient to show that F (λ0 + c) +
c

λ0 + c
≤ 1, or in other words:

F (λ0 + c) ≤ λ0

λ0 + c
. Since F (λ0 + c) = ρp(.)

(
f

‖f‖(p) + c

)
, by 2.10 we obtain that

F (λ0 + c) ≤
‖f‖(p)

‖f‖(p) + c
=

λ0

λ0 + c
.

The left-hand side in 2.26 is a consequence of the inequalities

inf
{
λ > 0 : F (λ) +

c

λ
≤ 1
}
≥ inf {λ > 0 : F (λ) ≤ 1} = λ0,

and

inf
{
λ > 0 : F (λ) +

c

λ
≤ 1
}
≥ inf

{
λ > 0 :

c

λ
≤ 1
}

= c

since the left-hand side inequality is not less that
λ0 + c

2
.
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2.1.2 Hölder inequality

We now proceed to get Hölder’s inequality and after that we will get the Minkowski inequality

using F. Riesz construction via Hölder’s inequality.

Theorem 2.1.19 ( Hölder’s inequality). Let f ∈ Lp(.)(Ω), ϕ ∈ Lp′(.)(Ω) and 1 ≤ p(x) ≤ ∞. Then∫
Ω

|f(x)ϕ(x)| dx ≤ k ‖f‖Lp(.)(Ω) ‖ϕ‖Lp′(.)(Ω) (2.27)

with k =
1

p−
+

1

(p′)−
= sup

1

p(x)
+ sup

1

p′(x)

Proof. Let us note that, under the conditions of the theorem, the functionals ‖f‖Lp(.)(Ω) and

‖ϕ‖p′(.) are not necessarily norms and the classes Lp(.) and Lp′(.) are not necessarily linear, but

they always exist by Theorem 2.1.5. To show 2.27, we use the Young inequality

ab ≤ ap

p
+
bp
′

p′
(2.28)

with a > 0, b > 0,
1

p
+

1

p′
= 1 and 1 < p <∞. The inequality (2.28) is valid for p = 1 in the form

ab ≤ ap

p
if b ≤ 1 and for p =∞ in the form ab ≤ bp

′

p′
if a ≤ 1. Therefore,

∣∣∣∣∣ f(x)ϕ(x)

‖f‖p(.) ‖ϕ‖p′(.)

∣∣∣∣∣ ≤ 1

p(x)

∣∣∣∣∣ f(x)

‖f‖p(.)

∣∣∣∣∣
p(x)

+
1

p′(x)

∣∣∣∣∣ ϕ(x)

‖ϕ‖p′(.)

∣∣∣∣∣
p′(x)

where x ∈ Ω \ Ω∞(p)
⋃

Ω∞(p′), meanwhile for x ∈ Ω∞(p) and x ∈ Ω∞(p′) we have to omit the

first and second terms respectively in the right-hand side, since

∣∣∣∣∣ f(x)

‖f‖p(.)

∣∣∣∣∣ ≤ 1 for x ∈ Ω∞(p) and∣∣∣∣∣ ϕ(x)

‖ϕ‖p′(.)

∣∣∣∣∣ ≤ 1 for x ∈ Ω∞(p′). Integrating over Ω and estimating p and p′, we arrive at 2.27. In

the constant exponent case p(x) ≡ p, the Hölder’s inequality has a generalization of the form

‖uv‖r ≤ ‖u‖p ‖v‖q ,
1

p
+

1

q
=

1

r
,

which is an immediate consequence of the Hölder’s inequality and the relation

‖|u|r‖p = ‖u‖rpr . (2.29)

In the variable exponent Lebesgue space the relation 2.29 is no more valid in general, cf. Lemma

2.1.12. Nonetheless, the inequality is valid.
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Lemma 2.1.20. Let
1

p(x)
+

1

q(x)
≡ 1

r(x)
, p(x) ≥ 1, r(x) ≥ 1 and let R = supx∈Ω\Ω∞(r) r(x) < ∞ .

then

‖uv‖Lr(.)(Ω) ≤ c ‖u‖Lp(.)(Ω) ‖v‖Lq(.)(Ω) (2.30)

for all functions u ∈ Lp(.) and v ∈ Lq(.) with c = c1 + c2, c1 = supx∈Ω\Ω∞(r)

r(x)

p(x)

and c2 = supx∈Ω\Ω∞(r)

r(x)

q(x)
.

Proof. To show 2.30 we use the inequality

(AB)r ≤ r

p
Ap +

r

q
Bq

with A > 0, B > 0, p > 0, q > 0 and
1

p
+

1

q
=

1

r
. Integrating the inequality

|u(x)v(x)|r(x) ≤ r(x)

p(x)
|u(x)|p(x) +

r(x)

q(x)
|v(x)|q(x)

we get ∫
Ω\Ω∞(r)

|u(x)v(x)|r(x) dx ≤ c1

∫
Ω\Ω∞(p)

|u(x)|p(x) dx+ c2

∫
Ω\Ω∞(q)

|v(x)|q(x) dx (2.31)

since Ω∞(r) = Ω∞(p) ∩ Ω∞(q). From (2.31) and (2.6) it follows∫
Ω\Ω∞(r)

∣∣∣∣∣ u(x)v(x)

‖u‖(p) ‖v‖(q)

∣∣∣∣∣
r(x)

dx ≤ c1

∫
Ω\Ω∞(p)

∣∣∣∣∣u(x)

‖u‖p

∣∣∣∣∣
p(x)

dx+ c2

∫
Ω\Ω∞(q)

∣∣∣∣∣ v(x)

‖v‖(q)

∣∣∣∣∣
q(x)

dx ≤ c1 + c2.

From Lemma (2.1.11) we now get ‖uv‖ (r) ≤ (c1 + c2) ‖u‖(p) ‖v‖(q), since c1 + c2 ≥ 1.

The inequality (2.30) is also valid in the form

ρr(.)(uv) ≤ c ‖u‖Lp(.)(Ω) ‖v‖Lq(.)(Ω)

if ‖u‖Lp(.)(Ω) ≤ 1 and ‖v‖Lq(.)(Ω) ≤ 1, which follows from the Hölder inequality (2.27) and the

estimate (2.19).

Convergence and completeness

Theorem 2.1.21. Let 1 ≤ p(x) ≤ p+ <∞. The space Lp(.)(Ω) is complete.

Proof. The space Lp(.)(Ω) is the sum of Lp(.)(Ω∗) + L∞(Ω∞) where each space is understood as

the space of functions which are 0 outside the sets Ω∗ and Ω∞, respectively. Therefore, we only

need to show the completeness of the space Lp(.)(Ω∗).

Let fk be a Cauchy sequence in Lp(.)(Ω∗) such that for any positive number s exists

Ns(N1 < N2 < ...) such that
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∥∥fNs+1 − fNs
∥∥
Lp(.)(Ω∗)

< 2−s, s = 1, 2, 3.....

then ∞∑
s=1

∥∥fNs+1 − fNs
∥∥
Lp(.)(Ω∗)

<∞.

Let Ωr = {x ∈ Ω∗ : |x| < r} , r > 0. By Hölder’s inequality (2.27) we obtain

∞∑
s=1

∫
Ωr

∣∣fNs+1 − fNs
∣∣ dx ≤ cr

∞∑
s=1

∥∥fNs+1 − fNs
∥∥
Lp(.)(Ω∗)

<∞ (2.32)

where cr =

(
1

p−
+

1

(p′)−

)
‖XΩr‖Lp′(.)(Ω∗) < ∞. By (2.32),{fNs(x)} is a Cauchy sequence in

L1(Ωr). Therefore, there exists the limit f(x) = lims−→∞ fNs(x) for almost all x ∈ Ωr, which

entails that the same happens for almost all x ∈ Ω∗ since r > 0 is arbitrary. Now we only need

to show that

lim
k−→∞

‖fk − f‖Lp(.)(Ω∗) = 0.

Since {fk} is a Cauchy sequence, we have that ‖fk − fNs‖Lp(.)(Ω∗) < ε whenever k and s are

sufficiently large. Now by 2.14 we get∫
Ω∗

|fk(x)− fNs(x)|p(x) dx ≤ εp− ≤ ε.

Invoking Fatou’s Lemma we obtain∫
Ω∗

|fk(x)− f(x)|p(x) dx ≤ lim
s−→∞

inf

∫
Ω∗

|fk(x)− fNs(x)|p(x) dx

≤ sup
s

∫
Ω∗

|fk(x)− fNs(x)|p(x) dx ≤ ε

Lemma 2.1.22. Let 0 < p− ≤ p(x) ≤ p+ <∞, x ∈ Ω \ Ω∞. The convergence∫
Ω\Ω∞

|fm(x)− f(x)|p(x) dx+ ess sup
x∈Ω∞

|f(x)− fm(x)| < ε

is equivalent to the norm convergence

‖f − fm‖(p) + ess sup
x∈Ω∞

|f(x)− fm(x)| < ε

Proof. Follows from Corollary 2.6.
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2.1.3 Embeddings and dense sets

Theorem 2.1.23. Let 0 ≤ r(x) ≤ p(x) ≤ ∞ and let m(Ω \ Ω∞(r)) <∞ if Ω∞(r) ⊆ Ω∞(p) and

R := sup
x∈Ω∞(p)\Ω∞(r)

r(x),

then Lp(.)(Ω) ⊆ Lr(.)(Ω) and

ρr(.)(f) ≤ ρp(.)(f) +m(Ω∞(p) \ Ω∞(r)) ‖f‖RL∞(Ω∞(p)\Ω∞(r)) +m(Ω \ Ω∞(r)) (2.33)

for any f ∈ Lp(.)(Ω). (In the case Ω∞(p) = Ω∞(r), the second term in the right-hand side should be

omitted and R can be infinite). If, moreover, 1 ≤ r(x) ≤ p(x) and Ω∞(p) = Ω∞(r), the inequality for

norms is also valid:

‖f‖r ≤ cv0 ‖f‖(p) (2.34)

where c0 = c2 + (1− c1)m((Ω \ Ω∞(r)), c1 = infx∈Ω\Ω∞(p)
r(x)

p(x)
, c2 = supx∈Ω\Ω∞(p)

r(x)

p(x)
,

v =
1

r0

if c0 ≥ 1 and v =
1

R
if c0 ≤ 1 .

Proof. The estimate (2.33) is derived from the equality ρr(.)(f) =
∫

Ω1
+
∫

Ω2
+
∫

Ω3
with

Ω1 = {x ∈ Ω \ Ω∞(p) : |f(x)| ≥ 1} , Ω2 = {x ∈ Ω∞(p) \ Ω∞(r) : |f(x)| ≥ 1} ,
Ω3 = {x ∈ Ω \ Ω∞(r) : |f(x)| ≤ 1} .
The classical technique to show the inequality (2.34) for norms is based on the Hölder inequality

with the exponents p1(x) =
p(x)

r(x)
and p2(x) =

r(x)

p(x)− r(x)
which is no more appropriate for the

variable setting since we can have p(x) = r(x) in some arbitrary set. Using the inequality

(AB)r ≤ r

p
Ap +

r

q
Bq and taking A = |f(x)| / ‖f‖(p) andB = 1, we get, via (2.6), that

∫
Ω\Ω∞

∣∣∣∣∣ f(x)

‖f‖(p)

∣∣∣∣∣
r(x)

dx ≤ c0.

Therefore, by Lemma 2.1.11 we get (2.34). We now show the denseness of the bounded func-

tions with compact support.

Lemma 2.1.24. Let m(Ω∞(p)) = 0, 1 ≤ p(x) ≤ p+ < ∞. The set of bounded functions with compact

support is dense in Lp(.)(Ω).

Proof. For f ∈ Lp(.)(Ω) we define fN,m as

fN,m =

{
f(x), when |f(x)| ≤ N and |x| ≤ m;
0 otherwise,
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By Lemma 2.1.22, we have∫
Ω

|f(x)− fN,m(x)|p(x) dx ≤
∫
ωm

|g(x)| dx+

∫
ΩN

|g(x)| dx −→ 0

when m −→∞, N −→∞ , with ωm = {x ∈ Ω : |x| ≥ m} ,ΩN = {x ∈ Ω : f(x) ≥ N} and

g(x) = |f(x)|p(x) ∈ L1(Ω) .

Theorem 2.1.25. Let p ∈ ρ(Ω)
⋂
L∞(Ω) . Then the set C(Ω)

⋂
Lp(.)(Ω) is dense in Lp(.)(Ω). Moreover,

if Ω is open, then the set of all functions infinitely differentiable with compact support C∞c (Ω) is dense

in Lp(.)(Ω).

Proof. Let f ∈ Lp(.)(Ω) and ε > 0. From Lemma 2.1.24 there exists a bounded

function g ∈ Lp(.)(Ω) such that

‖f − g‖Lp(.)(Ω) < ε. (2.35)

By Luzin’s Theorem, there exists a function h ∈ C(Ω) and an open set U such that

m(U) < min

{
1,

(
ε

2 ‖g‖∞

)p+
}
,

g(x) = h(x) for all x ∈ Ω \ U and sup |h(x)| = supΩ\U |g(x)| ≤ ‖g‖∞. Then,

ρp(.)

(
g − h
ε

)
≤ max

{
1,

(
2 ‖g‖∞
ε

)p+
}
m(U) ≤ 1

i.e., ‖g − h‖Lp(.)(Ω) ≤ ε, which together with (2.35) implies that

‖f − h‖Lp(.)(Ω) ≤ 2ε (2.36)

On the other hand, let us assume that Ω is open. Since p ∈ L∞(Ω), we have that

C∞c (Ω) ⊂ Lp(.)(Ω) and ρp(.)

(
hχΩ\G

ε

)
≤ 1. In other words,

‖h− hχG‖Lp(.)(Ω) ≤ ε (2.37)

By the weierstrass approximation theorem, let m be a polynomial which satisfies the condi-

tion sup |h(x)−m(x)| ≤ εmin
{

1, |G|−1} Therefore ρp(.)

(
hχG −mχG

ε

)
≤ min

{
1, |G|−1} |G| ≤ 1,

from which

‖hχG −mχG‖Lp(.)(Ω) ≤ ε (2.38)

Finally, similar considerations to the ones that were used to get(2.37) permit to conclude that

for a sufficient small number a.
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The compact set Ka = {x ∈ G : dist(x, δG) ≥ a} satisfies that ‖mχG −mχKa‖Lp(.)(Ω) ≤ ε. Tak-

ing ϕ ∈ C∞c (G) such that 0 ≤ ϕ(x) ≤ 1 for x ∈ G and

ϕ(x) = 1 for x ∈ Ka we obtain

‖mχG −mϕ‖Lp(.)(Ω) ≤ ‖mχG −mχKa‖Lp(.)(Ω) ≤ ε,

from which, together with (2.36) and (2.38), we conclude that

‖f −mϕ‖Lp(.)(Ω) ≤ 4ε.

Clearlymϕ ∈ C∞c (Ω), which concludes the proof. By L∞c (Rn) we denote the class of all bounded

functions in Rn with compact support. From Theorem 2.1.25 we get the result.

Lemma 2.1.26. [5] Let p : Rn −→ [0,∞) be a measurable function such that 1 < p− ≤ p+ <∞. Then

L∞c (Rn) is dense in Lp(.)(Rn) and in Lp(.)(Rn). We now show that the set of step functions is dense in

the framework of variable exponent spaces with finite exponent.

Theorem 2.1.27. [5] Let p : Rn −→ [0,∞) be a measurable function such that 1 < p− ≤ p+ <∞. The

set S of step functions is dense in Lp(.)(Ω).

Proof. It follows from Lemma ?? and from Theorem 2.1.25 together with the fact that continuous

functions in compact sets are uniformly approximated by step functions.

Theorem 2.1.28. Under the conditions of Lemma 2.1.24 the space Lp(.)(Ω) is separable.

Proof. By Theorem 2.1.25 it is sufficient to show that any continuous function f with compact

support F ⊂ Ω can be approximated by functions in some enumerable set. We know that

such functions can be approximated uniformly by polynomials rm(x) with rational coefficients.

Taking fm(x) = rm(x) for x ∈ F and fm(x) = 0 for x /∈ F , we see that the functions fm(x)

approximate uniformly the function f(x).

2.1.4 Duality

We study the dual space of variable exponent Lebesgue spaces, which is similar to the classi-

cal Lebesgue space, viz. the dual space of Lp is Lp′ , where p′ is the conjugate exponent. For

simplicity, we will work with m(Ω) <∞. For m(Ω) =∞ see Cruz-Uribe and Fiorenza [5].

Theorem 2.1.29. Let 1 < p− ≤ p(x) ≤ p+ <∞ and m(Ω) <∞. Then[
Lp(.)(Ω)

]∗
= Lp′(.)(Ω).
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Proof. The inclusion Lp′(.)(Ω) ⊆
[
Lp(.)(Ω)

]∗ is an immediate consequence of the Hölder inequal-

ity (2.27). We now show the opposite inclusion
[
Lp(.)(Ω)

]∗ ⊆ Lp′(.)(Ω). Let Φ ∈
[
Lp(.)(Ω)

]∗, then

we define the set function µ as µ(E) = φ(χE) for all measurable sets E such that E ⊂ Ω . Since

χE∪F = χE +χF −χE∩F we have that µ is an additive function. In fact it is σ -additive. To show

that, let

E = ∪∞j=1Ej

where Ej ⊂ Ω are pairwise disjoint set, and let

FK = ∪kj=1Ej.

Then

‖χE − χFk‖Lp(.)(Ω) ≤ ‖χE − χFk‖p+
= C.m(E \ Fk)1/p+ .

Since m(E) < ∞,m(E \ Fk) tends to 0 when k −→ ∞, therefore χFk 7→ χE in norm. From the

continuity of φ we have that φ(χFk) −→ φ(χE), which is equivalent to

∞∑
j=1

µ(Ej) = µ(E)

and from this we get that µ is σ -additive. The function µ is a measure in Ω and, moreover, is

absolutely continuous: if E ⊂ Ω and m(E) = 0, therefore µ(E) = φ(χE) = 0, since |φ(f)| ≤
‖Φ‖ ‖f‖Lp(.)(Ω) . By the Radon-Nikodym Theorem, there exists g ∈ L1(Ω) such that

φ(χE) = µ(E) =

∫
Ω

χE(x)g(x)dx

By the linearity of φ, for a step function f =
∑n

i=1 aiχEi , Ei ⊂ Ω , we get

φ(f) =

∫
Ω

f(x)g(x)dx.

Using a density argument, similar to the constant case, we get the result.

Corollary 2.1.30. Let 1 < p− ≤ p(x) ≤ p+ <∞ and m(Ω) <∞. Then the space Lp(.)(Ω) is reflexive.

2.1.5 Associate norm

We now study a norm inspired by the Riesz representation theorem for linear functionals in Lp.

Let

Sp(.)(Ω) :=

{
f ∈ S(Ω, L);

∣∣∣∣∫
Ω

f(x)ϕ(x)dx

∣∣∣∣ <∞,∀ϕ ∈ Lp′(.)(Ω)

}
(2.39)
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with 1 ≤ p(x) ≤ ∞. This space coincides with the space Lp(.)(Ω) under certain natural condi-

tions in the variable exponent p and it is in fact the associate space of Lp′(.)(Ω) (see Definition

(2.3.5) for the notion of associate space in the context of Banach Function Spaces).

The inclusion

Lp(.)(Ω) ⊆ Sp(.)(Ω), 1 ≤ p(x) ≤ ∞ (2.40)

is an immediate consequence of the Hölder inequality (2.27). Observe that the space defined

in (2.39) is always linear. From Lemma 2.1.3, we have that this space cannot coincide with the

space Lp(.)(Ω) if p+ =∞ .

Let us study the following notation

p1
− = ess inf

x∈Ω\Ω1(p)
p(x); (p′)1

− = ess inf
x∈Ω\Ω1(p′)

p′(x)

We have

Ω1(p) = Ω∞(p′),Ω1(p′) = Ω∞(p), (p′)+ =
p1
−

p1
− − 1

, (p′)1
− =

p+

p+ − 1

The space introduced in (2.39) can be equipped with the next natural norms

‖f‖∗p = sup
δp′(.)(ϕ)≤1

∣∣∣∣∫
Ω

f(x)ϕ(x)dx

∣∣∣∣ , (2.41)

and

‖f‖∗∗p = sup
‖ϕ‖p′(.)≤1

∣∣∣∣∫
Ω

f(x)ϕ(x)dx

∣∣∣∣ , (2.42)

where we take δp(.)(ϕ) as

δp(.)(ϕ) =

(∫
Ω\Ω∞

|ϕ(x)|p(x) dx

) 1
p+

+ ess sup
x∈Ω∞

|ϕ(x)|

and we assume that (p′)+ <∞ ( i.e, p1
− > 1) in (2.41), while p(x) can be taken arbitrary

(1 ≤ p(x) ≤ ∞) in the case (2.42). Sometimes the norm (2.42) is called Orlicz type norm.

Note that by (2.10) we have

‖f‖Lp(.)(Ω) ≤ ‖f‖
∗∗
p

in the case 1 ≤ p(x) ≤ p+ <∞ and m(Ω∞) = 0 .

Lemma 2.1.31. Let f ∈ Sp(.)(Ω), (p′)1
− > 1.then ‖f‖∗p <∞ and∫

Ω

|f(x)ϕ(x)| dx ≤ ‖f‖∗p ‖ϕ‖
1
p′ ≤ ‖f‖

∗
p ‖ϕ‖Lp′(.)(Ω) (2.43)

for all ϕ ∈ Lp′(.)(Ω), where ‖ϕ‖1
p′ , is the norm(2.24). Moreover, the functional (2.41) is a norm in

Sp(.)(Ω) .
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Proof. Suppose that ‖f‖∗p = ∞. Then there exists a function f0(x) ∈ Sp(.)(Ω) and a sequence

ϕk ∈ Lp′(.)(Ω) such that δp′(.)(ϕk) ≤ 1 and∫
Ω

f0(x)ϕk(x)dx ≥ 2ǫk, k = 1, 2, 3, ....

(f0 ≥ 0, ϕk ≥ 0). Therefore jm =
∑m

k=1 2−ǫkϕk(x) is an increasing sequence. Direct calculations

show that δp′(.)(jm) ≤ 1 and∫
Ω

f0(x)jm(x)dx =
m∑
k=1

2−ǫk
∫

Ω

f0(x)ϕk(x)dx ≥ m. (2.44)

The sequence jm(x) converges monotonically to the function

j(x) =
∞∑
k=1

2−ǫkϕk(x).

Also, ∫
Ω\Ω∞(p′)

|j(x)|p
′(x) dx = lim

m→∞

∫
Ω\Ω∞(p′)

|jm(x)|p
′(x) dx ≤ 1

by the Lebesgue monotone convergence theorem and, since

sup
x∈Ω∞(p′)

j(x) =
∞∑
k=1

2−ǫk <∞

we get that j ∈ Lp′(.)(Ω). By the Lebesgue monotone convergence theorem and by (2.44) we

obtain that
∫

Ω
f0(x)j(x)dx = ∞ which is a contradiction due to the fact that f0(x) ∈ Sp(.)(Ω).

Therefore, ‖f‖∗p <∞ and by the definition (2.41) we get∣∣∣∣∫
Ω

f(x)ϕ(x)dx

∣∣∣∣ ≤ A ‖f‖∗p

where A > 0 and δp′(.)(ϕ | A) ≤ 1. Taking infimum with respect to A, we get the left-hand

side of (2.43) due to the definition (2.24). The right-hand side of the inequality follows from

(2.26). We only need to verify the norm axioms. The homogeneity and the triangle inequality

are evident. Taking ‖f‖∗p = 0, then
∫

Ω
f(x)ϕ(x)dx = 0 for all ϕ ∈ Lp′(.)(Ω) which entails that all

function ϕ(x) ∈ L by the Lemma ??. Therefore f(x) ≡ 0 We now show that the norms (2.41)

and (2.42) are equivalent.

Lemma 2.1.32. [5] Let 1 ≤ p(x) ≤ ∞, p1
− > 1 , and p+ < ∞ The norms (2.41) and (2.42) are

equivalent in functions f ∈ Sp(.)(Ω) :

21−(p′)+/(p′)1
− ‖f‖∗∗p ≤ ‖f‖

∗
p ≤ ‖f‖

∗∗
p . (2.45)

The norms coincide in the cases:

(1) m(Ω1(p)) = 0,

(2) p(x) = const for x ∈ Ω \ (Ω∞ ∪ Ω1).
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Proof. To obtain the right-hand side inequality, we show that{
ϕ : δp′(.)(ϕ) ≤ 1

}
⊆
{
ϕ : ‖ϕ‖Lp′(.)(Ω) ≤ 1

}
(2.46)

for ϕ ∈ Lp′(.)(Ω). Let δp′(.)(ϕ) ≤ 1. We have that ρp′(.)(ϕ) ≤ 1 whenever ‖ϕ‖(p′) ≤ 1 by (2.14)-

(2.15). Then, by (2.14) we have that ‖ϕ‖(p′) ≤
(
ρp′(.)(ϕ)

)1/(p′)+ ≤ 1

which implies the inequality

‖ϕ‖Lp′(.)(Ω) ≤
[
ρp′(.)(ϕ)

]1/(p′)+ + ess sup
x∈Ω∞(p′)

|ϕ(x)| = δp′(.)(ϕ) ≤ 1

whence (2.45) is proved.

Furthermore, let c = 21−(p′)+/(p′)− ≤ 1 . We will show that{
ϕ : ‖ϕ‖Lp′(.)(Ω) ≤ 1

}
⊆
{
ϕ : δp′(.)(cϕ) ≤ 1

}
,

which shows the left-hand side inequality in (2.45). We have ‖ϕ‖Lp′(.)(Ω) ≤ 1

therefore ‖cϕ‖(p′) ≤ 1 and we get
(
ρp(.)(cϕ)

)1/(p′)+ ≤ ‖cϕ‖(p′)1
−/(p

′)+

(p′) by (2.14). This entails that

ρp(.)(cϕ) ≤ ‖cϕ‖(p′)1
−/(p

′)+

(p′) + ‖cϕ‖L∞(Ω∞(p′)) .

Since Aλ + B ≤ 21−λ(A + B)λ, 0 ≤ λ ≤ 1, A ≥ 0, 0 ≤ B ≤ 1, we get that δp′(.)(cϕ) < 1 and (2.46)

is proved as the left-hand side inequality of (2.45).

To finish, ifm(Ω1(p)) = 0 or p(x) = const for x ∈ Ω\(Ω∞∪Ω1), then we have ‖ϕ‖L∞(Ω∞(p′)) = 0

or (p′)1
−/(p

′)+ = 1, respectively, and we obtain (2.46) with c = 1 , which implies the coincidence

of norms.

The Luxemburg-Nakano norm is equivalent to the norm given in (2.41) in the following

way.

Theorem 2.1.33. Let p1
− > 1. The spaces Lp(.)(Ω) and Sp(.)(Ω) coincide modulo norm convergence:

1

3
‖f‖Lp(.)(Ω) ≤ ‖f‖

∗
p ≤

(
1

p−
+

1

(p′)−

)
‖f‖Lp(.)(Ω) (2.47)

where 1/3 can be replaced by 1 if m(Ω1) = m(Ω∞) = 0.

Proof. From the inclusion in (2.40) it suffices to show

Sp(.)(Ω) ⊆ Lp(.)(Ω). (2.48)

Let f ∈ Sp(.)(Ω) and let us take first the case ‖f‖∗p ≤ 1. Take ϕ0(x) = |f(x)|p(x)−1

if x ∈ Ω \ (Ω1 ∪ Ω∞) and ϕ0(x) = 0 otherwise. We now show that

ϕ0 ∈ Lp′(.)(Ω) and ρp′(.)(ϕ0) ≤ 1. (2.49)
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Suppose that ρp′(.)(ϕ0) > 1 . Then

ρp(.)(f) ≥
∫

Ω\Ω∞(p′)

|ϕ0(x)|p
′(x) dx > 1. (2.50)

Let

fN,k(x) =

{
f(x), when |f(x)| ≤ N and |X| ≤ K
0 otherwise,

then ϕN,k(x) = |fN,k|p(x)−1 ∈ Lp′(.)(Ω) From (2.50) we derive the existence of an N0 −→ ∞ and

k0 −→∞ such that ∫
Ω\Ω∞(p)

|fN0,k0|
p(x) dx > 1 (2.51)

In consequence, from (2.43) we obtain

1 < ρp(.) (fN0,k0) ≤ ‖fN0,k0‖
∗
p

∥∥∥fp(.)−1
N0,k0

∥∥∥
Lp′(.)(Ω)

.

Henceforth, in virtue of (2.14)-(2.15)

1 < ‖fN0,k0‖
∗
p max

{[
ρp(.) (fN0,k0)

] 1
(p′)+ ,

[
ρp(.) (fN0,k0)

] 1
(p′)−

}
. (2.52)

then

min
{[
ρp(.) (fN0,k0)

]1− 1
(p′)+ ,

[
ρp(.) (fN0,k0)

]1− 1
(p′)−

}
≤ ‖fN0,k0‖

∗
p

which, from inequality (2.51) we conclude that 1 < ‖fN0,k0‖
∗
p . This means that

sup
ρp′(.)(ϕ)≤1

∣∣∣∣∫
Ω

f(x)ϕN,k(x)dx

∣∣∣∣ > 1

where

ϕN,k(x) =

{
ϕ(x), when |f(x)| ≤ N and |x| ≤ K;
0 otherwise.

Nevertheless, since ρp′(.)(ϕN,k) ≤ ρp′(.)(ϕ) this contradicts the supposition that ‖f‖∗p ≤ 1, from

which we get (2.48).

As a result ∫
Ω\(Ω1(p)∪Ω∞(p))

|f(x)|p(x) dx ≤ 1

and to get the embedding (2.48) it is only necessary to show that
∫

Ω1(p)
|f(x)| dx <∞ and more-

over that supx∈Ω∞(p) |f(x)| <∞ , which follows from the inequality∫
Ωi

|f(x)ϕ(x)| dx ≤ c ‖ϕ‖Lp′(.)(Ωi) , i = 1, 2,

(see (2.43)), where Ω1 = Ω1(p),Ω2 = Ω∞(p) and f ∈ L1, ϕ ∈ L∞(q = 1) in the first case and

f ∈ L∞, ϕ ∈ L1(q =∞) in the second one.
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We now take ‖f‖∗p > 1. Then f(x)/ ‖f‖∗p ∈ Lp(.)(Ω), as was previously proved.

Therefore, f ∈ Lp(.)(Ω) by the linearity of the space Lp(.)(Ω) under the condition p+ < ∞. The

embedding (2.48) is then proved. It is only necessary to show the inequality(2.47) for the norms.

The right-hand side inequality is a consequence of the Hölder inequality (2.27) and from the

definition of the norm (2.42). To show the left-hand side of the inequality we write

f(x) = f1(x) + f2(x) + f3(x) with f2(x) = f(x), x ∈ Ω1 and f2(x) = 0, x ∈ Ω \ Ω1 and f3(x) =

f(x), x ∈ Ω∞, and f3(x) = 0, x ∈ Ω \ Ω∞. Let us show that

‖f1‖Lp(.)(Ω) ≤ ‖f‖
∗
p(Ω\(Ω1∪Ω∞)) (2.53)

We have that

ρp(.)

(
f1

λ

)
=

1

λ

∫
Ω\Ω∞

|f1(x)|ϕλ(x)dx, λ > 0, (2.54)

with ϕλ(x) =

∣∣∣∣f1(x)

λ

∣∣∣∣p(x)−1

. Choosing λ = ‖f1‖(p), due to (2.43) and (2.53) we obtain

1 =
1

‖f1‖(p)

∫
Ω\Ω∞

|f1(x)|ϕλ(x)dx ≤
‖f‖∗p
‖f‖(p)

‖ϕλ‖Lp′(.)(Ω) .

Since ρp′(.)(ϕλ) ≤ ρp(.)

(
f1

λ

)
= 1 we also conclude that ‖ϕλ‖Lp′(.)(Ω) ≤ 1 due to (2.14)-(2.15) and

we obtain the coincidence ‖ϕλ‖Lp′(.)(Ω) = ‖ϕλ‖(p′) . Therefore(2.54)implies(2.52).

Since ‖f2‖Lp(.)(Ω) = ‖f‖∗L1(Ω1) and ‖f3‖Lp(.)(Ω) = ‖f‖∗L∞(Ω∞) we obtain the left-hand side inequality.

Corollary 2.1.34. Let f ∈ Lp(.)(Ω), ϕ ∈ Lp′(.)(Ω), 1 ≤ p(x) ≤ ∞. Regarding the norms (2.41)-(2.42)

the Hölder inequality is valid with constant 1:∫
Ω

|f(x)ϕ(x)| dx ≤ ‖f‖∗p ‖ϕ‖Lp′(.)(Ω) , p
1
− > 1, (2.55)

and ∫
Ω

|f(x)ϕ(x)| dx ≤ ‖f‖∗∗p ‖ϕ‖Lp′(.)(Ω) (2.56)

The inequality ∫
Ω

|f(x)ϕ(x)| dx ≤ ‖f‖∗p ‖ϕ‖
∗
p′ (2.57)

is valid in the case

p1
− > 1, p+ <∞,m(Ω∞(p)) = m(Ω1(p)) = 0. (2.58)

In reality, the inequality (2.55) was already given in (2.43); meanwhile the inequality (2.56) follows

directly from the definition (2.42). The inequality (2.57) is a consequence of (2.55) since

‖ϕ‖Lp′(.)(Ω) ≤ ‖ϕ‖
∗
p′ under the condition (2.58) by Theorem 2.31.
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More on the space Lp(.)(Ω) in the case p+ =∞

The definition given in(2.39)is one of the possible ways to define the space Lp(.)(Ω) in order to

be linear in the case p+ = ∞. It is also possible to define the spaces from the beginning as the

convex hull of the space Lp(.)(Ω) or as

Lp(.)(Ω) :=

{
f ∈ S(Ω, l) : ∃λ > 0 such that

∫
Ω\Ω∞

∣∣∣∣f(x)

λ

∣∣∣∣p(x)

dx+ ‖f‖L∞(Ω∞) <∞

}
. (2.59)

This space is always linear for 0 ≤ p(x) ≤ ∞ . The homogeneity is obvious, mean- while the

additivity is evident in the set {x ∈ Ω : p(x) ≤ 1} due to the inequality (a + b)p ≤ ap + bp, p ≤ 1

meanwhile in the set x ∈ Ω : p(x) > 1 it is verified by the convexity (2.9) of the function

t 7→ tp, p > 1.

Therefore, in the case p+ = ∞ we can use the three different versions of the definition, i.e,

span(Lp(.)), Lp(.), or Sp(.) . We can see that

span
(
Lp(.)

)
= Lp(.) ⊆ Sp(.). (2.60)

The norm in the space Lp(.) is given by (2.42) whereas the norm is given by (2.5) in the spaces

span(Lp(.)) = Lp(.) .

2.1.6 Minkowski integral inequality

Theorem 2.1.35. Let 1 ≤ p(x) ≤ p+ <∞ and p1
− > 1. Then we have the Minkowski integral inequality

in the variable exponent Lebesgue space∥∥∥∥∫
Ω

f(., y)dy

∥∥∥∥∗∗
p

≤
∫

Ω

‖f(., y)‖∗∗p dy. (2.61)

Proof. Let J be the expression in the left-hand side. We get

J ≤ sup
‖ϕ‖Lp′(.)(Ω)≤1

∫
Ω

(∫
Ω

|ϕ(x)f(x, y)| dx
)
dy.

Using the definition of norm given in (2.42), we obtain the desired inequality.

Corollary 2.1.36. Let 1 ≤ p(x) ≤ p+ <∞ and p1
− . Then∥∥∥∥∫

Ω

f(., y)dy

∥∥∥∥∗
p

≤ c1

∫
Ω

‖f(., y)‖∗p dy, (2.62)

and ∥∥∥∥∫
Ω

f(., y)dy

∥∥∥∥
Lp(.)(Ω)

≤ c2

∫
Ω

‖f(., y)‖Lp(.)(Ω) dy, (2.63)

where c1 = 1 if m(Ω1) = 0 and c1 = 2−1+(p′)+/(p′)1
− in the other case. The constant c2 = kc1 if

m(Ω∞) = m(Ω1) = 0 and c2 = 3kc1 in the other case, where k =
1

p−
+

1

(p′)−
.
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Proof. The inequality (2.62) with the constant c1 = 2−1+(p′)+/(p′)1
− is a consequence of(2.61)due

to(2.45). In the same way(2.63)follows from(2.61)by virtue of(2.47) and (2.45). To prove that

c1 = 0 in (2.62) in the case m(Ω1) = 0, note that∥∥∥∥∫
Ω

f(., y)dy

∥∥∥∥∗
p

≤ sup
δ(p′(.))(ϕ)≤1

∫
Ω

‖ϕ‖Lp′(.)(Ω) ‖f(., y)‖∗p dy.

To finish the proof it is only necessary to see that the conditions δp′(.)(ϕ) ≤ 1 and ‖ϕ‖Lp′(.)(Ω) ≤ 1

are equivalent in the case m(Ω1) = 0, as a result of (2.14)-(2.15).

2.1.7 Some differences between spaces with variable exponent and constant
exponent

In this case, let us take the space Lp(.)(Ω) given in (2.59). Let Ω = [1,∞), p(x) = x and f(x) ≡ a

where a > 0. We have that f ∈ Lx(Ω) since taking some λ > a the integral
∫∞

1
|f(x)/λ|x dx is

finite but f /∈ Lp(Ω) for any constant p .

We now show two more differences between the constant and the variable frame- work,

namely in regards to the invariance under translation and the Young convolution.

Invariance under translations

An important result in the classical theory of Lebesgue spaces has to do with the boundedness

of the translation operator , i.e, if f ∈ Lp(Rn) then we have that

τhf ∈ Lp(Rn), where τhf(x) := f(x − h). This result stems from the fact that the classical

Lebesgue space is isotropic with respect to the exponent, since the power p is the same in any

direction.On the other hand, the variable exponent Lebesgue space is, in general, anisotropic

regarding the exponent. This anisotropy of the space generates problems for the translation

operator.

Example 2.1.37. f(x) = |x|−
1
3 . This function f ∈ Lp(.) ((−1, 1)) taking the following exponent

p(x) =

{
2, x ∈ |x| < ε;
5 x ∈ |x| ≥ ε, (2.64)

but τδf /∈ Lp(.) ((−1, 1)) , when δ > ε, since we translated the singularity from 0 to δ but the

exponent was not shifted. (τδf is understood as the zero extension whenever necessary). One

could argue that the problem in this example is the non- smoothness nature of the exponent.

From (2.64) we can construct a smooth function (for example, via urysohn construction) and

we will end up with the same problem. Our example is not an isolated incident, since Diening

proved that this phenomenon is persistent, i.e, if p+ > p−, then there exists a h ∈ R\ {0} such
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that the translation operator τh is not continuous, cf. Diening, Harjulehto, Hästö, and Ru̇žička

[4].

Young convolution inequality in variable exponent Lebesgue spaces

Let

Kf(x) = (k ∗ f)(x) =

∫
Rn
k(x− y)f(y)dy =

∫
Rn
k(y)f(x− y)dy (2.65)

where ∗ is called convolution. The Young’s inequality for convolutions states that

‖k ∗ f‖Lr(Rn) ≤ ‖k‖Lq(Rn) ‖f‖Lp(Rn) ,
1

p
+

1

q
− 1 =

1

r
,

which can be proved, among other means, using the following decomposition

|f(x− y)k(y)| = |f(x− y)|1−s |k(y)| |f(x− y)|s, for s = 1−p/r, the Hölder inequality and the in-

tegral Minkowski inequality. Since the convolution depends on the translation operator, which

is not continuous, the natural question is: does the Young inequality for convolutions holds in

general in the case of variable Lebesgue spaces ? The answer is no, in general, although there

are some particular cases where it is possible to have some version of the inequality. Let us start

with a counter-example.

Theorem 2.1.38. Let p and q be variable exponents such that
1

p(x)
+

1

q(x)
≡ 1 +

1

r
where

r = const ≥ 1 . If k ∈ Lq−(Rn) ∩ L(p′)+(Rn) then the convolution operator (2.65)

k ∗ . : Lp(.)(Rn) −→ Lr(Rn)

is bounded.

Proof. Let us take f such that ‖f‖Lp(.)(Ω) ≤ 1. Then

|(k ∗ f)(x)| ≤
∫
Rn A

1−µ(y) |f(y)|
p(y)
r |k(x− y)|µ(y) |f(y)|1−

p(y)
r

∣∣∣∣k(x− y)

A

∣∣∣∣1−µ(y)

dy where the constant

A > 0 and the function µ(y), 0 < µ(y) < 1, will be chosen later. Using the generalized Hölder

inequality with the exponents

p1(y) = r, p2(y) =
rp(y)

r − p(y)
, p3(y) = p′(y) =

p(y)

p(y)− 1

we obtain

|(k ∗ f)(x)|

≤ c

{∫
Rn
Ar−rµ(y) |f(y)|p(y) |k(x− y)|rµ(y) dy

} 1
r

×
∥∥∥|f(y)|1−

p(y)
r

∥∥∥
p2(y)

∥∥∥∥∥
∣∣∣∣k(x− y)

A

∣∣∣∣1−µ(y)
∥∥∥∥∥
p′(y)

(2.66)
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By the estimate (2.19) we get

∥∥∥|f(y)|1−
p(y)
r

∥∥∥
p2(y)
≤ ‖f‖

ess inf

1−
p(y)

r


p(y) ≤ 1 (2.67)

since ‖f‖Lp(.)(Ω) ≤ 1 and the fact that p < r. To estimate the third factor in (2.66) it is natural to

choose µ(y) in such a way that [1− µ(y)] p′(y) = q(y), i.e.

µ(y) =
q(y)

r
.

We now want to use the inequality (2.19) in the third factor. We are now interested in∥∥∥∥k(x− y)

A

∥∥∥∥
q(y)

=
1

A
‖k(x− y)‖q(y) ≤ 1. (2.68)

To get (2.68) we choose

A = ‖k‖q− + ‖k‖(p′)+
.

In this way (2.68) is valid by Lemma 2.1.15. We can now apply (2.19) and obtain∥∥∥∥∥
∣∣∣∣k(x− y)

A

∣∣∣∣1−µ(y)
∥∥∥∥∥
p′(y)

≤ 1. (2.69)

From the inequalities (2.67) and (2.69) we get, via (2.66), the estimate

‖k ∗ f‖r ≤ cAv
(∫

Rn
dx

∫
Rn
|f(y)|p(y) |k(x− y)|q(y) dy

) 1
r

= cAv
(∫

Rn
|f(y)|p(y) dy

∫
Rn
|k(x)|q(x+y) dx

) 1
r

where v = 1− q+/r if A ≤ 1 and v = 1− q−/r if A ≥ 1. Therefore

‖k ∗ f‖r ≤ cAv
(
‖k‖

q−
r
q−

+ ‖k‖
(p′)+
r

(p′)+

)∫
Rn
|f(y)|p(y) dy

To finish the proof, we only need to take into account that the integral is bounded by 1 due to

(2.14).
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2.2 Weak Lebesgue spaces with variable exponent

We give the definition of the Marcinkiewicz (weak Lebesgue) spaces with variable exponent

and we study their relation with variable exponent Lebesgue spaces.

Definition 2.2.1. ([1]) Let p ∈ C0
+(Ω), Ω an open bounded in Rn. We say that a measurable

function u : Ω −→ R belongs to the Marcinkiewicz space Lp(.),∞(Ω, µ) if

‖u‖Lp(.),∞(Ω,µ) = supλ>0 λ ‖Du(λ)‖Lp(.)(Ω) <∞.

The inequalities (2.14)-(2.15) imply that the requirement in Definition (2.2.1) is equivalent to

say that, there exists a positive constant M such that∫
{|u|>λ}

λp(x)dx ≤M, for all λ > 0. (2.70)

If p, q ∈ C0
+(Ω) with q ≤ p, then we have the following two inclusions:

Lp(.)(Ω) ⊂ Lp(.),∞(Ω, µ) ⊂ Lq(.),∞(Ω, µ).

Remark 2.2.2. If u ∈ Lq(.),∞(Ω, µ) with q− > 0, then µ|u| > K ≤ M + |Ω|
Kq−

, for all K > 0 ,

whereM is the constant appeared in (2.70). A direct result is that µ {|u| > k} −→ 0, as k −→ +∞
.

Remark 2.2.3. Let p, q ∈ C0
+(Ω). If (p− q)− > 0, then

Lp(.),∞(Ω, µ) ⊂ Lq(.)(Ω, µ)

2.3 Grand Lebesgue spaces

In this section we will introduce the so-called grand Lebesgue spaces.

2.3.1 Banach function spaces

In the following, we give the definitions and list some results regarding Banach Function Spaces.

see Bennett and Sharpley [2] and Pick, Kufner, John, and Fuč́ik [15] for the proofs.

In the sequel, Ω denotes an open subset Ω in Rn. LetM0 be the set of all measurable functions

whose values lie in [−∞,∞] and are finite a.e. in Ω. Also, let M+
0 be the class of functions in M0

whose values lie in (0,∞).
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Definition 2.3.1. A mapping ρ : M+
0 −→ [0,∞] is called a Banach function norm if for all f, g, fn

inM+
0 , n ∈ N, for all constants a ≥ 0 and all measurable subsetsE ⊂ Ω, the following properties

hold:

(P7) ρ(f) = 0, if and only if f = 0 a.e. in Ω ;

(P7) ρ(af) = aρ(f);

(P7) ρ(f + g) ≤ ρ(f) + ρ(g);

(P7) 0 ≤ g ≤ f a.e. in Ω implies that ρ(g) ≤ ρ(f) (lattice property);

(P7) 0 ≤ fn ↑ f a.e. in Ω implies that ρ(fn) ↑ ρ(f) (Fatou’s property);

(P7) m(E) < +∞ implies that ρ(XE) <∞;

(P7) m(E) < +∞ implies that
∫
E
fdx ≤ CEρ(f) (for some

constant CE, 0 < CE <∞, depending on E and ρ but independent of f ).

It is noteworthy to mention that the lattice property is a consequence of the Fatou property,

see Problem 2.72.

Based upon the notion of Banach function norm, we introduce the Banach function space

Xρ .

Definition 2.3.2. If ρ is a Banach function norm, the Banach space

X(ρ) = Xρ = X = {f ∈M0 : ρ(|f |) < +∞} (2.71)

is called a Banach Function Space. For each f ∈ X define

‖f‖X = ρ(|f |). (2.72)

There is also a notion of rearrangement invariant Banach function space, namely:

Definition 2.3.3. Let ρ be a Banach function norm. We say that the norm is rearrangement

invariant if

ρ(f) = ρ(g)

for all equimeasurable functions f and g. In this case the Banach function space X(ρ) is said to

be a rearrangement invariant Banach function space.

A very important property of the Lebesgue space is its dual characterization, for example,

in Lp[(0, 1)] we have

‖f‖Lp[(0,1)] = sup
Lp′ [(0,1)]

∫ 1

0

f(x)g(x)dx

where p and p′ are conjugate exponents. This characterization gives us immediately one of the

key inequalities in the theory of Lebesgue spaces, namely the Hölder inequality which gives
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an upper bound for the integral of the product of two functions based upon their norms. The

following notion is introduced to capture this "duality" in the framework of Banach function

spaces.

Definition 2.3.4. If ρ is a Banach function norm, its associative function normρ′ defined on M+
0

is given by

ρ′(g) = sup

{∫
Ω

fgdx : f ∈M+
0 , ρ(f) ≤ 1

}
. (2.73)

As in the case of Banach function space, we can introduce the associate Banach function

space based upon the concept of Banach associative function norm.

Definition 2.3.5. Let ρ be a function norm and let X = X(ρ) be the Banach function space

determined by ρ. Let ρ′ be the Banach associate function norm of ρ. The Banach function space

X ′ = X ′(ρ′) determined by ρ′ is called the associate space of X . In particular from the definition

of ‖f‖X it follows that the norm of a function g in the associate space X ′ is given by

‖g‖X′ = sup

{∫
Ω

fgdx : f ∈M+, ‖f‖X ≤ 1

}
.

Theorem 2.3.6. Every Banach function space X coincides with its second associate space X ′′. This

proposition tells us, in particular, that the notion of associate space is different from the notion of dual

space, but under certain conditions both notions coincide, cf. Theorem 2.3.13.

Theorem 2.3.7. If X and Y are Banach function spaces and X ↪→ Y , then Y ′ ↪→ X ′ .

Definition 2.3.8. A function f in a Banach function space X is said to have absolutely continu-

ous norm on X if

lim
n→∞

‖fχEn‖X = 0

for every sequence {En}∞n=1 satisfying En ↓ 0 .

Definition 2.3.9. The subspace of functions in X with absolutely continuous norm is denoted

by X a. If X = Xa, then the space X it self is said to have absolutely continuous norm.

Definition 2.3.10. Let X be a Banach function space. The closure in X of the set of bounded

functions is denoted by Xb .

Theorem 2.3.11. Let X be a Banach function space. Then Xa ⊆ Xb ⊆ X.

Corollary 2.3.12. If Xa = X , then Xb = X .

Theorem 2.3.13. The dual space X∗ of a Banach function space X is canonically isometric to the asso-

ciate space X ′ if and only if X has absolutely continuous norm.

Theorem 2.3.14. A Banach function space is reflexive if and only if both X and its associate space X ′

have absolutely continuous norm.
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2.3.2 Grand Lebesgue spaces

Definition 2.3.15. The grand Lebesgue space Lp)(Ω) is defined as the set of measurable func-

tions on Ω for which

‖f‖p) = sup
0<ε<p−1

(
ε

m(Ω)

∫
Ω

|f |p−ε dx
) 1

p− ε

is finite, i.e.

Lp)(Ω) =
{
f ∈ S(Ω, L) : ‖f‖p) <∞

}
,

where 1 < p < +∞. We stress thatm(Ω) <∞. The following theorem justifies the nomenclature

of grand Lebesgue space.

Theorem 2.3.16. [5] For p > 1 we have

Lp(Ω) ( Lp)(Ω).

Theorem 2.3.17. [5] Let 1 < p <∞. We have the inclusion

L(p,∞)(Ω) ⊂ Lp)(Ω).

Proof. Let f ∈ L(p,∞), then

ε

m(Ω)

∫
Ω

|f |p−ε dx =
ε(p− ε)
m(Ω)

∫ ∞
0

λp−ε−1Df (λ)dλ (2.74)

=
ε(p− ε)
m(Ω)

[∫ a

0

λp−ε−1Df (λ)dλ+

∫ ∞
a

λp−ε−1Df (λ)dλ

]
We have that λpDf (λ) ≤ ‖f‖pL(p,∞)

, then Df (λ) ≤ λ−p ‖f‖pL(p,∞)
, therefore from(2.74) we get

ε

m(Ω)

∫
Ω

|f |p−ε dx ≤ ε(p− ε)
m(Ω)

[
m(Ω)ap−ε

p− ε
+
a−ε

ε
‖f‖pL(p,∞)

]
(2.75)

= εap−ε +
a−ε

ε

ε(p− ε)
m(Ω)

‖f‖pL(p,∞)
.

Let a = ‖f‖L(p,∞)
, replacing a in (2.75) we have

ε

m(Ω)

∫
Ω

|f |p−ε dx ≤ ε ‖f‖p−εL(p,∞)
+
p− ε
m(Ω)

‖f‖p−εL(p,∞)
.

=

(
ε+

p− ε
m(Ω)

)
‖f‖p−εL(p,∞)

.

and thus

sup
0<ε<p−1

(
ε

m(Ω)

∫
Ω

|f |p−ε dx
) 1

p−ε

≤ C ‖f‖L(p,∞)

where C = sup0<ε<p−1

(
ε+

p− ε
m(Ω)

) 1
p−ε

, hence L(p,∞) ⊂ Lp). We now show that the grand

Lebesgue space is a Banach space under natural restrictions.
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Theorem 2.3.18. Let 1 < p <∞. The grand Lebesgue space Lp)(Ω) is a Banach space.

Proof. Let {fn}n∈N be a Cauchy sequence in Lp)(Ω), i.e.

lim
m→∞n→∞

sup
0<ε<p−1

(
ε

m(Ω)

∫
Ω

|fm − fn|p−ε dx
) 1

p−ε

= 0.

Hence for an arbitrary η > 0 there exists n0 ∈ N such that(
ε

m(Ω)

∫
Ω

|fm − fn|p−ε dx
) 1

p−ε

<
η

3

for an arbitrary ε, 0 < ε < p − 1, when m > n0, n > n0. Consequently {fn}n∈N is a Cauchy

sequence in Lp−ε(Ω) for an arbitrary ε, 0 < ε < p−1, and let f be its limit in Lp−ε(Ω). Let n > n0.

According to the definition of the supremum there exists an ε0 (de pending generally speaking

on n), 0 < ε0(n) < p− 1, such that

‖f − fn‖p) = sup
0<ε<p−1

(
ε

|Ω|

∫
Ω

|f − fn|p−ε dx
) 1

p−ε

≤
(
ε0(n)

m(Ω)

∫
Ω

|f − fn|p−ε0(n) dx

) 1
p−ε0(n)

+
η

3

Furthermore, there exists n1 ∈ N such that m > n1

(
ε0(n)

m(Ω)

∫
Ω

|fm − fn|p−ε0(n) dx

) 1
p−ε0(n)

<
η

3
,

therefore

‖f − fn‖p) ≤
(
ε0(n)

m(Ω)

∫
Ω

|fm − fn|p−ε0(n) dx

) 1
p−ε0(n)

+

(
ε0(n)

m(Ω)

∫
Ω

|fm − f |p−ε0(n) dx

) 1
p−ε0(n)

+
η

3

<
η

3
+
η

3
+
η

3
= η

whenever n > n1 and m > n1 .

One of the drawbacks of grand Lebesgue spaces is the fact that the set of C∞0 functions is not a

dense set. Fortunately we have a characterization of the closure of C∞0 functions in the grand

Lebesgue norm given in a somewhat manageable way.

Theorem 2.3.19. The setC∞0 (Ω) is not dense in Lp)(Ω) . Its closure C∞0 |Lp)(Ω) consists of functions

f ∈ Lp)(Ω) such that

lim
ε−→0

ε

∫
Ω

|f |p−ε dx = 0. (2.76)
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Proof. Let f ∈ C∞0 |Lp)(Ω) , then there is a sequence of functions fn ∈ C∞0 such that

‖f − fn‖p) −→ 0

as n −→∞.

Let us take δ > 0. Choose n0 such that

‖f − fn0‖p) <
δ

2
and fn0 ∈ C∞0 .

Now observe that for fn0 , by Hölder’s inequality, we have(
ε

m(Ω)

∫
Ω

|fn0|
p−ε dx

) 1
p−ε

≤ ε
1
p−ε

(
1

m(Ω)

∫
Ω

|fn0 |
p dx

) 1
p

−→ 0

as ε→ 0 . Hence there is an ε0 > 0 such that when ε < ε0, we have the bound(
ε

m(Ω)

∫
Ω

|fn0|
p−ε dx

) 1
p−ε

<
δ

2

Finally (
ε

m(Ω)

∫
Ω

|fn0|
p−ε dx

) 1
p−ε

≤
(

ε

m(Ω)

∫
Ω

|f − fn0|
p−ε dx

) 1
p−ε

+

(
ε

m(Ω)

∫
Ω

|fn0|
p−ε dx

) 1
p−ε

≤ ‖f − fn0‖p) +
δ

2

≤ δ

2
+
δ

2

when ε < ε0 .

We now use the Theorem 2.3.14 which gives information regarding reflexivity of the space

based upon the absolute continuity of the norm.

Theorem 2.3.20. The spaces Lp)(Ω) is not reflexive.

Proof. The non-reflexivity follows from the fact that there exists a function Φ for which the norm

‖Φ‖p) is not absolute continuous. Indeed taking the function Φ as

Φ(x) = x−
1
p , x ∈ (0, 1),

we obtain

lim
a−→0

sup
ε>0

(
ε

∫ a

0

x−
p−ε
p dx

) 1
p−ε

6= 0.
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From Fiorenza and Karadzhov [5], We give the following characterization of the grand

Lebesgue spaces (in the case µ(Ω) = 1, for simplicity):

‖f‖Lp)(Ω) = sup
0<t<1

(1− log t)−
1
p

(∫ 1

t

|f ∗(s)|p ds
) 1

p

,

where f ∗ is a decreasing rearrangement of f defined as

f ∗(t) = sup
m(E)=t

inf
E
f

with t ∈ (0, 1).

We can introduce a generalization of the grand Lebesgue spaces, namely the spacesLp),θ(Ω), θ >

0, defined by

‖f‖p),θ = sup
0<ε<p−1

(
εθ

m(Ω)

∫
Ω

|f |p−ε dx
) 1

p−ε

.

For θ = 0 we have ‖f‖p),θ = ‖f‖p and for θ = 1 such spaces reduce obviously to the spaces

Lp)(Ω).

Many results of grand Lebesgue spaces are also valid for generalized grand Lebesgue spaces,

we will just mention the following:

Theorem 2.3.21. The subspace C∞0 (Ω) is not dense in f ∈ Lp),θ)(Ω). Its closure consists of functions

f ∈ Lp),θ(Ω) such that

lim
ε→0

ε
θ
p ‖f‖p−ε = 0.

2.3.3 Hardy’s inequality

We recall the classical Hardy inequality for Lebesgue spaces(∫ 1

0

(
1

x

∫ x

0

f(y)dy

)p
dx

) 1
p

≤ p

p− 1

(∫ 1

0

fp(x)dx

) 1
p

.

Here we discuss the Hardy inequality in grand Lebesgue spaces to show some common tech-

niques used in the aforementioned spaces.

Theorem 2.3.22. Let 1 < p <∞. There exists a constant C(p) > 1 such that∥∥∥∥1

x

∫ x

0

f(y)dy

∥∥∥∥
Lp)([0,1])

≤ C(p) ‖f‖Lp)([0,1])

for non negative measurable functions f on [0, 1].
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Conclusion

In this memory, we have studied the so-called weak Lebesgue spaces with variable expo-

nents ( Marcinkiewicz ) that are one of the most important spaces used to solve some boundary

problems. This work raises a number of questions that deserve to be addressed. For instance,

it would be wise to think in perspective of following:

• Is the next lemma true if we assume p : Ω −→ (1,+∞) is a continuous fonction instead of

p where Ω an open bounded in Rn?

Assume that (Rn, A, µ) is a measure space and f is a measurable function that satisfies

µ ({x ∈ Rn : |f(x)| > λ}) ≤
( c
λ

)p
for some C > 0. Then

inf
{
c > 0 : Df (λ) ≤

( c
λ

)p}
=

(
sup
λ>0

λpDf (λ)

) 1
p

= sup
λ>0

λ (Df (λ))
1
p ,

• Does the next injections hold for Ω = Rn ?

Lp(.)(Ω) ⊂ Lp(.),∞(Ω, µ) ⊂ Lq(.),∞(Ω, µ)
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Abstract :
In this memory, we study the so-called Marcinkiewicz spaces ( weak Lebesgue spaces ) with
variable exponents which are one of the first generalizations of the Lebesgue spaces. In the
framework of Marcinkiewicz spaces we will study, among other topics, embedding results,
convergence in measure, interpolation results, and the question of normability of the space.
We also show a Fatou type lemma for Marcinkiewicz spaces as well as the completeness of the
quasi-norm. The Lyapunov inequality and the Hölder inequality are shown to hold.

Keywords : Weak Lebesgue spaces,The Distribution Function,measure ,the variable
exponent Lebesgue space , The norms, Hölder Inequality,Banach Function Spaces.

Résumé :
Dans ce mémoire, nous étudions les espaces dits de Marcinkiewicz ( espaces de Lebesgue
faibles ) avec exposants variables qui sont une des premières généralisations des espaces de
Lebesgue. Dans le cadre des espaces de Marcinkiewicz, nous étudierons, entre autres sujets,
l’intégration des résultats, la convergence en mesure, les résultats d’interpolation et la
question de la normabilité de l’espace. Nous montrent également un lemme de type Fatou
pour les espaces de Marcinkiewicz ainsi que la complétude des quasi-norme. L’inégalité de
Lyapunov et l’inégalité de Hölder se vérifient.

Mots clés : espaces de Lebesgue faibles, fonction de distribution, mesure, espace de Lebesgue
à exposant variable, normes, inégalité de Hölder, espaces de fonctions de Banach.
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