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Abstract

In this paper, we provide an accurate numerical solution for space-time fractional linear diffu-
sion equation involving the fractinal Caputo-Hadamard derivative. To do so, we have used a
finite difference method. The Convergence and stability of the given finite difference scheme
are studied using the mathematical induction technique. Moreover, Numerical examples are
given to demonstrate the effectiveness of our results.
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Introduction

The theory of fractional calculus has attracted many researchers from different fields of
knowledge. There has been a large and fast increasing literature on fractional differential
equations and partial fractional equations. Readers can refer to Kilbas et al. [16] for more
theoretical details. Fractional derivatives has found wide applications in many scientific
and academic areas such as physics [14, 32], biology, chemistry, mechanics, engineering,
elasticity, viscoelasticity [19], control theory, electronics, modeling, probability, economics,
etc.

Nowadays, researchers focus on studying the solutions of fractional differential equations
(FDEs) or fractional partial equations (FPEs) using various methods, such as the Laplace
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transform method, the Fourier transform method [16]. However, most of fractional deriva-
tives definitions involve integral form and some of them have some nonlocal property, wich
make the analytic methods for solving FDEs and FPEs not effective. As a result many
numerical techniques are developed and employed to solve complex FDEs and FPEs, such
as the Adomian decomposition method, variational iteration method, the Homotopy analysis
method, generalized differential transform method or finite difference method (FDM) and so
on. Several authors have done much work on this topic ([10, 12, 15, 22, 24, 26, 31]).

Fractional linear diffusion equation in time and space represent extensions of basic equa-
tions of mathematical physics. It is obtained from the classical diffusion equation by replacing
the first derivative with respect to time by a Caputo-Hadamard fractional derivative of order
« and the derivative with respect to the space by a Caputo-Hadamard fractional derivative of
order B, which is given by the following equation

CHoou (x, 1) = “Holu(x,1) + f(x,0), (x,1) €lxo, L[xto, T[ (1

where CH™* CHyP? denotes the Caputo-Hadamard fractional derivative operator of order
a and g respectively, with0 < o < 1,1 < 8 <2, 19, xo > 0 and f(x, t) is the source term.
Recently, considerable research has been devoted to the study of numerical methods lead to a
rapid increase development of numerical methods for fractional diffusion equation, references
can be made to A. Bhardwaj et al. [2] used a radial basis function-based meshless approach
to approximate the time-fractional nonlinear mixed diffusion and diffusion-wave equation.
A. Bhardwaj et al. [3] developed an RBF-based meshfree method to solve numerically the
multi-term time-fractional nonlinear two-dimensional diffusion-wave equation. A. Bhardwaj
et al. [4] proposed a meshless method based on radial basis function (RBF) to solve the time-
fractional mixed diffusion and diffusion-wave equation. A. Bhardwaj et al. [S] proposed an
RBF based meshless method to investigate the time-fractional Tricomi-type equation which
is used to overcome above mentioned problems.

In this study, we use the FDM to obtain the numerical solution of space-time fractional
linear diffusion equation defined by (1) with initial conditions

u(x,10) = u(x), (x,1) € [x0, L] x [to, T]. 2)

and Neumann conditions
u
u (xo, 1) = (1), P (x0, 1) =¥ (@), t €10, T], 3)

with u, ¢, ¢ are continuous functions.

The paper is organized as follows. In the next section, we give most important mathematical
definitions of the Hadamard fractional integrals and fractional derivatives of various types.
In Sect. 3, finite difference methods for the space-time fractional linear diffusion problem
is presented. In Sects. 4 and 5, the stability and the convergence are analyzed respectively.
In Sect. 6, to demonstrate the validity of the method we have provided some numerical
examples.

Preliminaries

In this section, we recall some concepts on fractional calculus and present additional prop-
erties that will be used later.

Definition 1 (Hadamard fractional integral)(see [16])
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The left-sided Hadamard fractional integral of order ¢ > 0 of a function y : (a, b) — Ris
given by

1 t a—1 d
I§+y(l)=m/ (log g) )’(S)Tsa “

provided the right integral converges.

Similarly we can define right-sided integrals [16].

Definition 2 (Hadamard fractional derivative)(see [16]).
The left-sided Hadamard fractional derivative of order « > 0 of a continuous function
y : (a, b) — Ris given by

o n gn—o 1 d\" " £\ ! ds
Dy () =68"17, )’(f)=m<fz) / (log;) y(s)?, Q)

d
where n = [a] 4 1, and [«¢] denotes the integer part of the real number o and § = <t£> ,

provided the right integral converges.

A recent generalization introduced by Jarad and al in [17]. The authors define the generaliza-
tion of the Hadamard fractional derivatives and present properties of such derivatives. This
new generalization is now know as the Caputo-Hadamard fractional derivatives and is given
by the following definition:

Definition 3 (Caputo-Hadamard fractional derivative)(see [17]).
The left-sided Caputo-type modification of left- Hadamard fractional derivatives of order
« is given by

CH ~a n—a on 1 ! ! noe! n ds
DYy ) = I 8"y () = o | (log Sy ()= (6)
n—ow)J, s s

The Finite Difference Scheme

In this section, For the finite difference approximation, we equally sub-divide the intervals
[xo, L] with x; = (xo+1ik), i € {0,1,..., M} and [fp, T] with t; = (to+ jh), j €

L — xg T -1 . .
{0, 1, ..., N}, where k = and h = are the spatial and temporal step sizes,

respectively. We denote u?“ be the numerical approximation to u(x;, t,+1) and fi”+l =

[ i, tagr).

1. The initial boundary conditions (2), (3) are discretized as

0
u(x;, to) = u;,

1 1
w(x0, ta1) = ",y (x0, tyg1) = Y

2. The approximation for the time fractional derivative CH 97 u(xi, tp,4+1) and space frac-

tional derivative term ¥ Bf u (Xi, tyy1):

Theorem 1 Let u : [xo, L] x [to, T] — R be such that u € C*([xo, L] x [t9, T]1, R),
o €]0, 1] and B €]1, 2]. Then for each positive integer N € N and M € N, we have for each
nef{0,1,..,N—1}
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(a)

CHYPu (xi, tys1) =

CHB ! 4 cphk®P,
where €H afu?"'l is defined by:

1
CHap ! = -
kI (3 = p)

n+1 n+1
X Zai (x,+1u,+1 (i +xipD Ul 4 xul” 1)

with

(b)

CHaOl

1 _
h u(Xi, thy1) = CHaf‘ul’“ +Cah1 o

where CHBIO‘M?H is defined as follows:

1 " ;
CH qo, n+l _ o, i+l1 J
a%u! _7”(2_0[);171 (u, ui),

b t (1 Tnt1 ) I (1 Int1 ) I
=1 (o) — | 1o .
J J g tj g tj+1

Proof For any M € N and 8 € (1, 2] fixed, we can calculate

1 W xyNI=B [ d\? ds
CHBfM (xi, thy1) = 1—'(27—/3)/ (log —) <s$> u(s,th)?

X,+1 1/3
“Te-p) ﬁ)Z/ Og*

" <S u(s, tyr1) +S23 u(s,tn+1)> ds
S

with

s ds2
M—1

1 Tl oy 1-B
T) g /x,- (log7>

n+1 n+1 n+1 n+1 n+1
Uipg — U QUi — 2 ds
x| x; +

%

k ! &
I < IS D
S re-p = e=-p |

n+1 n+1 n+1 n+1 n—H
kui [y — ku; QMg —2ui A u;
x| x; +

N

K2 Xi k2
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1 M-l XM 2=p XM =
~erap &t {(k’gxi) B (log xm) }

n+1 n+1
X <x1+1ul+1 (i +xip)uy "+ oxiug ])-

Biu

xi

, 1 =1,..4, hence,

Set Epy1 = ‘CHafu(xi,th) — CH gl ‘ and M; = max
x€[xo,L]

we can obtain

M—1 X
1 Titl xp\ -8
E (10 —)
ST ﬂ)z/ =
gal N gzazl - 'u?-tll _ u?+l . x2 u;zi—]l 2un+1 + un+1 @
ds 9 D —x) T (i —x0)? s

It follows from Taylor’s theorem, one has for each i € {0, 1,..., M} and s € [x;, xi11], we
have

2 n+l _ n+l n+l _ » n+l n+1
qu  ,9%u _( Mg W Uiy — 2w ui

s +s i
ds ds (Xi1 — Xi) ! (Xig1 — xi)?
I uill+ll _ u{z-&-l 92u n+11 _ 2un+1 + uillj-ll
< g — y it i 2 x2 Uiy i
— |~ 1
ds (Xig1 — Xi) 92\ (xXi41 — xi)?

du 3%u
s <g(xi’ 1) + 55 (st 1) (s — Xi))

83 12 13
+s(a—sg‘(xi,m+1)% On S x))

IA

[ ou 3Py ‘ k
— Xi Tﬂ(x“lnﬂ)—'_ﬁ(x“tnﬂ)ﬂ

i

9Oy k2 a<4>u K3
— X P (x,,tn+1) ] x? (xz',m)ﬂ

i

5 (8%u 3u *u (s — x;)2
s ﬁ(xivfnﬁ-l)‘f‘ﬁ(xivfn—o—l)(S—xi)‘F 35 4(Xz, Z)T

+ 5 9%u Wy K2
—X; @(xi, tht1) + W(Xh nl)ﬁ

- Iy k M (s — x;)? k2 Iy
=G —x)M + S(S_xi)_xii 2\ ST i | Ms

_ k3
%Mét + Xy M4

2 2., (s — x;)? 2 K
+ (5% = x7) Mo + 5% (s — x))M3 + 5 M4f+x,»M4f

4 19

3 2 4
<LM —L°M —L°M — L "My,
=< 1+2 2+3 3+24 4
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where 3 € [x;, s] and 0 € [x;, x;41] . Therefore, we conclude

4 19
My + = LM2+ L*>M; + 5 L3M4 Z
=0

”—r(z B) 3

42
Sr(z ﬁ)(Ml—l— LMy + S L’Ms + )
< 4 19 )

M+ = LM2+ 3L2M s+

F(3—ﬂ)

L M +§LM +iL2M +BL3M
1 ) 2 3 3 24 4

< -
T re-p

L3—ﬂ(L—x0)< 3 4, 19 , )
A Y LM2+ LM+—L My ) K275,
ra-p)

3

This means that
CHBfu Xiy the1) = CHafu?H + clgkz_ﬁ.

Similarly, for any N € N, with0 <n < N — 1 and @ € (0, 1] fixed, it is easy to get the
approximation of the time fractional derivative term “# 8%u (x;, t,+1) : For any N € N and
foreachn € {0,1,..., N — 1}, we have

Z e w) ()d
F(l —a) &~ ], Nt —1t; ) s
1 tfult - fr+l oot ~ ds

Trd-aw ,-X:(:)tj ( / ) K

tn+1 l—a i+t
1 " +]
tj J
hF(l—a)Z:: (l—oc)
1j
1 é 1 tn+1 1 tn+] - j+1 J
W2 —a) t’ %% 1 i
j=0 J J+
1 n
b ( j+1 ])
hF(Z—a) Z “io T
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a'u

Set E, = |“H0%u (xi, tyy1) — CHo%ul ! ‘ and M; = max |&|, i = 1,2, hence, we can

telty,T]
n

1 lj+1 t 9 Wt —ud
Enfizf <1OgL“) Sl‘_tj i T
'l —ow) =0 1 s as fjiy1 —1;

It follows from Taylor’s theorem, one has for each j € {0,..., N — 1}, with s € [}, 1j11]
and 1 € [t),1j11], 12 € [2, 5]

obtain

ds
=

o, W7 -l | S (ouly)  9Puon) b
as T\t -t as T\ ds ds2 2!
ou ou (tj) tih
< — — t M, -1—
= ( as ' s 2
du (1) du(t))  9u () tjh
= —t; —t M-, -L1—
( s ! Bs + ds2 ( i) ||+ M 2

3
<M, (lj+1 — Zj) + Mztj Eh

3T

Furthermore, forany 0 <@ < landn € {0, ..., N — 1} with j <n, s € [tj,1;11]

tagr1\ tivt\ “
0< (log s ) < (log L) :
S N

Therefore, we conclude

E

n <—rT——
“Ir(—a)

3T
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which means

CHY U (xi, tagr) = “Holul™ + coh' ™,

cH 1 1 . tp1) AN
't = ti | (1og = — [ 1og =
t U hr(z _ a) IXZ; J < g t/ g tj+]

o
x (™ = ul).

and we obtain

T'= (T — 1) 3T
CH CH 1 1—
U (x;i, tag1) — M ofult ’5 Te—a My +—-M> ) h ®

[m}

By using the space-time fractional approximation (7) and (9) we obtain the following numer-
ical approximation to equation (1)

M—1
—1 B +1 +1 +1
m Z(; a; <Xi+lu?+1 — (% +x,~+1)u? +xl~u§l1) s
1=
1 “ |
— — J+ J +1
=i (W )+
j=0

Wl (2 —a)

m, we obtain the fOllOWing

then, for each n = 0,1, ..., N — 1, setting A =

difference approximtion
M—1
—A (Z alﬁ (x,-+1ul’.‘ill — (X + xit1) uf’“ +xiu;’f11))
i=0
n—1 ) )
= b b = b (!l =l ) @ -0
j=0

forl € {1, ..., M}, the above equation can be simplified to
M n )
Sl b = b+ Y Gyuf + v
i=1 j=1
where G ; = (bj‘ — b?_l),

Vln+1 - (x] (a/ls _a(/f)i) g kngOW’H_l) +hl 2 —a) fln+1’

and
A(—xaﬁ +aﬂ(x-—|—x —d? x )f 1<i<M-2
id;_q i X i+1) a; 1 Xi+1 ), 10r 1 =1 = ,
Wi =3 A (af,FI (Xp—1+xMm) — a/@,zXMq) , fori=M —1,
—)LxMaf,I_l, fori =M,
So:
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1. Forn =0and! € {1, ..., M} we have
M
X:a),-u?+1 + bg‘u;"H = bg‘u? + Vll, (11)
i=1

2. Forn > 0and! € {1, ..., M} we obtain

M n
Zwm?“ + bzu;"H = bgu? + Z Gjul + V["H, (12)
i=1 j=1
Thus, we have the difference scheme can be rewritten as the following matrix form
U=, fori=1,....,M, 13
AU =p2U° + G U + GU? + ...+ G, U™ + VT
with A" is square matrix of dimension M x M of coefficients:
W Jwisifi #E
GO wi + 02, i = j,
and
n n n n T
U" = [ul,uz,...,uM] s
vi=[veve, v

Stability of Finite Difference Scheme

In this section, we discuss the stability of the solution of space-time fractional finite difference
scheme (11) and (12) for the STFLDE (1). To do so, we need the following lemma

Lemma 1 The coeffcients aiﬁ, bj.‘ in (8) and (10) satisfy

L al > 0,64 >0 fori=0,....M—1and j=0.....n.
2. af;>af_1,b‘j’.‘>bf7_1,f0ri:l,...,M—landj:l,...,n.

We suppose that 7} is the approximate solution of (11) and (12), the error &' = u} — uj, for
le{l,..,M}andn € {0, 1, ..., N — 1} satisfies

M n

wa?“ + bgs]'“rl = ble) + Z G_,e{ + Vl"+1,

i=1 j=1
which can be written as

A E" = B2E + G\E' + GLE* + ...+ G,E",
where E" = (8'11, &y, 8}14,1)1- Hence, the following result can be proved.
Lemma2 We have

£ = £ 0 =0.1.2.0008 =,

00’
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Proof We will use mathematical induction to get the above result. For n = 0, let |5] |

max } 1| andy =\ (ZxM laf/l 1 — X1 (ag —a; )) Applying Lemma 1, we have

I<i<Mm

b Jei| = (v +05) el |

M
= Za),-sll —i—bg‘a}

<bo ’81’

It follows that

12 = 1]

Suppose that |E/| < |E°|_.j = 1.2,....n. Let "H‘ = max |s ”+1’ Using
==
Lemma 1, we also have
bot n+1’ ( +ba) n+1’
£l+l n+l
< 081 +ZG 81
n .
<t el + 320 |
n
< b |ef] +|D_b% —b5_y| |¢])|
j=1
< b§ | E°|, + (b5 — ) | E°],
< b5 |E°],
finlly, we find that
[ oo < |E%)
[m}

The following theorem holds.

Theorem 2 The solution of the discretised scheme (11) and (12) for the space-time fractional
diffusion equation (1) is stable.

Convergence of the Approximate Scheme

In this section, the convergence analysis of the approximate scheme (11) and (12) is discussed
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Theorem 3 Let u (x;, t,) be the exact solution of the space-time fractional linear diffusion
equation (1) at mesh points (x;, t,), wherei =0,1,2,...,M, n=0,1,2,..., N and u!
the approximate value of u(x;, t,) computed by use of the difference scheme (11) and (12).
Then there is a positive constant Cy g, such that

Jul = u (i, 10)] < Carpp ('~ + K2F) .

Proof Define ! = u (x;,1,) — ul', (¢" = (e}, €5, ...,eﬁ,,)T) using ¢’ = 0. Substitution
ul! =u(x;, t,) — e into (11) and (12) leads to:

l

1. Forn =0and! € {1, ..., M} we have

M
X:a)iei1 + bgell = Zwiu (xi,11) + bgu (x;, 1) — bY (u (x7, 1) — e?) - Vll
i i=1
=R}

2. Forn > 0, and!/ € {1, ..., M}, the approximate scheme becomes

M M

1 1
> “wiel T+ bl = win (i, tg1) + bYu (. 1)
[ i=1

— by (u(xl,to)—e, ZG ( xl,tj —el]) Vl”"'1

n
= ZG,»e,f +b%e) + R,

where
n
R = 0% (u (. tj1) = u (w1, 17)
j=0
M
— Ay al @i (i 1) — @ X)) 1 O Gt X (X1 1)
i=0

—hI2—a) f
From (1), we have
R =h @ = @) (M9 Gt =S 0P Gt tagn) = S = o' 4 k)

=hI' 2 —a)(cah'™ — cgk*7P).

Hence, there exist ¢y, g, such that

R < o (P74 W) i =1, Mandn =0, N 1.

Consequently, using mathematical induction, we will prove forn = 1,2, ..., N,
"] = (B0) " Cup (W 1)

we have
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Let |e1| = max |e<1 ,forn=0andi € {1, ..., M}. According to Lemma 1, we get
! 1<i<m'!
by lef| < (v +bF) |/ |

M

Zwie,] +b8‘ell

i=1

< |R}].

which implies that

el < (b8) ey g (K27 + hk2FY .
1 0 B

; -1
Suppose  that ‘e” < (bj?_l) Cap (P +nk*P), j = 1,....n Let e?“‘ =
max e?“‘ andi € {1, ..., M}. Using Lemma 1, we also have
1<i<M
n .
o ler ! = |3 Gel + R
j=1
n .
=|>-yfel |+ ||
j=1
n .
< Z(bj-‘— 3’_]) el |+ R;Hrl ’
j=1
Finally we find

1] < ()l (W 4 12

G
We can prove that lim —————

1
n%oo(ﬁo_i_n)

= 0. Therefore, there exist a constant { > 0 such that

then

et <€l yt <%° + n> h(h' ™ +k27F)
< Clpltn (W74 +K77F)
< CLptT (W +127F),

Finally we have

! = Cap (017 +127F).
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lllustrative Examples

In the present section, two numerical examples are presented to illustrate the usefulness of
our main results.

Example 1 Let (x,t) € [1,2] x [1,2], o = 0.9 and

- 1) a2 (L @-p)
o0 = g (e (3)) toen'™ = log(2)<1ogx> ,

Consider the following space-time fractional linear diffusion equation

CHyy (x, 1) =1 8Pu (x, 1) + f(x,1),

1 2
u(x, 1) =log (5) (log (%)) , (14
2
u(l,t) =log (%) <log (%)) ,ou(1,1) =2log <%> log (%) .

Clearly, the exact solution of (14) is given by

e =tog (3 ) (g (3))"

Numerical and exact solution of fractional diffusion problem with p=1.1 Numerical and exact solution of fractional heat diffusion problem with =2
0 0.2
° " [} =
202 - 0 .
o ° ~
< o4 ® - 02
8 " " 8 -04 " "
= 06l Analytical solution \5 Analytical solution
S -0 N N N
= @ Numerical solution for h=0.002 -0.6 = Numerical solution for h=0.002
-0.8 -0.8
1 12 14 16 1.8 2 1 12 14 1.6 18 2
xT T
0 0
/; -0.2 -~ -02
504 &5 04
5 -06 - - K -06 - -
~—~ Analytical solution \5 Analytical solution
3
= -0.8¢ ®  Numerical solution for h=0.0002 -0.8 = Numerical solution for h=0.0002
-1 -1
1 12 1.4 16 1.8 2 1 12 1.4 1.6 18 2
xT T

Fig.1 Graphical comparison of the numerical and the exact solution with k = 0.1 and @« = 0.9
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Numerical solution for beta=1.1 and h=0.002

Analytical solution

%

4
.

z
G555

IS
L%
Q55
Qs
@

2552
555

%5
29525
S5

205202
02052000, % %05
COSHICKIKAILK,
S
2002052020, %03%%0 %
s

2,
o
S

5
200000 00%
SIS

00,2059 20,%039, %%
ssseseses

90.%

Y

2%
5

Ut 005000020
& 5

: %
90.%

% %
0000000000020, %0 %%
It

QIS
B0
XSS

u(x,t)

SIS
RS

55
SRS
S5
SRS
SRS ”

3
SSESS
0:“.“‘7[

Fig.2 Surface plot of numerical and exact solutions with 7 = 0.002,« =09, 8 =1.1and 8 =2

Table 1 Comparison of the numerical and the exact solutions of fractinal diffusion problem with 2 = 0.02,
h =0.002,« =0.9, 8 =2,n =70, CPU time is 7.251834 seconds

x Exact solutionApprox solutionError for # = 0.002x Exact solutionApprox solutionError for 7 = 0.0002

1.0-0.67633  —0.67633 0.00000e+000 1.0-0.81958  —0.81958 0.00000e+000
1.1-0.56407  —0.35407 2.10003e—001 1.1-0.68354  —0.65284 3.06981e—002
1.2-0.47048  —0.26050 2.09982e—001 1.2-0.57012  —0.53942 3.06979e—002
1.3-0.39187  —0.18191 2.09964e—001 1.3-0.47486  —0.44417 3.06977e—-002
1.4-0.32549  —0.11554 2.09950e—001 1.4-0.39443  —0.36373 3.06975e—-002
1.5-0.26923  —0.05929 2.09937e—001 1.5-0.32625  —0.29555 3.06974e—002
1.6-0.22143  —0.01150 2.09927e—001 1.6—0.26832  —0.23763 3.06973e—002
1.7-0.18078  0.02914 2.09918e—001 1.7-0.21906  —0.18837 3.06972e—002
1.8—0.14622  0.06369 2.09910e—001 1.8—0.17719  —0.14650 3.06971e—002
1.9-0.11691 0.09300 2.09903e—001 1.9-0.14167  —0.11097 3.06970e—002
2.0-0.09213  0.11777 2.09898e—001 2.0-0.11164  —0.08094 3.06969e—-002
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Example2 Let (x,t) € [1,2] x [1,2], o = 0.8 and

_ -1 2)\’ 1—a 2 V3 2-B
S, t) = m <log (;)) (log 1) - mlOg e (log x) )

consider the following space-time fractional linear diffusion equation

CHyy (x, 1) =CH 8Pu (x, 1) + f(x, 1),

2\\ 2
u(x,1) =log <ﬁ) (log (;)) s ’ (15)

3 3
u(l,t) =log t£ (10g(2))2,8xu(1,t):210g l£ log 2.

Clearly the exact solution of (15) is given by

2
u(x,t) =log ? <log<%>> .

Numerical and exact solution of fractional heat diffusion problem with =2
Numerical and exact solution of fractional diffusion problem with p=1.5 0.3 T T T T

Analytical solution

° Analytical soluti o 02
—~ 02 nalytical solution = = Numerical solution for h=0.002
2 ®  Numerical solution for h=0.002 =
. - ofw
5 &
S o 3 0
-0.1 -0.1
1 12 14 16 18 2 1
T
03 03

Analytical solution

Analytical solution

= 02 : " > 02
g; ® Numerical solution for h=0.0002 <Je = Numerical solution for h=0.0002

~ 01 =

o ~ 01
- 8
S o ~

3 o0 L ¥
-0.1
1 12 14 16 18 2 -0.1
T 1 12 14 16 18 2

Fig.3 Graphical comparison of the numerical and the exact solution with k = 0.1, « = 0.8
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Analytical solution Numerical solution for beta=1.5 and h=0.002

u(x,t)

Numerical solution for beta=2 and h=0.002

Fig.4 Surface plot of numerical and exact solutions with 7 = 0.002,« = 0.8, 8 =1.5and g =2

Table2 Comparison of the numerical and the exact solutions of fractinal heat diffusion problem with 2 = 0.02,
h =0.002,« =0.8, 8 = 1.5, n = 50, CPU time is 8.972140 seconds

x Exact solutionApprox solutionError for # = 0.002x Exact solutionApprox solutionError for 7 = 0.0002

1.00.21725 0.21725 0.00000e+000 1.00.25904 0.25904 0.00000e+000
1.10.16161 0.24920 8.75830e—002 1.10.19270 0.20938 1.66783e—002
1.20.11799 0.18374 6.57508e—002 1.20.14069 0.15343 1.27413e—002
1.30.08391 0.13393 5.00191e—-002 1.30.10005 0.10996 9.90440e—003
1.40.05752 0.09502 3.74948e—002 1.40.06859 0.07624 7.64590e—003
1.50.03742 0.06445 2.70280e—002 1.50.04462 0.05038 5.75848e—003
1.60.02252 0.04053 1.80176e—002 1.60.02685 0.03098 4.13379e—003
1.70.01194 0.02205 1.01020e—002 1.70.01424 0.01695 2.70657e—003
1.80.00502 0.00806 3.04324e—003 1.80.00599 0.00742 1.43395e—003
1.90.00119 —0.00213 3.32457e—003 1.90.00142 0.00170 2.85971e—004
2.00.00000 —0.00912 9.12254e—003 2.00.00000 —0.00076 7.59194e—004
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Conclusion

The paper aims to provide a numerical solution of the space-time fractional linear diffusion
equation (STFLDE) with Dirichlet-Neumann initial conditions. The differential operator
was taken to be the Caputo-Hadamard one. Also, the convergence and stability of the scheme
are proved. The main objective of this paper is to find accurate approximate solutions for
(STFLDE) of order « and 8 withO < @ < 1 and 1 < 8 < 2. Hence, we have used the Finite
Difference Method (FDM). The efficiency of (FDM) has been discussed and illustrated by
solving two typical examples of (Examples 1 and 2). Moreover, various results were obtained
for different values of the parameters o and . In the case of § = 2, we obtain the numerical
solution of the fractional heat equation. Eventually, different values for 4 and k have been
tested on examples 1 and 2 to claim that the approach discussed in this paper is useful for
solving (STFLDE) (Figs. 1, 2, 3, 4). The results obtained an improved convergence with an
error Cq g (hl_a + k2P ) tends to zero (Table 1, Table 2).
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