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Abstract

The present research utilizes ab initio computations to examine the thermodynamic, structural, and
elastic characteristics of XAgO ternary oxides, where X signifies Li, Na, K, and Rb.The GGA-PBE and
GGA-WC functionals were used to calculate the ground-state lattice parameters and atomic position
coordinates of the title materials. The calculated results were in good agreement with both
experimental measurements and theoretical predictions. This suggests that the GGA-PBE and GGA-
WC functionals are accurate for describing the structural properties of the material under study.This
study offers computational predictions for the elastic properties of monocrystalline structures and
polycrystalline aggregates of XAgO compounds. These predictions encompass various key para-
meters, including single-crystal elastic constants, Young’s modulus, bulk modulus, Lame coefficients,
Poisson’s ratio, shear modulus, and Debye temperature. Additionally, the quasi-harmonic Debye
approximation is utilized to explore the temperature-dependent behavior of bulk modulus, Debye
temperature, volume thermal expansion coefficient, and isobaric and isochoric heat capacities over an
extensive temperature range, while maintaining constant pressures. The results obtained from this
model are found to be highly successful in accurately predicting the behavior of these properties.

1. Introduction

Noncentrosymmetric oxides are a group of materials that have attracted considerable interest owing to their
properties, which are dependent on their symmetry, such as ferroelectricity, piezoelectricity, pyroelectricity, and
nonlinear optical (NLO) characteristics. These properties make the noncentrosymmetric oxides highly
promising for a wide range of applications, such as ferroelectricity,second-order nonlinear optical, actuators and
sensors [1—4]. Among the noncentrosymmetric oxides, the XAgO [X: Li, Na, K, Rb] materials, which are the
focus of the present study, are classified as non-polar noncentrosymmetric systems and are known to crystallize
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in the tetragonal KAgO-type structure under ambient conditions [4—7]. Some previous studies have reported
data on the synthesis and structural features of XAgO [X: Li, Na, K, Rb] compounds [5-7]. The tetragonal crystal
structure of XAgO materials has been determined through the analysis of X-ray diffraction spectra obtained
from single crystals [4—6]. Umamaheswari et al [4] investigated the electronic and structural properties of
NaAgO, KAgO, and RbAgO compounds using the tight-binding linear muffin-tin orbital (TB-LMTO) method
with local density approximation (LDA).

Although experimental and theoretical studies have been conducted on the XAgO (X =Li, Na, K, Rb)
materials [4-7], it is important to note that certain fundamental physical properties of these materials remain
incompletely investigated and scarcely reported in the literature. As a result, there is a significant knowledge gap
in understanding the full range of their intrinsic properties, which has implications for their potential practical
applications. Given the limited and scarce information currently available, it is essential to conduct further in-
depth investigations into the fundamental physical properties of these materials. These additional studies are
critical for bridging the existing knowledge gaps and gaining a comprehensive understanding of the materials
intrinsic properties. By exploring the unexplored aspects, researchers can gain valuable insights into the
materials’ behavior, responses to external stimuli, and potential applications. As a result, this expanded
knowledge will pave the way for fully utilizing the potential of these materials in future applications.

In the context of integrating semiconductor materials into various technological applications, it is essential
to have a comprehensive understanding of their fundamental physical properties. Two key properties, namely
elastic and thermodynamic properties, play a central role in this field. Semiconductor materials are commonly
fabricated in the form of thin films on substrates. This growth method introduces a mismatch between the lattice
parametersof the thin films and the underlying substrates. As a result, the thin films are subjected to stress, which
can significantly impact their physical properties. Therefore, it is important to understand the elastic properties
of these materials and how pressure influences their structural and elastic characteristics. This knowledge can be
used to effectively engineer and optimize the performance of semiconductor materials for practical applications.
Furthermore, semiconductor materials are often used in optoelectronic devices, which typically operate at
relatively elevated temperatures. In this context, it is essential to investigate and understand the effects of
temperature variations on the macroscopic physical parameters of these materials. Gaining insight into the
temperature-dependent behavior of semiconductor materials is crucial for ensuring the stability, reliability, and
efficient functioning of optoelectronic devices under real-world operating conditions. By exploring the interplay
between temperature and material properties, researchers can devise strategies to enhance the thermal
performance and overall reliability of optoelectronic technologies. However, the thermal and elastic properties
of XAgO [X: Li, Na, K, Rb] materials have not been studied either theoretically or experimentally, despite their
critical role in understanding the fundamental physical characteristics of materials and their behavior under
external constraints like high pressure and temperature.

Measuring the single-crystal elastic constants and effects of temperature and pressure on physical
parameters can be challenging, making theoretical calculations a reliable alternative. Ab initio methods are
particularly useful in predicting the physical properties of materials that have not yet been experimentally
studied [8, 9]. In this study, we employ the density functional theory (DFT) based pseudopotential plane-wave
(PP-PW) method to forecast the pressure dependence of the structural and elastic properties of LIAgO, NaAgO,
KAgO, and RbAgO compounds. Furthermore, we combine the PP-PW method with the quasi-harmonic Debye
approximation to successfully predict the temperature and pressure-dependent behavior of the thermodynamic
properties of the considered compounds. The outcomes of this study enhance the understanding of the essential
properties of XAgO materials and their potential for practical applications.

2. Description of computational techniques and parameters

The computations were carried out using the pseudopotential planewave method (PP-PW) as implemented in
the CASTEP software [10]. It is noteworthy to acknowledge that the PP-PW method represents the cutting-edge
approach for the geometrical optimization of crystals. In this study, we incorporated two distinct versions of the
generalized gradient approximation (GGA) to model the exchange—correlation interactions during the
geometry optimization process. Specifically, the GGA-PBEsol [11] and GGA-WC [12] functionals were
employed for this purpose. However, when studying other properties of the studied crystals, we only used the
functional GGA-PBEsol. The rationale for this decision stems from the fact that the GGA-PBEsol and the GGA-
WC reproduce nearly identical values for the structural parameters. To model the potential generated by the
nucleus and frozen electrons, an ultra-soft Vanderbilt-type pseudopotential [ 13] was utilized and applied to the
valence electrons. The valence electrons of Li (1s*2s', O (2s2p*), Ag(4d10531), K(3s*3p°4s'), Na(2s*2p®3s') and
Rb (45°4p°®5s') were taken into account. The plane-wave basis set, which expands the electron wave functions,
was truncated at maximum plane-wave energy (E.,) of 400 eV. The Brillouin zone was sampled using a
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6 X 6 x 3 Monkhorst-Park special k-mesh [14].It is important to note that the selection of these computational
parameters was based on thorough convergence tests of the total energy.

The optimized crystal geometry was acquired using the Broyden—Fletcher—Goldfarb—Shanno (BFGS)
minimization technique for geometries [15]. The convergence criteria for energy change, maximal stress,
maximal force, and maximal displacement were setto 5 x 1077 eV atom ™ %,0.02 GPa, 0.01 eV A, and
5.0 x 10744, respectively. Electronic occupation was smoothed using the Gaussian scheme, with a smearing
width of 0.1 eV. The monocrystalline elastic constants (Cj;) were determined using the finite strain-stress
method, and the polycrystalline elastic moduli were derived using the Voigt-Reuss-Hill approximation [16-20].

Asageneral rule, ab initio calculations are performed at T = 0 K, where no thermal excitation of the nuclei is
considered. To account for this effect without relying on empirical values, two approaches are generally used: the
quasi-harmonic Debye model coupled with an ab initio calculation, or the phonon dispersion relations. In this
study, the quasi-harmonic Debye approximation implemented in the GIBBS code [21] in combination with the
PP-PW method was used.

3. Findings and analysis

3.1. Characteristics of the crystal structure

The tetragonal noncentrosymmetric materials XAgO (X = Li, Na, Kand Rb), which have a space group of 14/
mmm (n0.139), contain two chemical formula units in their unit cell (Z = 2). The positions of the Ag, O, and
alkaline metal X atoms are located at 8 h (x4, XA, 0), 8i (x0, 0, 0), and 8j (0.5, yx, 0), respectively, where xag, X0,
and yx are the internal coordinates of the corresponding atoms. The symmetry group does not fix five structural
parameters, which consist of the two lattice parameters (‘a’ and ‘c’) and the three internal coordinates (xag, Xo»
and yx). In table 1, we provide the calculated ground state structural parameters for XAgO materials using the
GGA-PBEsol, and GGA-WC functionalsalong with existing theoretical and experimental data for comparison.
The calculated ground-state structural parameters, in particular the volume of the conventional unit cell, show
that the GGA-PBEsol and GGA-WC functionals yield nearly identical results. The differences between the
results obtained using these two exchange—correlation functionals are negligible. Our results, including the
obtained lattice parameters (‘a’and ‘c’), and internal parameters (xag, X0, and yx) at zero pressure, are in good
agreement with available experimental data. The maximal deviation of ‘@’ and ‘¢’ from the corresponding
experimental values are less than 1.5%, indicating the accuracy and reliability of the results of our calculations.
The calculated values of the internal coordinates, namely x g, X0, and yx, also exhibit substantial agreement with
their corresponding experimental counterparts. The trend of ‘a’ and ‘¢’ values of XAgO materials follows the
orderof {a; ¢} (LiAgO) < {a; ¢} (NaAgO) <{a; c}(KAgO) < {a; c} (RbAZO), which can be explained by
comparing the atomic radii (R) of X atoms in the same column of the periodic table (R (Rb) = 2.984,

R(K) = 2.77A, R(Na) = 2.23A,and R(Li) = 2.05A). Specifically, the larger the atomic radius of X (X: Li, Na,
K, Rb), the larger the lattice parameters.

In order to check the structural and thermodynamic stabilities of XAgO ternary oxides, where X signifies Li,
Na, K, and Rb, we have calculated their formation enthalpies (AH) and cohesive energies (E.,}) using the
following expressions [22]:

1

AH = — % [Eti)(?go o (nXEt)o(t(Solid) + nAgE;g;g(SOlid) + nOEt?t(SOlid))];
X IAg o)

Bh = ——————— x [EN0 — (g EX™™ 4 myg ESS@™ 1 noEQ™)].
nx + Mg + no

Here, the total energy of the primitive cell of XAgO is represented by E, X0, the total energies per atom of the
solid state of the pure X (X = Li, Na, K, Rb), Ag and O elements are represented by EX(Si® g Ag(Solid) 514
ES(@om) respectively, @™, EAg@om and (@™ represent the total energies of the isolated X, Ag, and O
atoms, and nx, 14, and ng represent the number of X, Ag, and O atoms in the primitive cell. The calculated
values of the formation enthalpies and cohesive energies for XAgO (X = Li, Na, K, Rb) are shown in table 1. It is
found that all considered compounds have negative formation enthalpies and cohesive energies, highlighting
their structural and energetic stabilities in the tetragonal structure. Furthermore, as depicted in figure 1, the
investigated crystalline substances exhibit a conspicuous characteristic wherein their respective formation
enthalpies exhibit negativity across distinct pressure intervals that coincide with their mechanical stability
thresholds. Specifically, this trend is manifest within the pressure ranges of 0 to 14 GPa for LiAgO, 0 to 12 GPa
for NaAgO, 0 to 8 GPa for KAgO, and 0 to 6 GPa for RbAgO. These results confirm the remarkable flexibility of
LiAgO, NaAgO, KAgO, and RbAgO, as they demonstrate long-lasting structural integrity when subjected to
stress conditions consistent with the inherent limits of structural stability.
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Table 1. The computed ground-state equilibrium lattice parameters (‘a’and ‘c’, in &), volume (V, in A%), bond lengths (Ag-O
and X-0, in A), internal coordinates (yx, Xag and xo), bulk modulus (B, in GPa), first pressure derivative of the bulk
modulus (B’), the formation enthalpies (AH, in eV/atom) and the cohesive energy (E,,, in €V /atom), for the Ag-based
ternary oxides: LiAgO, NaAgO, KAgO, and RbAgO. Experimental values are also included for comparison. The bulk
modulus and its first pressure derivative were obtained from the Birch equation of state P(V).

Materials
Parameter
LiAgO NaAgO KAgO RbAgO
Present Expt. Present Expt. Present Expt. Present Expt.
a 9.176 9.248¢ 9.429° 9.522¢ 9.777° 9.893%¢ 10.01° 10.089¢
9.189" 9.447" 9.520 9.798" 9.925' 10.027° 10.086°
9.670° 10.08° 10.35° 10.02f
c 3.816° 3.75¢ 4.655" 4.602¢ 5.390° 5.445%¢ 5.788" 5.796¢
3.819" 4.643" 4.599¢ 5.373" 5.458! 5.752" 5.792¢
4.699° 4.617° 5.614° 6.034° 5.67°
\% 321.30° 320.72¢ 413.85° 416.98¢ 515.23° 532.91¢ 579.95° 589.96"
322.46" 414.36" 515.81° 578.31°
c/a 0.4158" 0.493° 0.483° 0.551° 0.55%F 0.578° 0.574°
0.4156° 0.491° 0.49" 0.548" 0.573" 0.57
0.486° 0.557° 0.583¢
yx 0.138° 0.161° 0.159° 0.176" 0.1772° 0.184° 0.1837°
0.138" 0.162° 0.176" 0.184°
Xag 0.162° 0.158" 0.155' 0.149" 0.145" 0.1457"
0.162° 0.158° 0.149° 0.1478° 0.145°
Xo 0.322° 0.310° 0.306 0.298° 0.291° 0.2893f
0.322° 0.310° 0.298" 0.2944 0.291°
B 71.34° 47.18° 32.41° 28.19°
69.86" 46.11° 31.23" 26.50°
64° 41° 33¢
B 4.79° 5.28° 5.03" 5.27°
4.77° 5.30" 5.112° 6.66"
d(Ag-0) 2.093° 2.073° 2.065° 2.064°
d(X-0) 2.066° 2.350° 2.619° 2.791°
AH -1.578° -1.354° -1.384" -1.329°
Eeon -4.557° -4.276 -4.093° -3.995°

* Present work using the GGA-PBEsol
" Present work using the GGA-WC

° 4],

4151,

¢ [o],

171

In order to study the influence of the external pressure on the structural properties of XAgO (X =Li, Na, K,
and Rb), we analyzed the variations of the lattice parameters ‘a’ and ‘c’ as a function of pressure in pressure
intervals that coincide with their mechanical stability thresholds, namely in the pressure ranges of 0 to 14 GPa
for LiAgO, 0 to 12 GPa for NaAgO, 0 to 8 GPa for KAgO and 0 to 6 GPa for RbAgO.At each pressure step, a
complete structural optimization was carried out. The relative variation in the lattice parameters was depicted as
aplotof a/aqand ¢/, against the external hydrostatic pressure P, where a and ¢ denote the values of the lattice
parameters at a given pressure P, and aq and ¢, represent the corresponding values at zero pressure. This
information is presented in figure 2. The symbols in the plot illustrate the outcomes of the ab initio calculations
for the specific pressures, while the solid lines demonstrate the results fitness to a quadratic polynomial form,
expressedas A/Ag = 1 + aP + (P2 where A is the lattice parameter value at the P pressure and Ay is the
lattice parameter value at zero pressure. The obtained results for the materials under consideration are as

follows:
2 — 1~ 0.0032P + 4.10097 x 10~5P2
LiAgO ?0
£ — 1 -0.00681P + 15.5198 x 10~°P2
Co
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Figure 1. Pressure dependence of the formation enthalpies (AH) for XAgO (X = Li, Na, K, Rb).
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Figure 2. Pressure dependence of the relative changes in the lattice constants ‘a’ and ‘c’ for the materials LiAgO, NaAgO, KAgO, and
RbAgO. The subscript ‘0 indicates the lattice parameter value at zero pressure.
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Figure 3. Pressure-dependent variations in the relative bond lengths for the compounds LiAgO, NaAgO, KAgO, and RbAgO. The
calculated values for these compounds are represented by symbols, while the quadratic approximations are depicted using solid lines.
In this context, ‘d’ denotes the interatomic distance at a given pressure P, and ‘dy’ signifies the same distance under zero pressure.

4 — 1 — 0.00884P + 27.0292 x 10~3P2
KAgoq %
— =1 —0.01192P + 57.2327 x 10~°P2
Co
2 — 1 - 0.01006P + 16.4051 x 10~5P2
RbAgO{ ™
— =1 — 0.01494P + 105 x 107°P?
Co

The study investigated the shrinkage degree and stiffness of LiAgO, NaAgO, KAgO, and RbAgO when
subjected to unidirectional stress along the ‘a’ and ‘¢’ directions. Results showed that the shrinkage degree (linear
compressibility) along the ‘@’ and ‘c’ directions increases as the atomic number Z of the X atom (Li, Na, K, and
Rb) increases from LiAgO to RbAgO. Furthermore, it is evident that within the crystalline compounds LiAgO,
NaAgO, and KAgO, the linear compressibility along the c-axis surpasses that along the g-axis. In the case of
RbAgO, a distinct behavior is observed. Up to a pressure threshold of 5.6 GPa, the linear compressibility along
the c-axis remains superior to that along the a-axis. However, beyond this point, a reversal occurs, and the linear
compressibility along the a-axis overtakes that along the c-axis. These findings suggest that LiAgO, NaAgO and
KAgO are more resistant to unidirectional stress applied along the a-axis than along the c-axis, while RbAgO
shows similar behavior up to 5.6 GPa.

In our investigation, we scrutinized the proportional fluctuations in bond lengths involving Ag-O and X-O
(where X represents Li, Na, K, and Rb) within XAgO materials under varying pressure conditions. These analyses
were conducted within pressure intervals that align precisely with the designated thresholds of mechanical
stability for the respective materials. To be specific, these pressure intervals span from 0 to 14 GPa for LiAgO, 0 to
12 GPa for NaAgO, 0 to 8 GPa for KAgO, and 0 to 6 GPa for RbAgO, as visually illustrated in figure 3. The
findings show that the Ag-O chemical bond was the stiffest, while the X-O bond is the weakest in all the studied
materials. Additionally, the replacement of Li with Na, Na with K, and K with Rb led to a further weakening of
the X-O bond, which may explain the observed shrinkage along the a-axis in these materials. The elongation
observed in the X-O bond length, when substituting Li with Na, Na with K, and K with Rb in the XAgO
compounds (where X represents Li, Na, K, or Rb), can be attributed to the gradual increase in the atomic radii of
the respective X atoms within the sequence. This phenomenon elucidates the diminished strength of the X-O
bond, as observed in the progression from LiAgO to NaAgO to KAgO to RbAgO. We used quadratic least-
squares fit equations (d/dy = 1 + aP + [3P?) to approximate the relative variations of the Ag-O and X-O bond
lengths under pressure. The Ag-O and X-O bond lengths at any pressure up to 14 GPa can estimated using the
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Figure 4. Pressure dependence of the primitive-cell volume for LiAgO, NaAgO, KAgO, and RbAgO. The symbols represent the
ab initio calculated P-V data, while the continuous lines indicate the fits of the P-V data to the Birch-Murnaghan equation of state.

following expressions:

Ag—O: i =1 — 0.00212P + 2.8246 x 10~°P?

LiAgO 0

X—-0: di =1 — 0.00505P + 10.3788 x 107>P?
L 0

-

Ag—O: i =1 — 0.00247P + 4.09457 x 10-°P?

NaAgO+ Z"
X—0: — =1—0.00681P + 15.7487 x 10~3P2
\ do
Ag—O: A 1 0.00276P + 6.68389 x 10-3P?
KAgO LZIO
X=0: — =1-00104P + 40.8072 x 10-5p2
0

Ag—O: di =1 — 0.00327P + 16.8615 x 1075P?
RbAgO 0

X—-0: di =1 — 0.01175P + 48.5711 x 107°P?
0

The equations provided above offer a means to approximate the Ag-O and X-O bond lengths at any given
pressure value falling within the confines of the compounds mechanical stability threshold.

We utilized the pressure dependence of the primitive cell volume (as shown in figure 4) to construct the
equation of state P(V). The bulk modulus at zero pressure (B) and its pressure derivative (B’) are then estimated
by fitting the P-V data to the third-order Birch-Murnaghan equation of state (EOS) [23, 24], which is
represented by solid lines in figure 4 and tabulated in table 1. The obtained values of B for the title compounds,
using the GGA-PBEsoland GGA-WC functionals, are found to be slightly smaller than those reported in a
previous study [4]. This discrepancy may be attributed to the use of the LDA functional in [4], which is known to
overestimate B compared to the one obtained by the GGA functional. Unfortunately, no experimental values for
B and B’ are available in the literature to confirm our results. Furthermore, the calculated B values for the title
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Table 2. Computed elastic properties including elastic constants (Cjj, in GPa), bulk modulus (B, in GPa), shear modulus
(G, in GPa), Pugh’s ratio (B/G), Young’s modulus (E, in GPa), Poisson’s ratio (o), Lamé’s coefficient (A, in GPa),
longitudinal, transverse and average sound velocities (V}, Viand V,, respectively, inms ™~ ", and Debye temperature (6,
in K) for LiAgO, NaAgO, KAgO and RbAgO. The bulk modulus is determined from the C;; values, while the Cj; values for
isostructural compounds are provided for comparison.

Materials

Parameter

LiAgO LiCuO NaAgO NaCuO KAgO KCuO RbAgO RbCuO
Chy 116.1 125.5% 82.9 86.4" 59.3 58.5" 50.0 48.3°
Css 95.976 94.3" 76.4 73.8" 57.9 53.7° 52.4 47.6"
Cya 15.8 25.1% 13.6 15.4° 9.1 9.5° 7.2 7.0°
Ces 60.9 58.7¢ 34.6 34.7° 21.9 23.5° 17.3 19.3°
Ci, 83.3 72.7° 51.0 41.8° 29.3 25.4° 23.6 21.3"
Cis 41.1 40.0° 21.7 21.3° 14.6 14.4° 13.6 13.9%
Bgr 69.4 46.5 32.2 28.1
By 73.2 47.9 32.6 28.2
By 71.3 47.2 32.4 28.2
Ggr 21.6 18.5 13.4 10.8
Gy 29.3 22.2 15.9 13.1
Gu 25.5 20.4 14.6 12.0
Bu/Gy 2.8 2.32 2.22 2.36
E 68.2 53.4 38.1 31.4
o 0.341 0.311 0.304 0.314
A 53.7 33.1 52.0 19.5
Vi 4418.4 3970.9 3514.7 3033.7
Vi 2172.6 2077.9 1864.9 1579.1
Vin 2439.6 2324.4 2084.2 1767.0
6p 340.1 288.7 275.1 210.1
* [25].

compounds exhibit a decreasing trend as follows: BL480 > BNaAgO . BKALO - BRbAZO Thyjs trend corresponds
to an increase in unit cell volume V, which follows the sequence: V1480 < YNaAgO  YKAZO  Y/RbAZO Tt jg
therefore evident that the bulk modulus (B) decreases with increasing unit cell volume (V), in accordance with
the well-established relationship between Band V: B o< V1,

3.2. Elasticity characteristics
3.2.1. Elastic constants of the monocrystalline phase
Accurate numerical estimation of elastic constants (C;) is crucial in predicting the physical properties of
materials. Specifically, these constants play a crucial role in determining the mechanical stability, elasticity, and
strength of crystals. In the case of tetragonal crystals, the six independent elastic constants that fully characterize
their elastic properties are C;1, Cs3, Cyq, Cgs, C12, and Cy 3. Present computed values for the elastic constants of
XAgO (X =Li, Na, K, and Rb) oxides are listed in table 2. Note that there are no experimental or previously
calculated values for C;js available in the literature for comparison [25]. In table 2, we also provide the elastic
constants of is structural LiCuO, NaCuO, KCuO, and RbCuO compounds to facilitate comparisons. The results
reveal that C,; and Cs3, representing the crystals resistance to unidirectional compression along the [100]/[010]
and [001] crystallographic directions, respectively, are greater than Cyy, Cg, C1, and C; 3, representing the
crystals resistance to shear deformations. This suggests that the title compounds exhibit higher resistance to
unidirectional compression than to shear strains. Furthermore, in LIAgO, NaAgO, and KAgO, C is greater
than C;3, implying that the compounds have higher resistance to unidirectional stress along the [100]/[010]
direction than along the [001] direction. This result is consistent with the hydrostatic pressure dependence of the
lattice parameters ‘a’and ‘¢’ (section 3.1). Moreover, all calculated Cjjs of the title compounds satisfy the
mechanical stability criteria for tetragonal crystals [26]: Cj; > 0; C33 > 0; Cyy > 0; Ce > 0;
Ci+ G5 — 2G5 > 0;Gy — G = 0;2(Cy + Cpp) + 4G5 + Cs3 > 0, highlighting the mechanical
stabilityof these materials.

By utilizing the computed monocrystalline elastic constants (Cj;s), it is possible to determine the linear
compressibility along the a and c axes, referred to as 3, and (., respectively. These values can be obtained
through the utilization of the following equations [27]:

Ba= By = (Cs3 — Gi3)/(C33(Ciy + Cia) — 2CY) (1)
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Be = (G + Gz — 2Gi3)/(C33(Giy + Cio) — 2C3) )
The obtained (3, and S.values for LiAgO, NaAgO, KAgO and RbAgO are:
BLAS0 — 348 x 107*GPa~"; BL40 = 74.4 x 107*GPa™!
BNaAS0 — 58.9 % 1074GPa; BN*80 = 97.4 x 1074GPa™!
kA0 — 92.1 x 1074GPa™Y; 3540 = 126.3 x 107*GPa~!
a c
BRASO — 111.2 x 107*GPa~%; SR80 = 133.0 x 1074GPa™!

From thelinear compressibility 5, and [, itis possible tocalculate the volume compressibility 3 using the
following relation: 8 = 23, + [3.. The obtained values for Bare: 31480 = 144.0 x 107*GPa~};
BNaA80 — 2150 x 107*GPa'; 5480 = 310.0 x 107*GPa'; gR0A20 = 3554 x 10-“GPa~!. The estimated
bulk modulus values from the well-known relation B = 1/ are: BH480 = 69.4GPa; BN*A¢0 = 46.5GPa;
BKASO = 32 3GPa; B8O = 28.1GPa. These B values are very close to those obtained from fitting the P(V)
curves to the Birch equation of state and from analyzing the pressure dependence of the lattice parameters a and
c(section 3.1). These findings serve to validate the accuracy of the outcomes pertaining to both the elastic
constants and the pressure-induced variations in the structural parameters.

3.2.2. Elastic anisotropy

The assessment of the degree of elastic anisotropy in crystals is of significant interest due to its implications in
physical phenomena such as the induction of microcracks [28]. Various metrics have been developed to
investigate the extent of elastic anisotropy in crystals [29]. A common approach for characterizing the degree of
elastic anisotropy in crystals is through three-dimensional (3D) visualization of the crystal direction dependence
of elastic moduli, including linear compressibility and Young’s modulus. The crystal direction dependence of
the linear compressibility () and Young’s modulus (E) in a tetragonal system can be expressed as follows [30]:

1
7= (I} 4+ IS + 1iSss + 2121381, + 2(121F + 21113)Sis + (1313 4 1213)Say + 17215 Ses

B=(Si+ Siz+ Si3) — St + Si2 — Si5 — S33)15

It should be noted that the representation of the crystal direction dependence of an elastic modulus in 3D
takes the form of a closed surface. The distance between the center of the surface and any point on it in a given
direction corresponds to the amplitude of the elastic modulus in that crystal direction. In the case of an isotropic
elastic modulus, this closed surface takes on a perfectly spherical shape. Therefore, the degree of deviation of the
3D representation from a spherical shape reflects the degree of anisotropy in the elastic modulus. In this study,
we present the 3D representations of the crystal direction dependence of the linear compressibility (3) and
Young’s modulus (E) in figures 5 and 6, respectively, as well as their 2D cross-sections in the (ab), (ac), and (bc)
planes. Itis evident that the closed surfaces representing the crystal direction dependence of both 3 and E exhibit
strong deviations from spherical shape. Similarly, their corresponding cross-sections in the (ab), (ac), and (bc)
planes demonstrate significant deviations from circular form, indicating the strong elastic anisotropy of the
studied compounds. In all systems analyzed, the maximum values of linear compressibility and Young’s
modulus (B . and Ey,y) are more than twice the corresponding minimum values (8, and E ;).

3.2.3. Sound wave velocities

The knowledge of the velocity of sound waves within a material provides a powerful tool for understanding its
physical properties and behavior, and can be applied in numerous fields, ranging from materials science and
engineering to medicine and industry. Theoretically, the monocrystalline elastic constants are required for
calculating the velocities of the elastic waves propagating in different direction in a medium. The elastic waves
velocities can be determined by solving the Christoffel equation [31]:

(Ciunjny — pV36)up = 0 (3)

In this context, the monocrystalline elastic constant tensor is denoted by Cjj, with 7 representing the
direction of elastic wave propagation, p indicating the mass density, # representing the direction of elastic wave
polarization, and V denoting the wave velocity. The solutions of the Christoffel equation can be classified into
two categories: a longitudinal elastic wave, polarized parallel to the propagation direction (V1), and two shear
elastic waves (V; and V,), polarized perpendicular to 7.

For tetragonal crystals, the elastic wave velocities that propagate along the [100], [110], and [001] crystal
directions can be determined using the following expressions, as detailed in previous literature [32]:

C C C
100 _ 11, (,100] _ 66 . 17[100] _ 66
Vol = s VEie = 7 Vo = ,/7,
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Figure 5. The left panels show representations of the crystal direction dependence of the linear compressibility (3) for LIAgO, NaAgO,
KAgO, and RbAgO materials. The right panels depict cross-sections of 3 in the (ab), (ac), and (bc) planes for these materials.
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Table 3. Sound velocities (in m/s) calculated from elastic
constants for LIAgO, NaAgO, KAgO and RbAgO materials. The
velocity of an elastic wave propagating along the # direction and
polarized along the i direction is given by V[lg’]J.

Materials

Parameter

LiAgO NaAgO KAgO RbAgO
v, 4639.8 4193.8 3756.4 3228.3
VESo) 3359.8 2708.4 2282.9 1900.0
VES S0y 1712.0 1696.0 1469.5 1221.9
Vi 5456.7 4641.0 3969.1 3359.6

1743.6 1839.7 1889.1 1656.8
Ve 1712.0 1696.0 1469.5 1221.9
VIS, 4218.6 4026.1 3712.3 3304.6
VI 1712.0 1696.0 1469.5 1221.9

Css Cyy
Vo = 5; V%O[%loll] = Z 4)

The numerical estimates of the velocities of the longitudinal and transverse sound waves that propagate along
the [100], [110], and [001] crystal directions for XAgO (where X = Li, Na, K, and Rb) are shown in table 3. The
findings indicate that longitudinal waves propagate at the fastest and slowest speeds along the [110] and [001]
directions, respectively, while transverse waves move at the fastest and slowest speeds along the [110] and [100]
directions, respectively. Additionally, the velocities of both longitudinal and transverse elastic waves exhibit a
decreasing trend following the order LiAgO, NaAgO, KAgO, and RbAgO. This trend is consistent with the elastic
constants Cjjs, as the elastic velocities are proportional to the square root of the corresponding elastic constants,
as demonstrated in equation (4).

3.2.4. Elastic moduli of the polycrystalline phase

In describing the elasticity of a material composed of multiple crystals, two isotropic elastic moduli are
commonly used: the shear modulus (G) and the bulk modulus (B). The isotropic moduli G and B of the
polycrystalline phase of a material can theoretically be determined by employing the Voigt-Reuss-Hill
approximations to calculate their monocrystalline elastic constants [17-19, 33]. It is worth noting that the Reuss
and Voigt approximations provide the extreme limit values of G and B. Hill demonstrated that the effective
values of G and B of a polycrystalline material are equivalent to the arithmetic mean of their Reuss and Voigt
extremes. Table 2 lists the computed values of the G and B moduli for the materials under study. Additionally,
Poisson’s ratio (0) and Young’s modulus (E), another pair of interesting elastic moduli, can be determined from
G and B [34]. Table 2 provides numerical estimates for o and E. Based on the results obtained, it can be
concluded that:

1. The calculated B values of LiAgO, NaAgO, KAgO, and RbAgO from their monocrystalline elastic constants
are in good agreement with the values derived from the Birch equation of state V(P), demonstrating the
reliability and accuracy of the calculated elastic constants (tables 1 and 2).

2. The bulk moduli of the studied compounds decrease in the following order:
BLiASO . pNaAgO ~, BKAZO . BRbAZO Thijg suggests that the average interatomic bond strength decreases
from LiAgO to RbAgO, as the bulk modulus represents the resistance to volume change under hydrostatic
pressures.

3. The relatively small bulk moduli (less than 100 GPa) of the considered materials indicate their high
compressibility. The Young’s modulus, which provides information about the stiffness of a material, was
calculated to be 68 GPa for LiAgO, 53 GPa for NaAgO, 38 GPa for KAgO, and 31 GPa for RbAgO, indicating a
moderate stiffness of these materials.

4. Pugh’s empirical criterion [35], which uses the ratio of B to G to determine the brittle or ductile nature of a
material, suggests that LiAgO, NaAgO, KAgO, and RbAgO are ductile materials. Ductile materials are
machinable and resistant to thermal shocks, and their mechanical properties vary slowly with temperature.

5. The Debye temperature is a key factor in determining the thermal properties of a material and can be
estimated from the average sound velocity of an isotropic material, which can be calculated using isotropic G
and B [36]. In table 2, we present the longitudinal, transverse, and average sound velocities (V}, V, and V,,,

12
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Figure 7. Pressure dependence of the elastic constants Cj;and bulk modulus B for LiAgO, NaAgO, KAgO, and RbAgO. The calculated
values are shown as symbols, and second-order polynomial fits to the data are shown as continuous lines.

respectively) as well as the Debye temperature (6p) for polycrystalline XAgO (X = Li, Na, K, and Rb). As
expected, the O, values decrease from LiAgO to RbAgO in accordance with the decrease in stiffness.

3.2.5. The effect of pressure on the elastic moduli

The pressure dependence of the independent elastic constants (C; ;, Cs3, Cy4, Ces, C12 and C;3) and the bulk
modulus (B) of the investigated materials are illustrated in figure 7. It should be noted that the computed C;;(P)
values were determined specifically for pressure ranges that align with the established mechanical stability limits
of the compound [37,38]: (C;; — Cp) > 05 (Ciy + Cs3 + 2Gi3) > 0; Cy > 0;

G + Cs3 + 2C, + 4C5) > 0;where C;; = Cj; — P;(I=1,3,4,6); C, = C, — P; C3 = G5 — P.The
symbols in the figure represent the calculated values of the elastic constants (Cj;) and bulk modulus (B) at
different pressures, while the solid lines represent the fits of B(P) and C;(P) to the second-order polynomials
given in table 4. Our analysis indicates that the elastic constants C; 1, Cs3, Cse, C12 and C; 3 increase as the pressure
isincreased. Nonetheless, a discernible trend is observed in the behavior of C44 as pressure increases, indicating a
gradual decline. This observation implies that these materials could potentially demonstrate mechanical
instability under elevated pressures that surpass the predefined thresholds of mechanical stability [4], thus
leading to a scenario where the conditions for mechanical stability [37, 38] are no longer met. The obtained
values for the shear modulus C,4 suggest that the mechanical stability criteria could be satisfied approximately in
the pressure ranges of 0 to 15 GPa for LiAgO, 0 to 13 GPa for NaAgO, 0 to 9 GPa for KAgO, and 0 to 7 GPa for
RbAgO.

3.3. Thermodynamic properties
Knowledge of the thermodynamic properties of materials is essential for designing, optimizing, and developing
materials for a wide range of applications. The study of thermodynamics provides a fundamental understanding
of how materials behave under different conditions, and this knowledge is essential for advancing technology
and addressing global challenges.The quasi-harmonic Debye model, as implemented in the Gibbs program [21],
was utilized to investigate the thermodynamic properties of LiAgO, NaAgO, KAgO, and RbAgO materials.
Figure 8 illustrates the normalized-volume versus temperature variation at various fixed pressures of 0, 3 and
6 GPa for the aforementioned materials. It is generally observed that the normalized-volume increases with
increasing temperature for a given pressure, indicating the increase of compressibility of the compounds due to
the temperature increase.Note that the rate of volume increase with temperature decreases with increasing
pressure for all materials except KAgO. Moreover, as the temperature increases, the normalized volume V/V,
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Table 4. The quadratic polynomials describing the
dependence of the elastic constants on the pressure of the
compounds LiAgO, NaAgO, KAgO and RbAgO. The
fitting was performed on the ab initio calculated Cjjs at
discrete pressures.The pressure, P, is given in GPa.

System

Elastic constants (GPa)

LiAgO

NaAgO

KAgO

RbAgO

C, = 116.31 + 6.12 x P — 0.0330 x P?
Cs3 = 96.32 + 7.32 x P — 0.0590 x P?
Cyy = 16.10 — 0.72 x P — 0.0098 x P2
Ces = 61.22 4+ 2.98 x P — 0.0462 x P?
Ci, = 83.30 4 5.33 x P — 0.0406 x P?
Ci3 = 41.08 4 2.80 x P + 0.0056 x P?
B = 69.53 + 4.66 x P — 0.0229 x P?
Cip = 83.01 + 4.95 x P — 0.0527 x P?
Cs3 = 76.58 + 9.36 x P — 0.0732 x P2
Cyq = 13.61 — 0.084 x P + 0.0065 x P?
Ceo = 34.94 + 1.84 x P — 0.0050 x P?
Ci, = 51.01 + 5.03 x P — 0.0807 x P2
C3 = 21.77 + 3.14 x P — 0.0203 x P2
B = 46.58 + 4.91 x P — 0.0586 x P?
Ci, = 59.57 4+ 5.11 x P — 0.1583 x P?
Cs3 = 57.85 + 10.04 x P — 0.0839 x P?
Cys = 9.08 — 0.19 x P + 0.0081 x P?
Cee = 21.82 + 0.31 x P — 0.0121 x P?
Ci, = 29.56 4+ 5.03 x P — 0.0807 x P?
Ci3 = 14.58 4 2.63 x P — 0.0581 x P?
B = 3231 + 4.60 x P — 0.1281 x P?
C; = 50.13 + 4.30 x P — 0.1025 x P?
Cs3 = 52.39 + 10.97 x P — 0.1575 x P?
Cys = 7.16 — 0.2035 x P + 0.0054 x P?
Ces = 17.32 4+ 0.86 x P — 0.1480 x P?
Cp, = 23.78 4 3.56 x P — 0.1292 x P?
Ci3 = 13.67 + 2.52 x P — 0.1187 x P?
B = 2823 + 4.16 x P — 0.1465 x P?
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Figure 9. The temperature-dependent behavior of the bulk modulus for LiAgO, NaAgO, KAgO, and RbAgO materials under various
pressures. The results demonstrate a negative correlation between the bulk modulus and temperature, whereas a positive relationship
is observed between the bulk modulus and pressure for all materials.

decreases more rapidly with increasing pressure due to the increase of compressibility with increasing
temperature. The unit cell volume values were calculated to be 278.25A3 for LiAgO, 358.41A3 for NaAgO,
446.20A° for KAgO, and 502.25A° for RbAgO at zero pressure and room temperature (0 GPa and 300 K).

Figure 9 depicts the variations in the bulk modulus (B) of LIAgO, NaAgO, KAgO, and RbAgO materials as a
function of temperatureat fixed pressures of 0, 3 and 6 GPa. The results demonstrate that the bulk modulus
remains relatively constant for temperatures below 100 K and then decreases linearly with increasing
temperature. The bulk modulus increases with increasing pressure. At room temperature (300 K) and zero
pressure, the bulk modulus values for LiAgO, NaAgO, KAgO, and RbAgO are approximately 66 GPa, 44 GPa,
34 GPa, and 31 GPa, respectively.

Figure 10 depicts the calculated temperature-dependent volume thermal expansion coefficient (o) for
LiAgO, NaAgO, KAgO, and RbAgO materials at various fixed pressuresof 0, 3 and 6 GPa. The findings indicate
that v experiences a sharp upsurge with increasing temperature in the range of 0-200 K at a fixed pressure,
particularly at zero pressure. However, for temperatures exceeding 200 K, the trend of « elevation becomes less
significant and ultimately tends to a linear growth. Note that for T > 200 K, «vincreases sluggishly and
practically stabilizes at pressures of 5 and 10 GPa in KAgO and RbAgO. This implies that the temperatures
impact on v under high pressure is quite weak for these substances.Moreover, « coefficient diminishes
significantly as pressure rises. At zero pressure and room temperature (300 K), the a coefficient is approximately
equalto 8.17 x 107°K=4,9.73 x 107°K"}2.14 x 107°K~},and 2.87 x 107K~ !for LiAgO, NaAgO,KAgO,
and RbAgO, respectively.

Figures 11 and 12 display the curves illustrating the relationship between constant volume heat capacity (Cy)
and constant pressure heat capacity (Cp) with temperature at fixed pressures of 0, 3 and 6 GPa. According to the
Debye model, the results demonstrate that Cy and Cp are proportional to T* at low temperatures. At ambient
temperature (300 K) and zero pressure, the values of Cy (Cp) are approximately
278 J.mol LK 1(291 J.mol LK !) for LiAgO, 285 J.mol~ LK 1 (301 J.mol LK !) for NaAgO,

288 J.mol LK !(318 J.mol LK !) for KAgO and 291 J.mol LK !(315 J.mol LK™ !) for RbAgO. Nevertheless, as
temperature rises, Cy approaches the Dulong-Petit limit (roughly equal to 300 J.mol~ LK), while Cp tends to
increase linearly. Increasing pressure leads to a reduction in both Cy and Cp values at a fixed temperature.
However, the impact of temperature on Cp is more significant than that of pressure.

Figure 13 illustrates the relationship between the Debye temperature (fp) -a crucial thermodynamic
parameter that correlates with several physical properties of solids, including melting temperatures, elastic
constants, and specific heat- and temperature at fixed pressures of 0, 3 and 6 GPa. It was observed that 0,
remains relatively constant in the temperature range of 0—100 K for all studied materials. For temperatures
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Figure 10. Temperature dependence of the volume thermal expansion coefficient for LiAgO, NaAgO, KAgO and RbAgO at various
fixed pressure values.
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Figure 11. Temperature dependence of the constant volume heat capacity (Cy) for LiAgO, NaAgO, KAgO and RbAgO at various fixed
pressures.

above 100 K, fpdecreases with increasing temperature. This decrease is significant for LiAgO and NaAgO, and
its propensity decreases with increasing pressure. Atambient temperature (300 K) and zero pressure, the
computed value of fpis 369 K for LiAgO, 299 K for NaAgO, 267 K for KAgO, and 227 K for RbAgO. The yielded
values of 0, by the quasi-harmonic Debye approximation are in excellent agreement with the corresponding
values obtained from the elastic constants (340 K for LiAgO, 288 K for NaAgO, 275 K for KAgO, and 210 K for
RbAgO). This agreement suggests that the quasi-harmonic approximation provides a viable alternative for
accounting for thermal effects without the need for computationally demanding procedures.
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pressures.
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Figure 13. Temperature dependence of the Debye temperature for LIAgO, NaAgO, KAgO and RbAgO at various fixed pressures.

4, Conclusions

In this investigation, we employed ab initio pseudopotential plane wave calculations to analyze the structural,
elastic, and thermodynamic properties of XAgO (X = Li, Na, K, and Rb) oxides. The results exhibit anexcellent
agreement between the optimized lattice parameters and reported experimental data, and a pressure-dependent
anisotropic behavior of the lattice constants. All the examined materials are found to be mechanically stable at
zero pressure with significant elastic anisotropy. By utilizing the calculated elastic constants, we identified the
sound wave propagation velocities along specific crystallographic directions. Monocrystalline elastic constants
and polycrystalline elastic moduli exhibit a decreasing trend as X varies from Li to Rb, suggesting a reduction in
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stiffness. According to Pugh’s criterion, all considered materials demonstrate ductile behavior. The pressure
dependence of the elastic constants of the title compounds reveals that they remain mechanically stable under
pressure up to approximately 15 GPa for LiAgO, 13 GPa for NaAgO, 9 GPa for KAgO, and 7 GPa for RbAgO. It
is noteworthy that the elastic constants increase with increasing pressure for all four compounds, except for the
shear modulus C,y, which decreases with increasing pressure. This suggests that the title compounds may
become mechanically unstable outside the aforementioned pressure intervals, as the shear modulus is a measure
of a materials resistance to shear deformation. We also investigated the temperature dependence of bulk
modulus, unit cell volume, heat capacities, volume thermal expansion coefficient, and Debye temperature in the
range of 0-600 K at fixed pressures of 0, 3 and 6 GPa using the quasi-harmonic Debye approximation. Our
results demonstrate that higher temperatures led to alower bulk modulus, higher heat capacities, and greater
volume expansion coefficient at a given pressure, whereas higher pressures induce the opposite effects. The
volume thermal expansion coefficient and heat capacity tend to remain stable at high pressures and
temperatures.
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