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Nonlinear two conformable fractional differential
equation with integral boundary condition

Somia Djiab and Brahim Nouiri

Abstract. This paper deals with a boundary value problem for a nonlinear differ-
ential equation with two conformable fractional derivatives and integral boundary
conditions. The results of existence, uniqueness and stability of positive solutions
are proved by using the Banach contraction principle, Guo-Krasnoselskii’s fixed
point theorem and Hyers-Ulam type stability. Two concrete examples are given
to illustrate the main results.
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1. Introduction

The subject of fractional as a definition has attracted increasing interest re-
searchers since L’Hospital’s letter in 1695. Later on, many definitions are made (the
most popular ones are the Riemann-Liouville fractional derivative and Caputo’s frac-
tional derivative) and increasingly used in a variety of fields witch prove that the sub-
ject of fractional derivative is as important as calculus; see ([11, 17, 15, 6]). Moreover,
Khalil et al. in ([10]) introduced new fractional derivative, namely ”the conformable
fractional derivative”, since then, the basic concepts of conformable fractional calcu-
lus has been greatly development due to the nature of definition witch is satisfy all
the requirements of the standard derivative.

Integral boundary conditions of fractional differential equations is recently ap-
proached by various researchers by applying different fixed point theorems, also, there
are a few papers concerning conformable fractional differential equations with integral
boundary conditions, see ([8, 13, 14, 19]), for example; the authors in ([19]) discussed
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the existence of positive solutions for

Dαx (t) = f (t, x (t)) , t ∈ [0, 1] , α ∈ (1, 2] ,

x (0) = 0, x (1) = λ

∫ 1

0

x (t) dt,

where f ∈ C ([0, 1]× R+,R+). By using the fixed point theorem in a cone.
Another aspect has increasingly attracted the attentions of researchers known as

stability analysis. Different kinds of stability have been studied for fractional differ-
ential equations including exponential, Mittag-Leffler, Lyapunov stability, the Ulam-
Hyers-Rassias stability, etc; for instance, M. Houas et all. in ([9]) studied the existence,
uniqueness and stability of solutions to the following fractional boundary value prob-
lem with two Caputo fractional derivatives involving nonlocal boundary conditions:

Dα
(
Dβ + λ

)
x (t) = f (t, x(t)) +

∫ t

0

(t− s)σ−1

Γ (σ)
f (s, x(s)) ds, t ∈ [0, T ] ,

x (0) = x0 + g (x) , x (T ) = θ

∫ η

0

(η − s)p−1

Γ (p)
x (s) ds, η ∈ (0, T ) ,

where Dα, Dβ denote the Caputo fractional derivatives, with

0 < α, β ≤ 1, 1 < α+ β ≤ 2, f : [0, T ]× R→ R

and g : C ([0, T ] ,R)→ R are given continuous functions, and σ, p > 0, λ, x0, θ are real
constants, g (x) may be regarded as

g (x) =

m∑
j=0

kjx (tj) ,

where kj , j = 1, . . . ,m are given constants and 0 < t0 < . . . < tm ≤ 1. The existence,
uniqueness and Ulam’s stability for conformable fractional differential equations was
studied as well; see ([4, 18, 12]).

On the other hand, Avery et all. in ([3]) investigated the existence of positive
solution of the following conformable fractional boundary value problem with Sturm-
Liouville boundary conditions

−DβDαu (t) = f (t, u (t)) , t ∈ (0, 1) ,

γu (0)− δDαu (0) = 0 = ηu (1) + ζDαu (1) ,

where 0 < α, β ≤ 1, γ, δ, η, ζ ≥ 0 and d = ηδ + γζ + γη/α > 0. By employing a
functional compression expansion fixed point theorem.
In this paper, we concern by study the existence, uniqueness and Ulam stability
of positive solutions to the following fractional boundary value problem with two
conformable fractional derivatives involving integral boundary condition (for short
CFBVP)

DβDαx (t) + λf (t, x (t)) = 0, t ∈ [0, 1] , (1.1)

Dαx (0) = 0, x (1) = γ

∫ 1

0

x (t) dt, (1.2)
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where 0 < α, β ≤ 1, λ > 0, γ ≥ 0, the derivatives are conformable fractional deriva-
tives and the function f : [0, 1]× [0,+∞)→ [0,+∞) is continuous.

This paper is organized as follows. In Section 2, we give some basic concepts
and properties results that will be used to prove our main results. In Section 3,
we obtain the existence and uniqueness of the positive solutions for CFBVP (1.1)-
(1.2), by the use of Gou-Krasnosel’skii fixed point theorem and Banach contraction
mapping principle. Furthermore, we study different types of Ulam stability: Ulam-
Hyers stability, generalized Ulam-Hyers stability, Ulam-Hyers-Rassias stability, and
generalized Ulam-Hyers-Rassias stability for CFBVP considered.

2. Preliminaries

In this section, we recall some useful definitions, lemmas and theorems. It is
always assumed that 0 < α, β ≤ 1 throughout this paper.

Definition 2.1. ([10]). The conformable fractional derivative of a function x : [0,∞)→
R of order α is defined by

Dαx (t) = lim
ε→0

x
(
t+ εt1−α

)
− x (t)

ε
, for all t > 0.

If Dαx (t) exists on (0, b) , b > 0, then Dαx (0) = limt→0Dαx (t).

Definition 2.2. ([10, 1]). The fractional integral of a function x : [0,∞)→ R of order
α and of order αβ are defined respectively by

Iαx (t) =

∫ t

0

sα−1x (s) ds,

IαIβx (t) =
1

β

∫ t

0

sα−1
(
tβ − sβ

)
x (s) ds.

Lemma 2.3. ([10, 1]).

(i). If x is a continuous function on [0,∞), then Dα (Iαx (t)) = x (t).
(ii). If Dαx (t) is continuous function on [0,∞), then Iα (Dαx (t)) = x (t)− x (0).

Theorem 2.4. ([10, 1]).

(i). If x is differentiable on (0,∞), then Dαx (t) = t1−αx′ (t).
(ii). If x is twice differentiable on (0,∞), then

DβDαx (t) = t1−β
[
t1−αx′ (t)

]′
= (1− α) t1−β−αx′ (t) + t2−β−αx′′ (t) .

Remark 2.5. Note that DβDα 6= DαDβ .

Further, we present the following fixed point theorems which will be used in
studying of our main results.



192 Somia Djiab and Brahim Nouiri

Theorem 2.6. (Guo-Krasnoselskii fixed point theorem [7]). Let E be a Banach space,
P ⊂ E be a cone and Ω1,Ω2 are two bounded open subsets of E with Ω1 ⊂ Ω2. Assume
that T : P ∩

(
Ω2\Ω1

)
is a completely continuous operator such that either

‖T x‖ ≥ ‖x‖ , x ∈ P ∩ ∂Ω1 and ‖T x‖ ≤ ‖x‖ , x ∈ P ∩ ∂Ω2 or,

‖T x‖ ≤ ‖x‖ , x ∈ P ∩ ∂Ω1 and ‖T x‖ ≥ ‖x‖ , x ∈ P ∩ ∂Ω2.

Then T has at least one fixed point in P ∩
(
Ω2\Ω1

)
.

Theorem 2.7. (The Banach contraction principle theorem [5]). Let E be a Banach
space, P ⊆ E a nonempty closed subset. If T : P → P is a contraction mapping, then
T has a unique fixed point in P .

To facilitate the use of Theorem 2.6, we provide the following definitions and theorem:

Definition 2.8. ([16]). Let E be a real Banach space. A nonempty closed convex set
P ⊂ E is called a cone if for all x ∈ P and λ ≥ 0, λx ∈ P and if x, −x ∈ P then
x = 0.

Definition 2.9. ([16]). An operator is called completely continuous if it is continuous
and maps bounded sets into precompact sets.

Theorem 2.10. (Ascoli-Arzelà [2]). Let E be a compact space. If T is an equicontin-
uous, bounded subset of C (E), then T is relatively compact.

Next, we present an integral presentation of the solution for the linearized equation
related to the equation (1.1)

DβDαx (t) + λg (t) = 0, (2.1)

with the boundary conditions (1.2).

Lemma 2.11. Let g ∈ C [0, 1], then the CFBVP (2.1)-(1.2) has a unique solution x
given by

x (t) = λ

∫ 1

0

G (t, s) g (s) ds,

where

G (t, s) =
1

β


[

β+1−γ
(β+1)(1−γ)

(
1− sβ

)
−
(
tβ − sβ

)]
sα−1, 0 ≤ s ≤ t ≤ 1,

β+1−γ
(β+1)(1−γ)

(
1− sβ

)
sα−1, 0 ≤ t ≤ s ≤ 1.

(2.2)

Proof. By the continuity of g and Lemma 2.3, it follows from (2.1) that

x (t) = x (0) + IαDαx (0)− λIαIβg (t) , t ∈ [0, 1] .

This, together the boundary conditions, implies

x (t) = γ

∫ 1

0

x (t) dt+ λIαIβg (1)− λIαIβg (t) , t ∈ [0, 1] . (2.3)
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Now, we integrate (2.3) from 0 to 1 in both sides and by using the Fubini theorem,
we get ∫ 1

0

x(t)dt = γ

∫ 1

0

x (t) dt+
λ

β

∫ 1

0

sα−1
(
1− sβ

)
g (s) ds

− λ

β (β + 1)

∫ 1

0

sα−1
(
1− sβ

)
g (s) ds,

which implies ∫ 1

0

x(t)dt =
λ

(β + 1) (1− γ)

∫ 1

0

sα−1
(
1− sβ

)
g (s) ds. (2.4)

Substituting (2.4) into (2.3), which yields

x (t) =
λγ

(β + 1) (1− γ)

∫ 1

0

sα−1
(
1− sβ

)
g (s) ds

+
λ

β

∫ 1

0

sα−1
(
1− sβ

)
g (s) ds− λ

β

∫ t

0

sα−1
(
tβ − sβ

)
g (s) ds.

�

The Green function G in (2.2) has several important properties given as follows:

Lemma 2.12. For any (t, s) in [0, 1]× [0, 1] and γ ∈ [0, 1):

(G1). 0 ≤ G (t, s) and continuous,
(G2). G (1, s) ≤ G (t, s) ≤ G (0, s),

(G3). G (0, s) = G (s, s) = β+1−γ
γβ G (1, s).

Proof. Obviously that G is positive, continuous and ∂G(t,s)
∂t ≤ 0, for 0 ≤ t, s ≤ 1, then

G (t, s) is decreasing with respect to t ∈ [0, 1], and therefore

G (1, s) ≤ G (t, s) ≤ G (0, s) , for 0 ≤ t, s ≤ 1.

A simple calculation shows that

G (0, s) =
β + 1− γ

β (β + 1) (1− γ)

(
1− sβ

)
sα−1 = G (s, s) ,

G (1, s) =
γ

(β + 1) (1− γ)

(
1− sβ

)
sα−1 =

γβ

β + 1− γ
G (0, s) .

�

3. Main results

For investigating the existence, uniqueness and stability of positive solutions for
the CFBVP (1.1)-(1.2), we define the Banach space E = C [0, 1] with the norm ‖x‖ =
maxt∈[0,1] |x (t)| and the bounded subset Ωr of E, with Ωr = {x ∈ E, ‖x‖ ≤ r, r > 0}.
As well, define the cone P in E by

P =

{
x ∈ E, x (t) ≥ γβ

β + 1− γ
‖x‖ , t ∈ [0, 1] , γ ∈ [0, 1)

}
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Furthermore, define

Λ1 =

∫ 1

0

G (0, s) ds, Λ2 =
γβ

β + 1− γ

∫ 1

0

G (0, s) ds.

Also, define the operators T : E → E as

T x (t) = λ

∫ 1

0

G (t, s) f (s, x (s)) ds,

under the properties of G in Lemma 2.12 and our assumptions on f , the operator is
well-defined, continuous, positive and has the following properties.

Lemma 3.1. (i). T (P ) ⊂ P .
(ii). The operator T : P → P is completely continuous.

Proof. (i) From Lemma 2.12 and the definition of the cone P , we have

T x (t) = λ

∫ 1

0

G (t, s) f (s, x (s)) ds

≥ λγβ

β + 1− γ

∫ 1

0

G (0, s) f (s, x (s)) ds

≥ λγβ

β + 1− γ
max
t∈[0,1]

∫ 1

0

G (t, s) f (s, x (s))ds

≥ γβ

β + 1− γ
‖T x‖ , for all t ∈ [0, 1] .

Hence T x ∈ P .

(ii) Let x ∈ Ωr, then there exists a positive constant L0 such that

sup
‖x‖≤r

max
t∈[0,1]

f (t, x) ≤ L0,

then, it holds that

‖T x (t)‖ = max
t∈[0,1]

λ

∫ 1

0

G (t, s) f (s, x (s)) ds ≤ λL0

∫ 1

0

G (0, s) ds,

which implies that T (Ωr) is bounded. Hence, for all t1, t2 ∈ [0, 1] , t1 < t2 and by
Lemma 2.12, we have

‖T x (t2)− T x (t1)‖ ≤ max
t∈[0,1]

∫ t2

t1

G (t, s) f (s, x (s)) ds

≤ L0

∫ t2

t1

G (0, s) ds

=
L0λ (β + 1− γ)

β (β + 1) (1− γ)

∫ t2

t1

(
1− sβ

)
sα−1ds

≤ L0λ (β + 1− γ)

αβ (β + 1) (1− γ)
(tα2 − tα1 ) ,
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‖T x (t2)− T x (t1)‖ → 0 as t1 → t2 which implies that the set T (Ωr) is equicontin-
uous. By the Arzelà-Ascoli theorem T : Ωr → Ωr is compact. We thus complete the
proof. �

Lemma 3.2. The CFBVP (1.1)-(1.2) has a positive solution x ∈ E if and only if it is
a fixed point of T in P .

Proof. Let x be a fixed point of T in P , then

x (t) = λ

∫ 1

0

G (t, s) f (s, x (s)) ds, t ∈ [0, 1] ,

= γ

∫ 1

0

x (t) dt+ λIαIβf (t, x (t)) ,

(3.1)

and thus, by the continuity of f and Lemma 2.3, we obtain

DβDαx (t) = λf (t, x (t)) .

Furthermore, the equality (3.1) directly implies

x (1) = γ

∫ 1

0

x (t) dt and Dαx (0) = 0.

Therefore, x is a positive solution of the CFBVP (1.1)-(1.2).
Moreover, the Lemmas 2.11 and 3.1 imply that x is a fixed point of T in P . �

3.1. The existence of positive solutions of the CFBVP

Before presenting our results, we present some important notations as follows:

f0 = lim
x→0

max
t∈[0,1]

f (t, x)

x
, f∞ = lim

x→∞
max
t∈[0,1]

f (t, x)

x
,

f0 = lim
x→0

min
t∈[0,1]

f (t, x)

x
, f∞ = lim

x→∞
min
t∈[0,1]

f (t, x)

x
.

Theorem 3.3. Assume there exists r2 > r1 > 0, such that

f (t, x) ≤ r2

λΛ1
, x ∈ [0, r2] , t ∈ [0, 1] ,

f (t, x) ≥ r1

λΛ2
, x ∈ [0, r1] , t ∈ [0, 1] ,

then the CFBVP (1.1)-(1.2) has at least one positive solution.

Proof. By Lemma 2.12, for x ∈ P ∩ ∂Ωr1 , we have

‖T x‖ ≥ T x (t) ≥ γβ

β + 1− γ

∫ 1

0

G (0, s)
r1

Λ2
ds = r1.

For x ∈ P ∩ ∂Ωr2 , we get

‖T x‖ =

∫ 1

0

G (0, s) f (s, x (s)) ds ≤
∫ 1

0

G (0, s)
r2

Λ1
ds = r2.

Applying Theorem 2.6 yields that T has at least one fixed point x ∈ P ∩
(
Ωr2\Ωr1

)
with r1 ≤ ‖x‖ ≤ r2. It follows from Lemma 3.2 that the CFBVP (1.1)-(1.2) has at
least one positive solution x. The proof is complete. �
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Theorem 3.4. Let f∞
γβ

β+1−γ ≥ 1 and f0 ≤ γβ
β+1−γ are satisfied, then for each λ ∈(

1
Λ1
, 1

Λ2

)
the CFBVP (1.1)-(1.2) has at least one positive solution.

Proof. From the definition of f0, there exists r1 > 0, such that

f (t, x) ≤ f0x, for all t ∈ [0, 1] , 0 < x ≤ r1.

For x ∈ P ∩ ∂Ωr1 , we have

‖T x‖ = λ

∫ 1

0

G (0, s) f (s, x (s)) ds

≤ λ
∫ 1

0

G (0, s) f0x (s) ds

≤ λf0 ‖x‖Λ1

≤ ‖x‖ .

Consequently

‖T x‖ ≤ ‖x‖ , x ∈ P ∩ ∂Ωr1 . (3.2)

By the definition of f∞, there exists r3 > 0, such that

f (t, x) ≥ f∞x, for all t ∈ [0, 1] , x ≥ r3.

If x ∈ P ∩ ∂Ωr2 with r2 = max {2r1, r3}, then by the definition of cone P , we have

‖T x‖ = λ

∫ 1

0

G (0, s) f (s, x (s)) ds

≥ λf∞

∫ 1

0

G (0, s)x (s) ds

≥ λ
γβ

β + 1− γ
f∞ ‖x‖

∫ 1

0

G (0, s) ds

≥ ‖x‖ .

Hence

‖T x‖ ≥ ‖x‖ , x ∈ P ∩ ∂Ωr2 . (3.3)

From (3.2)-(3.3) and Theorem 2.6 we assurance that the operator T has at least one
fixed point x ∈ P ∩

(
Ωr2\Ωr1

)
with r1 ≤ ‖x‖ ≤ r2. It follows from Lemma 3.2 that

the CFBVP (1.1)-(1.2) has at least one positive solution x. �

Theorem 3.5. If γβ
β+1−γ f0 ≥ 1 and f∞ ≤ γβ

2(β+1−γ) are satisfied, then for each λ ∈(
1

Λ1
, 1

Λ2

)
the CFBVP (1.1)-(1.2) has at least one positive solution.

Proof. From the definition of f0, there exists r1 > 0, such that

f (t, x) ≥ f0x, for all t ∈ [0, 1] , 0 < x ≤ r1.
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Further, for x ∈ P with ‖x‖ = r1, then as previously

‖T x‖ ≥ λ

∫ 1

0

G (0, s) f0x (s) ds

≥ λ
γβ

β + 1− γ
f0 ‖x‖

∫ 1

0

G (0, s) ds

≥ ‖x‖ .
Hence

‖T x‖ ≥ ‖x‖ , x ∈ P ∩ ∂Ωr1 .

By the definition of f∞, there exists L > 0, such that

f (t, x) ≤ f∞x, for all t ∈ [0, 1] , x ≥ r4,

it follows that there exists δ > 0, such that

δ = max
t∈[0,1]

f (t, r4) , for all t ∈ [0, 1] , 0 < x ≤ r4.

Then

f (t, x) ≤ f∞x+ δ, for all t ∈ [0, 1] , x ≥ 0.

If x ∈ P ∩ ∂Ωr2 , with r2 = max
{

2r1,
2γβδ
β+1−γ

}
, we get

‖T x‖ = λ

∫ 1

0

G (0, s) f (s, x (s)) ds

≤ λ

∫ 1

0

G (0, s) (f∞x (s) + δ) ds

≤ λ (f∞ ‖x‖+ δ) Λ1

≤ ‖x‖ .
Thus

‖T x‖ ≤ ‖x‖ , x ∈ P ∩ ∂Ωr2 .

Applying Theorem 2.6 yields that T has at least one fixed point x ∈ P ∩
(
Ωr2\Ωr1

)
and Lemma 3.2 ensure that the CFBVP (1.1)-(1.2) has at least one positive solution
x. �

Example 3.6. Consider the CFBVP (1.1)-(1.2) with β = 1, α = 1
2 , γ = 3

4 and

f (t, x) =

{
(t+ 1)x2, (t, x) ∈ [0, 1]× (0, 2] ,

2 (t+ 1)x, (t, x) ∈ [0, 1]× (2,∞) ,

F (t, x) = (2t+ 1)
(
sinx+ e−x

)
,

the functions f, F are continuous for any t ∈ [0, 1] and any x > 0, we have

f0 = lim
x→0

max
t∈[0,1]

f (t, x)

x
= 0, f∞ = lim

x→∞
min
t∈[0,1]

f (t, x)

x
= 2,

F0 = lim
x→0

min
t∈[0,1]

f (t, x)

x
=∞, F∞ = lim

x→∞
max
t∈[0,1]

F (t, x)

x
= 0.
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By simple calculations we obtain γβ
β+1−γ = 3

5 . On the other hand, we get

Λ1 =

∫ 1

0

G (0, s) ds =
β + 1− γ

β (β + 1) (1− γ)

∫ 1

0

(
1− sβ

)
sαds =

2

3
,

Λ2 =
γβ

β + 1− γ

∫ 1

0

G (0, s) ds =
2

5
.

For λ ∈
(

3
2 ,

5
2

)
, for specified function f the Theorem 3.4 (or for function F the

Theorem 3.5) gives that the CFBVP (1.1)-(1.2) has at least one positive solution x
defined on [0, 1].

3.2. The uniqueness and Ulam-Hyers stability of positive solution of the CFBVP

In this subsection, we present four types of Ulam stability definition, namely
Ulam-Hyers stability, generalized Ulam-Hyers stability, Ulam-Hyers-Rassias, and gen-
eralized Ulam-Hyers-Rassias:

Definition 3.7. The CFBVP (1.1)-(1.2) is Ulam-Hyers stable if there exists cf ∈ R+

such that for each ε > 0 and for every solution y ∈ C2 ([0, 1] , [0,∞)) of the inequality

|DβDαy (t) + λf (t, y (t))| ≤ ε, t ∈ [0, 1] , (3.4)

there exists a unique solution x ∈ C2 ([0, 1] , [0,∞)) of the CFBVP (1.1)-(1.2) with

‖y − x‖ ≤ cfε, t ∈ [0, 1] .

Definition 3.8. The CFBVP (1.1)-(1.2) is generalized Ulam-Hyers stable if there
exists θf ∈ C (R+,R+) , θf (0) = 0 such that for each ε > 0 and for every so-
lution y ∈ C2 ([0, 1] , [0,∞)) of the inequality (3.4), there exists a unique solution
x ∈ C2 ([0, 1] , [0,∞)) of the CFBVP (1.1)-(1.2) with

‖y − x‖ ≤ θf (ε) , t ∈ [0, 1] .

Definition 3.9. The CFBVP (1.1)-(1.2) is Ulam-Hyers-Rassias stable with respect to
ϕ ∈ C ([0, 1] ,R+) if there exists cf ∈ R+ such that for each ε > 0 and for every
solution y ∈ C2 ([0, 1] , [0,∞)) of the inequality

|DβDαy (t) + λf (t, y (t))| ≤ εϕ (t) , t ∈ [0, 1] , (3.5)

there exists a unique solution x ∈ C2 ([0, 1] , [0,∞)) of the equations (1.1)-(1.2) with

‖y − x‖ ≤ cfεϕ (t) , t ∈ [0, 1] .

Definition 3.10. The CFBVP (1.1)-(1.2) is generalized Ulam-Hyers-Rassias stable with
respect to ϕ ∈ C ([0, 1] ,R+), if there exists cf,ϕ ∈ R+, such that for every solution
y ∈ C2 ([0, 1] , [0,∞)) of the inequality

|DβDαy (t) + λf (t, y (t))| ≤ ϕ (t) , t ∈ [0, 1] , (3.6)

there exists a unique solution x ∈ C2 ([0, 1] , [0,∞)) of the equations (1.1)-(1.2) with

‖y − x‖ ≤ cf,ϕϕ (t) , t ∈ [0, 1] .

Remark 3.11. Clearly,

(i). Definition 3.7 ⇒ Definition 3.8.
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(ii). Definition 3.9 ⇒ Definition 3.10.

Theorem 3.12. Assume there exists L > 0 such that

|f (t, x)− f (t, y)| ≤ L |x− y| , for almost every t ∈ [0, 1] , and all x, y ∈ E.

Then, if

∆ = λLΛ1 < 1, (3.7)

the CFBVP (1.1)-(1.2) has exactly one positive solution defined on [0, 1].

Proof. Using Lemma 2.3, we have

‖T x (t)− T y (t)‖ ≤ λ

∫ 1

0

G (0, s) |(f (s, x (s))− f (s, y (s)))| ds

≤ λL ‖x− y‖
∫ 1

0

G (0, s) ds

= ∆ ‖x− y‖ .

Then, Theorem 2.7 and Lemma 3.2 ensure that there is a unique and positive x in E
with x = T x. �

Theorem 3.13. Let (3.7) holds, then the CFBVP (1.1)-(1.2) is Ulam-Hyers stable and
consequently generalized Ulam-Hyers stable.

Proof. Let y ∈ C2 ([0, 1] , [0,∞)) be any solution of the inequality (3.4), Thank to
Lemma 2.11, we obtain

y (t) = λ

∫ 1

0

G (t, s) f (s, y (s)) ds,

which yields∣∣∣∣y (t)− λ
∫ 1

0

G (t, s) f (s, y (s)) ds

∣∣∣∣ ≤ ε

β

∫ t

0

(
t− sβ

)
sα−1ds

≤ ε

β

∫ 1

0

(
1− sβ

)
sα−1ds

≤ εΛ1.

Let x ∈ C2 ([0, 1] , [0,∞)) be the unique solution of the CFBVP (1.1)-(1.2), we have
for any t ∈ [0, 1]

|y (t)− x (t)| =

∣∣∣∣y (t)− λ
∫ 1

0

G (t, s) f (s, x (s)) ds

∣∣∣∣
=

∣∣∣∣y (t)− λ
∫ 1

0

G (t, s) f (s, y (s)) ds+ λ

∫ 1

0

G (t, s) f (s, y (s)) ds

−λ
∫ 1

0

G (t, s) f (s, x (s)) ds

∣∣∣∣
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≤
∣∣∣∣y (t)− λ

∫ 1

0

G (t, s) f (t, y (s)) ds

∣∣∣∣
+λ

∣∣∣∣∫ 1

0

G (t, s) (f (s, y (s))− f (s, x (s))) ds

∣∣∣∣
≤ εΛ1 + λL

∫ 1

0

G (0, s) |(y (s)− x (s))| ds,

which implies

‖y − x‖ ≤ εΛ1 + λLΛ1 ‖y − x‖ ,
on simplification it gives

‖y − x‖ ≤ εcf , where cf =
Λ1

1− λLΛ1
,

which completes the proof. By putting θf (ε) = εcf , θf (0) = 0, then the CFBVP
(1.1)-(1.2) is generalized Ulam-Hyers stable. �

Theorem 3.14. Let (3.7) holds. Assume that, there exists an increasing function ϕ ∈
C ([0, 1] ,R+) ∈ E and there exists σϕ ∈ R+ such that for any t ∈ [0, 1]

IαIβϕ (t) ≤ σϕϕ (t) ,

is satisfied, then the solutions of the CFBVP (1.1)-(1.2) are Ulam-Hyers-Rassias sta-
ble. Further the solutions of the considered CFBVP (1.1)-(1.2) are generalized Ulam-
Hyers-Rassias stable.

Proof. Similar to the proof of Theorem 3.13, let y ∈ C2 ([0, 1] , [0,∞)) be any solution
of the inequality (3.5), Thank to Lemma 2.11, we obtain∣∣∣∣y (t)− λ

∫ 1

0

G (t, s) f (s, y (s)) ds

∣∣∣∣ ≤ εIαIβϕ (t)

≤ εσϕϕ (t) .

Let x ∈ C2 ([0, 1] , [0,∞)) be the unique solution of the CFBVP (1.1)-(1.2), we have
for any t ∈ [0, 1]

|y (t)− x (t)| ≤
∣∣∣∣y (t)− λ

∫ 1

0

G (t, s) f (t, y (s)) ds

∣∣∣∣
+λ

∣∣∣∣∫ 1

0

G (t, s) (f (s, y (s))− f (s, x (s))) ds

∣∣∣∣
≤ εσϕϕ (t) + λL

∫ 1

0

G (0, s) |(y (s)− x (s))| ds,

which implies that

‖y − x‖ ≤ cfεσϕϕ (t) , where cf =
1

1− λLΛ1
,

which completes the proof of the theorem. Moreover, if we set ϕ (ε) = εϕ (t), then
ϕ (0) = 0. Analogously one can easily prove that the solutions of CFBVP (1.1)-(1.2)
are generalized Ulam-Hyers-Rassias stable. �
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Example 3.15. Consider the CFBVP (1.1)-(1.2) with β = 1
2 , α = 1, γ = 3

4 and

f (t, x) =
1

t+ 2
sinx,

the function f is continuous for any t ∈ [0, 1] and any x > 0, by simple calculations
we obtain

|f (t, x)− f (t, y)| ≤ 1

2
|x− y| and Λ1 =

2

5
.

For λ ∈ (0, 5), Theorem 3.12 give that the CFBVP (1.1)-(1.2) has exactly one positive
solution x defined on [0, 1]. Now, let∣∣∣∣D 1

2
y′ (t) +

3

5 (t+ 2)
sinx

∣∣∣∣ ≤ ε, t ∈ [0, 1] ,

then, by Theorem 3.13 the CFBVP (1.1)-(1.2) is Ulma-Hyers stable with cf = 5
11 . On

the other hand, Consider the inequality∣∣∣∣D 1
2
y′ (t) +

3

5 (t+ 2)
sinx

∣∣∣∣ ≤ εt, t ∈ [0, 1] ,

by Theorem 3.14 the CFBVP (1.1)-(1.2) is Ulam-Hyers-Rassias stable with

cf =
1

1− λLΛ1
=

25

22
, σt =

1

(α+ 1)β
= 1.

4. Conclusion

By using the Banach contraction principle, Guo-Krasnoselskii’s fixed point theo-
rem and Hyers-Ulam type stability, we discuss problem (1.1)-(1.2), a two conformable
fractional differential equation with integral boundary conditions. We present our re-
sults of the existence, uniqueness of positive solution and Hyers-Ulam type stability.
Two concrete examples are given to better demonstrate our main results.
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