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Notations
x vector x of spatial coordinates in an image

x, y, z abscissa, ordinate, side of a point of an image

|x| absolute value of the real x

|v|, ‖v‖ vector norm of v

∇ gradient operator

div divergence operator

∆ Laplacian operator

∗ convolution operator

T transpose operator

× matrix product

. scalar product

N The set of natural numbers.

R,Rd the set of real numbers and its d–Cartesian product, endowed with the Euclidean norm ‖.‖2

Ux, Uy derived of U respectively according to the variables x and y

PDEs partial differential equations

AOS additive operator splitting

ADI alternating direction implicit

MOS multiplicative operator splitting

AMOS additive and multiplicative operator splitting

PR the peaceman-rachford scheme

D the douglas scheme
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Introduction

P
artial differential equations (PDEs) provide a natural framework for mod-
eling various processes in real-world applications, including physics, life
sciences, and economics. It is therefore not surprising that they have

made significant contributions to the mathematical foundations of signal and
image analysis. For example, PDEs appear as Euler-Lagrange equations when
solving continuous optimization problems arising from variation models [2] [5]
or regularization of ill-posed problems [3]. They have also been recognized as
the natural framework for scale-spaces [1] and have been successfully employed
in image enhancement [20], inpainting [16], and image compression [9]. PDE-
based models have benefited from decades of research on their theoretical foun-
dations and efficient numerical algorithms. Due to their continuous nature, it is
also straightforward to incorporate useful properties such as rotation invariance.
Recently, some researchers proposed osmosis models for shadow removal [18],
[6]. Osmosis is non symmetric diffusion-like filters which lead to non-constant
steady states [18], [17], [12]. Osmosis models are invariant to multiplicative per-
turbations and therefore are adapted to shadow removal. On the other hand,
osmosis can be applied as a shadow removal filter in a number of imaging chal-
lenges: image reconstruction from compressed data or seamless image fusion,
image fusion, art diagnostic and virtual restoration.
The osmosis filtering method is based on the mathematical theory of partial dif-
ferential equations (PDEs). The basic idea is to modify the image using an iter-
ative process that is guided by a diffusion equation. This equation models the
behavior of a substance that diffuses through a medium, such as water diffusing
through a membrane.
To summarize, in light of the aforementioned points, it is evident that osmosis
filtering offers significant advantages over other shadow removal techniques. Its
ability to eliminate shadows without introducing artifacts or blurring the image,
while preserving the edges and details, sets it apart. Additionally, its capacity to
handle complex shadows commonly encountered in real-world scenarios adds to
its appeal.
Consequently, osmosis filtering emerges as a powerful and promising approach
for shadow removal in digital images. By considering the local structure and tex-
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CONTENTS 7

ture of the image, it achieves impressive results while maintaining the integrity
of the image. Its potential extends across various fields, including computer vi-
sion, medical imaging, and photography, where it can significantly improve im-
age quality and enhance visual analysis and interpretation.

In this work, we study some linear and non-linear filters and their effect on im-
ages processing. This work is divided into four chapters. The first chapter deals
with the image from a mathematical point of view (definitions and applications of
the image in reality), we ended this chapter by some PDEs used in image process-
ing field. The second chapter devoted with isotropic and anisotropic diffusion,
where we have studied it in terms of finite difference approximations, stability of
types (Explicit-Implicit schemes) to its applications in image processing. In the
next chapter, we dealt with linear osmosis, where we studied discretesation by
the ADI method. In the last chapter we discuss the application of anisotropic os-
mosis filtering for shadow removal. We use the AOS method to solve numerically
this model.

GUETTAF.Amira Mohamed Boudiaf University of Msila



CHAPTER 1

PDES IN IMAGE PROCESSING

Partial differential equations (PDEs) are one of the most important mathe-
matical tools in image processing and computer vision. As they are appear in
diffusion methods as well as in the Euler-Lagrange equations of variational mod-
els, they have been considered appear in many image processing tasks. Conse-
quently, this chapter cannot give a complete overview about the field of PDEs
based image processing. Instead we pick out mainly those methods that will be
utilized in the other chapters of this thesis.

1.1 Images and pictures in our world

Human beings are predominantly visual creatures: we rely heavily on our vision
to make sense of the world around us. We not only look at things to identify and
classify them, but we can scan for differences, and obtain an overall rough “feel-
ing” for a scene with a quick glance. Humans have evolved very precise visual
skills: we can identify a face in an instant; we can differentiate colours; we can
process a large amount of visual information very quickly. However, the world
is in constant motion: stare at something for long enough and it will change in
some way. Even a large solid structure, like a building or a mountain, will change
its appearance depending on the time of day (day or night); amount of sunlight
(clear or cloudy), or various shadows falling upon it. We are concerned with sin-
gle images: snapshots, if you like, of a visual scene. Although image processing
can deal with changing scenes, we shall not discuss it in any detail in this text.
For our purposes, an image is a single picture which represents something. It
may be a picture of a person, of people or animals, or of an outdoor scene, or a
microphotograph of an electronic component, or the result of medical imaging.

8



1.2. WHAT IS IMAGE PROCESSING? 9

Even if the picture is not immediately recognizable, it will not be just a random
blur. It captures a moment, an event that it freezes and offers us to analysis, to
ameliorate their quality, enhance some characteristics to efficiently combine dif-
ferent pieces of information. Advertising, Photography, video games, etc..., our
daily lives of images.

1.2 What is image processing?

Image processing involves changing the nature of an image in order to either
• improve its pictorial information for human interpretation.
• render it more suitable for autonomous machine perception.
We shall be concerned with digital image processing, which involves using a
computer to change the nature of a digital image (see below). It is necessary
to realize that these two aspects represent two separate but equally important
aspects of image processing. A procedure which satisfies condition (1)—a proce-
dure which makes an image “look better”—may be the very worst procedure for
satisfying condition (2). Humans like their images to be sharp, clear and detailed;
machines prefer their images to be simple and uncluttered. Examples of (1) may
include:

1.2.1 Imaging Problems

A digitally sampled image u◦ ,which is assumed to belong to mathematical space
Y ,is obtained as a modified version of the desired image u,which belongs to
another space X .where X and Y ara two Banach spaces .u◦ image corrupted
by noise,is very often modelled by a bounded linear transformation operator
S;X → Y ,reading as: see [12]

u◦ (x) = Su (x) (1.1)

The clean image is recoved from the observed corrupted u◦:this problem is called
inverse problem.
Different operator S lead to different imaging problems.

• Denoising:Removing noise from a noisy image,there are types of noise:
∗ Gaussian noise: it is an additive random noise of the type

u◦ (x) = u (x) + η (x) (1.2)

Where η(x) is modelled by a Gaussian white noise distribution.
∗ Poission noise:it is an intensity-dependent random noise.
∗ speckle noise:it is multiplicative random noise of the type

u◦ (x) = u (x) + n (x)u (x) (1.3)

GUETTAF.Amira Mohamed Boudiaf University of Msila



1.3. SOME APPLICATIONS 10

Where n(x) is unformly distributed.
∗ salt and peper noise: it is an impulsive random noise of the type

u◦ (x) = (1− s (x))u (x) + s (x) c (x) (1.4)

where c(x) and s(x) are independent random fielrs of independent 0-1 binary
random variable.

•Deblurring:Reconstruction of a visually better image from a blurred image.
x = (x1, . . . , xd)
u◦ = Kς ∗ u

Kς(x) =
1

(
√

2πς)d
exp

(
−|x

2
1 + . . .+ x2

d|
2ς2

)
(1.5)

• Inpainting: In brief, the domain of the image u◦ can be divided into two
parts: the occluded part, denoted as O, or the inpainting domain, which con-
sists of values from another overlapped image f that need to be replaced, and
the intact part, denoted as OC , where the image should remain unchanged. The
fundamental condition is that the entire image domain Ω is the union of O and
OC . As a result, the image u◦ can be represented by the following transformation:

u◦ (x) = χΩØu (x) + χOf(x) (1.6)

where χO is a binary mask indicator function, indicating if a pixel belongs or not
to O:

χO =

{
1 if x ∈ O
0 otherwise (1.7)

• Zoming : we take part of the image in ordre to enlarge it,i.e reconstructing
data in pixels is enlarged by a certain amount in ordre to clarify the details of the
image.

• Edge dectection:Detect the edges of the image.

• Segmentation:dividing the image.

•Shadow removal,de-hasing and other challenges:In the shadow removal
problem a shadow is projected over an object and the take is to recover the illu-
mimation.In the de-hazing problem the image is affected by a certain amount of
the image.

u◦ (x) = c (x)u (x) forc (x) ∈ [0, 1] (1.8)

1.3 Some applications

Image processing has an enormous range of applications; almost every area of
science and technology can make use of image processing methods. Here is a

GUETTAF.Amira Mohamed Boudiaf University of Msila



1.3. SOME APPLICATIONS 11

short list just to give some indication of the range of image processing applica-
tions. see Figure 1.1
1. Medicine
• Inspection and interpretation of images obtained from X-rays, MRI or CAT
scans.
• analysis of cell images, of chromosome karyotypes.
2. Agriculture
• Satellite/aerial views of land, for example to determine how much land is being
used for different purposes, or to investigate the suitability of different regions for
different crops.
• inspection of fruit and vegetables—distinguishing good and fresh produce from
old.
3. Industry
• Automatic inspection of items on a production line, inspection of paper sam-
ples.
4. Law enforcement
• Fingerprint analysis, sharpening or deblurring of speed-camera images.

(a) X-Ray, CT, and MRI Scans (b) Surveillance Camera Scans

(c) A fingerprint
Image

(d) Pregnancy Follow-Up
Picture

(e) Satellite farmland image

Figure 1.1: Figures showing some applications of image processing

GUETTAF.Amira Mohamed Boudiaf University of Msila



1.4. PDES IN IMAGE PROCESSING 12

1.4 PDEs in Image Processing

1.4.1 Mathematical description of an image

Digital images can be rephrased as a vectorial graph function, denoted as u◦,
which operates on a discrete two-dimensional rectangular imaging domain Ω
with dimensions M × N . In this context, M represents the height of the image,
and N represents the width. Each element within this collection of matrices is
referred to as a pixel, and it corresponds to an integer interval within the range
[0, 2r − 1]C .

u◦ : Ω→ [0, 2r − 1]C

where the colour information is discretized over a number of C parallel retangu-
lar matrice and r is length. We can distinguish between grey-scal image when
C = 1,denoted by u◦and vectorial colour in bold when C > 1.
the discrete grid

(x, y) 7−→ (M + 1− y, x) = (i, j) forx, j = 1, . . . , N and y, i = 1, . . . ,M

1.4.2 Linear diffusion filtering

The first step to use PDEs for smoothing images was done in the beginning of
eighties, when the idea of scale-space filtering has introduced by Witkin [24] and
further developed by Koenderink [11].
The essential idea of this approach is quite simple: embed the original image in
a family of derived images u(x, y, t) obtained by convolving the original image
u0(x, y) with a Gaussian kernel G√2t(x, y) of variance t:

u(x, y, t) =
(
G√2t ∗ u0

)
(x, y) ,

where

Gσ(x, y) =
1

2πδ2
exp

(
−(x2 + y2)

2σ2

)
.

This family of derived images may equivalently be viewed as the solution of
the following heat equation or the linear diffusion equation{

∂u
∂t

= 4u
u(x, y, 0) = u0(x, y)

,

for a function u(x, y, t) is the smoothed image at t, and 4 = ∂2

∂x2
+ ∂2

∂y2
denote

Laplacian operator, with the initial condition u(x, y, 0) = u0(x, y), the original im-
age.
Koenderink [11] motivates the diffusion equation formulation by stating two cri-
teria:

GUETTAF.Amira Mohamed Boudiaf University of Msila



1.4. PDES IN IMAGE PROCESSING 13

• Causality: Any feature at a coarse level of resolution is required to possess
a (not necessarily unique) “cause” at a finer level of resolution although the
reverse need not be true. In other words, no spurious detail should be gen-
erated when the resolution is diminished.

• Homogeneity and Isotropy: The blurring is required to be space invariant.

The linear diffusion filter has its limitations: whether we smooth uniformly
by a rotational symmetric Gaussian kernel, or diffuse the data equally in all di-
rections, the process not only removes undesirable local extrema (noise) but also
deforms important features of the image, blurs and dislocates edges. To over-
come these drawbacks, we have to move to nonlinear filters; nonlinear diffusion
offers an excellent alternative.

1.4.3 Nonlinear diffusion filtering

Overcoming the undesirable effects of linear smoothing filtering, such as
blurring or dislocating the semantically meaningful edges of the image, nonlin-
ear diffusion equations can be used because the nonlinear diffusion technique
not only preserves the edge sharpness, it may also enhance it. This technique
was firstly proposed by Perona and Malik [13] by stating three criteria:

• Causality: no spurious detail should be generated passing from finer to
coarser scales.

• Immediate localization: boundaries should be sharp and coincide with the
semantically meaningful boundaries at that resolution.

• Piecewise smoothing: intra-region smoothing should be preferred to inter-
region smoothing.

To satisfy the second and third criteria, Perona and Malik proposed to change
the diffusion coefficient D, (D is constant in linear diffusion); by introducing a
space-time-variant diffusion coefficient. Therefore the Perona-Malik model can
be written as {

∂u
∂t

= div(g (|∇u|)∇u)
u(x, y, 0) = u0(x, y)

,

where div denotes the divergence operator, u(x, y, t) is the smoothed image at
time step t, |∇u| is the gradient magnitude of u, and g(x) is the diffusivity func-
tion. g(x) should be a nonnegative, monotonically decreasing function with g(0) =
1, so that the diffusion is maximal within uniform regions, and approaching zero
at infinity, so that the diffusion is stopped across edges.

Nonlinear diffusion filtering can successfully smooth noise while respecting
the region boundaries and small structures within the image, as long as some of

GUETTAF.Amira Mohamed Boudiaf University of Msila



1.4. PDES IN IMAGE PROCESSING 14

its crucial parameters are determined or estimated correctly. According to Perona
and Malik the choice of functions g leads to the desirable result of edges enhance-
ment.

1.4.4 Osmosis filtering

The isotropic drift-diffusion PDE, which is called osmosis for its analogies with
the physical process, compared to standard plain diffusion models, the osmosis
model considers an additional drift term, making the process asymmetric [18, 17,
12].
For a regular domain Ω ⊂ R2, a given vector field d : Ω → R2 and a given image
f ∈ L∞ (Ω,R), the isotropic osmosis model reads [18]

∂u = ∆u− div(du) on Ω× (0, T ],
u(0, x) = f(x) on Ω,
〈∇u− du, n〉 = 0 on ∂Ω× (0, T ],

(1.9)

where 〈., .〉 denotes the Euclidean scalar and n the outer normal vector on ∂Ω.

1.4.5 Finite-Difference Approximation to Derivatives

Let a function U derivatives and single-valued, finite and continuous functions
of x, then by Taylor’s theorem.

U(x+ h) = U(x) + hU ′(x) +
1

2
h2U ′′(x) +

1

6
h3U (3)(x) +

1

4!
h4U (4)(x) + . . . (1.10)

and

U(x− h) = U(x)− hU ′(x) +
1

2
h2u′′(x)− 1

6
h3U (3)(x) +

1

4!
h4U (4)(x) + . . . (1.11)

Addition of these expansions gives

U(x+ h) + U(x− h) = 2U(x) + h2U ′′(x) +O
(
h4
)

where O (h4) denotes terms containing fourth and higher powers of h. Assuming
these are negligible in comparison with lower powers of h it follows that,

U ′′(x) =

(
d2U

dx2

)
x=x

≈ 1

h2
{U(x+ h)− 2U(x) + U(x− h)} (1.12)

with a leading error on the right-hand side of order h2.
Subtraction of equation (1.11) from equation (1.10) and neglect of terms of order
h3 leads to

U ′(x) =

(
dU

dx

)
x=x

≈ 1

2h
{U(x+ h)− U(x− h)} (1.13)

GUETTAF.Amira Mohamed Boudiaf University of Msila



1.4. PDES IN IMAGE PROCESSING 15

with an error of order h2. equation (1.13) clearly approximates the slope of the
tangent at the point P by the slope of the chord AB, and is called a central-
difference approximation (Figure 1.2). We can also approximate the slope of the
tangent at P by either the slope of the chord PB, giving the forward-difference
formula,

U ′(x) ≈ 1

h
{U(x+ h)− U(x)},

or the slope of the chord AP giving the backward-difference formula,

U ′(x) ≈ 1

h
{U(x)− U(x− h)},

with an error of order h.

Figure 1.2: Approximations of the slope of the tangent at point P by the slope of
the chord AB, and by the slope of the chord PB.

Notation for functions of several variables

Assume U is a function of the independent variables x and t. Subdivide the x− t
plane into sets of equal rectangles of sides ∆x = h,∆t = k, by equally spaced
grid lines parallel to Oy, defined by xi = ih, i = 0,±1,±2, . . ., and equally spaced
grid lines parallel to Ox, defined by tj = jk, j = 0, 1, 2, . . ., as shown in figure 1.3.
Denote the value of U at the representative mesh point P (ih, jk) by

Ui,j = U(ih, jk).

Then by equation(3.4),(
∂2U

∂x2

)
i,j

≈ U{(i+ 1)h, jk} − 2U{ih, jk}+ U{(i− 1)h, jk}
h2

.

GUETTAF.Amira Mohamed Boudiaf University of Msila



1.4. PDES IN IMAGE PROCESSING 16

Figure 1.3: Approximated value of U at the representative mesh point P .

i.e. (
∂2U

∂x2

)
i,j

≈ Ui+1,j − 2Ui,j + Ui−1,j

h2
,

with a leading error of order h2.

With this notation the forward (resp. backward) difference approximation for
∂U/∂x at P is (

∂U

∂x

)+

i,j

≈ Ui+1,j − Ui,j
h

,

(
∂U

∂x

)−
i,j

≈ Ui,j − Ui−1,j

h
,

with a leading error of O(h).
The forward-difference approximation for ∂U/∂t at P is

∂U

∂t
≈ Ui,j+1 − Ui,j

k
,

with a leading error of O(k).

GUETTAF.Amira Mohamed Boudiaf University of Msila



CHAPTER 2

DIFFUSION FOR IMAGE PROCESSING

The diffusion partial differential equations are one of the most important math-
ematical tools in image processing. In this chapter, we will discuss isotropic and
anisotropic diffusion models by addressing the numerical solutions of this mod-
els. Numerical simulations will be presented in order to ilustrate thier impact in
the field of image processing.

2.1 Isotropic Diffusion

The first PDE that have been used in image processing is the Heat equation that
realizes a spatial diffusion of the gray values of a given image. It is a parabolic
equation that reads, see [20]. For any bounded function f ∈ C2 and any fixed
value T > 0, the heat equation can be expressed as follows:{

∂u(t,x)
∂t

= ∆u(t, x) on R2 × (0, T ]
u(0, x) = f(x) for R2 (2.1)

where ∆ is the Laplacian operator.

2.1.1 Discretization of 2D heat equation

The explicite scheme in 2D

In the case of two dimensions the explicite scheme:

un+1
i,j − uni,j

∆t
=
uni+1,j − 2uni,j − uni−1,j

∆x2
+
uni,j+1 − 2uni,j + uni,j−1

∆y2

17



2.2. ANISOTROPIC DIFFUSION 18

After simplification:

un+1
i,j =

∆t

∆x2
(uni+1,j + uni−1,j) +

∆t

∆y2
(uni,j+1 + uni,j−1) + (1− 2

∆t

∆x2
− 2

∆t

∆y2
)uni,j

or write α =
∆t

∆x2
and β =

∆t

∆y2

un+1
i,j = α(uni+1,j + uni−1,j) + β(uni,j+1 + uni,j−1) + (1− 2α− 2β)uni,j

In this case the stability condition: α + β ≤ 1

2
this stability condition a limite on

the time step:

∆t ≤ ∆x2∆y2

2(∆x2 + ∆y2
)

The implicite scheme in 2D

In the case of two dimensions the implicite scheme:

un+1
i,j − uni,j

∆t
=
un+1
i+1,j − 2un+1

i,j + un+1
i−1,j

∆x2
+
un+1
i,j+1 − 2un+1

i,j + un+1
i,j−1

∆y2

After simplification we get:

un+1
i,j = − ∆t

∆x2
(uni+1,j + uni−1,j)−

∆t

∆y2
(uni,j+1 + uni,j−1) + (1 + 2

∆t

∆x2
+ 2

∆t

∆y2
)uni,j

or write α =
∆t

∆x2
and β =

∆t

∆y2

un+1
i,j = −α(uni+1,j + uni−1,j)− β(uni,j+1 + uni,j−1) + (1 + 2α + 2β)uni,j

this scheme is unconditionally stable.

2.1.2 Numerical Experiments

The isotropic diffusion filter has its limitations: whether we smooth uniformly by
a rotational symmetric Gaussian kernel, or diffuse the data equally in all direc-
tions, the process deforms important features of the image, blurs and dislocates
edges. (See Figure 2.1).

2.2 Anisotropic Diffusion

2.2.1 1D Perona-Malik equation

Let’s consider a continuous-scale 1-D signal u(x, t), where x and t represent space
and time, respectively. The diffusion partial differential equation (PDE) with a
positive diffusivity function g(x, t) can be written in 1D as follows:

∂tu = ∂x(g∂xu) (2.2)

GUETTAF.Amira Mohamed Boudiaf University of Msila



2.2. ANISOTROPIC DIFFUSION 19

(a) Original Image (b) Original Image (c) Original Image

(d) Image Filtered (e) Image Filtered (f) Image Filtered

Figure 2.1: Images filtered by isotropic diffusion

The diffusion equation should be supplemented with an initial condition u(x, 0) =
f(x), which represents the initial state of the signal at time t = 0. Additionally,
if the domain is bounded, boundary conditions should also be specified to deter-
mine the behavior of the signal at the boundaries of the domain.
In a discrete setting, we use a spatial mesh width ∆x and define the pixel location
xi as xi = (i − 1/2)∆x for i ∈ 1, . . . , N . Similarly, we introduce a time discretiza-
tion tn = n∆t, where n represents the time step index and ∆t is the time step
size. This allows us to obtain a discrete signal uni ≈ u(xi, tn). Then, a standard
finite difference discretization of the diffusion equation can be achieved using the
explicit scheme.

un+1
i − uni

∆t
=

1

∆x

(
gni+1/2

uni+1 − uni
∆x

− gni−1/2

uni − uni−1

∆x

)
(2.3)

Where gni+1/2 denotes the diffusivity between the computational cells i and i + 1.
Using the mesh ratio r = ∆t

(∆x)2
, our scheme can be rewritten as:

un+1
i = uni + rgni+1/2u

n
i − rgni−1/2u

n
i − rgni−1/2u

n
i+1 − rgni−1/2u

n
i−1 (2.4)

This equation represents the update step for computing the value of the signal at
the next time step n+ 1 based on the current values at time step n.
It is convenient to express this as a matrix-vector multiplication in the form un+1 =
Qnun, where Qn is an (N ×N) matrix with entries

qni, j =


1− rgni− 1/2− rgni+ 1/2 if j = i
rgni−1/2 if j = i− 1

rgni+1/2 if j = i+ 1

0 otherwise

(2.5)

GUETTAF.Amira Mohamed Boudiaf University of Msila



2.2. ANISOTROPIC DIFFUSION 20

Let’s briefly review some important properties of the matrix Qn. It is evident that
the matrix is symmetric. The stability of the iterative scheme 2.4 can be demon-
strated if the entries of Qn are nonnegative. Since the diffusivity is positive, all
off-diagonal entries contain nonnegative values, except for the diagonal entries,
which require further clarification. Therefore, it is necessary to ensure that all
diagonal entries satisfy the following condition:

qni,i = 1− rgni− 1/2− rgni+ 1/2 ≥ 0. (2.6)

This condition implies a stability requirement on the size of the time step ∆t.
To implement homogeneous Neumann boundary conditions (∂xu = 0), we need
to modify the entries for qn1,1 and qnN,N in the following way:

qn1,1 = 1− rgn3/2 and qnN,N = 1− rgnN−1/2 (2.7)

This interpretation involves setting the missing terms gn1/2 and gnN+1/2 to 0, which
effectively implements homogeneous Neumann boundary conditions. It is worth
mentioning that it is also possible to implement other boundary conditions such
as Dirichlet boundary conditions or periodic boundary conditions. Diffusion can

Figure 2.2: The diffusion process can be visualized using a Markov chain model.

also be represented using Markov chains, which utilize stochastic matrices in-
corporating transition probabilities. A stochastic matrix consists of nonnegative
entries and has unit column sums. By considering the positive diffusivity and
selecting a mesh ratio r that satisfies equation 2.6 for all i, we can ensure that the
matrix Qn only contains nonnegative entries. Furthermore, all column sums are
equal to 1. Hence, Qn is a stochastic matrix, and the entries qni,j ≥ 0 can be inter-
preted as transition probabilities. In the context of Markov chains, it is convenient
to employ a graph-based representation of the diffusion model, as illustrated in
Figure 2.2.

2.2.2 2D Perona-Malik equation

The two-dimensional Perona-Malik equation is written as follows:[12]
ut = div (g (|∇u|)∇u) in Ω× (0,+∞),
∂u

∂n
= 0 in ∂Ω× (0,+∞),

u(x, 0) = u0(x) in Ω.

(2.8)
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Discretised Diffusion Equation

In order to solve Equation 2.8 of Implicit Scheme we need to discretise the diver-
gence operator. We start by marking the positions of the pixels of interest with
(i, j) :

(Ik)
n+1
i,j − (Ik)

n
i,j

∆t
= div

(
gn∇In+1

k

)
After this we discretise the div operator:

(Ik)
n+1
i,j − (Ik)

n
i,j =∆tgnN

(
(Ik)

n+1
i−1,j − (Ik)

n+1
i,j

)
+ ∆tgnS

(
(Ik)

n+1
i+1,j − (Ik)

n+1
i,j

)
+ ∆tgnW

(
(Ik)

n+1
i,j−1 − (Ik)

n+1
i,j

)
+ ∆tgnE

(
(Ik)

n+1
i,j+1 − (Ik)

n+1
i,j

)
2.2.3 AOS (Additive Operator Splitting)

With the vector/matrix format in place, we can now formulate the ’additive op-
erator splitting’ scheme proposed by Weickert et al [19]. In order to simplify the
notation, we write A instead of A ((Ik)

n) . Id refers to the identity matrix. There-
fore, we have:

(Ik)
n+1 = (Ik)

n + ∆tAIn+1
k

From which (Ik)
n+1 can be solved as follows:

(Ik)
n+1 = (Id−∆tA)−1Ink

Now, we ’decompose’ A so that A =
∑m

l=1 Al, which allows as to write the above
equation as:

(Ik)
n+1 =

(
m∑
l=1

1

m
Id−∆t

m∑
l=1

Al

)−1

Ink

where m is the number of dimensions (in our case m = 2 ). Previous equation can
be written, using only a single summation operator, as:

(Ik)
n+1 =

(
m∑
l=1

1

m
(Id−∆tmAl)

)−1

Ink (2.9)

Equation 2.9 has interesting ’form’ in the sense that the ’system matrix’ is de-
composed. The problem is that the decomposed system matrix is inside the ()−1

operator. Instead, we would like to construct the solution in parts as follows:

(Ik)
n+1 =

m∑
l=1

(
1

m
(Id−∆tmAl)

)−1

Ink (2.10)
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The problem is that the right hand sides of Equations 2.9 and 2.10 are not equal,
as can be easily verified. Therefore, we pose the question if there exists a simple
variable x, when used to multiply the right hand side of 2.10, would make these
equal:

(
m∑
l=1

1

m
(Id−∆tmAl)︸ ︷︷ ︸

B

)−1Ink = x

m∑
l=1

(
1

m
(Id−∆tmAl)︸ ︷︷ ︸

B

)−1Ink (2.11)

The above can be simplified into:

B−1 = xm2B−1

And, thus we have:

x =
1

m2

Based on this, in order to use the ’additive operator splitting’ scheme given by
Equation 2.10., we multiply the right hand side with 1

m2 , and we obtain the fol-
lowing equation:

(Ik)
n+1 =

1

m2

m∑
l=1

(
1

m
(Id−∆tmAl)

)−1

Ink

which is the same as:

(Ik)
n+1 =

m∑
l=1

(
mId−∆tm2Al

)−1
Ink

As an example, if l = 2(2D), then we would have:

(Ik)
n+1 = (2Id− 4∆tA1)−1 Ink + (2Id− 4∆tA2)−1 Ink

Introducing the notations V = (2Id+ 4∆tAx)u
n and W = (2Id+ 4∆tAy)u

n the
solution is simply

un+1 = V +W

Now, as it can be understood, the whole idea of this scheme is to bring the equa-
tions to a ’simpler’ form, allowing us to use efficient block-wise solvers.

2.2.4 Numerical Experiments

As seen in Figure 2.4, compared to the isotropic diffusion filtering which blurs
the edges, the anisotropic diffusion filtering preserves edges sharpness.
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(a) Original Image (b) Original Image (c) Original Image

(d) Image Filtered after 200 Itera-
tion

(e) Image Filtered after
200 Iteration

(f) Image Filtered after 200
Iteration

Figure 2.3: Images filtered by anisotropic diffusion

(a) Original Image (b) Image Filtered by
isotropic diffusion

(c) Image Filtered by
anisotropic diffusion

(d) Original Image (e) Image Filtered by
isotropic diffusion

(f) Image Filtered by
anisotropic diffusion

Figure 2.4: Images filtered by isotropic and anisotropic diffusion
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CHAPTER 3

LINEAR OSMOSIS MODELS FOR
VISUAL COMPUTING

In this chapter, our objective is to extend a linear parabolic partial differential
equation (PDE) introduced in the previous chapter. The steady state of this equa-
tion proves beneficial for addressing various imaging problems, hence earning
the name ”osmosis filter” due to its resemblance to physical processes.

3.1 Linear Osmosis Filter in 1D

Osmosis can be considered as a generalization of diffusion filters. In osmosis,
we introduce semi-permeable membranes between adjacent pixels, allowing for
selective transport of particles with different transition probabilities depending
on the orientation. This means that the transition probability from pixel i to pixel
i+ 1 may differ from the probability in the reverse direction.
In the Markov model, this leads to a loss of symmetry in the graph represented
in Figure 2.2. This is achieved by introducing different diffusivities, known as
osmoticities, in different orientations. The forward osmoticity from pixel i to i+1
at time level n is denoted by g+,n

i+1/2, while the backward osmoticity from pixel i+1

to i is denoted by g−,ni+1/2. These osmoticities are chosen such that a normalization
condition is satisfied.[18]

g+,n
i+1/2 + g−,ni+1/2 = 2 (3.1)

Figure 3.1 illustrates a graph-based representation of the osmosis process. This
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Figure 3.1: Modeling the Osmosis Process using a Markov Chain Approach

schematic diagram depicts the newly introduced process.

un+1
i = uni −rg

+,n
i+1/2u

n
i − rg

−,n
i−1/2u

n
i︸ ︷︷ ︸

”outflow”

+rg−,ni−1/2u
n
i+1 + rg+,n

i−1/2u
n
i−1︸ ︷︷ ︸

”inflow”

(3.2)

The scheme 3.2, along with the normalization condition 3.1, provides an approx-
imation of the 1-D osmosis partial differential equation (PDE) on a fixed, given
mesh with a size of ∆t.

∂tu+ ∂x

(
g+ − g−

∆x
u

)
= ∂xxu (3.3)

The equation represents an advection-diffusion equation or drift-diffusion equa-
tion, where g+ and g− are continuous-scale representations of the osmoticities.
Extending osmosis to higher dimensions and color images is a straight-forward
process. Furthermore, osmosis has proven to be a versatile framework for ad-
dressing various visual computing problems, including but not limited to clus-
tering, data integration, focus fusion, exposure blending, image editing, shadow
removal, and compact image representation.

3.2 2D Linear Osmosis Filter

The researchers, Weickert et al; extensively investigated the traditional theory of
linear image osmosis in both continuous and discrete environments. Their study,
documented in references [17, ?], delved deeply into the complexities of this the-
ory, offering a comprehensive comprehension of its principles and practical im-
plementations.
Let Ω ⊂ R be a bounded image domain with Lipschitz boundary ∂Ω, let u, v, f :
Ω −→ R2 be positive grey-scale images and d : Ω→ R+ be a given vector field.

Definition 3.2.1. (Osmosis energy [18])
The osmosis energy of u with respect to a reference v is defined as:

Ev(u) =

∫
Ω

v
∣∣∣∆(

u

v
)
∣∣∣2 dx (3.4)

In the following we consider the relation between the minimisation of the
osmosis energy 3.4 and the steady-state solution of the following drift-diffusion
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initial value PDE problem, which computes for every t ∈ (0, T ] and T > 0 a
regularised family of images {u(x, t)}t>0, starting from f :

∂u = ∆u− div(du) on Ω× (0, T ]
u(0, x) = f(x) on Ω
〈∇u− du, n〉 = 0 on ∂Ω× (0, T ]

(3.5)

where 〈., .〉 denotes the Euclidean scalar and n the outer normal vector on ∂Ω.

3.2.1 Continuous theory

In [18], it is proven that solutions to equation 3.5, for any positive time t, maintain
the average gray value and non-negativity. Moreover, when the vector field d is
defined as d = ∇ log v, with v being a strictly positive reference image, the steady-
state solution w of equation 3.5 minimizes a quadratic energy functional and can
be represented as a scaled version of v.

Theorem 3.2.2. [18] The solution of the osmosis model 3.5 enjoys the following prop-
erties: • Conservation of the Average Grey Value (AVG):

1

|Ω|

∫
Ω

u(x, t)dx =
1

|Ω|
dx, for allt > 0

• Conservation of positivity:

u(x, t) > 0, for allx ∈ Ωandt > 0

• non-constant steady-states:
given a stictly positive refernce image v and a comapatible drift d = ∇logv energy 3.4
is minimised by the steady-states of 3.5 . Furthermore,the stationary solution of (3.2)
is given by w(x) =

µf
µv
v(x) ,where µf and µv denote the averge grey value of f and v

respectively.

The theorem ensures that the solution to equation 3.5 exhibits a conservation
property, and the stationary elliptic problem can be analytically solved using the
initial image, v. This distinguishes it from diffusion models, where the steady-
states are constant. The non-constant nature of the steady-states in the osmosis
model adds an intriguing aspect to the study of convergence, especially in imag-
ing applications, as it represents a non-symmetric variation of the diffusion pro-
cess.

Proof. [18] • Let µ(t) = 1
|Ω|

∫
Ω
u(x, t)dx denote the average grey value at time t ≥ 0.

Using the divergence theorem and the homogeneous Neumann boundary condi-
tion, we obtain:

∂µ

∂t
=

1

|Ω|

∫
Ω

∂tudx =
1

|Ω|

∫
Ω

div(∇u− du)dx =

∫
∂Ω

〈∇u− du, n〉dS = 0
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Thus, the average grey value remains constant over time.
• Assume that T > 0 is the smallest time where minx,t u(x, t) = 0, and that this
minimum is attained at some inner point ξ. Thus,∇u(ξ, T ) = 0, and we have:

∂tu(ξ, T ) = ∆u(ξ, T )− u(ξ, T )︸ ︷︷ ︸
=0

divd− dT ∇u(ξ, T )︸ ︷︷ ︸
=0

.

This shows that at (ξ, T )T , the osmosis evolution behaves like the diffusion equa-
tion ∂tu = ∆u. It is well-known that for diffusion with homogeneous Neumann
boundary conditions, the minimum cannot decrease over time. Thus, the solu-
tion of the osmosis process remains positive.
• The energy functional 3.4 can be rewritten as

E(u) =

∫
Ω

F (u,∇u)dx

with

F (u,∇u) =
|v∇u− u∇v|2

v3
. (3.6)

From the calculus of variation, we know that any minimiser of E(u) satisfies the
Euler-Lagrange equation:

0 = Fu − ∂xFux − ∂yFuy

with homogeneous Neumann boundary conditions, where x = (x, y)T and sub-
scripts denote partial derivatives. With F from 3.5, this becomes after some sim-
plifications:

0 = −2vdiv

(
v∇u− u∇v

v3

)
− 4∇Tv(v∇u− u∇v)

v3
.

Using

div(v∇(
u

v
)) = v2div

(
v∇u− u∇v

v3

)
+

2∇Tv(v∇u− u∇v)

v2

the Euler-lagrange equation can be written as

0 = −2

v
div(v∇(

u

v
).

This is equivalent to ∆u − div(du) = 0 when d = ∇v
v

with v > 0, as can be easily
verified. Additionally, it can be shown through straightforward computations
that the boundary condition on ∂Ω× (0, T ] is < ∇u− du, n >= 0.
It is worth noting that an image v satisfying d = ∇v

v
also satisfies the steady-state
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equation ∆u − div(du) = 0 with homogeneous Neumann boundary conditions.
However, it is important to recognize that cv, where c is any constant, is also a
solution to this problem. Since the osmosis evolution preserves the average gray
value and the positivity of the initial image, it can only converge to a rescaled
version w of v that is positive and has the same average gray value as the original
image f . Thus, we have w(x) =

µf
µv
v(x).

3.2.2 Discrete scale-space theory

In this section, we explore discrete numerical scale-space theory, drawing inspi-
ration from [20]. To transition from a continuous to a discrete framework, we
consider an image domain Ω, represented as a rectangular grid with dimensions
M × N , containing S = MN pixels. The initial image f is a positive element in
RS

+. By using a grid step size of ∆x > 0, we approximate the value of the function
u at discretization nodes xi = (xi, yj) using ui,j . Similarly, for n ≥ 0, we denote
the value of ui,j at the time discretization node tn as uni,j .

In [17, 18] the finite-difference spatial discretization matrix A of Equation 3.5
acts on u in the following way:

u
′
i,j =

ui+1,j−2ui,j+ui−1,j

(∆x)2
− 1

∆x

(
d1,i+ 1

2
,j
ui+1,j+ui,j

2
− d1,i− 1

2
,j
ui,j+ui−1,j

2

)
+
ui+1,j−2ui,j+ui−1,j

(∆x)2
− 1

∆x

(
d2,i,j+ 1

2

ui,j+1+ui,j
2

− d2,i,j− 1
2

ui,j+ui−1,j

2

) (3.7)

Here ui,j stands for an approximation of the function in the point (xi, yj) = ((i −
1/2)∆x, (j − 1

2
)∆x) while the approximated quantities correspondent to the dis-

rete field d = (d1, d2) where |d1|, |d2| ≤ 2(∆x)−1,are defined as:

d1,i+ 1
2
,j =

2(fi+1,j − fi,j)
∆x(fi+1,j + fi,j)

, d2,i,j+ 1
2

=
2(fi,j+1 − fi,j)

∆x(fi,j+1 + fi,j)
. (3.8)

It is important to note that the discretization implicitly assumes the use of two
different grids in order to model the ”flux exchange” of d at the interfaces between
pixel cells.

Theorem 3.2.3. [18] For a given f ∈ RS
+,consider the fully-discretised problem:

u0, un+1 = Pun, n ≥ 1,

where the (non-symmetric)matrix P ∈ RS×S is irreducible and non-negative with strictly
positive diagonale entries and unit column sum.Then the following properties hold true:
1. The evolution preserves positivity and the average grey value of f .
2. The eigenvector of P associated to eigenvalue 1 is the unique steady-state for n→∞.
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Theorem 3.2.4. [18] For a given f ∈ RS
+,consider the semi-discretised linear osmosis

problem:
u(0) = f, u

′
(t) = Au(t), t > 0 (3.9)

where A ∈ RS×S is an irreducible (non-symmetric) matrix with zero-column sum and
non-negative off-diagonal entries.For n ≥ 0,consider the time-discretisation schemes
un+1 = Pun:
Forward Euler:

P = (I + ∆tA), for, ∆t < (max|ai,i|)−1 (F.E)

Backward Euler:
P = (I + ∆tA), forany ∆t > 0 (B.E)

Then,in both cases,P is an irreducible,non-negative matrix with strictly diagonal entries
and unit column sum and for u(t) the Theorem 3.2.3 hold true.

When ∆t > 0 is large, the numerical implementation using the Backward
Euler (B.E) method requires the inversion of a non-symmetric tridiagonal matrix.
This operation can be computationally expensive, particularly for large images.
In[17, ?], the authors utilize the Backward Euler (B.E) method to solve equation
3.7. This method is advantageous as it does not have any timestep restrictions.
The BiCGStab iterative solver is employed to perform the solution process.

3.2.3 Linear osmosis filter for shadow removal problem

The problem of eliminating shadows from an image f : Ω→ R+, while maintain-
ing the original image’s geometry and texture, is commonly known as shadow
removal. In this task, it is assumed that there are consistent shadows, where the
relationship between the image intensity values inside and outside the shadow
region remains constant, albeit with an unknown multiplicative constant.
To formulate the problem of shadow removal, let us begin with a concise ap-
proach. Consider a positive image f : Ω → R+ that has been affected by a
constant shadow. In specific areas of the image, f has undergone rescaling by
a constant factor 0 < c < 1. The objective of shadow removal is to eliminate the
shadow while retaining the original geometric and textural details of the image.
We can assume that the image domain Ω can be divided into distinct regions,
some containing shadows and others that do not.

Ω = Ωout ∪ Ωsb ∪ Ωin (3.10)

where Ωout,Ωsb and Ωin are the unshadowed region,the shadow boundaries and
the shadowed region of the image,respectively. see Figure 3.2
The task of shadow removal can be viewed as an image reconstruction problem
encountered in various practical domains. It entails restoring the correct light in-
tensity in all regions of the image domain Ω. In our exploration, we will delve
into this subject in greater detail and examine its significance in relation to other
problems in the preservation of cultural heritage.
It is worth mentioning that the shadow removal problem tackled using osmosis
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can be formulated as an image inpainting problem. In this context, information is
propagated from the outer region Ωout to the inner region Ωin through the shadow
boundary Ωsb. To provide clarity, we will employ the following notation to eluci-
date this statement.

(a) f on Ω (b) f on Ωout (c) f on Ωsb (d) f on Ωin

Figure 3.2: Figures Decomposition of Ω as in 3.10

As previously mentioned, we will introduce the inpainting region as O = Ωsb,
implying that Oc = Ωout∪Ωin. To establish a more precise connection, let us delve
into the details.
Assuming a decomposition, as described in 3.10, is provided (which can be chal-
lenging for real images [6]), the osmosis model 3.5 can be straightforwardly modi-
fied to address the shadow removal problem. This modification involves defining
the vector field d in 3.5 based on the shadowed image f as follows: d = ∇ log f
on Ωin ∪ Ωout, and d = 0 on Ωsb. Further information regarding this choice can be
found in [?]. The adapted continuous osmosis model for shadow removal, with
d = ∇ log f , is then expressed as follows:

ut = ∆u− div(du) on Ωin ∪ Ωout × (0, T ]
ut = ∆u on Ωsb × (0, T ]
u(x, 0) = f(x) on Ω
〈∇u− du, n〉 = 0 on ∂Ω× (0, T ]

(3.11)

The evolution process at the shadow boundary Ωsb can be interpreted as an in-
painting technique, where information is propagated from the outer region Ωout

to the inner region Ωin across the shadow boundary Ωsb. The Laplace operator’s
effect on Ωsb results in isotropic diffusion of image structures from both Ωin and
Ωout onto Ωsb, yielding an inpainted result that is free from shadows but may ex-
hibit some blurriness. To mitigate this issue, a post-processing step is commonly
employed to refine the inpainted result.

3.3 Splitting methods for linear osmosis filter

Our aim is to improve the computational efficiency of the numerical solution for
the discrete linear osmosis model 3.6, particularly for large images. To achieve
this, we are exploring different splitting schemes as potential approaches to ac-
celerate the calculation process.
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During the 1950s and 1960s, significant progress was made in the development
of various splitting methods. These methods included fractional steps or locally
one-dimensional methods (LOD) in the Soviet Union, as well as dimensional
splitting Alternating Direction Implicit (ADI) methods in the USA. Notable ref-
erences in this field include [14, 8, 7]. ADI methods have advantages over LOD
methods, such as easier application of boundary conditions and the ability to
obtain a steady-state solution independent of the time step ∆t [21]. For more de-
tailed information, please refer to [25, 26, 27, 28, 29]. In recent years, there have
been advancements in unconditionally stable operator splitting schemes for dif-
fusion processes in image processing, as discussed in [20, 4].
In the next,we will consider:
• ADI methods:Peaceman-Rachford (RP) and Douglas (D);
• operator splitting methods:addiitive and multiplicative (AOS,MOS,AMOS).
We assess the effectiveness of these splitting schemes in achieving convergence
towards a scaled version of a reference image v, starting from a flat image f ,
under both the compatible case, where v is encoded as d = ∇ log v, and the non-
compatible case, where d is random.

Towards splitting schemes

First and foremost, it is important to note that Theorem 3.2.3 is of significant gen-
erality as it allows us to investigate numerous alternative operators, denoted as
P, capable of computing solutions for the discretized osmosis problem. These so-
lutions possess similar properties to those derived from continuum models.
As an example, there exists a more comprehensive approach to time discretiza-
tion called the θ-method, which combines both the Forward Euler (F.E.) and Back-
ward Euler (B.E.) methods. Using a spatial discretization A for the initial value
u0 of Equation 3.5, the θ-method calculates an approximation un+1 for a fixed
θ ∈ [0, 1], any time step ∆t > 0, and n ≥ 0, using the following update formula.
We start with u0 = f :

(I −∆tθA)un+1 = (I + ∆t(1− θ)A)un (θ-mth)

It is important to highlight that the Forward Euler (F.E.) and Backward Euler
(B.E.) methods are specific instances of the θ-method, where θ takes values of 0
and 1, respectively. When θ is set to 0.5, the θ-method becomes a second-order
scheme, whereas for any other value of θ, it is a first-order scheme. It is crucial to
note that explicit schemes have limitations on the time step size (∆t) to maintain
numerical stability. Moreover, for θ values greater than 0, the implementation
of the numerical scheme requires inverting a non-symmetric tridiagonal matrix,
which can be computationally expensive for large images, even with pre condi-
tioners.
To reduce the computational cost of the semi-discretized problem 3.9, one strat-
egy is to decompose the matrix A into two separate sums, A1 and A2, which
represent the contributions along the x and y spatial directions, respectively. As
a result, the solution to the semi-discretized problem at t > 0 can be obtained as
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follows:

u(t) = exp(t(A1 + A2))f

In general,A1 and A2 do not commute ,therefore the following approximations
hold

u(t) ≈ exp(tA1)exp(tA2)f (Beam-Warming)
u(t) ≈ exp( t

2
A1)exp(tA2)exp( t

2A1
)f, (Strang)

u(t) ≈ 1
2
exp(tA1)exp(tA2)f + 1

2
exp(tA1)exp(tA2)f (parallel)

The Beam-Warming splitting method is a first-order technique, whereas the Strang
and parallel splittings are second-order methods. A splitting scheme is deemed
stable if all coefficients in front of the exponentials (A1 and A2) are non-negative.
It is worth mentioning that, according to [15], there are no stable splitting schemes
of order higher than two for linear equations. However, non-stable third-order
schemes have been proposed in [?] specifically for hyperbolic equations.

3.3.1 ADI methods:Peaceman-Rachford and Douglas

The ADI (Alternating Direction Implicit) splitting method is a time-stepping method
used to solve the initial boundary value problem in a domain Ω ∈ RS . In this
method, the semi-discretized operator A is decomposed into a sum:

A = A0 + A1 + . . .+ AS

Each componentAj , where j = 1, . . . , S, represents the linear action of A along
the space direction j. The term A0 may include additional contributions from
mixed directions and non-stiff nonlinear terms.

The ADI scheme treats the unidirectional components Aj , for j ≥ 1, implicitly
in time, while the A0 component, if present, is treated explicitly. This means that
the implicit part is solved using an implicit numerical method, such as an implicit
finite difference scheme, while the explicit part is solved using an explicit method.

By using the ADI splitting method, the s-dimensional original problem is re-
duced to s one-dimensional problems. This simplifies the computational com-
plexity of solving the problem by solving each dimension separately.

Please note that the specific details of the numerical methods used to solve
each component may vary depending on the problem and the chosen discretiza-
tion scheme.
For imaging applications, let’s consider the case where S = 2. We can denote
the approximation of u as ui,j , which represents the value of u at the grid point
((i− 1/2)∆x, (j − 1/2)∆x), where h is the grid size. By applying the finite differ-
ence discretization to Equation 3.7, the splitting Au = A1u + A2u simplifies the
two-dimensional problem into two separate one-dimensional problems, which
can be expressed as follows:

(A1(u))i,j =
ui+1,j−2ui,j+ui−1,j

(∆x)2
− 1

∆x
(d1,i+ 1

2
,j
ui+1,j+ui,j

2
− d1,i− 1

2
,j
ui,j+ui−1,j

2
);

(A2(u))i,j =
ui+1,j−2ui,j+ui−1,j

(∆x)2
− 1

∆x
(d2,i,j+ 1

2

ui,j+1+ui,j
2

− d2,i,j− 1
2

ui,j+ui,j−1

2
)

(3.12)
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Subsequently, we will explore two widely recognized ADI (Alternating Direction
Implicit) schemes that exhibit discrete-scale space similarities to the continuum
case, in relation to Theorem 3.2.3.

The Peaceman–Rachford scheme

To start our analysis, let us investigate the Peaceman-Rachford ADI scheme [14],
which achieves second-order accuracy. Given an initial value u0, and for each
n ≥ 0 and time step ∆t > 0, we can compute an approximation un+1 using the
following update rule:{

un+1/2 = un + ∆t
2
A1u

n + ∆t
2
A2u

n+1/2

un+1 = un+1/2 + ∆t
2
A1u

n+1 + ∆t
2
A2u

n+1/2 (PR)

It is worth noting that both steps of the Peaceman-Rachford ADI scheme utilize
the trapezoidal rule, also known as the Crank-Nicolson method.
We will illustrate that the Peaceman-Rachford ADI scheme possesses discrete-
scale properties that closely resemble those observed in the continuum case.

Proposition 3.3.1. Let f ∈ RS
+ and ∆t < 2(maxmax|a1

i,i|,max|a2
i,i)
−1. Then, the

Peaceman–Rachford scheme (PR) with splitting 3.12 preserves the average grey value,
the positivity and converges to a unique steady-state.

Proof. We write the Peaceman–Rachford (PR) iteration as

un+1 = (I − ∆t

2
A1)−1(I +

∆t

2
A2)(I − ∆t

2
A2)−1(I +

∆t

2
A2)un (3.13)

and observe that fori = 1, 2 the matrices P−i = (I − ∆t
2
Ai)
−1 and P+

i = (I +
∆t
2
Ai),are non-negative and irreducible with unit column sum and positive diag-

onal entries being eachAi a one-dimensional implicit/explicit discretised osmosis
operator satisfying the assumptions of Theorem 3.2.3. Therefore, at every implic-
it/explicit half-step and using the restriction on ∆t, the average grey-value and
positivity are conserved. Furthermore, the unique steady-state is the eigenvector
of the operatorP = P−1 P

+
2 P

−
2 P

+
1 associated to the eigenvalue to one.

The Douglas scheme

Another dimensional splitting method is the Douglas scheme, as described in
[8, 7]. For n ≥ 0, ∆t > 0, and θ ∈ [0, 1], the updating rule for the Douglas scheme
is as follows: 

y0 = un + ∆tAun

yi = yi−1 + θ∆t(Ajy
j − Ajun), j = 1, 2

un+1 = y2

(D)

To calculate the numerical approximation at each time step, the Peaceman-Rachford
ADI scheme follows a specific procedure. It begins by employing a forward pre-
dictor, which is subsequently stabilized by intermediate steps. These intermedi-
ate steps exclusively involve the unidirectional components Aj of the splitting,
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denoted as Au = A1u+ A2u. Additionally, these intermediate steps are weighted
by a parameter θ, which determines the balance between implicit and explicit be-
havior.
When θ = 1

2
, the scheme attains a time-consistency order of two. For all other

values of θ, the scheme achieves a time-consistency order of one.
The following lemma will be helpful in establishing a result similar to Theorem
3.2.3 for the operator (D).

Lemma 3.3.2. If C = (ci,j) ∈ RS×S and D = (di,j) ∈ RS×Ss.t.
∑S

i=1 ci,j = c and∑S
i=1 di,j = d for every j = 1, . . . , S,then,the matrix B = CD has column sum equal to

cd.

Proof. Writing each element bi,j in terms of the elements of C and D then for
every j:

S∑
i=1

bi,j =
S∑
i=1

S∑
K=1

ci,KdK,j =
S∑

K=1

(dK,j

S∑
i=1

ci,K) =
S∑

K=1

(dK,j.c) = c
S∑

K=1

dK,j = cd

(3.14)
this concludes the proof.

Proposition 3.3.3. Let f ∈ RS
+,∆t > 0 and θ ∈ [0, 1] . Then, the Douglas scheme

(D) applied to the split semi-discretised scheme 3.7 preserves the average grey value.

Proof. For every n ≥ 0 , we write the Douglas iteration (D) a

un+1 = (I − θ∆tA2)−1[(I − θ∆tA1)−1((I − θ∆tA1) + ∆tA)− θ∆tA2]un

= (I + ∆t(I − θ∆tA2)−1(I − θ∆tA1)−1A)un

= (I + ∆tP2P1A)un

where both P1 and P1 are non-negative, irreducible, with unit column sum and
strictly positive diagonal entries by Theorem 3.2.4, while A = A1 + A2 is zero-
column sum being the standard discretised osmosis operator 3.7. By Lemma 4.6,
the operator B := P2P1A has zero column sum and the operator P = I + ∆tB
has unit column sum. Thus, for every n ≥ 0

1

S

S∑
i=1

un+1
i =

1

S

S∑
i=1

S∑
j=1

pi,ju
n
j =

1

S

S∑
j=1

(
S∑
i=1

pi,j)u
n
j =

1

S

S∑
j=1

unj (3.15)

this concludes the proof.

Remark 3.3.4. The off-diagonal entries of matrix B not being non-negative im-
plies that we cannot directly apply Theorem 3.2.3 to establish that the iterates
(un)n≥0 remain positive and converge to a unique steady-state. However, based
on our numerical tests, it appears that both properties hold true.

Remark 3.3.5. Both the Peaceman-Rachford scheme (PR) and the scheme (D) are
unconditionally stable when the dimensional splitting number is set to s = 2.
However, using large time steps in these schemes may result in reduced time-
accuracy due to the inclusion of explicit steps.
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(a) Original (b) mask of 3px (c) Result

(d) Original (e) mask of 3px (f) Result

(g) Original (h) mask of 3px (i) Result

Figure 3.3: Shadow removal for different images by the isotropic model 3.11.
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CHAPTER 4

ANISOTROPIC OSMOSIS FILTERING
FOR SHADOW REMOVAL

In this chapter, we enhance the isotropic osmosis model 3.5 and its application
for shadow removal.
We introduce the anisotropic osmosis model and its analytical properties, next
we explore space and time discretisation schemes. In last section, the anisotropic
model is applied to address the shadow removal problem.

4.1 Anisotropic Osmosis Filter

In this section, we enhance the classical osmosis model by incorporating local di-
rectional information of the image into the diffusion process. This modification
allows for the propagation of geometric structures primarily along the preferred
local directions. This variant is referred to as the ”anisotropic osmosis model,”
which contrasts with the isotropic osmosis model 3.5 that does not consider such
directional information.

4.1.1 Definitions and modelling

Definition 4.1.1. (Anisotropy matrix) Let b : Ω → R2
+ be a vector field with posi-

tive entries such that b(x) = (b1(x), b2(x)) ∈ L∞(Ω,R2
+) and z(x) = (z1(x), z2(x)) :

Ω → R2 a smooth unitary vector field, i.e.|z| = 1. Then, for every x ∈ Ω we
define the contraction matrixΛb(x) associated to the vector b(x) and the rotation

36
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matrixRz(x) associated to the field z as:

Λb(x) =

(
b1(x) 0
0 b2(x)

)
, Rz(x) =

(
z1(x) − z2(x)
z2(x) z1(x)

)
(4.1)

With these matrices we define the anisotropy matrix M(x) in a pointx ∈ Ωas

M(x) = Λb(x)R>z (x)

Remark 4.1.2. It should be noted that the matrix Rz represents a rotation matrix,
where its columns correspond to the unit vectors z and z⊥ respectively. For any
point x in the domain Ω, we can equivalently interpret this operator in terms of
the angle θ : Ω → [0, 2π) formed by the vector z relative to the Cartesian axes x
and y. This allows us to identify z(x) = (z1(x), z2(x)) = (cos(θ(x)), sin(θ(x))).
Next, we denote the symmetric and positive definite anisotropic diffusion matrix
as W = M>M , where M is a matrix representing the anisotropy.

W =

(
b2

1z
2
1 + b2

2z
2
2 b2

1z1z2 − b2
2z1z2

b2
1z2z1 − b2

2z2z1 b2
1z

2
2 + b2

2z
2
1

)
= b2

1(z ⊗ z) + b2
2(z⊥ ⊗ z⊥). (4.2)

It is worth mentioning that the effect of the operator M on the gradient can
be expressed more conveniently by utilizing directional vectors z and z⊥. These
vectors aid in distinguishing the two components of directional transport.

M∇u =

(
b1∇u · z
b2∇u · z⊥

)
(4.3)

Similarly, in equation 4.2, the matrix W has been formulated in order to distin-
guish between the different components that arise from z and z⊥.

We can define the energy of the anisotropic osmosis model as follows.

Definition 4.1.3. (Anisotropic osmosis energy) Let Ω ⊂ R2,u, v ∈ H1(Ω,R+) be
two positive images and let W : Ω → R2 be a positive definite symmetric matrix
field. We define the anisotropic osmosis energy of u with respect to W and the
reference image v as

E(u) =

∫
Ω

v(x)∇>(
u(x)

v(x)
W (x)∇(

u(x)

v(x)
dx. (4.4)

We will also use the following alternative notation for E:

E(u) =

∫
Ω

v(x)‖∇(
u(x)

v(x)
‖2
Wdx, (4.5)

where ‖e‖W =
√
〈e,We〉.

Remark 4.1.4. (Isotropic case). If we set W to be the identity matrix, equation 4.4
corresponds to the isotropic osmosis energy 3.4 that was studied in reference [18].
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Next, we introduce an anisotropic osmosis evolution process that aims to min-
imize the anisotropic osmosis energy until it reaches a steady-state.

Proposition 4.1.5. Let v : Ω → R+ be a positive image,d ∈ R2the vector field defined
as d = ∇logv and W : Ω → R2 be a positive definite symmetric matrix field. Then,
for a given positive image f ∈ L∞(Ω,R+) the solution of the Euler–Lagrange equation
of the functionalE defined in Definition 4.1.3 is the steady-state of the anisotropic image
osmosis model 

ut = div(W (∇u− du)) onΩ× (0, T ]
u(x, 0) = f(x) onΩ
〈W (∇u− du), n〉 on∂Ω× (0, T ]

(4.6)

Proof. We obtain the optimality condition for any critical point u of E by comput-
ing it for any test function ϕ ∈ C∞c (Ω). This is expressed as follows:

∂u
∂τ
E(u+ τϕ|τ=0 = 2

∫
Ω
v〈W∇(u

v
),∇(ϕ

v
)〉dx

= −2
∫

Ω
div(vW∇(u

v
))ϕ
v
dx

= −2
∫

Ω
1
v
div(vW (∇u

v
− u∇u

v2
))ϕdx = 0

(4.7)

By applying the divergence theorem and using Neumann boundary conditions
in 4.6, we obtain the following expression. For any x ∈ Ω and due to the positivity
of v and the fact that ϕ is compactly supported in Ω, we have:

0 = div(vW (
∇u
v
− u∇u

v2
)) = div(W (∇u− ∇v

v
u)). (4.8)

By defining d = ∇v
v

, we observe that the above equation corresponds to the partial
differential equation (PDE).

div(W (∇u− du)) = 0

This equation represents the steady-state solution of equation 4.6.

The anisotropic osmosis PDE 4.6 exhibits certain properties that are shared
with the isotropic osmosis PDE 3.5, making it well-suited for various imaging
applications. The convergence of the solution to its steady-state can be estab-
lished by employing suitable Lyapunov functional, as described in reference [?],
which has already been done for the linear isotropic osmosis model. The analysis
of the anisotropic model can be conducted using similar arguments.

Theorem 4.1.6. The solution u : Ω → Rof the anisotropic osmosis model 4.6 satisfies
the following properties:
1. conservation of the average grey value:

1

|Ω|

∫
Ω

u(x, t)dx =
1

|Ω|
dx, for allt > 0

2. preservation of non-negativity:

u(x, t) > 0, for allx ∈ Ωandt > 0
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3. non-constant steady-states: The steady-state of 4.6 is given by

w(x) =
µf
µv
v(x).

Proof. [18]
1. Let µu(t) = 1

|Ω|

∫
Ω
u(x, t), dx denote the average grey value of the image u at

time t ≥ 0. By applying the divergence theorem and utilizing the homogeneous
Neumann boundary conditions to equation 4.6, we can derive the following ex-
pression:

dµu
dt

= 1
|Ω|

∫
Ω
utdx = 1

|Ω|

∫
Ω
div(W (∇u− du))dx

=
∫
∂Ω
〈W (∇u− du), n〉dS = 0

(4.9)

The desired result can be obtained by following the steps outlined above.
2. To rewrite the anisotropic osmosis PDE in an extended diffusion-transport-
reaction form for any (x, t) ∈ Ω× (0, T ], we can express it as follows.

ut(x, t) = div(W∇u(x, t))− div(Wdu(x, t))
= W ·D2u(x, t) + (div(W )−Wd) · ∇u(x, t)− div(Wd)u(x, t) = Lu

(4.10)
Given that W is a symmetric positive definite matrix, we can observe that the op-
erator L is uniformly strongly elliptic. Along with the Neumann-type boundary
conditions and the positivity of the initial data f , this implies, as stated in refer-
ence [22], that the solution u remains positive for all t > 0. Similar conclusions
can be drawn for the isotropic model, as discussed in references [23].
3.For any c ∈ R, the steady-state equation of the anisotropic PDE system can be
solved by considering w = cv and applying the Neumann-type boundary condi-
tions as specified in equation 4.6. It can be verified that the equation is satisfied
when w = cv.

div(W (∇w − ∇v
v
w)) = div(W (c∇v − ∇v

v
cv)) = 0 (4.11)

The conservation laws of mass and non-negativity ensure that the process reaches
a non-negative steady-state solution w that has the aforementioned form. Fur-
thermore, the constant c ∈ R can be easily determined by noting that:

cµv =
1

|Ω|

∫
Ω

cv(x)dx =
1

|Ω|

∫
Ω

w(x)dx =
1

|Ω|

∫
Ω

f(x)dx = µf (4.12)

Therefore, the constant c can be determined by setting c =
µf
µv

, and this assignment
is well-defined since v is strictly positive throughout the region Ω.

4.1.2 Anisotropic diffusion inpainting

Anisotropic diffusion inpainting, which utilizes a diffusion tensor, was first in-
troduced in [29] and has shown successful applications in inpainting-based com-
pression [?, ?]. This method takes advantage of the edge-enhancing anisotropic
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diffusion filter proposed for image denoising [20]. To propagate structures from
specified image regions into inpainting regions, the differential operator div(W (∇uσ)∇u)
is employed, where uσ represents the convolution of u with a Gaussian filter hav-
ing a standard deviation of σ. The diffusion tensor W consists of eigenvectors
parallel and perpendicular to∇uσ, with corresponding eigenvalues given by:

µ1(|∇uσ|) =
1√

1 + |∇uσ|2/λ2
and µ2(|∇uσ|) = 1 (4.13)

The aim is to perform inpainting by aligning it with the orientation of a struc-
ture while reducing inpainting in the perpendicular direction, controlled by a
high contrast parameter λ > 0. These methods have proven effective in inpaint-
ing edge-like structures, even in scenarios with sparse available data and large
gaps to be filled [?]. However, they are not suitable for shadow removal applica-
tions due to the presence of non-physical edges caused by shadow boundaries.
To overcome this limitation, a modification is required using more sophisticated
structure descriptors such as tensor voting. Tensor voting can provide more ro-
bust local structure directions, even in the presence of shadow boundaries. The
details of this modification will be discussed in the following step.

4.1.3 Computation of structure directions via tensor voting

In this section, we present a workflow that aims to achieve local robustness against
lighting variations caused by shadows. This approach allows us to introduce
anisotropy in the specific directions that are considered suitable within the do-
main Ωsb.
A widely used technique for estimating the orientation of the local gradient in an
image u is to compute the eigenvector e1 associated with the largest eigenvalue
λ1 of the structure tensor Jρ(u), as described in Section 2.3.4.
The concept of Tensor Voting was initially introduced in [?] as a technique for
extracting curves from noisy images by grouping local features that exhibit con-
sistency within a neighborhood of the measurements. This framework enhances
the robustness of structure tensor estimation in the presence of noise and image
artifacts [?]. Given a 2-tensor B in R2, it can be represented by the following
matrix:

W =

(
b11 b12

b21 b22

)
= λ1(e1 ⊗ e1) + λ2(e2 ⊗ e2). (4.14)

Equation 4.14 can be rewritten in an equivalent form, where λ1 and λ2 represent
the eigenvalues corresponding to the eigenvectors e1 and e2, respectively. The
expression is as follows:

B = (λ1 − λ2)(e1 ⊗ e1) + λ2(e1 ⊗ e1 + e2 ⊗ e2) (4.15)

Now, we can distinguish between the following two quantities:
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• (λ1 − λ2) is referred to as saliency or stickiness. It represents an estimation of
the confidence in the direction e1 and is also known as orientation certainty
or anisotropy measure;

• λ2 is referred to as ballness and indicates the size of the minor axis of the
anisotropy ellipse. It quantifies the consistency in estimating the main di-
rection and is often referred to as orientation uncertainty or junctionness.

The tensor voting process involves incorporating the influences of neighboring
tensors into the tensor field at each iteration. This iterative update improves the
tensor field by taking into account the saliency parameter. However, the original
approach can be computationally demanding, especially for larger images. To ad-
dress this concern, the authors propose an efficient implementation of the tensor
voting framework using steerable filters theory, which utilizes complex-valued
convolutions. This implementation offers computational advantages and allows
for faster processing of the tensor voting algorithm.
When it comes to shadow removal, accurately estimating the structure direction
e1 can be challenging due to the presence of shadow edges that do not align with
actual image structures. As a result, both the structure tensor and tensor voting
methods face difficulties in accurately estimating local directions in such scenar-
ios.
To address the challenge of estimating local directions in the presence of shadow
edges, we propose a modification to the tensor voting framework. In our ap-
proach, we consider shadow edges as a bias in the estimation of image structure
and adjust the computation of saliency and orientation accordingly. The mod-
ified framework is then applied to the shadowed image, where the saliency is
set to zero and the orientation is randomized at the shadow boundaries. Further
details about the algorithm and its results can be found in Section 4.1.3.

4.1.4 Anisotropic osmosis-inpainting model for shadow removal

We propose a structure-preserving osmosis model to solve the problem of shadow
removal for a positive grey-scale image f : Ω → R+ with a constant shadow,
where Ω is decomposed as shown in equation 3.10.

ut = div(W (∇u− du)) onΩ× (0, T ]
u(x, 0) = f(x) onΩ
〈W (∇u− du), n〉 = 0 on∂Ω× (0, T ]

(4.16)

Here, we introduce the definitions of the discontinuous vector field d and the
discontinuous matrix field W as follows:

d(x) =

{
∇logf if x ∈ Ω\Ωsb,
0 if x ∈ Ωsb

(4.17)

W (x) =

{
I if Ω\Ωsb,
ε(e1 ⊗ e1) + 1(e1 ⊗ e1)if x ∈ Ω.

(4.18)
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In this equation, the symbol I denotes the 2 × 2 identity matrix, while the di-
rections e1 and e2 are derived from the modified tensor voting method, which is
applied to the original image f .
To summarize, our proposed method combines isotropic osmosis in the non-
shadowed region (Ωc

sb) and anisotropic inpainting on the shadow boundary (Ωsb).
This approach ensures a balanced intensity in the shadowed region by apply-
ing classical osmosis, while preserving structures and avoiding blurring at the
shadow boundary through interpolation. By performing joint osmosis and in-
painting, the need for additional post-processing steps is eliminated.

4.2 Space-time discretisation

To discretize the anisotropic osmosis model while preserving its properties, we
consider a rectangular image domain with M ×N pixels. The positive initial im-
age f is represented as a vector in RS

+. The approximation of the function u is
denoted as u = (ui,j)i,j , where ui,j represents its approximated value at suitable
discretization nodes ((i− 1

2
)∆x, (j− 1

2
)∆x) , with i = 1, . . . ,M and j = 1, . . . , N . At

the time node tk = kτ , the value of uni,j is denoted asuki,j . For x ∈ Ω, the discretized
eigenvalues λ1(x) and λ2(x) are denoted as λ1, λ2 ∈ RS

+, and the discretized ori-
entation θ(x) is denoted as θ ∈ [0, 2π).

4.2.1 Operator splittings : AOS, MOS and AMOS

The operator splitting approach, by decomposing the operator as A = A1 + A2,
allows for the development of two unconditionally stable schemes: the additive
operator splitting (AOS) and the multiplicative operator splitting (MOS). These
schemes were proposed in [20, 4] and have proven to be highly effective in effi-
ciently solving nonlinear diffusion models.

Additive and multiplicative operator splitting: AOS and MOS

The methods called additive operator splitting (AOS) and multiplicative operator
splitting (MOS) are iterative techniques that can be applied for any non-negative
integer n and a positive time-step ∆t. These methods are defined as follows:

un+1 =
1

2

2∑
k=1

(I − 2∆tAk)
−1un (AOS)

un+1 =
2∏

k=1

(I −∆tAk)
−1 (MOS)

which are stable for any ∆t > 0 and first-accurate in time. The tridiagonal struc-
ture of (I − ∆tAk)

−1, k = 1, 2 allows for efficient inversion, e.g. by LU factorisa-
tion.
The following proposition guarantees that when the AOS and MOS iterations are

GUETTAF.Amira Mohamed Boudiaf University of Msila



4.2. SPACE-TIME DISCRETISATION 43

applied to the osmosis problem, they preserve the average gray value and posi-
tivity of the solution, and eventually converge to a unique steady-state solution:

The AOS and MOS iterative methods used for solving the osmosis problem
have the property of preserving the average gray value and maintaining positiv-
ity at each iteration. Additionally, these methods exhibit convergence towards a
single steady-state solution.

Proposition 4.2.1. For a starting f ∈ RS
+ the schemes (AOS) and (MOS) with splitting

3.12 preserve the average grey value, positivity and converges to a unique steady-state for
any ∆t > 0.

Proof. Let S = MN . We first notice that the operators P−i = (I − ∆tAi)
−1,with

i = 1, 2 are non-negative and irreducible with unit column sum and positive
diagonal entries being eachAii one-dimensional osmosis discrete space operator
fulfilling Theorem 3.2.4.Thus the operator PAOS = 1

2
(P−1 + P−2 ) is non-negative,

irreducible with unit column sum and positive diagonal entries. Similarly, the
operatorPMOS = P−1 P

−
2 is trivially non-negative and irreducible, with unit col-

umn sum by Lemma 3.3.2 and with strictly positive elements on the diagonal:

Pi,i =
∑S

K=1(P−1 )i,K(P−2 )K,i
= (P−1 )i,i(P

−
2 )i,i +

∑N
K=1,K 6=i(P

−
1 )i,K(P−2 )K,i > 0 for all i = 1, . . . , S

(4.19)

For any n > 0, the AOS time-stepping un+1 = PAOSu
n and MOS time-stepping

un+1 = PMOSu
n satisfy Theorem 3.2.3. Therefore, in both cases, the iterates un+1

preserve the average gray value and positivity for any ∆t > 0. Finally, the unique
steady-state solution of the AOS and MOS iterations corresponds to the eigenvec-
tor associated with the eigenvalue one of PAOS and PMOS , respectively.

Additive–multiplicative operator splitting (AMOS)

In the reference [4], a refined variant of the iterative approach, called the additive-
multiplicative operator splitting (AMOS), is introduced. The AMOS method com-
bines the additive operator splitting (AOS) and multiplicative operator splitting
(MOS) in a more precise manner. The update rule for the variable un+1 in this
method can be expressed as:

un+1 =
1

2

2∑
k=1

((I−∆tAjn)−1(I−∆tAin)−1)un, with i = {1, 2} , j = {2, 1} (AMOS)

Result of Proposition 4.2.1 holds trivially for (AMOS) by combining (AOS) and
(MOS).

Corollary 4.2.2. When starting with an initial value f ∈ RS
+, the (AMOS) scheme with

the given splitting rule (referring to equation 38 in the reference) ensures the preservation
of the average gray value and maintains positivity at each iteration. Furthermore, the
scheme converges to a unique steady-state solution for any positive time-step ∆t > 0.
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4.3 Numerical results

In this section, we present the utilization of isotropic and anisotropic osmosis
models to address shadow removal in synthetic and real-world images. We pro-
vide various numerical examples to showcase the effectiveness of these models.
Specifically, the anisotropic model 4.16 is employed for images containing pre-
dominantly uniform shadows, allowing for the simultaneous removal of shad-
ows and inpainting of shadow edges. As obtaining ground truth is often imprac-
tical in this scenario, we evaluate the reconstruction quality of the anisotropic
model through visual inspection and compare it to the isotropic approach.

4.3.1 On the thickness of the shadow boundary

In the following experiments, we make the assumption that a rough segmenta-
tion of the shadow boundary has already been provided, for the sake of sim-
plicity. However, obtaining an accurate shadow boundary segmentation can be
challenging in the case of natural real images, as the boundaries may not be well-
defined due to various factors such as noise, blurring, and compression artifacts.
Consequently, standard segmentation methods relying on edge detection may
not yield satisfactory results. Previous studies have tackled the task of shadow
segmentation separately, employing techniques such as brightness-based or clus-
tering approaches. In many practical scenarios, the user manually approximates
the shadow boundary by using a brush that includes pixels from both inside and
outside the shadowed area (referred to as Ωsb in Section 4.1.1).
Figure 4.1 presents these findings. We conducted a comparison by applying the
isotropic model 3.11 to a real image with varying thickness of the shadow bound-
ary. It is evident that a thicker Ωsb leads to a more effective removal of the shadow,
particularly for the same extended final time T.

4.3.2 Synthetic examples

In this experiment, we apply the anisotropic osmosis model to synthetic and real-
world images. The aim of this experiment is to test if this method can effectively
remove constant shadows. We present the results for an image with parallel grey-
scale, and for color concentric circles with an angle drawn tangentially to the cir-
cumference. Both images have a constant shadow, but a small transition zone
with blurred shadows was added for a more realistic effect. We compare the
anisotropic model described in this chapter with the isotropic osmosis model de-
scribed in chapter 3, which results in homogeneous diffusion inpainting at the
shadow boundary. The anisotropic shadow removal method shows clear advan-
tages at the shadow boundaries, since it does not suffer from blurring artifacts, as
can be seen in the visual comparison of both methods.
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(a) mask of 3px (b) Isotropic Osmosis (c) Final Result

(d) mask of 3px (e) Result (f) Final Result

Figure 4.1: Figures Comparision between different thicknessees of the shadow
boundary for the solution of the isotropic and the anisotropic model.

(a) Shadowed im-
age

(b) Mask (c) Isotropic osmo-
sis

(d) Anisotropic os-
mosis

Figure 4.2: Shadow removal via isotropic and anisotropic osmosis.

(a) Shadowed im-
age

(b) Mask (c) Isotropic (d) Anisotropic

Figure 4.3: Shadow removal via isotropic and anisotropic osmosis.
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Conclusion

Osmosis filtering has proven to be a powerful tool for image restoration and
enhancement, and in this paper, we have presented an isotropic and anisotropic
osmosis model for shadow removal in images. The models studied in this work,
are based on the principles of osmosis filtering and uses the isotropic and the
anisotropic diffusion matrix to incorporate edge information in the filtering pro-
cess.

We have discuss the effectiveness of this models through several experiments
on both synthetic and natural images. The results show that the anisotropic osmo-
sis model outperforms existing methods for shadow removal in terms of visual
quality and quantitative metrics.

Finally, we have discussed the connection between the anisotropic diffusion
term in the model and specific diffusion-based inpainting models.

Overall, this work illustrates the potential of osmosis filtering as a versatile
tool for image restoration and enhancement, and we expect that this model will
find application in various imaging applications beyond shadow removal.
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 Abstract : 

The use of (PDEs) has a long tradition in mathematical image processing. In particular, a very 

special place is a transport-diffusion PDE describing the physical phenomenon of osmosis for 

imaging application. 

 The goal of this work is to study the foundations of osmosis filtering for imaging 

applications. 

Keywords: 

Image Processing, Edge Enhancement, Nonlinear Diffusion, Linear Diffusion, Finite 

Difference, osmosis filter, shadow removal. 

Résumé: 

L'utilisation des (PDE) a une longue tradition dans le traitement mathématique des images. En 

particulier, une place toute particulière est occupée par une EDP de transport-diffusion 

décrivant le phénomène physique d'osmose pour une application en imagerie. 

L'objectif de ce travail est d'étudier les fondements du filtrage par osmose pour les 

applications d'imagerie. 

Mots-clés :  

Traitement d'image, Amélioration des contours, Diffusion non linéaire, Diffusion linéaire, 

Différences finies, Filtre d'osmose, Suppression des ombres. 

 ملخص

استخدام المعادلات التفاضلية الجزئية لديه تقليد طويل في مجال معالجة الصور الرياضية. وعلى وجه التحديد، تحتل 

 المعادلة التفاضلية الجزئية للنقل والانتشار مكانة خاصة جدا في وصف ظاهرة فيزيائية لتناضح لتطبيق التصوير.

 الهدف من هذا العمل هو دراسة أسس تصفية التناضح لتطبيقات التصوير.

 الكلمات المفتاحية                                                                                          

 معالجة الصور، تحسين الحواف، انتشار غير خطي، انتشار خطي، الفروق المحدودة، مرشح التناضح، إزالة الظل.
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