
PEOPLE’s DEMOCRATIC REPUBLIC OF ALGERIA
MINISTRY OF HIGHER EDUCATION AND SCIENTIFIC

RESEARCH

University Mohamed Boudiaf-Msila
Faculty of Mathematics and computer sciences

Department of Mathematics

Master Thesis

Field : Mathematics and computer sciences
Branch : Mathematics
Option : PDE And Application

Theme

Finite Difference Schemes For Image Edge Enhancement Models

Presented by :
Mr Ferradi Ali

Publicly defended on : 25/06/2022.

Before the jury composed of :

BEN HAMIDOUCHE.N Prof University of Msila President.
CHOUDER.R M.C.B University of Msila Supervisor.
MERZOUGUI.A Prof University of Msila Examiner.

Academic year 2021 / 2022

Acknowledgments

First, I would like to thank my supervisor, Dr. CHOUDER Rafaa , who has entrusted
me by supervising me in this work. I would like to thank him for being so gentle and for
the advice he gave me during the fulfillment of this thesis.
I extend my thanks to the professors and members of the jury.
Again, I would like to extend my thanks and gratitude to the professors who taught me
during the past two years and provided me with advice.
Finally, I thank all those who helped in this work.

1

Contents

Introduction 4

1 PDE Based Image Processing 6
1.1 The Image Society . 6

1.1.1 Image processing . 7
1.1.2 Mathematical Representation of an image 8

1.2 Diffusion in Image Processing . 9
1.2.1 Linear diffusion filtering . 9
1.2.2 Nonlinear diffusion filtering 10
1.2.3 The Beltrami Flow . 10

1.3 Finite-Difference Approximation to Derivatives 11
1.3.1 Notation for functions of several variables 12
1.3.2 Stability and consistency analysis 13
1.3.3 Von Neumann (Fourier) stability analysis 14

2 Heat Equation 16
2.1 Discretization of 1-D Heat Equation 16

2.1.1 The Explicit scheme (FTCS) 17
2.1.2 The Implicit scheme (BTCS) 18

2.2 Numerical Treatment in 2D . 19
2.2.1 The Explicit scheme in 2D . 19
2.2.2 The implicit scheme in 2D 20

2.3 Simulation Results for 1-D Signal and Gray Level Images 21

3 Perona-Malik equation 23
3.1 One-Dimensional Perona-Malik Model and Edges Enhancement . . 24

3.1.1 Discretization of 1-D Perona-Malik equation 24
3.1.2 The Explicit scheme . 26
3.1.3 The Semi-Implicit scheme . 27

3.2 2D Perona-Malik Equation . 27
3.2.1 Discretisation of div operator 28
3.2.2 Discretised diffusion equation 30
3.2.3 Matrix format . 30

2

CONTENTS

3.2.4 AOS (Additive Operator Splitting) 32
3.3 Linear Versus Nonlinear Diffusion 33

4 Fast Difference Schemes for Anisotropic Beltrami Model 37
4.1 Splitting the Beltrami Operator . 37
4.2 Implicit Scheme for Gray level Image (2D) 38
4.3 Finite Difference Equation . 39
4.4 Simulation Results for Gray Level Images 41
4.5 Beltrami Smoothing for Color Images 41
4.6 Implicit Scheme for color Image (3D) 42
4.7 Simulation Results for Color Images 44

5 Appendix 49
5.1 Stability Analysis of Finite Difference schemes for 1-D Heat equation 49

5.1.1 Stability analysis of explicit scheme 49
5.1.2 Stability analysis of implicit scheme 51

5.2 Stability analysis of Finite Difference Semi-Implicit scheme for 1-D
Perona-Malik equation . 52

5.3 Tridiagonal Matrix Algorithm (TDMA) 52

Conclusion 54

3

Introduction

Partial differential equations (PDEs) constitute a natural framework to model
processes in numerous real-world applications, ranging from physics over life
sciences to economy. Thus, it is not surprising that they have also contributed
substantially to the mathematical foundations of signal and image analysis. For
instance, they appear as Euler-Lagrange equations when solving continuous op-
timization problems that result from variation models [3][9] or regularizations of
ill-posed problems [4]. It has also been shown that they are the natural setting
for scale-spaces [1], they are successfully used for image enhancement [33], in-
painting [29], and image compression [12]. PDE-based models benefit from many
decades of research on their theoretical foundations and efficient numerical algo-
rithms. Since they are continuous concepts, it is also very easy to incorporate
useful invariance such as rotation invariance.
One of the most fascinating aspects of PDE-based image analysis is its capability
to unify a number of existing methods in image analysis. This has led to deeper
structural insights as well as to novel algorithms. For instance, PDE formulations
and connections to PDE-based image analysis are known for Gaussian smoothing
[15], dilation and erosion [1] [6] [32], morphological amoebas [35], mean curva-
ture motion [18][1] and nonlinear diffusion filtering [23][8].
Since mean curvature motion and nonlinear diffusion filtering are classical meth-
ods in image processing for which feature directions in the image are important.
Usually the two prominent directions for the local geometry in the image are the
direction of the level or isophote (along an edge) and its orthogonal direction, the
flow-line (across an edge). Choosing the amount of diffusion along these two di-
rections appropriately gives a various range of different methods [2, 26, 20, 7].
A prominent example where we only have diffusion along edges is mean curva-
ture flow. Its theoretical properties have first been investigated by Gage, Hamil-
ton and Huisken in the 1980s [10, 11, 14]. It is known that a plane curve moving
with normal speed equal to its curvature will shrink to a point, its shape becom-
ing smoother and circular. More complicated phenomena are expected in higher
dimensions, but no classification is available. In the context of image process-
ing, following the work of Osher and Sethian [22, 30], a more rigorous view with
the realization that the iso-intensity contours of an image can be moved under
their curvature was achieved. This lead to a series of papers, where the images
viewed as a set of level contours and moving then under their curvature. Image

4

CONTENTS

smoothing by way of level set curvature motion [17, 18], thwarts the diffusion in
the edge direction, thereby preserving the edge information. This work showed
that in addition to this basic approach, a natural stopping criterion can also be
chosen to prevent over smoothing a given image. A general mathematical frame-
work for feature-preserving image smoothing that applies seamlessly to Gray-
level, vector-value (color) images, volumetric images and movies is achieved by
Sochen, Kimmel, and Malladi in [31, 28]. The main idea is to view the image as a
two dimensional manifold embedded in a hybrid spatial-feature space. The au-
thors in [28] showed that many classical geometric flows emerge as special cases
in this view as well as a new flow, the so called Beltrami flow that moves a Gray
level image under a scaled mean curvature. By following a different approach,
Yezzi in [37] arrived at a similar equation.
Smoothing of noisy images presents usually a numerical integration of a parabolic
PDE in scale or two dimensions in space. This often the most time consumptive
component of image processing algorithms.
The explicit numerical integration scheme is conditionally stable. Thus, the un-
conditionally stable numerical scheme becomes an important matter.
The method based on Additive Operator Split (AOS), applied originally by We-
ickert for the nonlinear diffusion flow, may be applied for the Beltrami equation.
This method makes it possible to develop the unconditionally stable semi-implicit
finite difference schemes for image filtering.
In this work, we study some linear and non-linear filters and their effect on Im-
ages Processing. This work is divided into four chapters. The first chapter deals
with the image from a mathematical point of view (definitions and applications
of the image in reality), then we touched on the finite difference and some impor-
tant theories (stability and consistency) The second chapter deals with the heat
diffusion equation, where we have studied it in terms of finite difference, sta-
bility of types (Explicit-Implicit schemes) to its applications in image processing.
In the next chapter, we dealt with the PM equation, where we studied it in 1D
and 2D in terms of the stability of types (Explicit-Semi Explicit schemes) We also
touched on a new technique, AOS(Additive Operator Splitting) and finally, the
applications of the Perona-Malik equation in image processing. The last chapter
we devoted to studying a new type of filter (Beltrami Flow) using AOS(Additive
Operator Splitting) technique and its applications in image processing.

5

CHAPTER 1

PDE BASED IMAGE PROCESSING

Partial differential equations (PDEs) are one of the most important mathe-
matical tools in image processing and computer vision. As they are appear in
diffusion methods as well as in the Euler-Lagrange equations of variational mod-
els, they have been considered appear in many image processing tasks. Con-
sequently, this chapter cannot give a complete overview about the field of PDE
based image processing. Instead we pick out mainly those methods that will be
utilized in the other chapters of this thesis.

1.1 The Image Society

Faced with a society in evolution ever faster, our society very well be con-
sidered as an image society. This is not only due to image is power and impor-
tance as a mean of communication but also for it is so easy, compact, and very
famous existing tool used by all the people and everywhere to describe, express
and represent the physical world. It captures a moment, an event that it freezes
and offers us to analysis, to ameliorate their quality, enhance some characteristics
to efficiently combine different pieces of information. Advertising, Photography,
video games, ..etc., our daily lives of images.

We could also mention many different applications where image processing is
concerned. For examples, medical imaging, satellite and aerial imaging, forecast-
ing the weather, fingerprint analysis, robotics, quality control, Multimedia data
management, video processing, restoration of old movies, etc. (See Figure 1.1).

Without necessarily knowing it, we are consumers of image processing on a
daily basis.

6

CHAPTER 1. PDE BASED IMAGE PROCESSING

1.1.1 Image processing

The goal of image processing and computer vision is to process images in such
a way that they are easier to interpret by human beings or better to process
by further algorithms. Computer Vision tries to do what a human brain does
with the retinal input, it includes understanding and predicting the visual input.
That could consist of segmentation, recognition, reconstruction (3D) and predic-
tion (over video data). Classically, many Computer Vision algorithms employed
image processing and machine learning or sometimes other methods (e.g Varia-
tional Methods, Combinatorial approaches,...) to do the mentioned tasks.

Image processing focuses on enhancing the quality of single images. Image
processing algorithms are used for:

• Extraction of important image structures such as edges and corners (since
the human visual system is very sensitive to this kind of discontinuities).

• Segmentation: dividing the image into regions of constant color where one
has discontinuities at the region boundaries.

• De-blurring: Reconstruction of a visually better image from a blurred image
(since in a blurred image edges are smeared and dislocated).

• De-noising: Removing noise from a noisy image.

Image processing has an enormous range of applications; almost every area
of science and technology can make use of image processing methods. Here is a
short list just to give some indication of the range of image processing applica-
tions.

• 1. Medicine
◦ Inspection and interpretation of images obtained from X-rays, MRI or CAT
scans.
◦ Analysis of cell images, of chromosome karyotypes.

• 2. Agriculture
◦ Satellite/aerial views of land, for example to determine how much land is
being used for different purposes, or to investigate the suitability of differ-
ent regions for different crops.
◦ Inspection of fruit and vegetables—distinguishing good and fresh pro-
duce from old.

• 3. Industry
◦ Automatic inspection of items on a production line, inspection of paper
samples.

• 4. Law enforcement
◦ Fingerprint analysis, sharpening or deblurring of speed-camera images.

7

CHAPTER 1. PDE BASED IMAGE PROCESSING

(a) X-Ray, CT, and MRI Scans (b) A fingerprint Im-
age

(c) Surveillance camera
photo at Home

(d) Road Surveillance Cam-
era Photo

(e) Pregnancy
Follow-Up
Picture

(f) Satellite farmland image

Figure 1.1: Figures showing some applications of image processing

1.1.2 Mathematical Representation of an image

In image processing, a continuous Gray-scale image is considered that is a two-
dimensional function

u : R2 → R
(x, y)→ u(x, y)

The variable (x, y), for digital images, actually belongs to N2, it is a pixel of the
image. u(x, y) represents the luminous intensity, or the Gray level of the image at
the pixel (x, y).

Digital images are most commonly presented as a matrix of scalars for gray-
scale images or vectors for color images. Digital Gray scale images on the other
hand are sampled and quantized. Sampling is the discretization of the image
domain. Here an image consists of Gray values of a rectangular point grid

{ui,j \ i = 0, ..., N − 1 and j = 0, ...,M − 1} .

A grid point (i, j) is called pixel. Here N and M is the width and height of the
image in pixels, respectively. ui,j denotes the Gray value of pixel (i, j).

For a color image, it is not enough to know its Gray level for each pixel: it is
necessary to know the intensity of each of the three channels of the fundamental
colors, the red R, the green G, and the blue B. An color image can then be defined

8

CHAPTER 1. PDE BASED IMAGE PROCESSING

as a vector function

u : R2 → R3

(x, y)→ u(x, y) = (R(x, y);G(x, y);B(x, y))

1.2 Diffusion in Image Processing

1.2.1 Linear diffusion filtering

The first step to use PDEs for smoothing images was done in the beginning of
eighties, when the idea of scale-space filtering has introduced by Witkin [34] and
further developed by Koenderink [21].

The essential idea of this approach is quite simple: embed the original image
in a family of derived images u(x, y, t) obtained by convolving the original image
u0(x, y) with a Gaussian kernel G√2t(x, y) of variance t:

u(x, y, t) =
(
G√2t ∗ u0

)
(x, y) ,

where

Gσ(x, y) =
1

2πδ2
exp

(
−(x2 + y2)

2σ2

)
.

This family of derived images may equivalently be viewed as the solution of
the following heat equation or the linear diffusion equation{

∂u
∂t

= 4u
u(x, y, 0) = u0(x, y)

,

for a function u(x, y, t) is the smoothed image at t, and 4 = ∂2

∂x2 + ∂2

∂y2 denote
Laplacian operator, with the initial condition u(x, y, 0) = u0(x, y), the original
image.

Koenderink [21] motivates the diffusion equation formulation by stating two
criteria:

• Causality: Any feature at a coarse level of resolution is required to possess
a (not necessarily unique) “cause” at a finer level of resolution although the
reverse need not be true. In other words, no spurious detail should be gen-
erated when the resolution is diminished.

• Homogeneity and Isotropy: The blurring is required to be space invariant.

The linear diffusion filter has its limitations: whether we smooth uniformly
by a rotational symmetric Gaussian kernel, or diffuse the data equally in all di-
rections, the process not only removes undesirable local extrema (noise) but also
deforms important features of the image, blurs and dislocates edges. To over-
come these drawbacks, we have to move to nonlinear filters; nonlinear diffusion
offers an excellent alternative.

9

CHAPTER 1. PDE BASED IMAGE PROCESSING

1.2.2 Nonlinear diffusion filtering

Overcoming the undesirable effects of linear smoothing filtering, such as
blurring or dislocating the semantically meaningful edges of the image, nonlin-
ear diffusion equations can be used because the nonlinear diffusion technique
not only preserves the edge sharpness, it may also enhance it. This technique
was firstly proposed by Perona and Malik [23] by stating three criteria:

• Causality: no spurious detail should be generated passing from finer to
coarser scales.

• Immediate localization: boundaries should be sharp and coincide with the
semantically meaningful boundaries at that resolution.

• Piecewise smoothing: intra-region smoothing should be preferred to inter-
region smoothing.

To satisfy the second and third criteria, Perona and Malik proposed to change
the diffusion coefficient D, (D is constant in linear diffusion); by introducing a
space-time-variant diffusion coefficient. Therefore the Perona-Malik model can
be written as {

∂u
∂t

= div(g (|∇u|)∇u)
u(x, y, 0) = u0(x, y)

,

where div denotes the divergence operator, u(x, y, t) is the smoothed image at
time step t, |∇u| is the gradient magnitude of u, and g(x) is the diffusivity func-
tion. g(x) should be a nonnegative, monotonically decreasing function with g(0) =
1, so that the diffusion is maximal within uniform regions, and approaching zero
at infinity, so that the diffusion is stopped across edges.

Nonlinear diffusion filtering can successfully smooth noise while respecting
the region boundaries and small structures within the image, as long as some of
its crucial parameters are determined or estimated correctly. According to Perona
and Malik the choice of functions g leads to the desirable result of edges enhance-
ment.

1.2.3 The Beltrami Flow

The main objective in early computer vision is to smooth images without de-
stroying the semantic content, i.e.,edges, features, corners, etc. In other words,
the boundaries between objects in the image should survive as long as possible
along the scale, while homogeneous regions should be simplified and flattened
in a rapid way. This is particularly important since the denoising of an image is
usually a precursor to segmentation and representation, which often rely on edge
fidelity. We present a fast method to move (image) manifolds that has many real
applications in image analysis and visualization.

10

CHAPTER 1. PDE BASED IMAGE PROCESSING

Let us denote by (Σ, g) the image manifold and its metric and by (M,h) the space-
feature manifold and its metric, then the map X : Σ → M has the following
measure[19]:

S
[
X i, gµν , hij

]
=

∫
dmσ
√
ggµν∂µX

i∂νX
jhij(X), (1.1)

where m is the dimension of Σ, g is the determinant of the image metric, gµν

is the inverse of the image metric, the range of indices is µ, ν = 1, . . . , dim Σ, and
i, j = 1, . . . , dimM , and hij is the metric of the embedding space. This is a natural
generalization of the L2 norm to manifolds.
As an example, a gray level image can be treated as a 2D manifold embedded in
R3, i.e. a mapping X : (x, y)→ (X1 = x,X2 = y,X3 = U(x, y))

Many scale-space methods, linear and nonlinear can be shown to be a gradient
descent flows of this functional with appropriately chosen metric of the image
manifold. The gradient descent equation is X i

t = − 1√
g
δS
bX2 . minimizing the area

action in equation(1.1). With respect to the feature coordinate U , we obtain the
following Beltrami flow equation,

Ut =
Uxx

(
U2
y + 1

)
− 2UxUyUxy + Uyy (U2

x + 1)(
1 + U2

x + U2
y

)2 . (1.2)

1.3 Finite-Difference Approximation to Derivatives

Let a function U derivatives and single-valued, finite and continuous functions
of x, then by Taylor’s theorem[27].

U(x+ h) = U(x) + hU ′(x) +
1

2
h2U ′′(x) +

1

6
h3U (3)(x) +

1

4!
h4U (4)(x) + . . . (1.3)

and

U(x− h) = U(x)− hU ′(x) +
1

2
h2u′′(x)− 1

6
h3U (3)(x) +

1

4!
h4U (4)(x) + . . . (1.4)

Addition of these expansions gives

U(x+ h) + U(x− h) = 2U(x) + h2U ′′(x) +O
(
h4
)

where O (h4) denotes terms containing fourth and higher powers of h. Assuming
these are negligible in comparison with lower powers of h it follows that,

U ′′(x) =

(
d2U

dx2

)
x=x

≈ 1

h2
{U(x+ h)− 2U(x) + U(x− h)} (1.5)

with a leading error on the right-hand side of order h2.
Subtraction of equation (1.4) from equation (1.3) and neglect of terms of order h3

leads to

U ′(x) =

(
dU

dx

)
x=x

≈ 1

2h
{U(x+ h)− U(x− h)} (1.6)

11

CHAPTER 1. PDE BASED IMAGE PROCESSING

with an error of order h2. equation (1.6) clearly approximates the slope of the tan-
gent at the point P by the slope of the chord AB, and is called a central-difference
approximation (Figure 1.2). We can also approximate the slope of the tangent at
P by either the slope of the chord PB, giving the forward-difference formula,

U ′(x) ≈ 1

h
{U(x+ h)− U(x)},

or the slope of the chord AP giving the backward-difference formula,

U ′(x) ≈ 1

h
{U(x)− U(x− h)},

with an error of order h.

Figure 1.2: Approximations of the slope of the tangent at point P by the slope of
the chord AB, and by the slope of the chord PB.

1.3.1 Notation for functions of several variables

Assume U is a function of the independent variables x and t. Subdivide the x− t
plane into sets of equal rectangles of sides ∆x = h,∆t = k, by equally spaced
grid lines parallel to Oy, defined by xi = ih, i = 0,±1,±2, . . ., and equally spaced
grid lines parallel to Ox, defined by tj = jk, j = 0, 1, 2, . . ., as shown in figure 1.3.
Denote the value of U at the representative mesh point P (ih, jk) by

Ui,j = U(ih, jk).

Then by equation(1.5),(
∂2U

∂x2

)
i,j

≈ U{(i+ 1)h, jk} − 2U{ih, jk}+ U{(i− 1)h, jk}
h2

.

12

CHAPTER 1. PDE BASED IMAGE PROCESSING

Figure 1.3: Approximated value of U at the representative mesh point P .

i.e. (
∂2U

∂x2

)
i,j

≈ Ui+1,j − 2Ui,j + Ui−1,j

h2
,

with a leading error of order h2.

With this notation the forward (resp. backward) difference approximation for
∂U/∂x at P is (

∂U

∂x

)+

i,j

≈ Ui+1,j − Ui,j
h

,

(
∂U

∂x

)−
i,j

≈ Ui,j − Ui−1,j

h
,

with a leading error of O(h).
The forward-difference approximation for ∂U/∂t at P is

∂U

∂t
≈ Ui,j+1 − Ui,j

k
,

with a leading error of O(k).

1.3.2 Stability and consistency analysis

We now look at the concepts of consistency and stability which allow us to un-
derstand when a numerical solution to a PDE converges to the exact solution. We
shall then apply them to the explicit scheme.

13

CHAPTER 1. PDE BASED IMAGE PROCESSING

Definition 1.3.1. Consistency [27]

A finite difference scheme is consistent if the numerical solution computed
after a fixed number of steps converges to the exact solution as h and k tend
to zero. Consistency ensures that the finite difference equation converges to the
original PDE.

Definition 1.3.2. Stability [27]

A finite difference scheme is stable if the numerical solution computed after a
fixed time remains bounded as h→ 0.

Stability ensures that the numerical solution at a finite time does not blow
up as the time-step is reduced to zero. Consistency and stability together ensure
convergence of the numerical solution according to the following

Theorem 1.3.3. Lax-Richtmeyer [27]

A finite difference approximation to a well posed linear initial value problem converges
to the exact solution as k and h tend to zero if and only if it is consistent and stable.

1.3.3 Von Neumann (Fourier) stability analysis

Define the error in the numerical approximation as

εnj = Un
j − unj , (1.7)

where unj is the exact solution. Both the numerical solution Un
j and the exact

solution unj satisfy PDE, therefore, the error εnj also follows the discretized ODE.
The spatial variation of error may be expanded in a finite Fourier series, in the
interval L, as

ε(x) =
M∑
m=1

Ame
ikmx (1.8)

where km = πm
L

, m = 1, 2, . . . ,M and M = L/h, i =
√
−1. eikmx is the complex

exponential. Am is a function of time. Since the error tends to grow or decay
exponentially with time, it is reasonable to assume that the amplitude varies ex-
ponentially with time; hence

ε(x, t) = εnj =
M∑
m=1

eteikmx (1.9)

Since the difference equation for error is linear, it is enough to consider the growth
of error of a typical term:

εm(x, t) = εnj = eteikmx (1.10)

14

CHAPTER 1. PDE BASED IMAGE PROCESSING

The goal is to show that the error incurred by a particular numerical scheme
doesn’t grow in the evolving steps of time. Define the amplification factor

G ≡
εn+1
j

εnj

Then, the necessary condition for stability is:

|G| ≤ 1 or [−1 ≤ G ≤ 1] (1.11)

15

CHAPTER 2

HEAT EQUATION

As we mentioned in the previous chapter, the first PDE that have been used in
image processing is the Heat equation that realizes a spatial diffusion of the Gray
values of a given image. It is a parabolic equation that reads:

∂u(t,x)
∂t

= ∆u(t, x) for t ≥ 0 and x ∈ Ω
u(0, x) = f(x) for x ∈ Ω
∂u(t,x)
∂N

= 0 for t > 0 and x ∈ ∂Ω

(2.1)

where ∆ is the Laplacian operator, f is the initial temporal condition and ∂u
∂N

= 0
are Neumann boundary conditions. This model diffuses the initial condition f
(that can be seen as an initial temperature) along time.

This chapter consist to numerical integration of the heat equation. Stability of
finite difference schemes are established in one and two dimensional cases. We
finished this chapter by simulation results for Gray level image.

2.1 Discretization of 1-D Heat Equation

In order to deeper understanding of numerical integration to the heat equation,
we start by the one-dimensional case. We consider the following problem:

∂u(t,x)
∂t

= ∂2u(t,x)
∂x2 for t ≥ 0 and x ∈ Ω

u(0, x) = f(x) for x ∈ Ω
∂u(t,x)
∂N

= 0 for t > 0 and x ∈ ∂Ω

(2.2)

16

CHAPTER 2. HEAT EQUATION

According to use right-shifted or left-decentered finite difference scheme in time,
two different schemes are considering: The explicit scheme (FTCS), and the im-
plicit scheme (BTCS).

2.1.1 The Explicit scheme (FTCS)

The explicit Euler scheme consists of using a finite difference scheme that is right-
shifted in time. It is written:

un+1
i − uni

∆t
−∆uni = 0, for n = 0, 1, . . . ,M, and ∆t =

T

M

So the schema is written as follow:

un+1
i − uni

∆t
=
uni−1 − 2uni + uni+1

∆x2
.

After simplification we get:

un+1
i =

∆t

∆x2
uni−1 + (1− 2

∆t

∆x2
)uni +

∆t

∆x2
uni+1.

We can write u in the form of a vector U , the matrix of this scheme is writing as:

Un+1 = AUn, n = 0, 1, . . . ,M,

where A is tridiagonal matrix and it only depends on ∆t .
The matrix-format is writing in the following form:

un+1
1

un+1
2

:
:
un+1
N

 =


1− λ λ 0 0
λ 1− 2λ λ 0

:
. :

0 λ 1− 2λ λ
0 0 λ 1− λ




un1
un2
:
:
unN

 .

This scheme only requires a matrix-vector product in each time step.

The explicit numerical integration scheme is conditionally stable. It imposes
a constraint on the time step length, depending on the spatial resolution:

k ≤ h2

2
.

17

CHAPTER 2. HEAT EQUATION

-10 -8 -6 -4 -2 0 2 4 6 8 10

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 2.1: FTCS solution to the heat equation. The instability in the solution is
now obvious.

2.1.2 The Implicit scheme (BTCS)

The implicit Euler scheme consists in using a left-decentered finite difference
scheme in time

un+1
i − uni

∆t
=
un+1
i−1 − 2un+1

i + un+1
i+1

∆x2 (2.3)

or
uni = − k

∆x2
un+1
i−1 + (1 + 2

∆t

∆x2)un+1
i − ∆t

∆x2u
n+1
i+1 .

We will write u in the form of a vector U , the matrix writing of this scheme is:

Un = AUn+1, n = 0, 1, . . . ,M,

The matrix writing is as follows:
un1
un2
:
:
unN

 =


1 + λ −λ 0 0
−λ 1 + 2λ −λ 0

:
. :

0 −λ 1 + 2λ −λ
0 0 −λ 1 + λ




un+1
1

un+1
2

:
:
un+1
N

 (2.4)

18

CHAPTER 2. HEAT EQUATION

The advantage of this scheme is that it is unconditionally stable. But it requires
the resolution of a linear system in each time step.

-10 -8 -6 -4 -2 0 2 4 6 8 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2.2: Stable BTCS solution to the heat equation.

2.2 Numerical Treatment in 2D

2.2.1 The Explicit scheme in 2D

In the case of two dimensions the explicit FTCS scheme reads

un+1
i,j − uni,j

∆t
=

(
uni+1,j − 2uni,j + uni−1,j

∆x2 +
uni,j+1 − 2uni,j + uni,j−1

∆y2

)
, (2.5)

or, with α = ∆t/∆x2 and β = ∆t/∆y2

un+1
i,j = α

(
uni+1,j + uni−1,j

)
+ β

(
uni,j+1 + uni,j−1

)
+ (1− 2α− 2β)uni,j

Assuming
εni,j = Anei(kxxj+kyyj)

19

CHAPTER 2. HEAT EQUATION

leads to the following relation for the amplification factor A(k)

A(k) = 1− 4α sin2

(
kx4x

2

)
− 4β sin2

(
ky4y

2

)
In this case the stability condition reads

α + β ≤ 1

2

This stability condition imposes a limit on the time step:

∆t ≤ ∆x2∆y2

2
(
∆x2 + ∆y2

)
In particular, for the case ∆x = ∆y we have

k ≤ h2

4

which is even more restrictive, than in the one-dimensional case.

2.2.2 The implicit scheme in 2D

To overcome the stability restriction of the FTCS method 2.5, we can use an im-
plicit BTCS schema in the two-dimensional case. The schema reads:

un+1
i,j − uni,j
4t

=
un+1
i+1,j − 2un+1

i,j + un+1
i−1,j

h2
+
un+1
i,j+1 − 2un+1

i,j + un+1
i,j−1

4y2
,

or

− α
(
un+1
i+1,j + un+1

i−1,j

)
+ (1 + 2α + 2β)un+1

i,j − β
(
un+1
i,j+1 + un+1

i,j−1

)
= uni,j (2.6)

Assuming
εni,j = Anei(kxxj+kyyj)

leads to the following relation for the amplification factor A(k)

A(k) =
1

1 + 4α sin2
(
kx4x

2

)
+ 4β sin2

(
ky4y

2

)
This Scheme is unconditionally stable.

20

CHAPTER 2. HEAT EQUATION

20 30 40 50 60 70 80

-20

0

20

40

60

80

100

120

Figure 2.3: The 1-D edge profile (dot-dash) and its linear diffusion filtered ver-
sions (solid).

2.3 Simulation Results for 1-D Signal and Gray Level
Images

In Figure 2.3 we can see that the approximate of the linear filter gives a good
approximation except for the edge points.
In Figure 2.4 we can see that the linear filter has blurred noise and edges together.
We also note that linear filters work very quickly in implementation
Smoothing edges cause the image to lose its meaning(Because The edges is very
useful in many applications such as pattern recognition and fingerprint and iris
biometric identification, space science and robot vision).
This is one of the main drawbacks of linear filters, and this leads us to a new type
of nonlinear filter(Perona-Malik) that preserves edges well compared to linear
filters.

21

CHAPTER 2. HEAT EQUATION

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2.4: The original image and its linear diffusion filtered versions. a: Orig-
inal Image, b: Gaussian Noise , c: salt and pepper. d,e and f: Image filtered by
Linear-Filter after 5 Iteration. g,h and i: Image filtered by Linear-Filter after 20
Iteration

22

CHAPTER 3

PERONA-MALIK EQUATION

Smoothing of noisy images presents usually a numerical integration of a parabolic
PDE in scale or two dimensions in space. This often the most time consumptive
component of image processing algorithms.
The explicit numerical integration scheme is conditionally stable. It imposes a
constraint on the time step length, depending on the spatial resolution s = ∆x =
∆y:

∆t ≤ λs2.

Theoretical and numerical aspects of the nonlinear anisotropic diffusion were ex-
tensively studied by Weickert [33]. It proves to be difficult to define analytically
the threshold value of λ for nonlinear smoothing. Thus, the unconditionally sta-
ble numerical scheme becomes an important matter.
The Additive Operator Splitting (AOS) Schemes were introduced by Weickert et
al. as unconditionally stable for the nonlinear diffusion in image processing.

23

CHAPTER 3. PERONA-MALIK EQUATION

3.1 One-Dimensional Perona-Malik Model and Edges
Enhancement

In order to establish the results concerning the enhancement of edges in Perona-
Malik model [23],

ut =
∂

∂x
(g (|ux|)ux) in Ω× (0,+∞),

∂u

∂n
= 0 in ∂Ω× (0,+∞),

u(x, 0) = u0(x) in Ω.

(3.1)

where g(s) is a smooth non-increasing function with g(0) = 1, g(s) > 0 and
g(∞) = 0.
We analyze the way in which the gradients in the edge region evolve with time
t. In other words, we need to find the function of ∂(ux)

∂t
. In the case of a 1-D signal,

the Perona-Malik diffusion equation can be written as

∂u

∂t
=

∂

∂x
(g(ux)ux) (3.2)

=
∂g(ux)

∂x
ux + g(ux)uxx.

For ease of understanding, we define the flux function φ(x) = g(x).x, where g(x)
is the diffusivity function. Therefore, we can write (3.2) as follow

∂u

∂t
= φ′(ux)uxx.

The change of the gradients, at any location of the edge, is given by:

∂ (ux)

∂t
= φ′′(ux)u

2
xx + φ′(ux)uxxx. (3.3)

The sign of the right hand-side of equation (3.3) tells us whether a gradient ux at
location x is increasing

(
∂(ux)
∂t

> 0
)

or decreasing
(
∂(ux)
∂t

< 0
)

, which means that
the blurring/enhancing behaviour of the Perona-Malik filter depends on the sign
of φ′(ux). On the edge, the second derivative uxx = 0 and uxxx ≤ 0 since at this
point the gradient is maximum (See 3.1). The gradient at the edge decreases if
φ′(ux) > 0, so the edge is blurred. If φ′(ux) < 0, the gradient at the edge increases
with time while the neighbouring gradients decrease, this process leads to sharp
edges. (See Figure 3.2).

3.1.1 Discretization of 1-D Perona-Malik equation

By simply using the finite differences introduced above, one way of discretising
the right terms in 3.1 is using the central difference. First we apply the central

24

CHAPTER 3. PERONA-MALIK EQUATION

20 30 40 50 60 70 80 90 100

0

20

40

60

80

100

x

20 30 40 50 60 70 80 90 100

0

2

4

6

8

x

20 30 40 50 60 70 80 90 100

−0.5

0

0.5

x

20 30 40 50 60 70 80 90 100
−0.4

−0.3

−0.2

−0.1

0

0.1

x

Figure 3.1: The edge function u(x) and its first, second, and third derivatives, in
the top left, top right, bottom left, and bottom right, respectively.

10 20 30 40 50 60 70 80 90 100

1

1.5

2

2.5

3

3.5

4

4.5

5

x

10 20 30 40 50 60 70 80 90 100

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

x

Figure 3.2: Flux function φ (left) and its derivative φ′ (right).

difference and then the forward and the backward differences for approximating
the corresponding derivatives.
The ’trick’ here is to realise that (gx) (x+ 0.5, y) is actually the forward difference
D+
x g(x), while (gx) (x− 0.5, y) is the backward difference D−x g(x).

equation 3.4 shows the discretisations for (g (|ux|)ux)x. This is the same discreti-
sation as in the famous paper by Perona and Malik [23].

∂

∂x
(g.ux) =

(
g
∂u

∂x

)
(x+ 0.5)−

(
g
∂u

∂x

)
(x− 0.5)

∆x

=
g (x+ 0.5)

∂u

∂x
(x+ 0.5)− g (x− 0.5)× ∂u

∂x
(x− 0.5)

∆x

= g (x+ 0.5)

[
u(x+ 1)− u(x)

∆x2

]
− g (x− 0.5)

[
u(x)− u(x− 1)

∆x2

]
(3.4)

25

CHAPTER 3. PERONA-MALIK EQUATION

20 30 40 50 60 70 80 90 100

0

1

2

3

4

5

x

d(ux)/dt

u(x)

Figure 3.3: An edge function u(x) and the rate of change of the edge gradient ∂(ux)
∂t

with time.

3.1.2 The Explicit scheme

The explicit scheme consists of using a finite difference scheme that is right-
shifted in time. It is written:

∂u

∂t
=
un+1
i − uni

∆t
(3.5)

Then,

un+1
i − uni =

∆t

∆x2u
n
i−1g

n
i− 1

2

− ∆t

∆x2u
n
i

(
gn
i+ 1

2

+ gn
i− 1

2

)
+

∆t

∆x2u
n
i g

n
i+ 1

2

un+1
i =

∆t

∆x2u
n
i−1g

n
i− 1

2

+ uni

[
1− ∆t

∆x2

(
gn
i+ 1

2

+ gn
i− 1

2

)]
+

∆t

∆x2 g
n
i+ 1

2

uni+1

we will write u in the form of a vector U , the matrix of this scheme is writing as:

Un+1 = AUn, n = 0, 1, . . . ,M,

The matrix is writing as follows:
un+1

1

un+1
2

:
:
un+1
N

 =


1− β1 β1 0 0
α2 1− (α2 + β2) β2 0

:
. :

0 αN−1 1− (αN−1 + βN−1) βN−1

0 0 αN 1− (αN + βN)




un1
un2
:
:
unN


where: αi =

∆t

∆x2 g
n
i+ 1

2

, βi =
∆t

∆x2 g
n
i− 1

2

and A is tridiagonal matrix and it only

depends on ∆t .
This scheme only requires a matrix-vector product in each time step.

26

CHAPTER 3. PERONA-MALIK EQUATION

The explicit numerical integration scheme is conditionally stable. It imposes a
constraint on the time step length, depending on the spatial resolution ∆x:

∆t ≤ λ∆x2.

It proves to be difficult to define analytically the threshold value of λ for nonlin-
ear diffusion, but various numerical numerical tests revealed that for nonlinear
diffusion, the value is almost exactly the same as for the linear diffusion: λ ≈ 1

2
.

Thus, the unconditionally stable numerical scheme becomes an important matter.

3.1.3 The Semi-Implicit scheme

We have:

un+1
i − uni =

∆t

∆x2u
n+1
i−1 g

n
i− 1

2

− ∆t

∆x2u
n+1
i

(
gn
i+ 1

2

+ gn
i− 1

2

)
+

∆t

∆x2u
n+1
i+1 g

n
i+ 1

2

then

uni =
∆t

∆x2u
n+1
i−1 g

n
i− 1

2

+ un+1
i

[
1 +

∆t

∆x2

(
gn
i+ 1

2

+ gn
i− 1

2

)]
− ∆t

∆x2 g
n
i+ 1

2

uni+1

(3.6)
We will write u in the form of a vector U , the matrix writing of this scheme is:

Un = AUn+1, n = 0, 1, . . . ,M,

The matrix is writing as follows:
un1
un2
:
:
unN

 =


1 + β1 −β1 0 0
−α2 1 + (α2 + β2) −β2 0

:
. :

0 −αN−1 1 + (αN−1 + βN−1) βN−1

0 0 −αN 1 + αN




un+1
1

un+1
2

:
:
un+1
N


where: αi =

∆t

∆x2 g
n
i+ 1

2

and βi =
∆t

∆x2 g
n
i− 1

2

.

The advantage of this scheme is that it is unconditionally stable for all values of
the time step ∆t.

3.2 2D Perona-Malik Equation

The two-dimensional Perona-Malik equation is written as follows:
ut = div (g (|∇u|)∇u) in Ω× (0,+∞),
∂u

∂n
= 0 in ∂Ω× (0,+∞),

u(x, 0) = u0(x) in Ω.

(3.7)

27

CHAPTER 3. PERONA-MALIK EQUATION

3.2.1 Discretisation of div operator

Now that we know how to approximate first and second order derivatives, we
can discretise the divergence, div, operator. Conceptually, we have two different
cases:

div(∇f)

div(g(x, y, t)∇f)
(3.8)

Here, physical interpretation of the divergence is, in a sense, that of diffusion . In
the case of div(∇f), diffusivity is the same in each direction, whereas in the case
of div(g(x, y, t)∇f), diffusivity is defined (or controlled) by the function g and is
not necessarily the same in all the directions.
Mathematically, for a differentiable vector function F = U~i + V~j, divergence
operator is defined as:

div(F) =
∂U

∂x
+
∂V

∂y
(3.9)

In other words, divergence is a sum of partial derivatives of a differentiable vector
function. Therefore, in our case, we have [25]:

div(∇f) =
∂

∂x
(fx) +

∂

∂y
(fy) =

∂2f

∂x2
+
∂2f

∂y2
= ∆f

div(g(x, y, t)∇f) =
∂

∂x
(g(x, y, t)fx) +

∂

∂y
(g(x, y, t)fy) = ∇g · ∇f + g∆f

(3.10)

Now, by simply using the finite differences introduced above, one way of dis-
cretising the divergence terms in 3.10 is using the central difference. First we
apply the central difference and then the forward- and the backward differences
for approximating the corresponding derivatives. The ’trick’ here is to realise that
(fx) (x+ 0.5, y) is actually the forward difference D+

x f(x), while (fx) (x− 0.5, y) is
the backward difference D−x f(x). Equations 3.11 , and 3.12 show the discretisa-
tions for div(∇f), and div(g(x, y, t)∇f), respectively. This is the same discretisa-
tion as in the famous paper by Perona and Malik [23].

∂

∂x
(fx) (x, y) +

∂

∂y
(fy) (x, y) = (fx) (x+ 0.5, y)− (fx) (x− 0.5, y)

+ (fy) (x, y + 0.5)− (fy) (x, y − 0.5)

=f(x+ 1, y)− f(x, y) + f(x− 1, y)− f(x, y)

+ f(x, y + 1)− f(x, y) + f(x, y − 1)− f(x, y)

=∇Ef +∇Wf +∇Sf +∇Nf
(3.11)

Where∇{W,N,E,S}f denotes the difference in the directions given byW,N,E, S. As
it was already mentioned, first we apply first order central difference on fx(x, y),

28

CHAPTER 3. PERONA-MALIK EQUATION

and thus obtain D0
xfx(x, y) = (fx) (x+ 0.5, y)− (fy) (x− 0.5, y).

∂

∂x
(gfx) (x, y) +

∂

∂y
(gfy) (x, y) = (gfx) (x+ 0.5, y)− (gfx) (x− 0.5, y)

+ (gfy) (x, y + 0.5)− (gfy) (x, y − 0.5)

=g(x+ 0.5, y)(f(x+ 1, y)− f(x, y))

+ g(x− 0.5, y)(f(x− 1, y)− f(x, y))

+ g(x, y + 0.5)(f(x, y + 1)− f(x, y))

+ g(x, y − 0.5)(f(x, y − 1)− f(x, y))

=gE∇Ef + gW∇Wf + gS∇Sf + gN∇Nf

(3.12)

Where g{W,N,E,S} denotes diffusivity in the directions given by W,N,E, S. As it
can be observed from equation 3.12 , we need to approximate the diffusivity be-
tween the pixels. A simple ’2-point’ approximation would be the average be-
tween neighbouring pixels, for example g(x + 0.5, y) = [g(x + 1, y) + g(x, y)]/2.
A more precise approximation, leading to better results, is a ’6-point’ approxima-
tion of Brox.
As it was already mentioned above, physical interpretation of the divergence is,
in a sense, diffusion: the divergence operator introduces a ‘connectivity’ between
the pixels. This simply means, as will be shown later on, that a solution at any
position (i, j) will depend on the solution at neighbouring positions. Because of
this kind of a dependency of the solution between the adjacent positions, varia-
tional correspondence methods are said to be ‘global’. This kind of connectivity
is problematic at image borders, where we do not have neighbour anymore. In
order to deal with this problem, we use a scheme called eliminated boundary
conditions [25], shown in Figure 3.4

Figure 3.4: Double circle denotes the position of interest while single circles are
the neighbouring positions W, N, E, S; (b) shows the eliminated boundary condi-
tions.

29

CHAPTER 3. PERONA-MALIK EQUATION

3.2.2 Discretised diffusion equation

In order to solve Equation of Implicit Scheme weed to discretise the divergence
operator. We start by marking the positions of the pixels of interest with (i, j) :

(u)n+1
i,j − (u)ni,j

∆t
= div

(
gn∇un+1

)
After this we discretise the div operator, as given by equation 3.12 , and obtain
the following:

(u)n+1
i,j − (u)ni,j =∆tgnN

(
(u)n+1

i−1,j − (u)n+1
i,j

)
+ ∆tgnS

(
(u)n+1

i+1,j − (u)n+1
i,j

)
+ ∆tgnW

(
(u)n+1

i,j−1 − (u)n+1
i,j

)
+ ∆tgnE

(
(u)n+1

i,j+1 − (u)n+1
i,j

)
The only thing left to do, is arrange the terms:

(u)n+1
i,j (1 + ∆t (gnN + gnS + gnW + gnE)) = (u)ni,j

+ ∆tgnN

(
(u)n+1

i−1,j

)
+ ∆thgnS

(
(u)n+1

i+1,j

)
+ ∆tgnW

(
(u)n+1

i,j−1

)
+ ∆tgnE

(
(u)n+1

i,j+1

)
(3.13)

3.2.3 Matrix format

While equation 3.13f shows equation to be solved for a pixel position (i, j), we can
write the system equations in matrix/vector format, covering the whole image,
as given in 3.14 . Now, the components of the vector are II where I ∈ {1, . . . , N}
and N is the number of pixels in image. We use I,J also to mark the positions in
the system matrix A given in 3.14. This is done in order to convey clearly the idea
that the domains of the discretised images and the system matrices are different.
If the domain of the discretised image is Ωh : [1,m] × [1, n] (discrete image with
m columns and n rows), the system matrix A is defined on [m · n] × [m · n] (here
- denotes multiplication). Now, we can write the Euler forward, semi-implicit
formulation in a vector/matrix format as follows [36, 25]:

(u)n+1 − (u)n

∆t
= A ((u)n)un+1 (3.14)

where u := (u)I with I = [1 . . . N], and k refers to the channel in question (e.g.
R, G or B). The system matrix A ((u)n) is defined as follows: A ((u)n) =

[
anI,J

]
where gnJ∼I refers to the ’diffusion’ weight between pixels J and I at time t.

30

CHAPTER 3. PERONA-MALIK EQUATION

In other words, these refer to the g{W,N,E,S} seen previously. equation 3.15 gives
an example of how the system matrix A would look like for a 3 × 3 size image.
Here C and N are block matrices that refer to the ’central’ and the ’neighbouring’
matrices, correspondingly.

A =

 C N 0
N C N
0 N C



C =


1 +

∑
J∈N−(I) ∆tgnJ∼I −∆tgnJ∼I 0

J ∈ N+(I) 1 +
∑
J∈N−(I) ∆tgnJ∼I −∆tgnJ∼I

−∆tgnJ∼I J ∈ N+(I)
−∆tgnJ∼I 1 +

∑
J∈N−(I) ∆tgnJ∼I

0 J ∈ N+(I)


N =

 −∆tgnJ ∼ I 0 0
0 −∆tgnJ ∼ I 0
0 0 −∆tgnJ∼I

 (3.15)

From 3.14 we can see how the matrix A looks like for a 3 × 3 size image: it is a
block tridiagonal square matrix, of size 9× 9, that has non-zero components only
on the main diagonal and on the diagonals adjacent to this. Therefore, unless the
image is very small, it is infeasible to solve the system by inverting A directly.
Instead, we search for a solution using iterative methods.

C S 0 E 0 0 0 0 0
N C S 0 E 0 0 0 0
0 N C 0 0 E 0 0 0
W 0 0 C S 0 E 0 0
0 W 0 N C S 0 E 0
0 0 W 0 X C 0 0 E
0 0 0 W 0 0 C S 0
0 0 0 0 W 0 N C S
0 0 0 0 0 W 0 N C


(a): Column wise traversing



C E 0 S 0 0 0 0 0
W C E 0 S 0 0 0 0
0 W C 0 0 S 0 0 0
N 0 0 C E 0 S 0 0
0 N 0 W C E 0 S 0
0 0 N 0 X C 0 0 S
0 0 0 N 0 0 C E 0
0 0 0 0 N 0 W C E
0 0 0 0 0 N 0 W C


(b): Row-wise traversing

31

CHAPTER 3. PERONA-MALIK EQUATION

3.2.4 AOS (Additive Operator Splitting)

With the vector/matrix format in place, we can now formulate the ’additive op-
erator splitting’ scheme by Weickert et al.[36]. In order to simplify the , we write
A instead of A ((u)n) .Id refers to the identity matrix. Therefore, we have:

(u)n+1 = (u)n + ∆tAun+1

From which (u)n+1 can be solved as follows:

(u)n+1 = (Id−∆tA)−1un

Now, we ’decompose’ A so that A =
∑m

l=1 Al, which allows as to write the above
equation as:

(u)n+1 =

(
m∑
l=1

1

m
Id−∆t

m∑
l=1

Al

)−1

un

where m is the number of dimensions (in our case m = 2). Previous equation can
be written, using only a single summation operator, as:

(u)n+1 =

(
m∑
l=1

1

m
(Id−∆tmAl)

)−1

un (3.16)

The idea of writing A as A =
∑m

l=1Al is based on the traversing order of A as
shown in Figure ?? . When constructing each Al (here l can be though of referring
to the traversing order based on the dimension), we only take into account the
neighbours on the diagonals next to the main diagonal and discard the rest.
Physically this can be interpreted as diffusing separately along the vertical and
horizontal directions.
When constructing the matrices Al, one must be careful with the ’central’ ele-
ments, equation 3.15, so that only the neighbours on the diagonals next to the
main diagonal are taken into account. equation 3.16 has interesting ’form’ in the
sense that the ’system matrix’ is decomposed.
The problem is that the decomposed system matrix is inside the ()−1 operator.
Instead, we would like to construct the solution in parts as follows[25]:

(u)n+1 =
m∑
l=1

(
1

m
(Id−∆tmAl)

)−1

un (3.17)

The problem is that the right hand sides of Equations 3.16 and 3.17 are not equal,
as can be easily verified. Therefore, we pose the question if there exists a simple
variable x, when used to multiply the right hand side of 3.17, would make these
equal:

(
m∑
l=1

1

m
(Id−∆tmAl)︸ ︷︷ ︸

B

)−1un = x
m∑
l=1

(
1

m
(Id−∆tmAl)︸ ︷︷ ︸

B

)−1un (3.18)

32

CHAPTER 3. PERONA-MALIK EQUATION

The above can be simplified into:

B−1 = xm2B−1

And, thus we have:

x =
1

m2

Based on this, in order to use the ’additive operator splitting’ scheme given by
equation 3.17., we multiply the right hand side with 1

m2 , and obtain the following:

(u)n+1 =
1

m2

m∑
l=1

(
1

m
(Id−∆tmAl)

)−1

un

which is the same as:

(u)n+1 =
m∑
l=1

(
mId−∆tm2Al

)−1
un

As an example, if l = 2(2D), then we would have:

(u)n+1 = (2Id− 4∆tAx)
−1 un + (2Id− 4∆tAy)

−1 un

Introducing the notation: V = (2Id− 4∆tAx)
−1 Un and W = (2Id− 4∆tAy)

−1 un

The solution is simply:
Un+1 = V +W

We finally obtain the equation sets for V and W as follows:

(2Id− 4∆tAx)V = Un and (2Id− 4∆tAy)W = Un.

Now, as it can be understood, the whole idea of this scheme is to bring the equa-
tions to a ’simpler’ form, allowing us to use efficient block-wise solvers, such as
TDMA (TriDiagonal Matrix Algorithm) see the Appendix.

3.3 Linear Versus Nonlinear Diffusion

For a useful comparison between the linear and nonlinear diffusion filtering meth-
ods and their impact on edge sharpness, Figure 3.5 shows the plots of the noisy
1-D edge profile (1-D signal) function and its filtered versions.
In Figure 3.5 the difference between a linear filter and a nonlinear filter can be
observed.
Another example for a gray-scale image filtred by linear and nonlinear diffusion

is given in Figure 3.6.
Figure 4.4 shows that The Gaussian noise is removed more effectively with the
nonlinear filter compared to salt and pepper noise.
The salt and pepper noise becomes blurred but is not removed, this shows that

33

CHAPTER 3. PERONA-MALIK EQUATION

20 30 40 50 60 70 80
-20

0

20

40

60

80

100

120

Edge profile

Nonlinear diffusion

Linear diffusion

Figure 3.5: The 1-D edge profile u(x) (dot-dash) and its filtered versions. Nonlin-
ear diffusion filtering (solid) and linear diffusion filtering (dashed).

the non-linear filter is not suitable in the Salt and Pepper Images .

As seen in the figures 3.6 and 4.4 the linear diffusion filtering blurs the edge,
whereas the nonlinear diffusion filtering preserves edge sharpness. The model of
Malik and Perona had several serious, practical and theoretical difficulties.

• Assume that the signal is noisy, with the white noise for instance. Then
large gradients |Ou| are introduced by the noise. Moreover, Ou is in theory
unbounded. Thus, the conditional smoothing introduced by the model will
not give good results, since all these noise edges will be kept.

• The second difficulty arose from the equation itself. The function g needs
to be considered carefully to obtain the available theory. Indeed, in order
to obtain both existence and uniqueness of the solutions, g must verify that
sg(s) is non-decreasing. In practice we will find out that if for some function
g with sg(s) non-increasing, very close pictures could produce divergent
solutions and therefore different edges.

34

CHAPTER 3. PERONA-MALIK EQUATION

(a) (b)

(c) (d)

(e) (f)

Figure 3.6: The original image and its linear and nonlinear diffusion filtered ver-
sions. a: Original Image b:Gaussian Noise Image c,d:Images Filtered by linear
filter after 20 Iteration e,f: Filtered by nonlinear filter after 20 Iteration

35

CHAPTER 3. PERONA-MALIK EQUATION

(a) (b)

(c) (d)

(e) (f)

Figure 3.7: The original image and its nonlinear diffusion (PM) filtered versions.a:
Gaussian Noise Image b: Salt and Pepper Image c,d:Images Filtered by nonlinear
filter after 100 Iteration e,f: Images Filtered by nonlinear filter after 200 Iteration

36

CHAPTER 4

FAST DIFFERENCE SCHEMES FOR
ANISOTROPIC BELTRAMI MODEL

The Beltrami flow [28, 31] is one of the most effective denoising algorithms
in image processing. For gray-level images, we show that the Beltrami flow
equation 1.1 can be arranged in a reaction-diffusion form. This reveals the edge-
enhancing properties of the equation and suggests the application of additive
operator splitting (AOS) methods [12, 13] for faster convergence. As we show
with numerical simulations, the AOS method results in an unconditionally stable
semi-implicit linearized difference scheme in 2D.

4.1 Splitting the Beltrami Operator

Compare the nonlinear diffusion of a gray-level image with Beltrami flow. Let U
be the pixel value. The nonlinear diffusion is described by the following PDE[36,
13]

ut = ∇ · (g∇u) =
∂

∂x
(gux) +

∂

∂y
(guy) (4.1)

where g = 1
u2
x+u2

y+1
is the Edge Indicator Function. equation 4.1 can be written in

simplified form,

ut =
uxx
(
−u2

x + u2
y + 1

)
− 4uxyuxuy + uyy

(
u2
x − u2

y + 1
)(

u2
x + u2

y + 1
)2

37

CHAPTER 4. FAST DIFFERENCE SCHEMES FOR ANISOTROPIC BELTRAMI
MODEL

Now consider the Beltrami flow:

ut =
uxx
(
u2
y + 1

)
− 2uxyuxuy + uyy (u2

x + 1)(
u2
x + u2

y + 1
)2

=
∂

∂x
(gux) +

∂

∂y
(guy) +

uxuxx + uyuxy(
u2
x + u2

y + 1
)2 · ux +

uxuxy + uyuyy(
u2
x + u2

y + 1
)2 · uy

=
∂

∂x
(gux) +

∂

∂y
(guy)−

ux
2gx
− uy

2gy

=
1

2

∂

∂x
(gux) +

1

2

∂

∂y
(guy) +

g

2
(uxx + uyy)

(4.2)

The Beltrami equation may be reduced to a similar reaction-diffusion form, namely

Ut =
1

2
g∇2U +

1

2
∇ (g · ∇U) (4.3)

In this form, the Beltrami flow equation is not a ”pure” diffusion equation. It has
both an (parabolic) edge preserving and an (hyperbolic) edge-sharpening terms.
In addition, the reaction-diffusion form of 4.3 hides the mixed derivative Uxy.
This makes it possible to apply Additive Operator Split, to be used in the implicit
numerical scheme for individual rows and columns of pixels:

ut = (Ax + Ay)u (4.4)

where ·Ax and Ay are he following differential operators:{
Ax = ∂

∂x

(
g
2
∂
∂x

)
+ g

2
∂2

∂x2

Ay = ∂
∂y

(
g
2
∂
∂y

)
+ g

2
∂2

∂y2

(4.5)

4.2 Implicit Scheme for Gray level Image (2D)

BY Applying the backward difference formula to the above form we get [19, 16],

un+1 − un

∆t
= (Ax + Ay)u

n+1

The superscript n is related to the present and n + 1 to the next time step. The
subscripts i, j index the discrete pixel location; uni,j are known values, and un+1

i,j are
to be found. Using un+1 on the right side of equation 4.3 makes the integration
scheme implicit and unconditionally stable, namely

[Id−∆t (Ax + Ay)]u
n+1 = un (4.6)

Where Id is the identity matrix. Before proceeding in time, we calculate the val-
ues of the edge indicator function g, using the known values of un. Thus, the
scheme is only semi-implicit. Although g depends on the gradient of U , we treat
it like a given function of (x, y), making the governing PDE ”quasi-linear”.

38

CHAPTER 4. FAST DIFFERENCE SCHEMES FOR ANISOTROPIC BELTRAMI
MODEL

Note that 4.6 includes a large bandwidth matrix, because all equations, related
to new pixel values un+1 are coupled. Our aim is to decouple the set 4.6 so that
each row and each column of pixels can be handled separately. For this, we re-
arrange the equations into the following form:

un+1 = [Id−∆t (Ax + Ay)]
−1 un (4.7)

Of course, we do not intend to invert the matrix to solve the linear set. This is only
a symbolic form used for further derivation. For a small value of ∆t, the matrix in
the brackets on the right side of 4.7 is close to the identity Id. Thus, its inverse can
be expanded into the Taylor series in the proximity of Id : [Id−∆t (Ax + Ay)]

−1 ≈
Id+ ∆t (Ax + Ay), where the linear term is retained and the high order terms are
neglected. Introducing this form into 4.7, we get,

2un+1 = (Id+ 2∆tAx)un + (Id+ 2∆tAy)u
n

Introducing the notations V = (Id+ 2∆tAx)u
n and W = (Id+ 2∆tAy)u

n the
solution is simply

un+1 =
V +W

2

In order to get an implicit scheme, we apply the differential matrix operators Ax
and Ay to un+1 (and not to un), namely

(Id+ 2∆tAx)
−1 V = un (Id+ 2∆tAy)

−1W = un

Following the procedure of expanding the matrix inverses into Taylor series and
applying the linearization for small ∆t, we finally obtain the equation sets for V
and W as follows:

(Id− 2∆tAx)V = un (Id− 2∆tAy)W = un (4.8)

These equations can be solved with either the Dirichlet or Neumann boundary
conditions.

4.3 Finite Difference Equation

The differential operators Ax and Ay in. equation 4.5 are similar, and therefore
we derive here the difference equation for a single row of pixels. Equation for the
column of pixels is identical. Consider a row with N + 1 pixels enumerated from
0 to N , Fig. 1 . Figure 1: Finite Difference Scheme

2AxV =
∂

∂x

(
1

g

∂V

∂x

)
+

1

g

∂2V

∂x2
(4.9)

In the difference equations 4.10,4.9 the omitted error terms are of orderO (∆x2)(
∂V

∂x

)
i+1/2

=
Vi+1 − Vi

∆x
;

(
∂V

∂x

)
i−1/2

=
Vi − Vi−1

∆x
(4.10)

39

CHAPTER 4. FAST DIFFERENCE SCHEMES FOR ANISOTROPIC BELTRAMI
MODEL

2 (AxV)i =
gi+1/2 (Vi+1 − Vi)− gi−1/2 (Vi − Vi−1)

∆2
x

+ gi
Vi+1 − 2Vi + Vi−1

∆x2

2 (AxV)i =
gi−1/2 + gi

∆x2
Vi−1 −

gi−1/2 + 2gi + gi+1/2

∆x2
Vi +

gi + gi+1/2

∆x2
Vi+1

(4.11)

To avoid establishing the values of the edge indicator function g at the non-nodal
points i− 1/2 and i+ 1/2, we average the values of two neighbor nodes:

gi+1/2 =
gi + gi+1

2
+O

(
∆x2

)
gi−1/2 =

gi−1 + gi
2

+O
(
∆x2

)
(4.12)

Introduce equation 4.11 into 4.9:

2 (AxV)i =
gi−1 + 3gi

2∆x2
Vi−1 −

gi−1 + 6gi + gi+1

2∆x2
Vi +

3gi + gi+1

2∆x2
Vi+1 (4.13)

It may seem that after introduction of equation 4.12 into 4.9, the overall error be-
comes huge, of order O(1), due to ∆x2 in the denominator. However, due to a
special symmetry of equation 4.11, the total error is still of order O (∆x2).
As we see, the erors are of the same order, and this justifies the validity of substi-
tution (26). It follows from Equations. (4.8 and 4.12)

−∆t
gi−1 + 3gi

2∆x2
Vi−1 +

(
1 + ∆t

gi−1 + 6gi + gi+1

2∆x2

)
Vi −∆t

3gi + gi+1

2∆x2
Vi+1 = Un

i

Introduce the following notations:

αx =
∆t

2∆x2
αy =

∆t

2∆2
y

The finite difference equation comes to:

− αx (gi−1 + 3gi)Vi−1 + [1 + αx (gi−1 + 6gi + gi+1)]Vi

− αx (3gi + gi+1)Vi+1 = Un
i

(4.14)

equation 4.14 is a linear set with the three-diagonal matrix. The similar equation
holds for W in y dimension, where j = 0, 1, . . .M .

− αy (gj−1 + 3gj) Wj−1 + [1 + αy (gj−1 + 6gj + gj+1)]Wj

− αy (3gj + gj+1)Wj+1 = Un
i

For the first and the last nodes, either the Dirichlet, or the Neumann boundary
conditions hold.
- In case of Neumann BC we assume that the normal derivatives Vn and Wn van-
ish along the rectangular contour of the computational box, i.e. we accept the
mirror boundary conditions:

V−1 = V1 and VN+1 = VN

40

CHAPTER 4. FAST DIFFERENCE SCHEMES FOR ANISOTROPIC BELTRAMI
MODEL

Establish the normal derivatives of the edge indicator function along the vertical
and horizontal boundary lines:

∂g
∂x

= −2UxUxx+UyUxy

(1+U2
x+U2

y)
2

∂g
∂y

= −2UxUxy+UyUyy

(1+U2
x+U2

y)
2

Along the vertical boundary x = constant, Ux = 0 and Uxy = 0. Along the hori-
zontal boundary y = constant, Uy = 0 and Uxy = 0. Thus, in both cases hn = 0,
and the mirror boundary condition hold not only for the pixel value, but also for
the edge indicator function. The ghost values become:

g−1 = g1 and gN+1 = gN−1

This affects the first and the last equations of Set 4.14:

[1 + αx (6g0 + 2g1)]V0 − αx (6g0 + 2g1)V1 = Un
1

−αx (2gN−1 + 6gN)VN−1 + [1 + αx (2gN−1 + 6gN)]VN = Un
N

4.4 Simulation Results for Gray Level Images

In Figure 4.1, we provide the results of our algorithm applied with different num-
bers of iterations on a grayscale image taken from .
We can see that the Beltrame filter works well with noise and edges. Where he
worked to blur the noise and preserve the edges, and this is after 50 iterations or
after 100 iterations. Function g preserves the edges and shape of the image by
stopping the non-linear filter at the edges.
In Figure 4.2 we have an image with Salt an Pepper noise and its filtered by non-

linear filter, we can remark that Perona-Malik filter effective more than Beltrami
with Salt an Pepper noise .

4.5 Beltrami Smoothing for Color Images

The Beltrami flow for color images is governed by the following set of PDE [16]:

∂Ii
∂t

=

∂Pi

∂x
+ ∂Qi

∂y

g
−

∂g
∂x
Pi + ∂g

∂y
Qi

2g2

where i = 1, 2, 3 is the number of color (red, green, blue), Ii is the corresponding
pixel value and P,Q are defined by:

Pi = g22
∂Ii
∂x
− g12

∂Ii
∂y

Qi = −g12
∂Ii
∂x

+ g11
∂Ii
∂y

41

CHAPTER 4. FAST DIFFERENCE SCHEMES FOR ANISOTROPIC BELTRAMI
MODEL

g11, g12 and g22 are components of a symmetric matrix (tensor) G of dimension
2× 2, and g is: its discriminant:

G =

[
g11 g12

g12 g22

]

g11 = 1 +
∑3

j=1

(
∂Ij
∂x

)2

g22 = 1 +
∑3

j=1

(
∂Ij
∂y

)2

g12 =
∑3

j=1
∂Ij
∂x

∂Ij
∂y

and

g = detG = g11g22 − g2
12

4.6 Implicit Scheme for color Image (3D)

The classical nonlinear diffusion equation can be rewritten as the following par-
tial differential equation [16, 24]:

ut = ∇ · (h∇u) =
∂hux
∂x

+
∂huy
∂y

+
∂huz
∂z

,

with h(x, y, z) = (1 + ux
2 + uy

2 + uz
2)
−1. The Beltrami Equation may be reduced

to a similar advection-diffusion form, namely,

ut = ∇ ·
(
h
∇u
2

)
+ h
∇2u

2
=

1

2
∇h · ∇u+ h∇2u. (4.15)

In this form, the Beltrami flow equation is not a ”pure” diffusion equation. It
has both a parabolic edge-preserving and a hyperbolic edge-sharpening term.

Another modification is to replace ∂h
∂x

∂u
∂x

= ∂
∂x

(
h∂u
∂x

)
− h∂

2u
∂x2 in 4.15 . This en-

ables replacement of the discretization of ∂h
∂x

∂u
∂x

by a second order derivative term.
Therefore, the resulting linear system will be a tridiagonal matrix, thus more sta-
ble than a system with no value on the diagonal. In addition, the advection-
diffusion form of 4.15 hides the mixed derivatives, thereby making it conducive
to the AOS approach . In other words, the equation can be rearranged into the
form ut = (Ax + Ay + Az)u, where Ax, Ay, and Az are the following differential
operators: 

Ax = ∂
∂x

(
h
2
∂
∂x

)
+ h

2
∂2

∂x2

Ay = ∂
∂y

(
h
2
∂
∂y

)
+ h

2
∂2

∂y2

Az = ∂
∂z

(
h
2
∂
∂z

)
+ h

2
∂2

∂z2

Note that, although g depends on the gradient of u, we treat it like a given func-
tion of (x, y), making the governing PDE ”quasi-linear.”

Applying the backward difference formula to last equations, we get

un+1 − un

∆t
= (Ax + Ay + Az)u

n+1 (4.16)

42

CHAPTER 4. FAST DIFFERENCE SCHEMES FOR ANISOTROPIC BELTRAMI
MODEL

Where the superscript n is related to the present and n + 1 to the next time step.
Using un+1 on the right side of 4.16 makes the integration scheme implicit and
unconditionally stable, namely,

[u−∆t (Ax + Ay + Az)]u
n+1 = un, (4.17)

where I is the identity matrix. Before proceeding in time, we calculate the
values of the edge indicator function g, using the known values of un. Thus,
the scheme is only semi-implicit. It should be noted that this technique is often
referred to as the ”lagged diffusivity fixed point scheme,” and further analysis of
convergence to the solution of original equation is beyond the scope of the present
study. Note that 4.17 includes a large bandwidth matrix because all equations
related to new pixel values un+1 are coupled. Our aim is to decouple the set in
4.17 so that each row and each column of pixels can be handled separately. For
this, we rearrange the equations into the following form:

un+1 = [u−∆t (Ax + Ay + Az)]
−1 un, (4.18)

Of course, we do not intend to invert the matrix to solve the linear set. This
is only a symbolic form used for further derivation. For a small value of ∆t, the
matrix in the brackets on the right side of 4.18 is close to the identity I. Thus, its
inverse can be expanded into the Taylor series in the proximity of u:

[u−∆t (Ax + Ay + Az)]
−1 ' u + k (Ax + Ay + Az)

Where the linear term is retained and the high order terms are neglected. Intro-
ducing this form into 4.18, we get

3un+1 = (u + 3∆tAx) + (u + 3∆tAy) + (u + 3∆tAz)

the solution is simply:

un+1 =
Bx + By + Bz

3

where:

Bx = (u + 3∆tAx)u
n

By = (u + 3∆tAy)u
n

and
Bz = (u + 3∆tAz)u

n

In order to get an implicit scheme, we apply the differential matrix operators Ax,
Ay, and Az to un+1 (and not to un), namely,

un = (u + 3∆tAx)
−1Bx

un = (u + 3∆tAy)
−1By

un = (u + 3∆tAz)
−1Bz

43

CHAPTER 4. FAST DIFFERENCE SCHEMES FOR ANISOTROPIC BELTRAMI
MODEL

Following the procedure of expanding the matrix inverses into Taylor series and
applying the linearization for small ∆t, we finally obtain the equation sets for Bx,
By, and Bz as follows:

un = (u− 3∆tAx)Bx

un = (u− 3∆tAy)By

un = (u− 3∆tAz)Bz

The equations can be solved with either the Dirichlet or Neumann boundary con-
ditions.

4.7 Simulation Results for Color Images

The goal of this numerical experiment is to show that the weakly coupled Bel-
trami smoothing operator may be replaced by its decoupled approximation, with-
out essential loss of accuracy and with a great· saving of the computational time.

Figure. 4.3 presents the simulation results for implicit scheme with different val-
ues of iterations 20,50,200.
The first row includes the original image (left picture) and the smoothing simu-
lation results for the Beltrami filtering.
As we see, for iteration of up to 200, the flow is stimulated with a reasonable
accuracy [16, 24].

44

CHAPTER 4. FAST DIFFERENCE SCHEMES FOR ANISOTROPIC BELTRAMI
MODEL

(a) (b)

(c) (d)

(e) (f)

Figure 4.1: Edge Enhancement of Bird and Medical Image.a,b: Original Image
c,d:Images Filtered by nonlinear filter (Beltrami) after 50 Iteration e,f: Images Fil-
tered by nonlinear filter (Beltrami) after 200 Iteration

45

CHAPTER 4. FAST DIFFERENCE SCHEMES FOR ANISOTROPIC BELTRAMI
MODEL

(a)

(b) (c)

(d) (e)

Figure 4.2: The original image and its nonlinear diffusion Perona-Malik and Bel-
trami filtered versions. a: salt and pepper Image b: Image filtered by Beltrami
Flow after 100 iteration c: Images Filtered by nonlinear filter after 200 Iteration d:
Image filtered by Beltrami Flow after 100 iteration e: Images Filtered by nonlinear
filter after 200 Iteration

46

CHAPTER 4. FAST DIFFERENCE SCHEMES FOR ANISOTROPIC BELTRAMI
MODEL

(a) (b)

(c) (d)

Figure 4.3: Beltrami Smoothing of Color Images. a: Original Image b,c and d:
Images filtred by Beltrami filter after (20,50,200) iteration

47

CHAPTER 4. FAST DIFFERENCE SCHEMES FOR ANISOTROPIC BELTRAMI
MODEL

(a) (b)

(c) (d)

(e) (f)

Figure 4.4: The original image and its Beltrami filtered versions.a: Gaussian Noise
Image b: Salt and Pepper Image c,d:Images Filtered after 20 Iteration e,f: Images
Filtered after 100 Iteration

48

CHAPTER 5

APPENDIX

5.1 Stability Analysis of Finite Difference schemes
for 1-D Heat equation

5.1.1 Stability analysis of explicit scheme

Approximate the numerical error. Using the explicit method the discretized form
of equation 2.1 is:

Un+1
j = Un

j + λ
(
Un
j+1 − 2Un

j + Un
j−1

)
(5.1)

Define the error in the numerical approximation as

εnj = Un
j − unj (5.2)

where unj is the exact solution. Both the numerical solution Un
j and the exact

solution unj satisfy equation 5.1, therefore, the error εnj also follows the discretized
ODE equation 5.1

εn+1
j = εnj + λ

(
εnj+1 − 2εnj + εnj−1

)
(5.3)

The spatial variation of error may be expanded in a finite Fourier series, in the
interval L, as

ε(x) =
M∑
m=1

Ame
ik∆x (5.4)

where k∆t = πm
L

, m = 1, 2, . . . ,M and M = L/∆x, i =
√
−1. eik∆x is the complex

exponential. Am is a function of time. Since the error tends to grow or decay

49

CHAPTER 5. APPENDIX

exponentially with time, it is reasonable to assume that the amplitude varies ex-
ponentially with time; hence

ε(x, t) = εnj =
M∑
m=1

eteik∆x (5.5)

Since the difference equation for error is linear, it is enough to consider the growth
of error of a typical term:

εm(x, t) = εnj = eteik∆x (5.6)

The goal is to show that the error incurred by a particular numerical scheme
doesn’t grow in the evolving steps of time. Define the amplification factor

A ≡
εn+1
j

εnj

Then, the necessary condition for stability is:

|A| ≤ 1 or [−1 ≤ A ≤ 1] (5.7)

To find out how the error varies in steps of time, substitute equation 5.6 into each
term of equation 5.3, as shown below

εnj = eteik∆x

εn+1
j = e(t+k)eik∆x

εni+1 = eteik(x+∆x)

εnj−1 = eteik(x−∆x)

(5.8)

By eqs. 5.8 in equation 5.3, and Divide by eateik∆x to yield

ek = 1 + λ
(
eik∆x + e−ik∆x − 2

)
(5.9)

Using the identities sin
(
k∆x

2

)
= e

ik
2 −e

− ik
∆ x

2

2i
, and sin2

(
k∆x

2

)
= − [eik∆x+e−ik∆x−2]

4
in

equation 5.9

ea∆t = 1− 4λ sin2

(
k∆x

2

)
(5.10)

then we have:

A =
εn+1
j

εnj
=
e(t+∆t)eik∆x

eteik∆x
= e∆t (5.11)

then:

|A| =
∣∣1− 4λ sin2 (k∆x/2)

∣∣ ≤ 1

{ (
1− 4λ sin2

(
k∆x

2

))
≥ −1(

1− 4λ sin2
(
k∆x

2

))
≤ 1

(5.12)

last equation yields:
4λ sin2 (k∆x/2) ≤ 2 (5.13)

50

CHAPTER 5. APPENDIX

that means:
λ =

∆t

∆x2
≤ 1

2
(5.14)

equation 5.12 yields
4λ sin2 (k∆x/2) ≥ 0

Since sin2 (k∆x/2) range is [0, 1] the last equation yields

λ ≥ 0

which always holds. Hence, combining the last two equations: 0 ≤ λ ≤ 1
2

equa-
tion 5.14 gives the stability requirement for the explicit scheme as applied to the
one-dimensional heat equation. We say that the method is conditionally stable;
for a given ∆x, the allowed value of ∆t must be small enough to satisfy equa-
tion5.14 or

∆t ≤ ∆x2

2

5.1.2 Stability analysis of implicit scheme

We apply the Von Neumann (Fourier) method of stability analysis to demonstrate
that the simple implicit scheme is unconditionally stable. we have:

Un − UE = ε

where Un is the numerical solution , UE the Exact solution and ε the error term
we introduce the last equation in 5.15, we obtain:

εn+1
j − εnj

∆t
=
εn+1
j−1 − 2εn+1

j + εn+1
j+1

(∆x)2
(5.15)

where we replaced the space variable index i by j. The error terms εn
j represented

as given by equations 5.6. Introducing εj from equations 5.6 into equation 5.15
and after cancellations and some rearrangement, we obtain:

A− 1 =
2α∆t

(∆x)2
A

(
eik∆x + e−ik∆x

2
− 1

)
(5.16)

where i =
√
−1. Noting that

cos (k∆x) =
eik∆xh + e−ik∆x

2

equation 5.16 is written as

A− 1 = −4λA sin2

(
k∆x

2

)

51

CHAPTER 5. APPENDIX

where
λ =

∆t

∆x2

last equation is solved for A

A =

[
1 + 4λ sin2

(
k∆x

2

)]−1

For stability, we need |A| ≤ 1, and this condition is satisfied for all positive values
of λ. Therefore, the simple implicit finite difference approximation is stable for
all values of the time step ∆t.

5.2 Stability analysis of Finite Difference Semi-Implicit
scheme for 1-D Perona-Malik equation

From equation 3.6 we have:

uni = −αiun+1
i−1 + (1 + αi + βi)u

n+1
i − βiun+1

i+1

and like the other schemes we have:

uni = Anejk∆x

and replace in last equation:

Anejk∆x = −αiAn+1ejk∆x(i−1) + (1 + αi + βi)A
n+1ejkih − βiAn+1ejk(i+1)∆x

that means:
A =

1

1 + αi + βi − αie−jk∆x − βiejk∆x

In other word, we get:

A =
1

1 + (αi + βi)(1− cos(k∆x)) + i(αi − βi)sin(k∆x)
.

Thus √
[1 + (αi + βi)(1− cos(k∆x))]2 + (αi − βi)2sin2(k∆x) > 1.

Then, we have | A |6 1, that means our scheme is unconditionally stable for all
values of the time step ∆t.

5.3 Tridiagonal Matrix Algorithm (TDMA)

Tridiagonal matrix algorithm (TDMA) [36, 25] is a simplified form of Gaussian
elimination, that can be used for solving tridiagonal systems of equations. In

52

CHAPTER 5. APPENDIX

matrix/vector format this kind of a system can be written as in 5.17
b1 c1 0 0 0
a2 b2 c2 0 0

0 a3 b3
. . . 0

0 0
. cN−1

0 0 0 aN bN


︸ ︷︷ ︸

A


x1

x2

x3
...
xN


︸ ︷︷ ︸

x

=


d1

d2

d3
...
dN


︸ ︷︷ ︸

d

(5.17)

The algorithm consists of two steps: the first (forward) sweep eliminates the ai,
while the second (backward) sweep calculates the solution. Equation 34 intro-
duces the forward sweep, while Equation 35 shows the backward sweep.

c′i =

{
c1
b1

, i = 1
ci

bi−c′i−1ai
, i = 2, 3, . . . , N − 1

d′i =

{
d1

b1
di−d′i−1ai
bi−c′i−1ai

, i = 2, 3, . . . , N

xN = d′N , i = N − 1, N − 2, . . . , 1

Physical interpretation of the terms ai and bi is that they are diffusion weights, i.e.
how much the neighbouring solutions are taken into account.

53

Conclusion

In this paper, a group of partial differential equations with impor-
tant application in the field of image processing is addressed, namely,
the heat equation Perona-Malik equation and Beltrami flow.
Smoothing of noisy images presents usually a numerical integra-
tion of a parabolic PDE in scale or two dimensions in space. This
often the most time consumptive component of image processing
algorithms.
The explicit numerical integration scheme is conditionally stable.
Thus, the unconditionally stable numerical scheme becomes an im-
portant matter.
The method based on Additive Operator Split (AOS), applied orig-
inally by Weickert for the nonlinear diffusion flow, may be applied
for the Beltrami equation. This method makes it possible to develop
the unconditionally stable semi-implicit finite difference schemes
for image filtering.
A series of numerical simulations was presented in order to com-
pare the three models and in order to clarify the difference, the fo-
cus was on study the edge enhancement effect on the one hand, and
removing noise on the other hand.
We also concluded that, the linear diffusion equations lead to blurred
edges, while the nonlinear diffusion equations give better results in
terms of edges enhancement as they lead to sharp edges.
Finally, the difference between the Perona-Melek model and the
Beltrami model can be observed, through a series of experiments,
where both models remove noise and enhance the edges, but Bel-
trami model is more effective with ‘salt and pepper’ noise.

54

Bibliography

[1] L. Alvarez,F. Guichard, P.L. Lions,and J.M. Morel, Axioms and fundamental
equations of image processing, Archive for Rational Mechanics and Analysis 123
, 199–257 (1993).

[2] L. Alvarez, P.L. Lions and J.M. Morel, Image selective smoothing and edge detec-
tion by nonlinear diffusion II, SIAM Journal on Numerical Analysis. 29, 845–866
(1992).

[3] G. Aubert, P. Kornprobst Mathematical Problems in Image Processing, Partial
Differential Equations and the Calculus of Variations, Applied Mathematical
Sciences147,(2006).

[4] M. Bertero,T.A Poggio and V. Torre, Ill-posed problems in early vision. Proceed-
ings of the IEEE. 76, 869–889 (1988).

[5] N.BEN HAMIDOUCHE Image processing course Master EDP and Applica-
tion, University of Msila ,2021.

[6] R.W. Brockett and P. Maragos, Evolution equations for continuous-scale morpho-
logical filtering. IEEE Transactions on Signal Processing 42, 3377–3386 (1994).

[7] F. Cao, Geometric Curve Evolution and Image Processing, Lecture Notes in Math-
ematics 1805, Springer (2003).

[8] F. Catte,P.L. Lions,J.M. Morel, and T. Coll,Image Selective Smoothing and Edge
Detection by Nonlinear Diffusion, SIAM Journal on Numerical analysis. 29 ,182–
193 (1992).

[9] T.F. Chan and J. Shen. Image Processing and Analysis: Variational, PDE, Wavelet,
and Stochastic Methods. Society for Industrial and Applied Mathematics,
(2005).

[10] M.E. Gage, Curve shortening makes convex curves circular, Inventions Mathe-
matica. 76, 357–364 (1984).

[11] M.E. Gage and R.S. Hamilton, The heat equation shrinking convex plane curves,
Journal of Differential Geometry. 23, 69–96 (1986).

55

BIBLIOGRAPHY

[12] I. Galic, J. Weickert, M. Welk, A. Bruhn, A. Belyaev and H.P. Seidel, Towards
PDE-based image compression. Variational Geometric and Level-Set Methods in
Computer Vision, 3752, 37–48 (2005).

[13] R. Goldenberg, R. Kimmel, E. Rivlin, and M. Rudzsky. ”Fast Geodesic Active
Contours”. M. Nielsen, P. Johansen, O.F. Olsen, J. Weickert (Editors), Scale-
space theories in computer vision, Lecture Notes in Computer Science, Vol.
1682, Springer, Berlin, 1999.

[14] G, Huisken, Flow by mean curvature of convex surfaces into spheres, Journal of
Differential Geometry, 20, 237–266 (1984).

[15] T. Iijima, Basic equation of figure and observational transformation. Systems
Computers, 4, 70–77 (1971).

[16] R.Igor , Emerson, ’Fast Difference Schemes for Edge Enhancing Beltrami Flow’,
Biol. Cybern, 50,(2002).

[17] R. Malladi and J.A. Sethian, Image processing via level set curvature
flow,proceedings of the National Academy of sciences, 92, 7046–7050 (1995).

[18] R. Malladi and J.A. Sethian, Image Processing: Flows under Min/ Max curva-
ture and Mean Curvature, Graphical Models and Image Processing. 58, 127–141
(1996).

[19] R. Malladi and I. Ravve,Fast Difference Scheme for Anisotropic Beltrami
Smoothing and Edge Contrast Enhancement of Gray Level and Color Im-
ages,University of California USA , 2001.

[20] R. Kimmel, Numerical Geometry of Images: Theory, Algorithms, and Applications,
Springer (2003).

[21] J. Koendernik, ’The structure of images’, Biol. Cybern, 50, pp. 363-370 (1984).

[22] S.J. Osher and J.A. Sethian, Fronts propagation with curvature dependent speed:
Algorithms based on Hamilton-Jacobi formulations, Journal of Computational
Physics. 79, 12–49 (1988).

[23] P. Perona, J. and Malik,Scale-space and edge detection using anisotropic diffusion,
IEEE Transactions on Pattern Analysis and Machine Intelligence 12, 629–639
(1990).

[24] G.Rosman · L. Dascal · Xue-Cheng Tai . Ron Kimmel,On Semi-implicit Split-
ting Schemes for the Beltrami Color Image Filtering, Journal of Mathematical
Imaging and Vision , 2011.

[25] J. Ralli,PDE Based Image Diffusion and AOS,University of Granada,
Spain,2014

56

BIBLIOGRAPHY

[26] G. Sapiro, Geometric Partial Differential Equations and Image Analysis, Cam-
bridge University Press, (2006).

[27] K. Seongjai,Numerical Methods for Partial Differential Equations, Univer-
sity of Mississippi State USA ,2021.

[28] N. Sochen, R. Kimmel and R. Malladi, A general framework for low level vision,
IEEE Transactions on Image Processing, 7, 310–318 (1998).

[29] C.B. Schonlieb, Partial Differential Equation Methods for Image Inpainting.
Cambri dgeUniversity Press 29, (2015).

[30] J.A. Sethian, An Analysis of Flame Propagation, Ph. D. Dissertation, University
of California, (1982).

[31] N. Sochen, R. Kimmel and R. Malladi, From high energy physics to low level
vision International Conference on Scale-Space Theories in Computer Vision,
236–247, (1996).

[32] R. Van den Boomgaard, A. Smeulders, The morphological structure of images :
The differential equations of morphological scale-space. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence 16, 1101–1113 (1994).

[33] J. Weickert, Anisotropic Diffusion in Image Processing, Stuttgart Teubner 1, 59–
60 (1998).

[34] A.P. Witken, ’Scale-space filtering’, Presented at 8th int. Joint conf. Art. intell.,
Karlsruhe, Germany, (1983).

[35] M. Welk, M. Breu, O. Vogel, Morphological amoebas are self-snakes Journal of
Mathematical Imagin and Vision 39, 87–99 (2011).

[36] J. Weickert, Bart M. ter Haar Romeny, Max A. Viergever, Efficient and Reli-
able Schemes for Nonlinear Diffusion Filtering,1998.

[37] A. Yezzi, Modified curvature motion for image smoothing and enhancement, IEEE
Transactions on Image Processing 7, 345–352 (1998).

57

BIBLIOGRAPHY

Abstract:
Smoothing of noisy images presents usually a numerical integration of a parabolic
PDE in scale or two dimensions in space. This often the most time consumptive
component of image processing algorithms.
The explicit numerical integration scheme is conditionally stable. Thus, the un-
conditionally stable numerical scheme becomes an important matter.
The method based on Additive Operator Split (AOS), applied originally by We-
ickert for the nonlinear diffusion flow, may be applied for the Beltrami equation.
This method makes it possible to develop the unconditionally stable semi-implicit
finite difference schemes for image filtering.
keywords: Image Processing , Edge Enhancement , Nonlinear Diffusion, Finite
Difference , Perona-Malik Diffusion , Beltrami Flow.

Resumé:
Le lissage d’images bruitées présente généralement une intégration numérique
d’une EDP parabolique à l’échelle ou à deux dimensions dans l’espace. C’est sou-
vent le composant le plus chronophage des algorithmes de traitement d’image.
Le schéma d’intégration numérique explicite est conditionnellement stable. Ainsi,
le schéma numérique inconditionnellement stable devient une question impor-
tante.
La méthode basée sur Additive Operator Split (AOS), appliquée à l’origine par
Weickert pour le flux de diffusion non linéaire, peut être appliquée pour l’équation
de Beltrami.
Cette méthode permet de développer les schémas aux différences finies semi-
implicites inconditionnellement stables pour le filtrage d’images.
Mots clé: Traitement d’images , Amélioration des contours , Diffusion non
linéaire , Différence finie , Diffusion Perona-Malik , Flux de Beltrami.

:P�lm��

��Ð Ty¶z��� TylRAft�� �¯ A`m�� �®� �� A§ d� rhS§ TJwKm�� CwO�� �y`n�

.ºASf�� ¨� �§d`b�� ¤� d��w�� d`b��

Ty�EC�w��� Y�� ���C �@¡¤ �ryb� At�¤ CwO�� T��A`� �lhts§ 	�A��� ¨�

.Tlm`tsm��

rbt`§ ªrJ ¤d� A� �Ðwm� C�rqtF� �� ¨�At�A�¤ ª¤rK� rqts� �§rO�� �Ðwmn��

.CwO�� T��A`� ¨� Tym¡� ¤Ð

Yl� �CAk§¤ �b� �� Ah�Am`tF� �� ¨t��¤ ��ry�tm�� �O� Tq§rV �ybW� �km§

. ¨��rtly� T� A`� Yl� AhqybW� �km§ Am� CAKt�®� TyW��� ry� �¯ A`m��

, ¨W��� ry� CAKt�¯� , ��w��� �ys�� , CwO�� T��A`m:Ty�Atfm�� �Amlk��

.¨��rtl� ��d� , ��A� A�¤ry� CAKt�� , ­ ¤d�m�� �¤rf��

58

	Introduction
	PDE Based Image Processing
	The Image Society
	Image processing
	Mathematical Representation of an image

	Diffusion in Image Processing
	Linear diffusion filtering
	Nonlinear diffusion filtering
	The Beltrami Flow

	Finite-Difference Approximation to Derivatives
	Notation for functions of several variables
	Stability and consistency analysis
	Von Neumann (Fourier) stability analysis

	Heat Equation
	Discretization of 1-D Heat Equation
	The Explicit scheme (FTCS)
	 The Implicit scheme (BTCS)

	 Numerical Treatment in 2D
	The Explicit scheme in 2D
	The implicit scheme in 2D

	Simulation Results for 1-D Signal and Gray Level Images

	Perona-Malik equation
	One-Dimensional Perona-Malik Model and Edges Enhancement
	Discretization of 1-D Perona-Malik equation
	The Explicit scheme
	The Semi-Implicit scheme

	2D Perona-Malik Equation
	Discretisation of div operator
	Discretised diffusion equation
	Matrix format
	AOS (Additive Operator Splitting)

	Linear Versus Nonlinear Diffusion

	Fast Difference Schemes for Anisotropic Beltrami Model
	Splitting the Beltrami Operator
	Implicit Scheme for Gray level Image (2D)
	 Finite Difference Equation
	Simulation Results for Gray Level Images
	Beltrami Smoothing for Color Images
	Implicit Scheme for color Image (3D)
	Simulation Results for Color Images

	Appendix
	Stability Analysis of Finite Difference schemes for 1-D Heat equation
	Stability analysis of explicit scheme
	Stability analysis of implicit scheme

	Stability analysis of Finite Difference Semi-Implicit scheme for 1-D Perona-Malik equation
	Tridiagonal Matrix Algorithm (TDMA)

	Conclusion

