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Abstract: - In this paper, the combinations of two compound Gaussian distributions plus thermal noise for 
modeling measured polarimetric clutter data are proposed. The speckle components of the proposed models are 
formed by the exponential distribution, while the texture components are mainly modeled using three different 
distributions. For this purpose, the gamma, the inverse gamma, and the inverse Gaussian distributions are 
considered to describe these modulation components. The study involves the analysis of underlying mixture 
models at X-band sea clutter data, and the parameters of the combination models are estimated using the non-
linear least squares curve fitting method. Compared to existing K, Pareto type II, and KK clutter plus noise 
distributions, experimental results show that the proposed mixture models are well matched for fitting sea 
reverberation data across various range resolutions. 
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1  Introduction 
In radar systems with low resolution capabilities, the 
intensity statistics of the sea echoes have been found 
to be described by the exponential (i.e., Gaussian 
clutter case) probability density function (PDF). 
With the development of radar technologies 
operating at low grazing angles, the resolutions of 
sea clutter statistics have been greatly reduced and 
have been observed to deviate from Gaussianity, 
[1]. Consequently, these deviations occur when the 
Central Limit Theorem does not apply in evaluating 
the strength of the background electromagnetic 
energy (i.e., when independent random variables are 
added, their sum does not tends toward a normal 
distribution). Nowadays, compound Gaussian (CG) 
distributions are commonly used to fit high- 
resolution sea reverberation data and are the basis of 

the construction of most target detection schemes 
with CFAR (Constant False Alarm Rate) behavior, 
[2]. The CG models are formed by means of two 
components; the speckle component and the texture 
component that is also termed by the modulation 
component. In the sense of tail fitting improvements 
to high-resolution real data, some distributions 
related to the texture component have been 
proposed in the open literature, [3], [4], [5], [6], [7]. 
The inverse gamma and the inverse Gaussian 
distributed texture components were used to obtain 
the generalized Pareto (GP) and the compound 
Gaussian inverse Gaussian (CGIG) PDFs 
respectively, [3], [4]. These models have been 
effectively tested to fit the McMaster Intelligent 
Pixel Processing (IPIX) radar lake-clutter 
measurements and are extended to incorporate the 
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thermal (system) noise in order to attaint better 
goodness-of-fit against the Weibull, Log-normal and 
K distributions, [5], [6]. Compared to the standard 
Pareto model, the fractional order Pareto 
distribution was shown to produce excellent fits to 
the Defence Science Technology Organization 
(DSTO) Ingara data collected by X-band maritime 
surveillance radar, [7]. Another way to obtain the 
best fitting to empirical data is to use the mixture 
models, i.e., the mixture of two or more 
distributions. In this context, the KK distribution is 
applied for the analysis of the Ingara data collected 
at medium to high grazing angles, [8]. The model is 
generalized to account the addition of multiple looks 
and a thermal noise component to produce greater 
accuracy of the underlying shape of the fitted PDF. 
The required detection threshold to achieve a 
constant false alarm rate was also studied and 
compared with the K-distribution. [9], proposed a 
mixture of a Rayleigh and a K PDFs for 
representing active sonar data comprising clutter 
sparsely observed in a Rayleigh-distributed 
background. The K-Rayleigh mixture was seen to 
provide improved PDF fits and inference on the 
clutter statistics. A parameter estimation technique 
based on the expectation maximization (EM) 
algorithm is proposed and shown to perform 
adequately, [9]. The reference, [10], proposed an 
alternative statistical model, which is a mixture of 
K-distribution and log-normal distribution for 
modeling the SAR (synthetic aperture radar) data. 
This mixture model is able to model the clutter data, 
the target data, or the mixed data of clutter and 
target. The flowchart of the maximum likelihood 
(ML) method using the EM approach was presented 
for estimating the respective parameters of the 
proposed mixture model.  

In this paper, the modelling of sea radar clutter 
using a mixture of two compound Gaussian 
distributions plus thermal noise is presented. The 
speckle component of the proposed models is 
formed by an exponential distribution where the 
texture components are particularly modelled by 
means of two different distributions, [11]. The work 
presented in, [11], is extended in this paper to 
account three mixture models which are compared 
to the K, GP and KK clutter plus noise models. To 
do this, the gamma, the inverse gamma and the 
inverse Gaussian distributions are considered to 
describe the modulation components. The proposed 
models are analysed and the non-linear least squares 
curve fitting technique based on the Nelder-Mead 
algorithm, [12], is employed to obtain the optimal 
parameter estimation. Compared to the existing KK, 
K, and Pareto clutter plus noise distributions, 

experimental results show that the proposed mixture 
models with different random textures are well 
suited to fit high resolution sea clutter data in most 
cases. This paper is structured in the following 
manner. In section 2, we briefly recall the 
expressions of the K, the Pareto and the CIG 
(compound inverse Gaussian) clutter plus noise 
PDFs. Section 3 describes the proposed mixture 
models where the flowchart of the the N-M 
algorithm is presented. Section 4 investigates 
modeling comparisons using IPIX data of the 
proposed mixture models against the existing K, GP 
and KK distributions plus noise. Finally, main 
concluding remarks are listed in section 5. 

 
 

2  Review of K, Pareto and CIG plus 

Noise Distribution 
This section introduces compound Gaussian 
processes for characterizing sea-clutter returns, 
which are composed of a rapidly fluctuating speckle 
component influenced by a slowly fluctuating 
texture component. Assuming independent and 
identically distributed (iid) single look data, the 
combined CG distribution of the random variable X 
is described as per reference, [1]. 
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If a square law detector is used and the thermal 
noise power denoted by 22

n
p is incorporated, 

the speckle component (namely the conditional PDF 
of x given y) follows the exponential distribution 
(i.e., single pulse case) given by: 
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The K-distribution plus noise is obtained if the 
texture component fluctuates according to a gamma 
PDF, [2]. 
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where   is the shape parameter which governs the 
spikness of the clutter, b is the scale parameter and 

(.)  is the gamma function. Substituting (2) and (3) 
into (1), the overall K plus noise PDF is given in 
integral form, [13], [14]. 
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The complementary cumulative distributed function 
(CCDF) related to (4) is: 
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where T denotes the normalized detection threshold. 
It is shown in, [14], that the moment formula of 
order r>0 can be expressed as   
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where  .,.;.;.02 F is the generalized hyergeometric 
function.  

When the modulation component is an inverse 
gamma PDF, the Pareto plus noise distribution is 
constructed, [3], [15]. 
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Where   is the shape parameter which depends 
on heavy tailed clutter and b is the scale parameter. 
Substituting (2) and (7) into (1), the Pareto plus 
noise PDF is obtained, [16], [17]. 
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Integrating (8) from T  to + , the 
corresponding CCDF is also given in an integral 
form:  
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Using (8), the expression of moments of order 
r  is derived in, [17], to be: 
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If the inverse Gaussian law is used to describe 
the modulation component in (1), the CIG plus 
noise PDF is obtained. The underlying inverse 
Gaussian distribution is presented in, [18], [19]. 
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Where is the shape parameter and is the 
mean. Note that,  relies upon sea conditions and 
radar parameters. Spiky clutter corresponds to 
values of 10   and the Exponential distribution 
or Gaussian clutter is attained for  →∞. 
Substituting (2) and (11) into (1), the CIG PDF plus 
noise is expressed by: 
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The corresponding CCDF of (12) is determined 

to be:  
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Contrary of (6) and (10), it is difficult to solve 

the integral of moment’s expression from (12) of 
order r. Numerical integration is used to evaluate 
the following non-integer order moments 
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3 Proposed Combination of CG 

Models 
In this section, mixtures CG models are presented 
with different random textures for the best tail 
fitting to real data. Three texture components are 
considered as devoted in Section 2. To this end, we 
resort to combine two CG distributions with an 
appropriate weighting factor k (0<k<1) given by, 
[10]. 
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where  21 ,,  k  is a vector of unknown 
parameters to be estimated at each estimation task. 
The two CG distributions p1(x) and p2(x) have the 
same exponential distribution for the speckle 
component given by (2) and two different texture 
components. For instance, if we choose the CIG and 
the Pareto plus noise models to describe p1(x) and 
p2(x) respectively, (15) becomes (after substitution 
(8) and (12) into (15)). 
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Note that (16) spans from CIG plus noise PDF 
to Pareto plus noise PDF. With k=1 and k=0 

corresponding to the purely CIG plus noise 
distribution and the purely Pareto plus noise 
distribution respectively. If 0<k<1, (16) is a mixture 
of the CIG and the Pareto plus noise PDFs. 
Consequently, several combinations between 
K+noise, Pareto+noise and CIG+noise PDFs can be 
used in (15). However, it is shown in, [12], that the 
best estimation of the parameters of K-clutter plus 
noise model can be achieved when the 
corresponding CCDF is used in the objective or 
fitness function of the N-M algorithm. To this 
effect, we apply in this work the PCFE (parametric 
curve fitting estimation) method described in, [11], 
[12], to optimize the parameters of the following 
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CCDFs instead of mixture models used in (15). In 
the case of the CCDF obtained from a mixture of the 
CIG and Pareto plus noise models, it is easy to 
obtain:  
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where ,  

n
pbk ,,,,,   . The CCDF obtained 

from a mixture of CIG and K plus noise models is 
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In this case,  

n
pbk ,,,,,   . Also, the 

resulting CCDF from a mixture of K and Pareto plus 
noise models is given by 
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where  

n
pcbk ,,,,,   . In (17)-(19), we have six 

unknown parameters to be optimized. Due to this 
complexity of parameter estimation, the PCFE 
based on the N-M simplex search algorithm is used. 
The best fit is simply achieved by a direct 
comparison of the experimentally measured CCDF 
with a set of curves derived from the theoretical 
CCDF given by (17)-(19). Thus, the residual can be 
formulated, in our case, as the difference between 
the experimentally measured CCDF of the recorded 
data and the theoretical model. An adequate tail 
fitting regions of the theoretical CCDFs with real 
data are optimized by means of the N-M algorithm 
which is the best known algorithm for 
multidimensional unconstrained optimization 
without derivatives. After a sufficient number of 
iterations, the algorithm converges to the global 
minimum and outputs the numerical estimates of the 
parameters. From the flowchart of Figure 1, the 
following basic steps of the N-M algorithm are 
given below with fixed parameters,

   ,  2/12,1   and 2/1 , [11].  
Step 1: Estimate the real CCDF of the recorded 
data. 
Step 2: Initialize the method. 
Step 3: Calculate the initial working N–M simplex 
from the initial point given above. 

Step 4: Evaluate the summed square of residuals 
between theoretical CCDFs with real data at each 
point  (vertex) of the working N–M simplex. 
Step 5: Repeat the following steps until the 
termination test is satisfied. 

1 Calculate the termination test information. 
2 If the termination test is satisfied then, 

accept the best vertex of the working N–M 
simplex and go to step 6, otherwise 
transform the working N–M simplex and go 
to step 4. 

Step 6: Return the best point (vertex) of the working 
simplex ∆ and the associated function value. 
In the following section, the radar data that is used 
for sea clutter modeling is described. After that, the 
procedure to be followed for data analysis is 
provided.  
 
 
4 Modeling Assessment using IPIX 

Data 
The capabilities of the proposed mixture models 
given by (15) to fit the real PDFs and CCDFs given 
by (17-19) for various sets are investigated in this 
section.  This modeling performance is assessed 
using real-world IPIX lake clutter. The lake-clutter 
data we processed were collected at Grimsby, 
Ontario, with the McMaster University IPIX radar. 
IPIX is an experimental X-band search radar, 
capable of dual polarized and frequency agile 
operation, [20]. As in reference, [4], we focus our 
analysis on the datasets 84, 85 and 86 which 
correspond to the range resolutions 30m, 15m and 
3m respectively. The radar site was located at east 
of the “Place Polonaise” at Grimsby, Ontario 
(Latitude 43:2114±N, Longitude 79:5985±W), 
looking at lake Ontario from a height of 20 meter 
(m). The nearest shore on the far side of the lake is 
more than 20 Km away. The data of the Grimsby 
database are stored in 222 files, as 10 bits integers. 
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Fig. 1: Flowchart of the Nelder-Mead method 
 

There are co-polarizations, HH and VV (Lpol), 
and cross-polarizations, HV and VH (Xpol), 
coherent reception, leading to a quadruplet of I and 
Q values for co-pol and cross-pol. Here, the 
experimental modeling analysis is carried out for 
HH and VV antenna polarizations, 3 m, 15 m and 30 
m range cell resolutions. During the recordings, the 
radar was transmitting with a pulse-repetition 
frequency (PRF) of 1000 Hz and a pulse length of 
0.06 s . The received IPIX data is treated by the 
arrival order and registered in a (60000x34) matrix 
where 34 denotes the number of range cells and 
60000 is the number of pulses. Because parameter 
estimation of compound Gaussian models cannot be 
obtained using low sample sizes, the proposed 
mixture models were validated using 60000 
recorders rather than 34 range samples. High 
resolution sea clutter depends on both azimuth 
resolution which is related to the beam width and 
range resolution, ie., 2/cd  . In cases of d=3m, 
d=15m and d=30m, the pulse duration (i.e., 
sampling time) have three different values where the 
grazing angle is fixed at a low value. Thus, these 
data does not have a connection with the grazing 
angle.  

In order to investigate the statistical properties 
of the data, we compare the empirical PDF and 

CCDF of the data with their theoretical mixture 
models in the case of single look data. Fitting with 
multilook data using for example 10 to 20 cells is 
not possible using the proposed theoretical 
distributions.  

The tail fitting to real data is important in radar 
detection applications. Thus, 1000 independent 
samples are not sufficient to fit the tail of the 
corresponding PDFs and CCDFs. Usually, 105 
samples are needed for a desired CCDF value of 10-

3. Each range cell, 60 000 measurements are 
therefore necessary to compare the tail fitting of the 
different models. 

The following experimental procedure focuses 
firstly on the parameter estimation found by the N-
M algorithm and secondly on the validation of the 
mixture models using the real data described 
previously. The MSE (Mea Square Error) values are 
calculated from the fitted and empirical CCDFs 
curves. According to these values which are 
obtained from specific range of the CCDFs between 
10-3 and 10-2, the proposed mixture models give 
lower values allowing best tail fitting as several 
scenes will show. The optimal estimates of the 
various models parameters as well as the MSE 
values are illustrated in Table 1 and Table 2.  For 
HH polarization, resolution of 30m and 19th range 
cell, the PDFs and the CCDFs curves are depicted in 
Figure 2. It is clearly seen from this experiment that 
a mixture model constructed by the CIG plus K 
distributions provides the smallest value of MSE 
which means the best fit to empirical data. Now if 
the case of a resolution of 15m, a VV polarization is 
considered with 32th range cell, the theoretical 
mixture models CIG plus GP and K plus GP have 
quasi-similar results with the empirical CCDFs as 
shown in Figure 3. Next, we conduct the same test 
for a resolution of 3m, HH polarization, 17th range 
cell; better modeling performance is obtained by the 
K plus GP and CIG plus GP CCDFs as depicted in 
Figure 4. If another study based on the use of the 
same resolution with VV polarization and 9th range 
cell, Figure 5 illustrates the different PDFs and 
CCDFs for all considered models. In this 
experiment, it can also be seen that the tail of the 
proposed mixture models (CIG plus K and CIG plus 
GP) leads to the best fit. From these modelling 
experiments, it is pinpointed out that a mixture 
model constructed by the sum of the CIG, K, and 
GP distributions with noise is mostly an accurate 
statistical model of IPIX data, but it requires more 
computational time due to the number of estimated 
parameters.  

Finally, the results obtained by the proposed 
mixture models are also assessed against those 
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obtained by the existing KK model with thermal 
noise, [8]. To this effect, we used the same PCFE 
based method given in Figure 1 to compute the KK 
clutter plus noise parameters. For this, the 
corresponding CCDF of the KK model with thermal 
noise is given by 

 
 

 
 dyby 

py

T
y

b
k      

dyby 
py

T
y

b
kCCDF

n

n

K

K




















































expexp)1(

expexp

0

1

1

0

1

1
1












(20) 

where  
n

pbbk ,,,,, 11  . 
 

Table 3 illustrates the MSE values as well as the 
optimal estimates of the various models parameters. 
For VV polarization, resolution of 30m and 19th 
range cell, the PDFs and the CCDFs curves are 
depicted in Figure 6. It is clearly seen from this 
experiment that a mixture model constructed by the 
CIG plus GP distributions provides the smallest 
value of MSE which means the best fit to empirical 
data. 

 
Fig. 2: Fitted PDFs and fitted CCDFs of mixture 
models for HH polarization, resolution of 30m and 
19th range cell, dataset 84 

 
Fig. 3:  Fitted PDFs and fitted CCDFs of mixture 
models for VV polarization, resolution of 15m and 
32th range cell, dataset 85 

 
Fig .4:  Fitted PDFs and fitted CCDFs of mixture 
models for HH polarization, resolution of 3m and 
17th range cell, dataset 86 
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Fig. 5:  Fitted PDFs and fitted CCDFs of mixture 
models for VV polarization, resolution of 3m and 9th 
range cell, dataset 86 

 
Fig. 6:  Fitted PDFs and fitted CCDFs of mixture 
models for VV polarization, resolution of 30m and 
19th range cell, dataset 84 

 
Fig. 7:  Fitted PDFs and fitted CCDFs of mixture 
models for HH polarization, resolution of 15m and 
10th range cell, dataset 85 

 
Fig. 8:  Fitted PDFs and fitted CCDFs of mixture 
models for HH polarization, resolution of 3m and 
17th range cell, dataset 86 

 
If the HH polarization is used with resolution of 

15m and the 10th range cell, all proposed models 
with noise as shown in Figure 7 overcome the KK 
model and achieve almost the same tail fitting to 
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real data with a slight superiority of the CIG plus K 
that is illustrated by the smallest value of the MSE 
(Table 3). Now, in the case of a resolution of 3m, 
HH polarization and 17th range cell, the estimated 
CIG plus GP CCDF as presented in Figure 8 offers a 
goodness of fit compared to the obtained KK curve. 

 
Table 1. Estimated parameters of K and Pareto plus 

noise models for HH and VV polarizations 

 

 
Table 2. Estimated parameters of mixture models for 

HH and VV polarizations 

 
 

 

 

 

 

 

Table 3. Estimated parameters of mixture models 
for HH and VV polarizations 

 
 
 
5  Conclusion 
The modeling of high resolution sea clutter has been 
discussed and the mixture distribution with different 
random textures has been proposed. The additive 
thermal noise has been incorporated to provide an 
appropriate model for sea clutter statistics collected 
by IPIX X-band radar. The proposed model is based 
on the sum/mixture of two different compound 
Gaussian distributions plus noise. First, the CIG the 
K and the Pareto plus noise distributions were 
combined to achieve better tail fitting. Then, 
unknown parameters were acquired by means of the 
PCFE method based on the N-M algorithm. Using 
experimental data, the proposed models can quickly 
produce satisfactory curve fitting results in most 
cases compared with standard K plus noise, Pareto 
plus noise, and KK plus noise models. The only 
drawback of the new mixture models lies in the 
computational requirements due to the numerical 
computation of unknown parameters. 
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