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Abstract 

This paper deals with the problem of estimating the parameters of heavy-tailed 
sea clutter in high-resolution radar, when the clutter is modeled by the correlated 
Pareto type II distribution. Existing estimators based on the maximum likelihood (ML) 
approach, integer-order moments (IOM) approach, fractional-order moments (FOM), 
and log-moments (log-MoM) have shown to be sensitive to changes in data correla-
tion. In this work, we resort to a deep learning (DL) approach based on a multi-headed 
architecture to overcome this problem. Offline training of the artificial neural networks 
(ANN) is carried out by using several combinations of the clutter parameters, with dif-
ferent correlation degrees. To assess the performance of the proposed estimator, we 
resort to Monte Carlo simulation, and we observed that it has superior performance 
over existing approaches in terms of estimation mean square error (MSE) and robust-
ness to changes of the clutter correlation coefficient.

Keywords:  Parameter estimation, Pareto, SIRV, Correlation, Deep learning, CNN, LSTM, 
Autoencoder

1  Introduction
The construction of systems that distinguish objects of interest buried in background 
disturbance constitutes a significant challenge in radar signal processing. In mari-
time surveillance applications, sea clutter represents a dominant undesired signal that 
affects radar performance. Besides the applicability in real-time scenarios, an effective 
detection performance should satisfy the adaptivity to clutter power spectral density 
and, more broadly, to the clutter multidimensional probability density function (pdf ) 
while maintaining a constant false alarm rate (CFAR). Consequently, the prior knowl-
edge of clutter distribution enhances target detection capabilities in white or corre-
lated non-Gaussian environments. Improvements in radar system technology and the 
increase in signal processing applications in scale, complexity, and power cancel in 
fact the stationarity and Gaussianity assumptions that could not adequately reflect the 
statistical characteristics of the environment [1]. Related research works revealed that 
high-resolution radar scatters contain spikes giving rise to non-Gaussian heavy-tailed 
measurements. Thus, different heavy-tailed distributions were proposed to model 

*Correspondence:   
amar.mezache@univ-msila.dz

1 Department of Electronics, 
University Mohamed Boudiaf-
M’sila, 28000, M’sila, Algeria
2 University of Pisa, Pisa, Italy
3 Laboratoire d’Analyse des 
Signaux et Systemes (LASS), 
University Mohamed Boudiaf-
M’sila, 28000, M’sila, Algeria
4 SISCOM Laboratory, 
Department of Electronics, 
University Constantine1, 
25010 Constantine, Algeria

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13634-023-00982-8&domain=pdf
http://orcid.org/0000-0003-0212-3269


Page 2 of 25Kerbaa et al. EURASIP Journal on Advances in Signal Processing         (2023) 2023:81 

clutter returns from high resolution and low grazing angles, this includes log-normal, 
Weibull, Pareto, and K-distribution [2–5]. Depending on the data acquisition geom-
etry, the environmental conditions, and the radar parameters, the sea clutter echoes 
could be correlated in temporal and/or spatial components. However, the idealistic 
consideration of independent and identically distributed (iid) clutter returns affects 
the detection and leads to highly suboptimum performance. Therefore, the deriva-
tion of models characterizing non-Gaussian correlated clutter was addressed in [6, 7] 
based on a general approach used in [8] for formulating the multivariate pdf of a cor-
related non-Gaussian random vector and extended to incorporate complex random 
vectors for log-normal or Weibull distributed clutter.

Available approaches for simulating correlated sea clutter are primarily divided into 
two categories: the class of memoryless nonlinear transformation (MNLT) and the 
spherically invariant random process-based approach (SIRP). The MNLT technique is 
broadly inspected in [9], and the method’s downside lies in its incapacity to manipu-
late both the PDF vectors and the power spectrum. On the other hand, the nonlinear 
mapping involved in the generation process could not satisfy the Hermitian property 
of the covariance matrix. As a second approach, Conte and Longo [10] suggested that 
the radar clutter process can be represented by a relatively straightforward approach 
based on the SIRP. The latter provides a mathematically tractable tool for modeling 
the pdf of correlated heavy-tailed non-Gaussian random variables avoiding the non-
linear transformation and ensuring the control of the PDF vectors’ along with the 
power spectrum. Sampling SIRP results in a spherically invariant random vector 
(SIRV), and authors of [11, 12] detailed the properties in conjunction with consistent 
PDFs with the SIRV model. The distribution of the random vector associated with a 
clutter modeled as a SIRV process forms a compound-Gaussian model interpreted as 
a locally Gaussian process with a random local power variable.

Estimation of clutter model parameters forming the background level, in which the 
target of interest is embedded, is an essential part in CFAR detection schemes. Since 
the statistical models of clutter vary with the application scenario, parameter esti-
mation methods will also change with clutter nature. As a result, several approaches 
have been offered based on least squares (curve fitting), matching of moments, and 
maximum likelihood (ML) approaches. For instance, numerous estimators have been 
constructed to deal with Compound Gaussian (CG) clutter, with and without addi-
tive thermal noise [13–16]. The integer-order moments approach is commonly used 
for parameter estimation of numerous clutter models and provides suboptimal results 
[14]. For noiseless case, it was shown that non-integer-order moments and log-
moments could be manipulated to get closed-form estimators labeled FOME (Frac-
tional Order Moments) and [zlog(z)] methods, respectively, for K, Pareto type II (GP), 
and CGIG (Compounded Gaussian Inverse Gaussian) radar clutter parameters [14, 
15].

In terms of sea clutter model types, several authors have considered different deci-
sion rules that are independent of true clutter parameters [17–20]. Several CFAR 
detectors operating in homogeneous and heterogeneous Pareto type II clutter are 
derived when the shape parameter or the scale parameter of the Pareto type II model 
is known a priori [19]. If these parameters are unknown, an alternative procedure 
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based upon the Bayesian approach is introduced in which a modified decision rule is 
given in integral form [20].

With the rapid emergence of the different machine learning paradigms, deep learning 
(DL) techniques have gained significant interest and motivated several advances in radar 
signal processing and target detection/classification applications [21–25]. In the con-
text of parameter estimation, several deep neural networks architecture were proposed 
[26, 27]. In more details, a hybrid CNN-LSTM-based approach for estimating the shape 
parameter in a K + noise distribution for a single look case was developed in [27], and 
better estimation performance was achieved against the classical higher-order moment 
(HOME) and [zlog(z)] estimators with improved execution time. Authors of [27] sug-
gested that estimating clutter parameters could be seen as a many-to-one sequence 
prediction problem and confirm the effectiveness of deep neural networks in learning 
pertinent features from the environment returns leading to a reasonable estimation 
performance of the shape parameter. Furthermore, given a specific theoretical distribu-
tion, the estimation of the clutter parameters may be conveyed as a time series forecast-
ing problem. DL methods have shown noticeable performance in solving this kind of 
problem.

Based on the compound-Gaussian model, the problem of radar detection in a non-
Gaussian correlated environment has been considered in many works [28–32] where the 
clutter covariance matrix is estimated using the range clutter profile (CRP). Gini and 
Greco [33] proposed an iterative approximate maximum likelihood estimator (AML) 
for covariance matrix estimation with unknown parameters and a minimal number of 
iterations while maintaining the detector’s CFAR property. Recently, Sangston et al. [34] 
proposed a parametrically dependent detector referred to as GLRT-LTD algorithm for 
correlated non-Gaussian clutter. The robustness of the GLRT-LTD detector was inves-
tigated via true values of the shape and scale parameters of an inverse-Gamma texture. 
For a realistic situation, unknown parameters should be estimated from the collected 
samples. Already in [34], the parameter estimation of the Pareto model was addressed 
using the higher-order moments approach (see eqs. (43) and (44) in [34]), leading to 
what is called the Adaptive GLRT (AGLRT). However, this estimator has been proposed 
for independent and identically distributed (iid) clutter samples. For very spiky clutter 
(i.e., shape parameter less than 2), moments of order 1/2 and 1 should be used, whereas 
moments of order 2 and 4 can be exploited only when the shape parameter is greater 
than 1.

As available estimators cited above cannot ensure good estimates of the parameters 
when the clutter data are correlated, in this work we propose the implementation of a 
novel multi-headed based estimator of the clutter parameters, including the CNN, 
stacked LSTM, CNN-LSTM, bidirectional LSTM, and LSTM Auto encoder architec-
tures, to provide better estimates of Pareto type II clutter parameters. After the training 
task of the proposed approach using synthetic sea clutter data, the MSE metric test is 
improved against the changes of the correlation coefficient. Since the GLRT-LTD detec-
tor presented in [34] necessitates the knowledge of the clutter parameters, the applica-
tion of the deep learning-based estimator plays two roles: maximization of the detection 
probability owing the best estimates of the parameters and improvement of the process-
ing time due to the forward computing of the estimates.
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In this work, the problem of estimating clutter parameters in the case of correlated 
data is addressed using a deep learning (DL) multi-headed architecture approach, and 
an offline training of the artificial neural networks (ANN) is carried out by using several 
combinations of the clutter parameters, with different correlation degrees for generaliza-
tion purposes. To assess the performance of the proposed estimator, comparisons with 
the conventional approaches are carried out using generated correlated clutter data. The 
proposed deep learning estimator demonstrates its superior performance over existing 
approaches in terms of estimation mean square error (MSE) and robustness to changes 
of the clutter correlation coefficient.

The rest of the paper is structured as follows: Section 2 deals with the problem formu-
lation of estimating parameters in correlated compound-Gaussian environments. In the 
case of uncorrelated samples, classical estimators of the multivariate Pareto type II clut-
ter parameters are presented in Sect. 3. A more in-depth discussion of the appropriate 
deep learning models for the prediction scheme is reported in Sect. 4, along with the val-
idation of the proposed estimator. In Sect. 5, the performance of the proposed estimator 
is compared with existing approaches against correlated clutter data. Finally, in Sect. 6, 
conclusions are drawn and further work is proposed.

2 � Problem statement
Estimating parameters of the clutter model can be handled, conceptually, as a many-to-
many sequence prediction where the input sequence is formed by values of the clutter 
returns and the output vector contains the estimates of the shape and the scale param-
eters of the clutter model. To this end, a prediction model is trained on a set of training 
sequences via deep learning algorithms.

After it has been trained, the model uses a forward calculation which is equivalent to 
closed form estimators to estimate the unknown parameters.

Let us assume coherent pulses echoes from a radar transmitter, then the m com-
plex samples from the scalar time series {z[m],m = 1, 2, . . .} can be assembled into an 
m-dimensional vector z = [z[1], z[2], . . . , z[m]]T where T denotes the transpose opera-
tor. The detection problem is considered as a binary hypothesis testing on a complex 
signal containing the in-phase and quadrature components such that:

Under the null hypothesis, the measured vector z contains only clutter returns c, 
i.e.,z|H0 = c . For a compound-Gaussian modeled clutter, the SIRV c consists of the 
product of two independent random variables such that:

where the speckle x is a complex Gaussian variate with zero mean, unit variance and rep-
resents the properties of the coherent radar sensor. The covariance matrix E xxH = M 
is positive definite Hermitian, then, in shorthand x ∼ CN (0,M) and normalized such 
that Tr{M} = m , where Tr{M} is the trace of M. The texture τ is a positive random quan-
tity and represents the local power of the clutter in the cell under test (CUT). The aver-
age clutter power is given by E{τ}. We assume here that the texture and the speckle are 

(1)
H0 : z = c

H1 : z = s + c

(2)c =
√
τx
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statistically independent, and the clutter covariance matrix M is assumed to be perfectly 
known. Given a specific value of τ, c|τ ∼ CN (0, τM) , the multivariate mth order pdf 
under the null hypothesis can be derived:

|·| denotes the determinant of a matrix.
The pdf of z|H0 is calculated by averaging pz|τ ,H0(z|τ ,H0) over τ as:

The texture τ is modeled by an inverse-gamma pdf:

where λ > 0 is the shape parameter, η > 0 is the scale parameter and Γ(·) is the Gamma 
function. With b = η

�
 , (5) becomes:

From [34], the expression of the GLRT-LTD is given by:

The right-hand side of (7) is the adaptive threshold which is formulated in terms 
of T, m, λ, η and q0 , where q0(z) = zHM−1z is obtained from the m correlated data, 
q1(z) = q0(z − s) , s = ap is the target vector, α is the unknown complex amplitude and 
p is the steering vector. T is the threshold multiplier which is computed from the desired 
probability of false alarm PFA. The PFA of the detector (7) is the following [34]

The GLRT-LTD algorithm depends on the clutter parameters. Replacing the unknown 
values of the clutter parameters λ and η with their estimates leads to what is called the 
Adaptive GLRT-LTD detector. For a realistic case, we need to collect many samples to 
estimate the clutter parameters.

In the literature, there are no estimators that consider explicitly data correlation. 
Most existing estimators of clutter parameters were derived under the assump-
tion of independent and identically distributed (iid). If iid Pareto type II clutter is 
assumed, methods that employ the maximum likelihood principle or the method of 
moments are found in [35]. Those estimators are implemented in this work to iden-
tify the impact of the correlation coefficient on the estimation accuracy and a novel 
approach based on a trained deep learning predictor is proposed to estimate the 
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1
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shape and scale parameters of correlated Pareto type II model. As shown in Fig. 1, 
this approach covers two stages: an offline training process for estimation purposes 
and validation stage of the estimator. The offline part consists of generating massive 
training data using different couples of {λ, η} and train the deep neural network as a 
supervised many to many sequence prediction problems. In addition, the correlation 
coefficient ρ is also considered in the adaptive scheme of the Deep learning approach 
for a generalization purpose. After validating the DL-based estimator, the discrimi-
nation of the sea clutter with different shape parameters from objects of interest is 
carried out by replacing the real parameter values with their estimates in the GLRT-
LTD test statistic.

An overview of the standard estimators of the shape and scale parameter of the 
Pareto type II distribution is presented in the next section.

3 � Parameter estimation of multivariate Pareto type II clutter model
In this section, four estimation methods of Pareto type II clutter parameters are 
presented named IOM (Integer-Order Moments), NIOM (Non-Integer-Order 
Moments), [zlog(z)], and MLE (Maximum Likelihood Estimator). Let y1, y2, …, yN be 
a random sequence for the Pareto type II clutter given at the output of the envelope 
detector [36], with

Moments of order k should be determined to estimate the two unknown parameters λ 
and η from the data using IOM and NIOM techniques.

which converges only if � > k/2.

3.1 � Integer‑order moments (IOM) method

From (10), the texture parameters, i.e., λ and η, can be obtained by equating the ana-
lytical expectations of moments of order 2 and 4 to their sample counterparts, i.e., 

µ̂k = 1
N

N
∑

i=1

yki  . Hence,

(9)pY
(

y
)

= 2yηŴ(�+ 1)

�
(

η
�
y2 + 1

)

Ŵ(�)

(10)µk =
(

�

η

)k/2
Ŵ(1+ k/2)Ŵ(�− k/2)

Ŵ(�)

Fig. 1  Synoptic of deep learning-based estimator of correlated Pareto type II clutter
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Recall that the constraint λ > k/2, for small values of λ, estimation of (1) is unachievable 
via (11). Thus, it is suggested to use FOM method for values of k which are not necessary 
integers [36].

Degraded estimation performances are observed for low sample sizes in spiky clutter 
situations.

3.2 � Fractional order moments (FOM) method

Moments of order 1 and 1/2 are chosen to estimate numerically the underlying param-
eters. Hence,

Solving the above equations simultaneously and after some algebraic operations we get

Numerical routines are required to compute λ and η leading to a slow convergence time.

3.3 � [zlog(z)] method

It has been shown that the estimates obtained by this approach are extremely close to the 
MLE [35]. Here, we need to determine first the expectations E{log(y2)} and E{y2log(y2)} 
[37]. The [zlog(z)] estimator is given in a closed form provided by

This approach relatively reduces the estimation time with a slight degradation in estima-
tion performance compared to the MLE method.

3.4 � MLE method

The vector of parameters θ̂ =
[

�̂, η̂
]

 which maximizes the log-likelihood function L(θ), 

i.e. θ̂ is the solution of the following equation
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From the definition of the MLE method, the likelihood function is computed first on the 
basis of (9) and partial derivatives with respect to λ and η are required to find the maxi-
mum of the log-likelihood function. From [36], it is shown that the ML estimate of b̂ = �̂

η̂
 

is a solution of the following function.

From (17), the ML estimate of �̂ is given in a closed form as a function of η̂

where the scale parameter is simply determined by η̂ = b̂�̂.
This is a time-consuming approach because of the optimization of nonlinear equation 

for the scale parameter.

4 � Multi‑headed deep learning estimator
In recent years, different machine learning paradigms have received extensive atten-
tion as a multidisciplinary subject. Deep learning [38], a subfield of machine learning, 
belongs to the class of representation learning aiming to construct models and repre-
sentations from large unprocessed data. The particularity of deep learning resides in its 
ability to learn hierarchical feature representations directly from the raw data and thus 
reducing the hand-crafted features extraction considerably. Deep learning has presented 
super-human skills in many applications, including, and not limited to: object detec-
tion/recognition, anomaly detection, time series forecasting, and natural language pro-
cessing. Since we are tackling the issue of estimating clutter parameters and the clutter 
returns are 1-dimensional signals, one can shrink the estimation process to a regression 
problem as a many-to-many sequence prediction. We will expose the most popular deep 
learning models dedicated to sequential data problems in the following subsection.

4.1 � Holistic view of appropriate DL models for sequential data

Given the variety of sequential or time series problems across diverse domains, sev-
eral neural network approaches have emerged [39, 40]. Among these models, recurrent 
neural networks or RNNs for short have gained great interest owing to the short-term 
memory obtained from the recurrent feedback connections and provide a powerful tool 
for dealing with correlated sequential data. However, traditional RNNs suffer from two 
main limitations. First, the temporal order involved in the input sequence affects the 
model’s outputs which is primarily based on the previous context. For this, an appro-
priate solution proposed in [41] consists of presenting each training sequence forwards 
and backwards to two recurrent networks connected to the same output layer. The sec-
ond drawback is the difficulty of learning long-term dependencies that are encoded in 

(16)
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δθ
ln fY |θ

(

y|θ
)

= 0

(17)
N

∑N
i=1

z2i
b̂z2i+1

N − b̂
∑N

i=1
z2i

b̂z2i+1

−
N
∑

i=1

log
(

b̂z2i + 1
)

= 0

(18)
�̂ = N

b̂
∑N

i=1
z2i

b̂z2i+1

− 1



Page 9 of 25Kerbaa et al. EURASIP Journal on Advances in Signal Processing         (2023) 2023:81 	

the data because of the vanishing gradient [42]. To deal with this, an alternative recur-
sive architecture with a specialized cell structure was introduced, leading to long short-
term memory network (LSTM) [43]. As the length of the input variable changes in the 
sequence-to-sequence prediction applications, an RNN Encoder-Decoder architecture 
was developed in [44] and based on one RNN network acting as an encoder which maps 
the variable-length source sequence to a fixed-length vector and a second RNN net-
work is used to map the vector representation back to a variable-length target sequence. 
Besides, incorporating LSTM cells instead of RNNs in the Encoder-Decoder design 
leads to Encoder-Decoder LSTM architecture [45]. Moreover, Autoencoder (AE), an 
unsupervised learning model trained using supervised learning methods, also called a 
self-supervised learning method, is a special type of neural network that seeks to learn 
a compact representation of a set of data intended as a feature vector to another super-
vised learning model. A variety of AE models are proposed in the literature and are prin-
cipally used for anomaly detection, feature extraction, and dimensionality reduction 
[46]. The implementation of the AE using the Encoder-Decoder LSTM yield the LSTM-
Autoencoder (LSTM-AE). The LSTM-AE may learn a compressed version of sequential 
data [47].

Furthermore, a tremendous interest in another deep learning architecture alternating 
convolutional and subsampling layer has been addressed in recent years. The convolu-
tional neural networks (CNNs), which are feed-forward artificial neural networks with 
many hidden layers trained with a massive size of labeled datasets, have demonstrated 
to be a powerful tool for numerous engineering applications, especially for 2D signals. 
Recently, 1D CNNs have been proposed to deal with the time series forecasting and clas-
sification concerns and have immediately achieved extraordinary accuracy performance, 
making them a viable option for 1D signal processing applications [39].

A more in-depth explanation of the different architectures is addressed in the follow-
ing subsections.

4.2 � Long short‑term memory

Recurrent neural networks take their appellation from the involved recurrence connec-
tions, which provide them with a memory of past activations allowing the temporal dynam-
ics learning and making this kind of recursive networks appropriate for modeling sequential 
data. RNNs are defined as a topology stimulating a discrete-time dynamical system with 
an input xt, a hidden state ht and an output yt. The drawback of the conventional RNNs is 
the exploding or vanishing gradient, which occurs when the gradient tends to be extremely 
small, leading to the short-term memory problem in long sequences. The long short-term 
memory architecture (LSTM) is proposed as an efficient attempt to solve this problem. The 
LSTM is constituted of three states to control the interactions between the different mem-
ory units. These states are referred to as the input, forget and output gates. Specifically, the 
forget gate removes redundant or irrelevant data and chooses to retain or ignore its previ-
ous status. Whereas the input state analyzes the new data and checks whether the input 
signal may alter the memory cell state, the output gate, conversely, handles the input data 
with the cell state [43]. In other words, the idea is to have an input vector added with the 
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previous output vector passed through a neural network which outputs the values to keep 
with 1 and the values to forget with 0.

The block diagram of Fig. 2 illustrates the different components of a cell memory of the 
LSTM network.

Unlike the unidimensional, bidirectional LSTMs process the data in both forward (pos-
itive time direction) and backward (negative time direction) senses. The idea is to dupli-
cate the first recurrent layer in the network into two side-by-side layers, then providing the 
input sequence as-is to the first layer, and the second layer processes a reversed copy of the 
input [48].

It is worth noting that timesteps in the input sequence are treated one at a time the same 
way as the unidirectional architecture. The difference is that the network steps through the 
input sequence are processed in both directions at the same time.

4.2.1 � LSTM‑autoencoders

Autoencoders (AEs) are an elegant variation of neural networks trained in an unsuper-
vised learning paradigm to reconstruct an informative representation of its input and often 
involved in different implications such as clustering or used as generative models. AE con-
sists of three layers arrangement, based on feed-forward neural networks, for encoding and 
decoding purposes. The encoding phase comprises the mapping of the dataset to a hidden 
layer and learns a compressed representation of the data sequence. In contrast, the decod-
ing task covers the reconstruction of the input sequence from the latent variables of the 
encoding phase. The encoding and decoding processes can be formulated as follows:

where x is the input sequence, h(·) and f(·) are the encoding and decoding functions, 
respectively, h(x) is the hidden encoded vector and x̂ is the reconstructed vector of the 
output layer. Additionally, W1, W2 are the encoder and decoder weight matrix while b1, 
b2 represents the bias vectors of each phase [49].

(19)h(x) = f (W 1x + b1)

(20)x̂ = g(W 2h(x)+ b2)

Fig. 2  Block diagram of the LSTM cell architecture
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During the training, the AE model tries to minimize an objective function which is 
nothing but the reconstruction error expressed in terms of the difference between the 
input and the reconstructed output (i.e., minimize

∣

∣

∣

∣x − x̂
∣

∣

∣

∣

2 ). One way to get lower 
reconstruction error is to stack different AE layers, and the obtained architecture is 
referred to as stacked autoencoder (SAE). SAE allows the extraction of useful high-
level features and other advantages of abstraction and invariance, and thereby better 
generalization skills of the model are expected [49].

Since RNNs are well suited for modeling sequential data compared to the tradi-
tional feed-forward multiple layer perceptron (MLP) involved in the AE architecture, 
numerous LSTM-based autoencoder (LSTM-AE) networks were proposed where the 
classical MLP in AE are replaced by LSTM cell organized in encoder-decoder archi-
tecture as shown in Fig. 3.

LSTM-AE is the combination of two LSTM layers acting as encoder and decoder. 
The LSTM encoder layer is trained to produce the representation vector, and the lat-
ter is fed to the second LSTM decoder layer that should reconstruct the input data. 
The LSTM-AE cost function is the mean square error between the original input 
sequence and the reconstructed vector. The LSTM-AE can be applied either for input 
sequence reconstruction and/or prediction purposes [47, 49]. Regardless the desired 
task, once the AE has been trained, the decoder can be removed, and the encoder 
can be kept for other supervised learning processes as a standalone model. In [49], 
Stacked LSTM-AE (LSTM-SAE) was proposed for modeling multistep time series 
forecasting problems as a robust forecasting module that converts time series obser-
vation into representative features which can be used for other tasks such as predic-
tion or analysis. The implemented LSTM-SAE adopts a shallow architecture with one 
LSTM for the encoder and decoder layers. The pre-training phase consists of building 
three LSTM-SAE blocks where each block is constituted of the past trained and saved 
LSTM encoder as a hidden layer. A fine-tuning phase is then carried out by adding an 
output layer for a supervised regression problem where the label is the corresponding 
variable to the input sequence. The evaluation is then completed using out-of-sample 

Fig. 3  LSTM-AE architecture
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testing data. This is the same approach we used in this paper, with a minor modifica-
tion in the number of blocks.

4.3 � Convolutional neural networks (CNNs)

Convolutional neural networks are a particular type of feed-forward neural networks 
that map features from input data in a hierarchical way and used for data processing. 
They consist of a chain of layers alternating convolutional and subsampling operations 
to the input data, followed by a classifier. Besides the immunity to small data transfor-
mations and the ability to process large inputs, CNNs combine the feature extraction 
and the classification tasks in the same process breaking all records in computer vision 
and many other domains. CNNs were first fashioned specifically to process 2D signals, 
and their applications for 1D scarce data require a suitable  2D to 1D conversion and 
various feature transformations were introduced [39]. However, due to the high com-
putational complexity along with a large amount of data necessary for the training, 2D 
CNNs may not be an adequate solution for many 1D data applications. A compact 1D 
CNN architecture was recently proposed in [39] to deal with the drawbacks of 2D CNNs 
in 1D applications and achieve high-performance levels in diverse signal processing 
applications.

CNNs work the same way whether inputs have 1, 2, or 3 dimensions. The difference is 
the structure of the input data and how the convolution kernel moves across the data. 
The input layer of the 1D CNN receives a 1D time series sequence instead of 2 or 3D 
data, and 1D filters are replaced instead of 2D filters. The convolutional layer performs 
a sequence of convolutions, which are simply linear weighted sums of 1D sequences 
passed through the activation function followed by the max-pooling or other pooling 
operation. Consequently, the network processes 1D signals instead of 2D matrices for 
both kernels and feature maps, resulting in a low computational complexity. Related 
explanations of the Forward and Backpropagation learning algorithms in CNN layers are 
provided in [39].

Considering the various deep architectures seen in this section, it should be possible 
to conceive an intelligent estimator for Pareto modeled clutter using a mixture of CNN, 
LSTM, BLSTM and Autoencoder designs.

The following subsection of this paper deals with the design and the validation of a 
multi-headed deep learning-based estimator.

4.4 � The multi‑headed deep learning‑based estimator

4.4.1 � Data generation/pre‑processing

The performance accuracy of deep learning methods relies highly on the quality and the 
amount of the available labelled dataset. DL algorithm inputs could be of various types, 
and the most commonly used data inputs are in the form of tensors. For the problem of 
estimating the Pareto II clutter parameters, a combination of random values of the cor-
relation coefficient, scale, and shape parameters together with data of normalized clutter 
power were considered for generalization purposes.
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The data generation of correlated samples is performed using SIRV model as follows:

•	 Setting the following parameters:

	 the number of pulses N, window size m, the number of Monte Carlo trials n, and the 
number of vectors nb;

•	 Generation of random coefficient of correlation ρ between 0 and 1;
•	 Generation of random values of the shape parameter λ in the range of [1.1, 8] and the 

scale parameter η between [1, 12];
•	 For i = 1: nb

•	 Repeat for each value of ρ

•	 Repeat for each value of the couple {λ, η};
•	 Compute the covariance matrix of the speckle: Mx = toepliz(ρm) and the 

Cholesky factor of Mx: L = chol(Mx);
•	 Generate the SIRV Pareto data as follows:
	 – Compute the complex speckle x
	

	 – Compute the Inverse Gaussian texture τ as τ = 1/gamrnd(�, η, 1,N )

•	 The SIRV c is obtained by Eq. (2) (i.e., c = √
τx) which is a matrix (N*m).

•	 Calculate the power of c so that the input matrix contains real values.
•	 Flatten the matrix c and append λ, η (i.e.,zi =

{

ci,1, ci,2, . . . , ci,(N∗m), �i,(N∗m)+1, ηi,(N∗m)+2

}

).
•	 Concatenate the current vector with the previously generated vectors in the same 

matrix.
•	 Save the matrix

4.4.2 � Estimation architecture design and validation

The basic idea for constructing a multi-headed deep learning-based estimator is to pre-
sent a combination of different features to the deep neural network with varying designs 
of architecture, and the role of each block is either to model/extract valuable features 
and/or to predict values from the original dataset. The proposed approach consists of 
building four deep architectures, namely an LSTM-SAE, 1D CNN, BLSTM, and 1D 
CNN-LSTM models. Then, the model’s outputs are concatenated to form the input for 
the final prediction block, which consists of a single LSTM layer followed by an MLP 
to produce final estimates of the shape and scale Pareto type II clutter, as illustrated in 
Fig. 4.

x = L ∗
(

randn(m,N )+ j ∗ randn(m,N )
)

/
√
2









c1,1c1,2
c2,1c2,2

· · · c1,(m∗N )�1,(N∗m)+1η1,(N∗m)+2

c2,(N∗m)�2,(N∗m)+1η2,(N∗m)+2

...
. . .

...
cnb,1cnb,2 · · · cnb,N∗m�nb,(N∗m)+1ηnb,(N∗m)+2








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The two first heads of the estimator are mainly developed to produce a new represen-
tation and extract new features from the input sequences. The LSTM-SAE is composed 
of two hidden layers of encoded data following a similar approach of [49] and trained 
in a self-supervised manner where the desired output is the same as the expected input 
sequence. The first LSTM-AE block in the stack is trained, and its LSTM encoder layer is 
saved to be used as input for the second LSTM-AE block in the stack, which is also saved 
and load as a second hidden layer for the final LSTM-SAE model. The LSTM encoder-
decoder architecture is designed using 64 LSTM units for both encoding and decod-
ing, and the RepeatVector layer is used as an adapter to fit the encoder and decoder of 
the network. The output of that architecture is a reconstructed version of the generated 
Pareto type II samples.

The second head is the convolutional architecture constituted of two consecutive 
1D-convolutional layers where each Conv-Layer consists of 64 filters, followed by a 
MaxPooling operation. The principal task achieved by this head is to extract useful fea-
tures. The output is then flattened to be concatenated with the representation vector 
from the LSTM-SAE.

The two last heads are designed for prediction purposes. To this end, hybrid 1D CNN-
LSTM architecture and a BLSTM network are considered. The bidirectional LSTM 
model is formed using 128 LSTM cells trained forward and backward to output inter-
mediate estimates of the shape and scale parameters of the Pareto model. The last head 
is a combined architecture of 1D CNN and LSTM networks. It consists of two consec-
utive convolutional layers of 32 filters in each Conv-Layer, followed by a MaxPooling. 

Fig. 4  The proposed multi-headed deep learning estimator
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The flattened output of the last convolutional layer is fed to the input nodes of a hidden 
LSTM layer composed of 32 cell units. The output layer is MLP which is incorporated 
to provide another intermediate predicted value of the unknown Pareto distribution 
parameters.

Finally, the outputs of the above-mentioned models are concatenated with the original 
set of data and fed to an LSTM Layer composed of 64 units followed by two dense layers 
of 128 and 2 neurons, respectively, to provide the final estimates of the shape and scale 
parameters. It is worth noting that the ReLU function is the activation function for all 
the models mentioned above.

The dataset is generated following the process previously described and consists of 
250,000 vectors; each vector contains N*m simulated samples associated to the values 
of λ and η as targets. The dataset is randomly organized into a training set (80%) and a 
validation set (20%).

The final multi-headed deep learning-based estimator is obtained after different trials 
and errors process. Different architectures were considered with diverse models, layers, 
activation functions, and optimizers. The elaboration of the proposed intelligent estima-
tor was validated after the comparison with several deep learning models. Table 1 sum-
marizes the overall mean square error (MSE) in the training and validation phases along 
with the configuration of the different architecture designs. Dropout and batch normali-
zation layers were incorporated for the above models to increase the generalization and 
improve prediction performances.

As depicted in Table 1, it is seen that the proposed DL-based estimator exhibits better 
performance than the other topologies for both the training and the validation datasets. 
The Adam optimizers exhibit the best performance in reason of its convergence rapidity 
along with the RMSprop with near-optimal performance.

Table 1  Comparison of different architectures configuration and MSE accuracy

Model Configuration

Layers/blocks Number of 
neurons/
filters/
units

Activation 
function

Optimizers Training 
accuracy 
(MSE)

Validation 
accuracy 
(MSE)

Stacked 
LSTM

4 LSTMs Layers + 2 Dense 
Layers

LSTM: 128, 
64, 64, 32 
Dense: 64, 2

Sigmoid 
ReLU

SGD 1.11 1.24

RMSprop 1.08 1.19

Adam 1.05 1.14

BLSTM BLSTM + 2 Dense layers BLSTM: 
128 units 
Dense: 
100, 2

Sigmoid 
Tanh ReLU

SGD 1.33 1.87

RMSprop 1.28 1.85

Adam 1.26 1.85

CNN-LSTM 2 CNN Layers + 2 LSTM Lay-
ers + 2 Dense Layers

Conv1D:64, 
64 LSTM: 
32, 32 
Dense: 64, 2

Sigmoid 
Tanh ReLU

SGD 0.98 1.12

RMSprop 0.86 0.89

Adam 0.86 0.87

Multi-head LSTM-
SAE + CNN + BLSTM + CNN-
LSTM + LSTM + Dense

See Fig. 4 ReLU SGD 0.51 0.71

RMSprop 0.39 0.59

Adam 0.31 0.34
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5 � Performance assessment
With regards to the Deep Learning-based estimator presented above, we proceed in 
this section to carry out numerical simulations to evaluate the effectiveness of the 
proposed estimation method and confirm its applicability. For this purpose, we com-
pare the results obtained using the multi-headed deep learning estimator against the 
existing FOME, [zlog(z)], and the MLE methods by means of the Mean Square Error 
(MSE) metric test.

Besides the fact that the moment orders vary depending on the clutter spikiness, 
the applicability hypothesis of the integer-order moment estimator in real-time sce-
narios is disproved due to the large number of pulses required for accurate estimation 
of the clutter parameter. That is why we omit the comparison of the proposed Deep 
learning estimator with the integer-order moment method described in Sect. 3.

The dataset used for the test task is constructed following the same approach used 
for the training database. The window size is set to m = 24 with N = 4, 8 and 16 inte-
grated pulses, and we considered different values of the correlation coefficient, from 
data almost uncorrelated to strongly correlated (ρ = 0.01, 0.1, 0.3, 0.6, 0.9, 0.99) to 
see the effect of the correlation on the estimation task. Pareto samples are gener-
ated in the range of values for λ between [1.1–6] so that different states of the clutter 
spikiness are included. In the overall test phase, the estimates of λ are averaged over 
n = 1000 Monte Carlo trails, and the computations were executed on an Intel® Core™ 
i5-3230 M CPU @ 2.60 GHz RAM 8.0 GB.

As previously stated, for each value of λ between [1.1, 6], we generate an m by N 
matrix with a fixed correlation coefficient. After that, the matrix is flattened to pro-
duce a single sample vector. This process is repeated 1000 times for each value of the 
couple (λ, η), resulting in a 50,000 × 384 matrix in the test dataset.

For low correlation coefficient (ρ = 0.1), Fig.  5 illustrates the MSE curves of the 
FOME, [zlog(z)], MLE, and the DL-based estimator for a window size of 24 and 16 
integrated pulses. For very spiky clutter, comparable results are obtained using the 
four estimators with slightly enhanced performance of the DL-based estimator 
for λ ≤ 1.3. As the spikiness of the clutter decreases, the proposed method exhibits 
improved performance compared to the other estimators with instabilities of the 
MLE and its closed-form counterpart [zlog(z)] estimators. For the parameter η, it is 
clearly seen that the multi-headed deep learning attains the lowest error for η < 8 with 
overlapped curves of the other classical estimators. For large values of η, the MLE 
gives equivalent results as the DL and [zlog(z)] estimators.

As the correlation coefficient increase (ρ = 0.3), the estimation error of the [zlog(z)], 
MLE, and the FOME increases while the DL estimator maintains its superiority for 
high values of the shape parameter as depicted from Fig.  6 with a slight superior-
ity of the MLE for λ = 1.4. Note that for ρ = 0.3 and large values of η, similar results 
to those obtained for ρ = 0.1 are observed, and globally, precise estimation accuracy 
is achieved using the proposed estimation approach. For ρ = 0.6, as shown in Fig.  7 
that the proposed estimator achieves improved performance for the overall range of 
the shape and scale parameters. For highly correlated data (ρ = 0.9), the estimation 
accuracy of the multi-headed deep learning-based approach exhibits better perfor-
mance than the classical approaches as illustrated in Fig.  8. For a more informative 
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Fig. 5  MSE of the estimates of λ and η for ρ = 0.1, m = 24, N = 16

Fig. 6  MSE of the estimates of λ and η for ρ = 0.3, m = 24, N = 16
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Fig. 7  MSE of the estimates of λ and η for ρ = 0.6, m = 24, N = 16

Fig. 8  MSE of the estimates of λ and η for ρ = 0.9, m = 24, N = 16
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Fig. 9  Bias of estimated λ and η for ρ = 0.1, m = 24, N = 16

Fig. 10  Bias of estimated λ and η for ρ = 0.9, m = 24, N = 16
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illustration, Figs. 9 and 10 show the bias of the shape and scale parameters for ρ = 0.1 
and ρ = 0.9, respectively. As expected, the results obtained from the bias criterion 
appears to be identical to those obtained by the MSE. Regardless of the correlation 
coefficient, for large shape parameter values, the DL estimator performance exceeds 
the log and moments-based estimator. On the other hand, the bias confirms the supe-
riority of the DL approach in estimating the scale parameter in the overall studied 
cases.

It is worth noticing that the Multi-headed deep learning approach estimates both the 
shape and scale parameters separately but simultaneously, while the estimation of the 
scale parameter for the [zlog(z)] and FOME depends on the estimate of the shape param-
eter. Conversely, for the case of the MLE, the shape parameter is estimated from the 
scale parameter. Thus, it is important to compare the results of the proposed approach 
against those obtained using the moment of order 1/2 (see Eq.  13). Figure  11 shows 
improved results of the multi-headed DL estimator for η > 1.8 for uncorrelated data. On 
the other hand, for correlated pulses, Fig. 12 illustrates the effectiveness of the proposed 
approach to estimate the scale parameter for the overall range of η values. Consequently, 
the estimation of one parameter from another using the existing approaches produces 
imprecise results, leading to a considerable error impeding the application of such esti-
mators in real radar scenarios.

In order to visualize the impact of the correlation on the estimation, MSE curves of the 
scale and shape estimators with ρ = 0.01 and ρ = 0.99 are plotted together in the same 
figure. For m = 24 and N = 16, we clearly see in Fig. 13 that, for low values of the shape 
parameter and uncorrelated data, better estimation performance is achieved for the 
conventional approaches. In contrast, for the correlated data case with high values of λ, 
degraded performance with constated instability MSE curves are depicted.

Fig. 11  MSE comparison of estimated η for ρ = 0.1, m = 24, N = 16
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Here, the DL-based estimator attains the lowest MSE values and ensures the stability 
and the accuracy for both cases with enhanced results for the uncorrelated data.

With reduced number of pulses (M = 8, 4), the estimation performance degrades for 
the overall estimators compared to the results obtained for large number of pulses as 
depicted in Fig.  14 and 15. The proposed approach keeps its superiority for large and 
small number of pulses; then, it can be applied in various situations (Fig. 15).

Fig. 12  MSE comparison of estimated η for ρ = 0.9, m = 24, N = 16

Fig. 13  MSE comparison of estimated λ for ρ = 0.01(dashed lines) and ρ = 0.99 (solid lines) with m = 24, 
N = 16
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Concerning the computation complexity of the algorithms presented in this work, the 
MLE and FOME approaches require the use of an optimization algorithm to produce 
estimates of the unknown parameters which introduce a heavy computational burden 
to the estimation task and limit their real-time application. In contrast, the proposed 
approach is trained offline leading to an improved execution time for the tested data. 
The increase in the number of neurons and layers of the deep learning approach results 
in the increase in the neural network parameters to be processed and somehow, reduces 

Fig. 14  MSE comparison of estimated λ for ρ = 0.01(dashed lines) and ρ = 0.99 (solid lines) with m = 24, N = 8

Fig. 15  MSE comparison of estimated λ for ρ = 0.1(dashed lines) and ρ = 0.9 (solid lines) with m = 24, N = 4



Page 23 of 25Kerbaa et al. EURASIP Journal on Advances in Signal Processing         (2023) 2023:81 	

the speed of the algorithm execution. The [zlog(z)] closed-form estimator eliminates the 
optimization process resulting in a faster execution time as depicted in Table 2.

Nonetheless, for correlated echoes, the [zlog(z)] method exhibits degraded perfor-
mance, which again limit its applicability. The compromise between the time execution 
and the accuracy performance of the proposed intelligent algorithm confirms its superi-
ority against the conventional FOME, [zlog(z)] and MLE methods.

The estimation accuracy depends highly on the clutter spikiness, the number of pulses, 
and the correlation between the samples. From the results obtained previously, it is worth 
stating that the classical FOME, [zlog(z)] and MLE approaches are well suited for spiky 
uncorrelated echoes and degraded performance is observed for strongly correlated data 
with high values of the shape parameter. The particularity of the proposed multi-headed 
deep learning-based estimator resides in its ability to estimate accurately and simultane-
ously the shape and the scale parameters for both correlated and uncorrelated data with 
reduced computational complexity.

6 � Conclusions and further works
This paper focuses on the estimation of the shape and the scale parameters of Pareto Type 
II distributed clutter. The proposed approach relies on a mixture of supervised and semi-
supervised DL architectures. Simulated data were generated to investigate the performance 
of the proposed estimator and compare its performance with that of existing estimators. 
Numerical results show the superiority of the proposed multi-headed DL-based estimator 
over methods based on the method of moments and the maximum likelihood. Conven-
tional FOME, [zlog(z)] and ML approaches are well suited for spiky uncorrelated clutter, 
but with increasing correlation coefficient and for high values of the shape parameter, these 
methods exhibit inaccurate estimates. The proposed multi-headed DL-based estimator has 
better performance with reduced execution time. The proposed estimator can be imple-
mented in a CFAR detector in the presence of correlated non-Gaussian clutter. The esti-
mate of Pareto clutter parameters in the presence of non-negligible additive white Gaussian 
noise (AWGN) is a problem that also can be explored by making use of DL approach.

Author contributions
All authors have contributed toward this work as well as in compilation of this manuscript. All authors read and 
approved the final manuscript.

Availability of data and materials
The datasets used and analyzed during the current study are available from the corresponding author on reasonable 
request.

Table 2  Average elapsed time in (s) for different values of λ, 100 runs and different estimation 
method

Shape parameter Estimation approach

MLE FOME DLE zlog(z)

1.1 ≤ λ < 3 6.1753 4.334 34.502 × 10−3 15.375 × 10−3

3 ≤ λ < 4.5 6.4641 4.869 35.925 × 10−3 17.781 × 10−3

4.5 ≤ λ < 6 8.7823 6.211 37.638 × 10−3 19.224 × 10−3
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