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A B S T R A C T   

Accurate and reliable fault detection procedures are crucial for optimizing photovoltaic (PV) system perfor
mance. Establishing a trustworthy PV array model is the primary step and a vital tool for monitoring and 
diagnosing PV systems. This paper outlines a two-step approach for creating a reliable PV array model and 
implementing a fault detection procedure using Random Forest Classifiers (RFCs). 

Firstly, we extracted the five unknown parameters of the one-diode model (ODM) by combining the cur
rent–voltage translation method to predict the reference curve and employing the modified grey wolf optimi
zation (MGWO) algorithm. In the second step, we simulated the PV array to obtain maximum power point (MPP) 
coordinates and construct operational databases through co-simulations in PSIM/MATLAB. We developed two 
RFCs: one for fault detection (a binary classifier) and another for fault diagnosis (a multiclass classifier). 

Our results confirmed the accuracy of the PV array modeling approach. We achieved a root mean square error 
(RMSE) value of 0.0122 for the ODM parameter extraction and RMSEs lower than 0.3 in dynamic PV array 
output current simulations under cloudy conditions. Regarding the fault detection procedure, our results 
demonstrate exceptional classification accuracy rates of 99.4% for both fault detection and diagnosis, surpassing 
other tested models like Support Vector Machines (SVM), K-Nearest Neighbors (KNN), Neural Networks (MLP 
Classifier), Decision Trees (DT), and Stochastic Gradient Descent (SGDC).   

1. Introduction 

In recent years, worldwide energy policies have focused on reducing 
carbon footprints and moving towards more sustainable energy sources. 
This is reflected by an increased adoption of renewable energy sources 
(RES) to ensure a greener future. Among RES, solar photovoltaics (PV) is 
identified as a key energy source, addressing environmental concerns at 
very competitive costs [1]. As a result, global PV capacity surpassed the 
terawatt threshold in early 2022, accounting for two-thirds of the pro
jected increase in global renewable capacity by 2023 [2]. 

PV systems are designed to operate under harsh external conditions, 
including extreme weather situations, wind-induced vibrations, and 
exposure to ultraviolet radiation [3,4]. In these demanding environ
ments, various malfunctions and failures may occur, potentially short
ening the lifespan of PV modules, reducing the overall system’s energy 

yields, compromising system availability, and posing safety risks to 
personnel involved in their operation and maintenance [5]. Hence, the 
early detection and diagnosis of faults is paramount for ensuring the 
long-term reliability and sustainable operation of the entire PV system. 

Multiple methods for detecting and diagnosing faults in PV systems 
have emerged over the last decade. Model-based approach procedures 
involve simulating the performance of the actual PV installation and 
comparing the simulated output power with the monitored one [6,7]. 
Chouder and Silvester introduced a fault detection methodology for PV 
systems based on power loss analysis, categorizing identified faults into 
a faulty string, faulty module, and partial shading through detailed 
analysis of simulated and measured output ratios [8]. Silvestre et al. 
presented an automated procedure for fault detection in grid-connected 
PV systems centered on current and voltage indicators [9]. The method 
involves setting thresholds based on typical operational behavior, 
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triggering a fault signal when surpassed, and identifying faults by 
analyzing current and voltage ratios. Drews et al. employed a fault 
detection method by setting a power residual threshold using weather 
satellite data for irradiance and temperature instead of on-site sensors 
[10]. While this obviates the need for additional on-site sensors, it may 
compromise accuracy due to potentially more significant margins of 
error in weather data. In contrast, Garoudja et al.’s method sets a 
threshold on the exponentially weighted moving average of current, 
voltage, and power residuals, integrating historical data for fault 
detection rather than relying solely on the most recent observation [11]. 
Overall, the fault detection techniques mentioned above are straight
forward to implement. Nevertheless, the primary challenge lies in pre
cisely selecting suitable thresholds to ensure their reliability. 

In recent years, diverse artificial intelligence (AI) techniques 
encompassing Machine Learning (ML) and Deep Learning (DL) have 
been incorporated as the core methodologies of PV fault detection and 
diagnosis due to their excellent capabilities in addressing feature 
extraction and classification problems. Several ML techniques were 
developed for fault detection and diagnosis in PV systems [12–15]. 
Among these techniques, artificial neural network (ANN), support vec
tor machine (SVM), and Random Forest (RF) are the most common 
approaches. Bendary et al. proposed two adaptive neuro-fuzzy inference 
system-based controllers (ANFIS) to address cleaning, tracking, and 
faulty issues in PV systems [16]. The method is based on associating the 
actual measured values of current and voltage with respect to the trained 
historical values for this parameter while considering the ambient 
changes in conditions, including irradiation and temperature. Madeti 
and Singh introduced an algorithm based on k-nearest neighbors (KNN) 
for real-time fault detection in PV systems, capable of detecting and 
classifying open circuit, line-to-line, and partial shading faults [17]. 
However, it’s important to note that the method’s accuracy is not 
flawless compared to its computational efficiency. Eskandari et al. 
proposed an ensemble learning method that combines three algo
rithms—Support Vector Machine (SVM), Naïve Bayes (NB), and KNN 
[18]. The selected classifiers exhibited impressive performance with an 
accuracy rate of up to 99.5 %. Nonetheless, it’s worth noting that this 
method was specifically developed for detecting line-to-line faults. 
Similarly, Kapucu et al. explored an ensemble learning approach that 
integrates quadratic discriminant analysis (QDA), extra trees with en
tropy (ETent), and decision trees (DT) [19]. Their investigation focused 
on identifying two PV faults — partial shading and short circuit — the 
method achieved an initial accuracy rate of 97.46 %, which increased to 
97.67 % after optimization. Likewise, Adhya et al. utilized a diagnostic 
approach comprising the light gradient boosting method (LGBM), cat
egorical boosting (CatBoost), and extreme gradient boosting (XGBoost) 
to identify faults in PV systems [20]. This combination of diverse ML 
algorithms resulted in an impressive accuracy of approximately 99 %. 
However, despite these promising outcomes, the approach remains 
intricate, prompting the need for further refinements and enhance
ments. Akram et al. proposed a monitoring method for the DC side of PV 
arrays, employing the Probabilistic Neural Network (PNN). Their 
approach demonstrated a good classification accuracy, reaching 98.53 
%. However, the method was specifically tested for detecting and clas
sifying short- and open-circuit faults [21]. Chen et al. utilized a RF to 
classify partial shading, degradation, open circuit, and short circuit 
faults, employing only high-frequency current and voltage measure
ments in parallel circuit substrings [22]. This work showed good results. 
However, it was based on a limited range of operating weather condi
tions. Likewise, Gong et al. utilized the classification regression tree to 
address the issue of photovoltaic array fault diagnosis [23]. The method 
is based on I-V curves generated under specific working conditions, and 
the obtained classification accuracy was 97.9 %. Mellit et al. developed 
an embedded system for remote monitoring and fault diagnosis of PV 
systems based on two conventional neural network models [24]. The 
first ANN is used for fault detection, while the second deals with fault 
diagnosis. Both ML algorithms showed good accuracy when embedded 

into a low-cost edge device for real-time diagnosis of a PV array. On the 
other hand, the emergence of DL algorithms represents a transformative 
leap in machine learning, gaining considerable attention for their 
prowess in pattern recognition, data mining, and knowledge discovery. 
A notable contribution in this domain comes from Gao et al. [25], where 
they introduce a DL approach that integrates a stacked autoencoder 
(SAE) with a multi-grained cascade forest for diagnosing PV faults – 
associated with partial shading, open circuit, and short circuit faults – 
without needing weather data or I-V curves as inputs. In this approach, 
the SAE extracts the fault features automatically from normalized 
sequence waveforms of string current and voltage, while the multi- 
grained cascade forest is responsible for diagnosis. In parallel en
deavors, Liu et al. introduced a fault diagnosis method for a PV array 
utilizing SAE and clustering [26]. This approach mines inherent I-V 
characteristics, enabling automatic feature extraction and fault diag
nosis. In addition, Chen et al. presented an innovative deep residual 
network (ResNet) for intelligent fault detection and diagnosis. 
Leveraging output, I-V characteristic curves, and input ambient condi
tion data, this novel approach adds depth to fault analysis [27]. 

Despite the effectiveness of the AI-based fault detection and di
agnostics procedures, their accuracy is compromised by the data used in 
their training stage. Actual measurement data are not enough to train AI 
models, so to conceive a trustful training database, developing an ac
curate model of the PV system is crucial. Efficient models are essential to 
fully replicate the PV systems operation considering various faults and 
outdoor conditions. Furthermore, data processing is another crucial 
approach to consider in deploying AI-based machine learning proced
ures for PV diagnosis. As Wang et al. have underscored the data pro
cessing importance in increasing the accuracy of ML-based algorithms to 
categorize complex faults in the range of 81 %-99 % [28]. 

The present work’s contributions involve developing a robust PV 
model that is the foundation for monitoring and fault detection — 
whether AI-based or conventional model-based — techniques. Addi
tionally, it introduces a fault detection procedure based on Random 
Forest Classifiers, optimized through a grid-search algorithm for 
hyperparameter tuning. The adopted methodology unfolds in two 
crucial steps:  

• In the first step, we focus on accurately identifying the unknown 
parameters of the One-Diode Model (ODM) of the PV array operating 
under outdoor conditions. This is achieved through a novel appli
cation of the translation technique designed to correct randomly 
measured current–voltage (I-V) curves to reference standard test 
conditions (STC). The translation technique employs analytical for
mulations to derive these parameters across various operating con
ditions, accounting for variations in irradiance and temperature 
[29]. To determine the five unknown parameters of the ODM at STC, 
we utilize an optimization algorithm based on the Modified Grey 
Wolf Optimization (MGWO), an approach initially introduced by 
Mirjalili et al. in 2014 [30]. The MGWO algorithm’s innovative po
sition updating concept enables more efficient searching and 
exploitation capabilities while maintaining rapid convergence speed. 
Subsequently, based on the identified parameters, we derived and 
simulated the evolution of the maximum power point (MPP) model 
using actual dynamic measurements from a grid-connected PV sys
tem in Algeria.  

• The second step in our approach involves simulating the PV array to 
extract MPP coordinates and construct its operational databases 
through PSIM/MATLAB co-simulations. Additionally, we implement 
an efficient fault detection and diagnosis process by leveraging the 
Random Forest Classifier (RFC). This entails the development of two 
RFCs: the first for fault detection (a binary classifier) and the second 
for fault diagnosis (a multiclass classifier). Finally, we comprehen
sively compare our approach with other machine-learning tech
niques for detecting and diagnosing faults in the considered grid- 
connected PV system. The testing phase encompasses five 
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operating scenarios: a healthy system, three short-circuited modules 
in one string, a line-to-line fault, a string disconnected from the 
array, and the shading effects on three panels. 

The remainder of this paper is organized as follows: Section 2 
comprehensively describes the PV system utilized to validate the pro
posed methods. Section 3 explores the novel approach to PV modeling 
and parameter extraction. Section 4 is dedicated to explaining the 
developed fault detection approach. Section 5 presents the results ob
tained, accompanied by in-depth discussions to elucidate the method
ology’s performance and effectiveness. Finally, Section 6 summarizes 
the conclusions drawn from this study. 

2. Experimental setup description 

To rigorously assess the accuracy of the proposed fault detection 
methodology and the new procedure for extracting the PV model’s un
known parameters, monitored data from a grid-connected PV system 
were used. The proposed PV system is located in Algiers, Algeria, at 
coordinates 36◦43′N latitude and 3◦15′E longitude. This PV installation 
boasts a total capacity of 9.54 kW, organized into three sub-arrays, each 
with a capacity of 3.18 kW. Each sub-array comprises 30 Isofoton 
106–12 panels arranged in two parallel strings of 15 modules in series. 
These PV modules are connected to a 2.5 kW single-phase inverter (IG30 
Fronius). 

The PV plant’s tilted and horizontal irradiance levels are monitored 
using a Kipp & Zonen CM11 thermoelectric pyranometer. Additionally, 
temperature measurements of the PV modules are conducted using K- 
type thermocouples. Meteorological and electrical variables are sys
tematically recorded using a data logger (Agilent 34970). The data, 
including weather (Solar irradiance (G), module temperature (T), and 
PV output (Impp, Vmpp, Pmpp) parameters at the Maximum Power Point 
(MPP), were collected at a sampling rate of 1 min. 

The main specifications of the selected PV array used in this work are 
listed in Table 1, while further details of the whole PV installation can be 
found in [31]. 

Table 2 summarizes the key electrical parameters for the Isofoton 
106–12 PV module under Standard Test Conditions (STC), characterized 
by a temperature of 25 ◦C and an irradiance level of 1000 W/m2. 

3. Developed approach for PV modeling 

The basis for our photovoltaic (PV) modeling approach is the widely 
adopted one-diode, five-parameter solar cell model [32]. This model is a 
popular choice in PV module modeling for various technologies, 
encompassing crystalline and thin-film designs. It is favored for striking 
a balance between model complexity and predictive accuracy. The solar 
cell I–V characteristic is described by the implicit and nonlinear 
expression given in Eq. (1). 

I = Iph − Io

[

exp
(

q(V + RsI)
nkT

)

− 1
]

−
V + RsI

Rsh
(1)  

where I0 is the diode saturation current (A). Iph represents the photo
current in (A). n is the diode ideality factor. The Boltzmann constant 

(1.38x10-23JK− 1) is defined by k. T is the cell temperature in (K). The 
parameter q is the electrical charge (1.602 x10-19C). Vt(V) is the thermal 
voltage expressed as Vt = kT/q. Finally, Rsh and Rs represent shunt and 
series resistances (Ω). For an in-depth understanding of this model, 
including the requisite equations to extend its applicability from a single 
solar cell to an entire PV array, an extensive description is referenced in 
[33]. 

The five parameters, namely Iph, Io, n, Rsh, and Rs, are typically not 
explicitly provided by PV module manufacturers. Previous investigation 
revealed that the extracted actual values of these parameters often 
deviate from calculated ones based on nominal data provided in the 
datasheet specified at the STC [34]. Consequently, achieving a precise 
alignment between the PV model outputs defined by Eq. (1) and real- 
world monitored data is essential for accurate simulation and fault 
detection. Therefore, the necessity of using an effective parameter 
identification procedure is crucial. 

3.1. Current-voltage translation to reference conditions 

The parameters of PV cells are notably influenced by weather con
ditions, making it inaccurate to assume their constancy. Additionally, 
the mathematical expressions employed in these models depend on ac
cess to reference parameters. However, replicating the standard test 
conditions proves challenging under typical outdoor conditions. To 
address this challenge, we present an efficient translation method 
inspired by a technique introduced in [29] initially employed for 
analyzing the degradation of amorphous silicon-based modules. This 
method transforms three arbitrary I-V curves, each obtained under 
varying temperature and irradiance conditions, into a reference curve. 

It is important to note that many translation methods in literature 
often necessitate prior knowledge of additional parameters. In contrast, 
our innovative approach requires no prior information about tempera
ture coefficients or internal parameters. It solely relies on data obtained 
from three measured I-V curves (Curves 1,2 and 3) defined as:  

- Curve 1: (V1[i], I1[i] ) where i = 1,…,n1, measured at an irradiance G1 
and a cell temperature T1  

- Curve 2: (V2[j], I2[j] ) where j = 1,…,n2, measured at an irradiance G2 
and a cell temperature T2  

- Curve 3: (V3[k], I3[k] ) where k = 1,…,n3, measured at an irradiance 
G3 and a cell temperature T3 

The proposed methodology is rooted in the derivation of a new Curve 
0, denoted by (V0[i], I0[i] ), aligning with the desired conditions G0 and T0 
at standard test conditions (STC). An intermediate curve is introduced to 
achieve this, initiating an interpolation process denoted as Curve 4, 
governed by the operating conditions G4 and T4. Initially, Curve 4 is 
extracted from Curve 1 and Curve 2. Subsequently, Curve 3 and Curve 4 
are employed to attain the target Curve 0. The interpolation process 
begins within the irradiance/temperature plane, as illustrated in Fig. 1, 
and is subsequently carried out in the voltage/current space, employing 
identical parameters as elaborated below. 

The values of G4 and T4 are established based on combinations of G1 
and G2, and T1 and T2, respectively, as depicted in Eqs. (2) and (3), 

Table 1 
Main specifications of the selected PV array.  

Parameter Description 

Module technology Mono-crystalline (mc-Si) 
PV array nominal power 3.18 kWp 
Inverter type and size IG30 Fronius single-phase, 2.5 kW 
Modules per inverter 30 
Modules in series (Ns) 15 
Strings in parallel (Np) 2 
Tilt - Azimuth 35◦ − 10◦ West  

Table 2 
Electrical characteristics of the considered PV 
module.  

Parameter Value 

Pmp (W) 106 
ISC (A) 6.54 
VOC (V) 21.6 
Imp (A) 6.10 
Vmp (V) 17.4 
βVOC (%/◦C) − 0.36 
αISC (%/◦C) 0.06  
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wherein the parameter α will be determined. Additionally, as demon
strated in Eqs. (4) and (5), the desired irradiance G0 and temperature T0 
are inferred from G3 and G4, as well as T3 and T4, respectively, with the 
incorporation of another unknown parameter ∅. This configuration 
yields a system of four equations and four unknowns (G4, T4, α, and ∅). 

G4 = G1 +∝(G2 − G1) (2)  

T4 = T1 +∝(T2 − T1) (3)  

G0 = G3 +∅(G4 − G3) (4)  

T4 = T3 +∅(T4 + T3) (5) 

The set of equations specified in the standard conditions has been 
streamlined by introducing a novel translation parameter, denoted as ω, 
defined as the product of ∅ and α. Additionally, the values of G4 and T4 
have been integrated into Eqs. (4) and (5), resulting in the formulation 
of Eqs. (6) and (7), which can be straightforwardly computed. 

G0 − G3 = (G1 − G3).∅+(G2 − G1).ω (6)  

T0 − T3 = (T1 − T3).∅+(T2 − T1).ω (7) 

The next step is intended to find the I-V curves. It has been assumed 
that ISC1 and ISC2 are the short-circuit currents of Curve 1 and Curve 2, 
respectively. For each point of Curve 1 (V1[i], I1[i] ), its partner (V2[j],
I2[j] ) is sought in Curve 2 so that the next condition is satisfied: 
I2[j] − I1[i] = Isc2 − Isc1. Then, a new point (V4[i], I4[i] ) of Curve 4 is ob
tained by applying Eqs. (8) and (9). By the same manner, for each point 
of Curve 3 (V3[i], I3[i] ) , the best matching point (V4[j], I4[j] ) of Curve 4 is 
selected fulfilling I4[j] − I3[i] = Isc4 − Isc3 and the point (V0[i], I0[i] ) of 
Curve 0 is produced based on Eqs. (10) and (11). 

V4[i] = V4[i] +∝(V1[i] − V2[j]) (8)  

I4[i] = V4[i] +∝(I1[i] − I2[j]) (9)  

V0[i] = V3[i] +∅(V3[i] − V4[j]) (10)  

I0[i] = V3[i] +∅(I3[i] − I4[j]) (11)  

3.2. Parameter extraction based on modified grey wolf optimization 

In this section, we introduce an offline optimization method for 
parameter identification. The reason for opting for the optimization 
approach is that the characteristic equations, as defined in Eq. (1), have 
an implicit form making the direct parameters identification chal
lenging. The parameter identification process can be likened to an 
optimization problem, and we tackle this challenge using the Modified 
Grey Wolf Optimization (MGWO) algorithm. This method effectively 
optimizes the unknown parameters to reconcile the implicit character
istic equations, enabling us to precisely determine the desired values 
based on actual measurement data. In this approach, we focus on 
quantifying the disparity between the outputs derived from Eq. (1) and 
the data obtained from the current–voltage translation methodology 
described above (section 3.1). We employ the root mean square error 
(RMSE) as a key criterion to measure this difference. For each set of 
experimental values (I, V), the RMSE is computed according to the 
following formula: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

(
∑N

i=1
(f (V, I, x))2

)√
√
√
√ (12)  

f (V, I, x) = I −
(

Iph − Io

[

exp
(

q(V + RsI)
nkT

)

− 1
]

−
V + RSI

Rsh

)

(13)  

where, x =
[
Iph,ref , Io,ref ,Rsh,ref ,Rs,ref , nref

]
, and N represents the data 

points quantity. 
The classical Grey Wolf Optimizer (GWO) algorithm was introduced 

in 2014 by Mirjalili et al. [30], and its mathematical social behavior 
model is represented as follows: 

D→=

⃒
⃒
⃒C
→
. Xp
̅→

(t) − X→(t)
⃒
⃒
⃒ (14)  

X→(t+ 1) = Xp
̅→

(t) − A→.(D→) (15)  

where t is the current iteration, Xp
̅→ is the position vector of the prey, X→

is the position vector of the hail wolf, and A→ and C→ are coefficient 
vectors, calculated as follows: 
{

A→= 2 a→. r1
→− a→

C→= 2. r2
→ (16)  

where the components of a→ decrease linearly from 2 to 0 over the 
course of the iterations and r1

→, r2
→ are random numbers in [0,1]. The 

equation for position update is shown below. 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Dα
̅→

=

⃒
⃒
⃒ C1
̅→

. Xα
̅→

− X→
⃒
⃒
⃒

Dβ
̅→

=

⃒
⃒
⃒ C2
̅→

. Xβ
̅→

− X→
⃒
⃒
⃒

Dδ
̅→

=

⃒
⃒
⃒ C3
̅→

. Xδ
̅→

− X→
⃒
⃒
⃒

(17)  

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

X1
̅→

= Xα
̅→

− A1
̅→

.( Dα
̅→

)

X2
̅→

= Xβ
̅→

− A2
̅→

.( Dβ
̅→

)

X3
̅→

= Xδ
̅→

− A3
̅→

.( Dδ
̅→

)

(18) 

Each wolf in the pack updates its position following the positions of 
X1
̅→

, X2
̅→

, and X3
̅→ which stand for the top three solutions thus far in the 

iteration process. 

X→(t+ 1) =
X1
̅→

+ X2
̅→

+ X3
̅→

3
(19) 

This article introduces an adaptable method that leverages the GWO 
algorithm, with a minor modification in the selection phase. As depicted 

Fig. 1. The operating conditions of curves 1, 2, and 3 are interpolated to obtain 
the operating conditions of Curves 4 and 0. 
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in Fig. 2, the diagram outlines the steps of the proposed Modified GWO 
(MGWO) technique, which closely aligns with a method previously 
employed in a prior study [35]. This technique determines alpha, beta, 
and delta members by evaluating the fitness function for individual 
positions, specifically the five unknown parameters. Other agents adjust 
their positions accordingly. 

A novel approach to position updating is integrated into GWO, 
enhancing both search and exploitation capabilities while ensuring 
rapid convergence. This novel concept draws inspiration from the 
competitive exclusion method found in genetic algorithms [36]. In this 
approach, only positions from the current iteration of search agents 
(wolves) that exhibit higher fitness compared to positions from previous 
iterations are replaced. Only the top positions are considered during the 
final phase for selecting new alpha, beta, and delta members. The pro
cess iterates to update search agent positions based on these selections, 
repeating as necessary to reach the maximum number of iterations [37]. 
The MGWO with an additional phase can search for fully optimal results 

without using any parameters like conventional methods would. 

3.3. Prediction of the PV outputs under actual outdoor conditions 

Using fully analytical formulas and reference parameters obtained 
through the MGWO algorithm, the next crucial step involves establish
ing the values of the unknown parameters within real operational con
texts. Eqs. (20) to (25) encompass the analytical expressions that enable 
the calculation of the five parameters in question as functions of tem
perature and irradiance [38–40]. 

n(T) = nref
(
T/Tref

)
(20)  

Iph(G,T) =
G

Gref

[
Iph,ref +α(T − Tref )

]
(21)  

Rsh(G) = Rsh,ref
(
Gref /G

)
(22) 

Fig. 2. MGWO algorithm flowchart.  
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Eg = Eg,ref
[
1 − 0.0002677(T − Tref )

]
(23)  

Rs(G,T) = Rs,ref

(
T

Tref

)
[
1 − βln

(
G/Gref

) ]
(24)  

Fig. 3. Flowchart of the proposed fault detection and diagnosis strategy.  
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Io(G,T) = Io,ref

(
T

Tref

)3

e

(
q

nKB

(
Eg,ref
Tref

−
Eg
T

))

(25) 

Eg is the semiconductor’s band gap energy, and Eg,ref is the band gap 
energy for reference conditions. Iph, Io, n, Rs, and Rsh are the five pa
rameters at actual operating conditions. In contrast, Iph,ref, Io,ref, nref, Rs, 

ref, and Rsh,ref are the five unknown parameters at the reference condi
tions found by the extraction method application. 

4. Faults detection and diagnosis strategy 

Operating a PV system during certain types of failures can lead to 
complete insecurity, catastrophic damages, and safety risks. The pri
mary objective of this work is to establish a robust and reliable fault 
detection procedure using Random Forest Classifiers to detect anomalies 
within a PV system and pinpoint their root causes. To accomplish this, 
conceiving a high-quality database that clearly delineates the charac
teristics of each class of fault is imperative. Therefore, having a reliable 
simulation model that accurately represents the behavior of a PV system 
in both its healthy and faulty states is the best course of action to handle 
this case. Fig. 3 provides a comprehensive flowchart outlining the steps 
to develop the proposed strategy. 

The validated PV system model, as described in the preceding sec
tion, serves as the foundation for constructing databases that capture the 
performance of the PV system under actual outdoor conditions. This PV 
model is harnessed to produce datasets comprising optimal operation 
and intentionally simulated defects, utilizing daily solar irradiance and 
module temperature profiles. To achieve this, the physical model of the 
grid-connected PV system under consideration was implemented within 
the PSIMTM software platform. Subsequently, the values of the unknown 
parameters extracted under reference conditions are incorporated into 

the physical PV array model. 
In this work, the simulated healthy/faulty scenarios, encompassing 

the most prevalent issues encountered in grid-connected PV systems, are 
described below and depicted in Fig. 4.  

a) A healthy system: This scenario mirrors the operation of the PV 
system without any anomalies.  

b) Three short-circuited modules: Represents the case of one string in 
the PV system with fewer PV panels in operation.  

c) Open circuit faults: This scenario simulates where one string within 
the PV system becomes non-functional.  

d) Line-to-line fault: This is the case of a short-circuit between two PV 
strings.  

e) Three PV modules shaded: This scenario replicates the effects of 
partial shading experienced by PV systems due to factors such as 
cloud movement or the presence of nearby objects for a specific 
duration. 

The resulting databases contain five key attributes - Irradiance, 
Temperature, and the output Current, Voltage, and Power at Maximum 
Power Point (MPP) - extracted from each simulated operational sce
nario. An illustration of the simulated faults and their impact on the 
output power of the grid-connected PV system, based on clear-sky 
weather data for a typical day, is presented in Fig. 5. 

The concluding phase of the proposed fault detection strategy in
volves the deployment of two Random Forest Classifiers (RFCs). The first 
RFC is dedicated to identifying anomalies within the PV system, while 
the second RFC is responsible for diagnosing the specific faults that have 
been detected. 

Fig. 4. Failure types considered in the proposed methodology (#1 partial shading, open-circuit fault#2, #3 short-circuit fault, and #4 Line-to-Line fault).  
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4.1. Random forest classifier 

The Random Forest (RF) algorithm is a supervised machine-learning 
technique widely employed for Classification and Regression tasks. It 
operates on the principle of ensemble learning, which involves 
combining multiple decision trees on different subsets of the input data 
to enhance predictive accuracy. As a fundamental concept in machine 
learning, Random Forest’s effectiveness and problem-solving capabil
ities increase with the number of trees it encompasses. 

The RF model used in this study is characterized by the decision tree 
algorithm’s benefits linked to speed and high accuracy. The developed 
model’s structure involves two key steps: first, selecting a sampling 
method to create a data subset, and second, constructing a decision tree, 
as illustrated in Fig. 6. Notably, four hyperparameters must be consid
ered, including the minimum number of samples for leaf nodes, the 
minimum number of samples for internal node splitting, the maximum 
number of selections, and the maximum depth of the decision tree. It’s 
important to note that the RFC’s performance is influenced by various 

Fig. 5. DC output power of the grid-connected PV system within various fault scenarios.  

Fig. 6. The general structure of the deployed RF model.  
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hyperparameters such as splitting criteria, the minimum number of 
samples for leaf nodes, and internal node splitting, and this study delves 
into optimizing their combination for enhanced results [41]. 

After establishing the RF model, the test set samples are input into 
the model. Each individual decision tree evaluates the classification 
results for each sample. Once this evaluation is complete, the class that 
receives the most votes from all decision trees is assigned as the classi
fication for the sample [42]. This is achieved by employing a voting 
mechanism that combines the results of all the decision trees. A grid 
search optimization method is utilized to further optimize the RF algo
rithm’s parameters, as illustrated in Fig. 7. This approach aids in iden
tifying the most influential parameter combinations for the RF model, 
enhancing its classification performance. First, the Cartesian product is 
applied to the value set of each hyperparameter to generate the hyper
parameter configuration space (the box on the left side of Fig. 7), which 
contains all potential hyperparameter combinations. The grid search 
algorithm then trains a model for each hyperparameter combination in 
the configuration space. As seen in the box on the right side of Fig. 7, the 
experiment with the best validation set error is picked as having 
discovered the optimal hyperparameters [43]. 

As mentioned earlier, this study incorporates two RFCs, each with a 
specific role. The first classifier is designed to identify any indications of 
faults within the PV system, while the second classifier’s task is to 
pinpoint the particular type of fault. 

The diagnosis model aims to provide output that categorizes the 
specific fault cases (fault #1, fault #2, fault #3, fault #4), as visualized 
in Fig. 4. The detection model has five input parameters (T, G, Impp, 
Vmpp, and Pmpp), a data processing module, the Random Forest/Grid 
search optimization method application, and two outputs (healthy state, 
faulty state). This setup enables the models to effectively detect and 
diagnose faults within the PV system, offering a comprehensive view of 
the specific fault conditions. 

4.2. Data preparation for learning and testing stages 

The preprocessing phase of the raw data is imperative to enhance 
problem-solving capabilities and achieve higher accuracy. In this 
context, the ’sklearn’ library offers a suite of functions for handling 
missing values, allowing us to identify and address them effectively 
using the ’isnull’ function. To unveil relationships within the data, 
Pearson’s correlation coefficient is employed. This metric yields values 
ranging from − 1 (indicating a perfect negative correlation) to + 1 
(indicating a perfect positive correlation), quantifying the strength of 
linear relationships. Notably, this measure is distinct from correlations 
between variables [44]. We employed a normalization process based on 
a calibration technique to facilitate a meaningful comparative analysis 
of information across attributes in the dataset. This technique centers 
values around the mean and utilizes a unit standard deviation. Addi
tionally, to provide context for the recorded data, we assigned appro
priate class labels, facilitating the creation of well-defined data samples. 
The defined classes with their corresponding fault type are given in 
Table 3. 

For the training and evaluating the two RFCs, we utilized a dataset 
that includes monitored data from selected 60 days throughout the year, 
covering all seasonal variations. 75 % of the complete data samples were 
randomly chosen for training purposes. Subsequently, the remaining 25 
% of the data samples were used as an independent set of unknown data 
to assess performance in each scenario. Considering the data pre
processing of the original data, the dataset resulted in 242,890 data 
samples designated for detection and 194,400 data samples for diag
nosis. As explained in the above section, the classifiers under consider
ation were fed with both learning and testing datasets, comprising five 
key attributes (T, G, Impp, Vmpp, and Pmpp). These attributes serve as 
input features, and the resulting outputs correspond to the estimated 
class labels for each data point. The specifics of the constructed detec
tion and diagnosis databases are detailed in Table 4. 

A performance evaluation of the classifiers was conducted, employ
ing the confusion matrix as a critical assessment tool to gauge their 
effectiveness. The confusion matrix provides insights into the accuracy 
of the classifier’s predictions and reveals areas where it made errors. In 
this matrix, the rows represent the actual labels, and the columns depict 
the predicted labels. The diagonal values indicate how often the pre
dicted label aligns with the actual label, demonstrating correct pre
dictions. Values in the remaining cells reflect instances where the 
classifier incorrectly assigned labels to observations, with columns 
indicating what the classifier predicted and rows showing the actual 
correct labels. 

To comprehensively evaluate our proposed system, we employ 
metrics such as accuracy, Precision, Recall, and F1score, as expressed in the 
following equations [45]. These metrics are instrumental in assessing 
our models’ overall performance and reliability. 

Accuracy =
TP + TN

TP + TN + FP + FN
(25)  

Precision =
TP

TP + FP
(26)  

Recall =
TP

TP + FN
(27)  

F1score = 2*
Precision* Recall

Precision + Recall
(28)  

where TP signifies the number of samples correctly classified into class 
“x” as they should have been. Conversely, FN represents the count of 
samples that were incorrectly classified, as they should have belonged to 
class “x” but were placed in another class by the classifier. On the other 
hand, TN corresponds to the True Negatives, denoting the number of 

Fig. 7. The grid search algorithm’s principle.  

Table 3 
Defined classes and their corresponding fault type.  

Phase Class Corresponding fault type 

Detection 0 Healthy 
1 Faulty 

Diagnosis 0 #2: Open-circuit fault  
1 #1: Partial Shading 
3 #3: Short-circuit fault 
9 #4: Line-to-line fault  

Table 4 
Details of the detection and diagnosis database construction.  

Phase Class Test data set (25 %) Train data set (75 %) Total 

Detection 0 12,145 36,433 242,890 
1 48,578 145,734 

Diagnosis 0 12,145 36,433 194,312  
1 12,144 36,434 
3 12,145 36,433 
9 12,144 36,434  
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samples that were correctly classified as not belonging to class “x.” 
These samples were placed in a different class per the classifier’s judg
ment. Finally, FP stands for False Positives, signifying the number of 
samples that were incorrectly labeled as belonging to category “x,” even 
though they should not have been according to the classifier’s assess
ment. Furthermore, for better interpretability in the case of multi-class 
classification, we adopt averaging methods, and the macro and 
weighted average of Precision, Recall, and F1score is calculated. Macro 
average (Macro avg) is calculated using the unweighted mean that can 
penalize the model if the performance in minority classes is poor. On the 
other hand, weighted average (weighted avg) considers the number of 
true instances in each class to cope with class imbalance and conse
quently favors the majority class. 

5. Results and discussion 

This section demonstrates the validation of the newly developed PV 
array modeling approach. Subsequently, the effectiveness of the pro
posed automatic fault detection system is assessed under various 
weather conditions, considering different faulty patterns in PV array 
operation. Finally, the fault detection method based on Random Forest 
Classifier (RFC) is evaluated through benchmarking against other 
established machine learning techniques. It’s worth noting that these 
validations rely on data collected from the monitored PV system 
described earlier. 

5.1. PV modeling and parameter estimation approach validation 

The newly developed procedure for Current-Voltage translation to 
STC has been validated using three measured curves denoted as Curve 1, 
Curve 2, and Curve 3, as shown in Fig. 8. The methodology involves an 
intermediate step where Curve 4 is determined based on the operating 
conditions (T and G) of Curve 1 and Curve 2. Subsequently, the target 
curve, which represents the operation of the PV array at STC (referred to 
as Curve 0), is predicted from Curve 4 and Curve 3. 

Following the extraction of the reference I-V curve for the PV array, 
the unknown parameters of the one-diode model (ODM) have been 
extracted through a parameter extraction technique utilizing the 
Modified Grey Wolf Optimization (MGWO). The optimization algorithm 
has demonstrated high accuracy, with an RMSE value of 0.0122, and the 
resulting parameters are presented in Table 5. 

The proposed methodology for modeling the PV array has undergone 
extensive validation, employing the extracted parameters to simulate 
the PV array under varying irradiance (G) and temperature (T) condi
tions, as described in equations (19–24). A comparison was made be
tween the experimental I-V and P-V curves and the simulated data to 

evaluate the model’s accuracy under static conditions. The results are 
depicted in Fig. 9, revealing a noteworthy agreement between the 
measurements and the simulated values. This observation is further 
corroborated by the RMSE indicator values, which stand at 0.0266 and 
0.1024, respectively. 

Dynamic validation of the PV array model was conducted using an 
adapted co-simulation model that integrates the MATLAB and PSIM 
environments. This dynamic validation incorporated daily temperature 
and irradiation profiles, along with measured MPP output profiles from 
a real PV system located in Algiers, under three distinct weather con
ditions: a) clear sky, b) semi-cloudy, and c) cloudy day. Fig. 10 illustrates 
the temporal evolution of the developed model’s simulated PV array 
output current. The results demonstrate a strong agreement between the 
measured and estimated values of the maximum power point current, as 
indicated by the RMSE values (RMSE = 0.1416, 0.216, and 0.2971, 
respectively). This substantiates the efficacy of the identification process 
and the robustness of the proposed approach. 

5.2. Evaluation of the proposed fault detection and diagnosis strategy 

The automated fault detection procedure developed using Random 
Forest (RF) is implemented with the Python library scikit-learn. It le
verages the “Random Forest Classifier” class from the “ensemble” 
module. The method is entirely built in Python, with key libraries such 
as scikit-learn, NumPy, SciPy, seaborn, matplotlib, and the open-source 
machine learning library dlib [46]. Scikit-learn primarily handles 
random forest implementation, while dlib is employed for automatic 
error detection and diagnosis. The computational environment used for 
this work comprised a personal computer equipped with an Intel Core i7 
processor (2.50 GHz), 16 GB of RAM, and a GTX 1060 GPU with a 6 GB 
of memory. 

As explained in the section above, the grid search algorithm was 
utilized to optimize the hyperparameters in this study. Table 6 lists the 
optimal hyperparameters for each RF model. 

The output reports generated by the two developed Random Forest 
Classifiers (RFCs) are summarized in Table 7 and Table 8. Both RFCs 

Fig. 8. Predicted I-V curve at STC (Curve 0) using the current–voltage translation method.  

Table 5 
Extracted ODM parameters at STC.  

Parameter Value 

Rp (Ω)  42.9633 
RS(Ω)  0.2212 
Io (A)  4.344 10-7 

n  45.1606 
Iph (A)  6.8378 
RMSE  0.0122  
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demonstrate outstanding performance in detecting faults, with an ac
curacy rate of 99.4 %. Among classification metrics, a lot of emphasis is 
given to measures of Precision and Recall (sensitivity) as they are more 
effective in dealing with imbalanced distributions. However, it is diffi
cult to achieve a trade-off between these two, and the nature of the 
classification problem often dictates the requirement. For our case, the 
lowest values of the Precision and Recall are found during the diagnosis 
phase and are equal to 0.978 and 0.974, respectively. This can be 
explained by the model challenges in distinguishing between faults 
labeled as #1 and #3, representing three partially shaded and three 

Fig. 9. PV array model validation under a) T = 28.1, G = 749, b) T = 28.2, G = 800.  

Fig. 10. Dynamic validation of the PV array model under different weather conditions.  

Table 6 
Optimal hyperparameters.  

Hyperparameter RF Detection model RF Diagnosis model 

max_depth 45 85 
n_estimators 65 35 
Criterion gini entropy 
Bootstrap True True 
Min_samples_leaf 1 1 
Min_sample_split 2 2 
Max_features 6 6  

Table 7 
Classification report of RF detection model.   

Precision Recall F1score Samples number 

Class0  1.00 0.970  0.985 12,145 
Class1  0.993 1.000  0.996 48,578 
Macro avg  0.996 0.985  0.991 60,723 
Weighted avg  0.994 0.994  0.994 60,723 
Accuracy (%)  99.4 60,723  

Table 8 
Classification report of RF diagnosis model.   

Precision Recall F1score Samples number 

Class0  0.978 1.000  0.989 12,145 
Class1  1.000 0.974  0.987 12,144 
Class3  0.999 1.000  1.000 12,145 
Class9  0.998 1.000  0.999 12,144 
Macro avg  0.994 0.994  0.994 48,578 
Weighted avg  0.994 0.994  0.994 48,578 
Accuracy (%)  99.4 48,578  
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short-circuited PV modules, respectively. These two faults have a similar 
impact on the PV output power. As seen in Fig. 4, when three PV 
modules are shaded, the PV system’s output power closely resembles the 
scenario with three short-circuited PVs (represented in green). Despite 
this complexity, the developed fault detection procedure maintains an 
overall accuracy of 99.4 %. 

The normalized confusion matrices generated by both RF models, 
one for fault detection and the other for fault diagnosis, are presented in 
Fig. 11 and Fig. 12, respectively. Examining the data provided in Table 7 
and Fig. 11, it becomes evident that the binary classification model 
performs exceptionally well. In the case of the healthy system, denoted 
as Class0, the model exhibits high precision, with very few false posi
tives, though it has a slightly lower Recall, capturing 97 % of cases. This 
implies that it effectively identifies non-risky instances. In contrast, 
when dealing with faulty cases labeled as Class1, the model excels with 
high Precision, high Recall, and an excellent F1score, indicating near- 
perfect performance. 

Regarding the diagnosis phase, it is represented by Table 8 and 
Fig. 12. A detailed explanation of rows and columns of the normalized 
confusion matrix of the RF diagnosis model is given in the following 
bullet points:  

• Row 1 (Class0): The first row corresponds to fault #2. The value 1.00 
in the top-left cell means that the model correctly identifies Class0 
instances almost perfectly. The remaining values in this row are 
zeros, indicating that the model rarely misclassifies Class0 as any 
other class. This demonstrates that the model is highly accurate in 
recognizing open circuit faults.  

• Row 2 (Class1): The second row represents fault #1. The value 0.974 
in the second cell (from the left) means that the model correctly 
identifies Class1 instances with a true positive rate of about 97.4 %. 
The value 0.023 in the third cell suggests that the model occasionally 
misclassifies Class1 as Class3. The value 0.003 in the first cell sug
gests that the model occasionally misclassifies Class1 as Class0. The 
remaining values in this row are zeros, indicating rare mis
classifications into other classes. This shows that the model is highly 
effective at identifying Class1 but may occasionally confuse it with 
Class3.  

• Row 3 (Class3): The third row corresponds to fault #3. A value of 
1.00 in the third cell (from the left) signifies that the model accu
rately recognizes Class3 instances, achieving a true positive rate of 
100 %. The values in the remaining rows are all zero, indicating that 
the model consistently avoids misclassifying instances from other 
classes. This underscores the model’s reliability in identifying Class3.  

• Row 4 (Class9): The fourth row represents fault #4. The value 1.0 in 
the last cell indicates a perfect true positive rate, meaning the model 

accurately identifies all Class9 instances. The values in this row 
suggest that the model never misclassifies Class9 as any other class, 
emphasizing the model’s exceptional performance in recognizing 
line-to-line faults. 

In summary, it can be observed that for Class0 (fault #2), Class3 (fault 
#3) and Class9 (fault #4), the model demonstrates a high True Positive 
rate, accurately predicting instances of these faults. This indicates its 
effectiveness in identifying these types of defects with precision. How
ever, the model displays high precision for Class1 (fault #1), with 
minimal false positives. This could be attributed to the similarity be
tween this type of fault and Class3 (fault #3), as previously explained. 
Overall, the model efficiently minimizes misclassifications. 

To explain the classification results better, we have created graphical 
representations of the confusion matrices for both RFC models. These 
visual summaries are presented in Fig. 13 for the detection stage and 
Fig. 14 for the diagnosis stage. It can be seen that the graphical outputs 
align with the data in the confusion matrices. It can be concluded that 
the RFC models demonstrate robust performance across all fault classes 
defined in this work. The model’s ability to maintain high precision and 
recall metrics is essential for accurate classification. It effectively re
duces misclassifications and establishes its efficacy as a valuable tool for 
fault detection and diagnosis in grid-connected PV systems. 

5.3. Comparative analysis 

To underscore the effectiveness of our machine learning-based RFCs 
in fault detection, we conducted a comparative analysis with various 
alternative approaches, including Support Vector Machines (SVM), K- 
Nearest Neighbors (KNN), Neural Networks (MLP Classifier), Decision 
Trees (DT), and Stochastic Gradient Descent (SGDC). To ensure a fair 
and thorough comparison, we followed the same steps as outlined in our 
study and fine-tuned the internal hyperparameters for each algorithm 
using a grid search approach. The summarized results are presented in 
Table 9. 

The observed results scores for the detection phases shows that, the 
SVM accuracy is 84.5 %, and the MLP Classifier achieved a good accu
racy of 97.3 %. The SGDC yielded the lowest accuracy at 79.6 %, 
whereas both KNN and DT algorithms exhibited similar high- 
performance levels, both achieving an accuracy of 98.3 %. Moving on 
to the diagnosis stage, Table 9 illustrates that all algorithms demon
strated improved performance. The DT algorithm achieved the highest 
accuracy value of 98.3 %, and the SGDC exhibited notable progress, 
achieving an accuracy value of 89.8 %. Notably, our proposed RFCs 
method outperformed all other methods in both the detection and 
diagnosis phases, achieving a remarkable overall accuracy of 99.4 %. 
Our RFC model also excelled in other evaluation metrics, including 
Precision, Recall, and F1score, surpassing SVM, KNN, DT, SGDC, and MLP 
Classifier. 

The results obtained in this study align well with the findings in the 
existing literature. Eskandari et al. proposed an SVM-based method 
specifically for detecting and classifying Line-to-Line faults (LL), 
achieving average accuracies of 96 % and 97.5 %, respectively [18]. 
While their accuracies surpass ours, it’s important to note that our study 
encompasses various types of faults, not limited to LL faults alone. 
Moving on to our K-Nearest Neighbors (KNN) model, it achieved a 
classification accuracy of 98.3 %, closely matching the results from 
Madeti and Singh [17], who attained an average fault classification 
accuracy of 98.70 %, focusing on open-circuit, Line-to-Line, and 
different short-circuit faults, including those represented by bypass di
odes. In the domain of Neural Networks, specifically the Multilayer 
Perceptron (MLP) Classifier, our model achieved an accuracy of 98.2 %. 
In comparison, Chine et al. [47] reported a reasonable accuracy of 90.3 
%, potentially attributed to the number of faults considered and the 
absence of optimization in the neural network architecture in their 
work. Benkercha and Moulahoum presented a fault detection and Fig. 11. Normalized Confusion matrix of RF detection model.  
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diagnosis technique based on the Decision Trees (DT) algorithm, 
achieving an overall accuracy of around 99 % [48]. Although slightly 
higher than our study’s accuracy of about 98.3 %, this difference can be 
justified by considering a broader spectrum of fault types. Notably, 
Kapucu and Cubukcu [19] reported slightly lower accuracies of 97.46 % 
and 97.67 % using quadratic discriminant analysis-extra trees-Decision 
Trees (QDA-ETent-DT) for PV fault detection before and after optimi
zation, respectively. It’s worth mentioning that their study focused on 
partial shading and short-circuit faults without accounting for changes 
in weather conditions. 

6. Conclusion 

Photovoltaic systems are continuously exposed to many faults that 
significantly impact their performance and overall efficiency. These is
sues, including short circuits, shading, line-to-line problems, and open 
circuits, can substantially reduce harvested solar energy. In response, 

this manuscript introduces a robust machine learning (ML) technique 
that harnesses the Random Forest Classifier (RFC) to effectively detect 
and monitor PV system performance. 

Our approach builds on a precise one-diode (ODM) simulation 
model, accurately replicating actual PV system behavior. Identifying the 
unknown parameters of the ODM involves a new application of the 
current–voltage translation technique combined with the Modified Grey 
Wolf Optimization (MGWO) algorithm. 

The extracted ODM parameters are integrated into the developed 
physical model of the studied PV system. Trustworthy databases repre
senting normal and abnormal PV system operation are constructed using 
PSIM and MATLAB software co-simulations. 

Following the development of the RFC-based fault detection pro
cedure, our results demonstrate exceptional classification accuracy rates 
of 99.4 % for both fault detection and diagnosis. This outperforms 
alternative models like Support Vector Machines (SVM), K-Nearest 
Neighbors (KNN), Neural Networks (MLP Classifier), Decision Trees 

Fig. 12. Normalized Confusion matrix of RF diagnosis model.  

Fig. 13. Fault detection results.  
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(DT), and Stochastic Gradient Descent (SGDC). 
In conclusion, the RF algorithm emerges as a robust tool for fault 

diagnosis, offering higher accuracy and efficiency, particularly in cases 
of partial shading. While these promising results are encouraging, it’s 
essential to acknowledge the complexity of PV systems, with potential 
challenges in fault detection. Future research will explore more 
advanced techniques, potentially using deep learning methods, to pre
cisely locate faults within PV systems. These advancements aim to 
enhance the reliability and efficiency of PV systems for a more sus
tainable solar energy future. Furthermore, it is noteworthy that the 
proposed technique eliminates the need to install any additional sensors 
beyond those already present in a standard PV installation. This 
adaptability enables its application across various PV systems, making 
the suggested approach straightforward to implement. 
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Table 9 
Comparative Analysis between SVM, KNN, DT, SGDC, MLP, and RF trained and tested using the same data set.  

Phase Indicator label SVM MLP Classifier KNN DT SGDC RF 
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Accuracy (%)   84.5  97.3  98.3  98.3  79.6  99.4 
Diagnosis Precision 0  0.958  0.992  0.923  0.992  0.851  0.978 

1  1.000  1.000  0.996  0.997  0.876  1.000 
3  0.933  0.974  0.998  0.972  0.986  0.999 
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