

Efect of ZnO doping co‑carried out by Co–Cu on nonlinear optical properties prepared by the spin coating method

Abdelkader Mohammedi^{1,2} · Omar Meglali^{2,3} · Miloud Ibrir^{1,2} · Bernabé Marí⁴ · **R. Peña‑Garcia5,6 · Nadir Bouarissa1,2**

Received: 12 May 2023 / Accepted: 11 October 2023 © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract

In the present work, thin flms of ZnO co-doped with Co and Cu cations were obtained on glass substrate, combining the sol gel process and spin-coating technique. For the compound, the general chemical formula used was: $Zn_{1-x-z}Co_xCu_zO$, $[(x; z)=(0.00; 0.00),$ (0.02; 0.02), (0.04; 0.04) and (0.06; 0.06)]. For pure ZnO flm, the surface morphology is composed by small spherical grains that present interstitial spaces, while the flms obtained from the simultaneous Co and Cu insertion in the ZnO structure are more dense and interstitial spaces disappear. For all flms, the X-ray difraction patterns testify the monophasic phase formation, typical of the hexagonal structure of ZnO. In addition, the flms presented preferential orientation in the (002) direction. It was demonstrated that the Zn^{2+} cations by $Co²⁺$ and $Cu²⁺$ cations replacement, causes relevant modifications in the lattice parameter (c), crystallite size (D), dislocation density (δ), strain (ε_c) and stress (σ_c) of the hexagonal structure wurtzite from ZnO. The Co and Cu cations inclusion in the ZnO host lattice, alto caused a decrease in the optical band gap energy (3.37 for 3.16 eV), which is related to the charge transfer between the 4f level electrons and the conduction band or valence band of ZnO. Finally, for all flms thin the linear and non-linear optical constants were computed and analyzed, showing variations that depend on the concentration of the dopant cations.

Keywords (Co–Cu) co-doped ZnO · Thin flms · Sol–gel process · Spin coating · XRD patterns

1 Introduction

The importance of linear and non-linear optical semiconductors (NLOs) lies in the optical properties within which light is propagated. Therefore, they are used in various applications such as: optical waveguides, optoelectronic apparatuses, optical switching, image treatment, optical signal processing, optical enquiry stocking, optical locating, high-speed optical connections, and after time appliances in biological and medical sciences (Nagaraja et al. [2013\)](#page-13-0).

Zinc oxide (ZnO) thin flms are extensively studied because they have high photoelectric possessions, high electrochemical stability andenergy gap $(E_{g}=3.37eV)$ at

Extended author information available on the last page of the article

room temperature (Yan et al. [2020](#page-14-0)). The ZnO doped and codoped with diferent cations is inspected as an excellent strategy for changes and improves various physical properties such as, crystalline quality, reducing crystal defects and modulating the energy gap (Kompa et al. [2023](#page-13-1); Andriotis and Menon [2015](#page-11-0); Chaitra et al. [2017;](#page-12-0) Mohammedi et al. [2022\)](#page-13-2). The ZnO properties have been studied from the insertion of a simple cations: Fe(Hadimani et al. [2018\)](#page-12-1), Mg(Mahroug et al. [2019\)](#page-13-3), Ni (Oudjertli et al. [2022](#page-13-4)), Al (Islam et al. [2019\)](#page-13-5), Cu (Mohammedi et al. [2021\)](#page-13-6), Al, Cu, Co and In (Kim et al. [2015\)](#page-13-7), and with two simultaneous cations such as: (Co–Al) and (Ni–Cu) (Swapna and Reddy [2018](#page-14-1); Ali et al. [2018\)](#page-11-1), (Y–Fe) (Peña-Garcia et al. [2020\)](#page-13-8), (Ni–Sr) (Peña-Garcia et al. [2019](#page-14-2)), (Fe–Pr) (Rocha et al. [2023\)](#page-14-3), (Ni–Ce) (Costa-Silva et al. [2022\)](#page-12-2) and (Er–Cr) (França et al. [2023](#page-12-3)) Also, Goktas et al. [\(2018](#page-12-4)) reported the structural, optical and magnetic properties Co–Cu doped ZnO thin flms that was annealed in air and argon atmosphere. The NLOand ZnO thin flms doped with Na (Deekshitha et al. [2019](#page-12-5)), Zr (Bahedi et al. [2009a\)](#page-12-6), and Ce (Chen et al. [2020\)](#page-12-7) have demonstrated optical improved properties (Peng et al. [2018\)](#page-13-9).

Other simple oxides, such as CoO, have been studied by Z-Scan by various researchers (Chouhan et al. [2017\)](#page-12-8). Also, the study of NLO properties of ZnO structures by Z-Scan has been madeby diferent authors (Mostafa et al. [2021](#page-13-10)). For example, Mustafa et al. examined the NLO properties of ZnO samples doped and co-doped with Zn and Ag prepared with PLD technique. They reported an enhancement in the NLO properties for the Ag/Zn/ZnO co-doped sample, which may be suitable for optical applications (Ali et al. [2018](#page-11-1)). Furthermore, non-linear optical response $\chi^{(3)} = 20.12 \times 10^{-12}$ on Zr- doped ZnO films utilizing the spray pyrolysis technique was reported (Bahedi et al. [2009b](#page-12-9)**).**

Based on this argument, in this work, Co-Cuco-doped ZnO thin flms have been obtained on glass substrate, combining the sol–gel method and spin-coating technique. Specifcally, films were obtained from the compound with general chemical formula: $Zn_{1-x}C_0$, Cu , O , $[(x; z) = (0.00; 0.00), (0.02; 0.02), (0.04; 0.04)$ and $(0.06; 0.06)$]. We focused on the study of the simultaneous addition of Co and Cu cations on the morphological, structural, and optical linear and non-linear properties (second-degree refractive index and third-degree electrical susceptibility). Our study aims to amplify the optical applications of these flms, specifcally, in the transparent conductor screen.

2 Experimental method

2.1 Method of preparation

For synthesis, we used the general chemical formula: $Zn_{1-x}zC_0xCu_2O$, $[(x; z)=(0.00;$ 0.00), (0.02; 0.02), (0.04; 0.04) and (0.06; 0.06)].We prepared a solution of initial concentration (C_T =0.5 M) and initial volume (V_T =10ml). The raw materials, Zinc acetate dehydrates [Zn $(CH_3COO_22H_2O]$, Cobalt (II) chloride dihydrate (CoCl₂.H₂O), and Copper (II) chloride dihydrate (CuCl₂.H₂O) were dissolved in 2-propanol by constant agitation. The Monoethanolamine (MEA) was used as a stabilizer in the solution. The solution was mixer at 65°C for 2 h and then left for 24 h at room temperature. The glass substrates were cleaned with ethanol and acetone for 10 min and dried. The sol was transformed in crystalline films using the spin coating technique (3000 rpm), with a heat treatment at 250 °C for 4 min to steam the solvents and organic residuum and then, at 500 °C. All samples were prepared under the same conditions, respecting the mixing at the atomic level.

2.2 Characterization method

The morphologies of the flms were studied from images obtained in a FEI quanta FEG 200 (FESEM) feld-emitting scanning electron microscope (30 kV) and equipped with an energy-dispersion X-ray (EDAX). The XRD patterns were measurement using a Rigaku Ultima IV diffractometer in the Bragg–Brentano configuration utilizing $CuK\alpha$ radiation (λ =1.54060 Å). The optical properties were analyzed by measurement obtained in a UV–visible spectrophotometer, Lambda 35 model (range of 300–800 nm). The transmission (T) and absorption (A) ranges are steeped, while the refectance (R) is calculated using the formula: $R=1-(T+A)$. Finally, the film thickness is measured by using the Claw-Tencor Alpha-Step D-500 stylus profler.

3 Results and discussion

3.1 Morphology and chemical analysis

The morphology of the Co/Cu co-doped flms are shown in Fig. [1](#page-2-0)a–d. It is evident from the images that, the surface morphology of the ZnO flms is signifcantly assumed by deposition method and annealing time. The obtained flms are composed of small spherical grains

Fig. 1 SEM images of (Co–Cu) co-doped ZnO thin films **a** $x=0\%$, **b** $x=2\%$, **c** $x=4\%$ and **d** $x=6\%$ as a function of (Co–Cu) contents

that present interstitial spaces; more apparent for the pure ZnO flm. For co-doped flms, it is notable that the interstitial spaces decrease, which may be an efect of the dopant cations that help to improve the flms densifcation. On the other hand, the EDAX analysis was performed to determine the elements composition of the obtained flms, (Fig. [2](#page-3-0)a–d). As observed, all flms contain the Zn and O elements, while in the co-doped ZnO flms, the cobalt (Co) and copper (Cu) elements are also observed (Figs. [2b](#page-3-0)–d), confrming its insertion in the ZnO crystal structure.

3.2 Structural characterization

Figure [3](#page-4-0) displays the X-ray difraction patterns of the prepared flms. Note that, all flms have a well crystalline wurtzite hexagonal structure, typical of zinc oxide; that has been confrmed by the crystallographic card (*JCPDS No. 36-1451*). In addition, no additional phase of: Co, Cu, CuO, Cu₂O, Co₂O₄ and Co₃O₄ was observed in the XRD spectra (Goktas

Fig. 2 EDAX spectra and table of concentration of (Co–Cu) co-doped ZnO thin films $\mathbf{a} \times 0\%$, $\mathbf{b} \times 2\%$, \mathbf{c} $x=4\%$ and $\mathbf{d} x=6\%$ as a function of (Co–Cu) contents

[2018\)](#page-12-4). It is important to emphasize that all flms present a preferential orientation in the (002) direction. Many researchers believe that the more stable crystals level, as well as, the minimum free energy of surface, for ZnO flms, is associated to the (002) plane (Mhamdi et al. [2013;](#page-13-11) Baghdad et al. [2017](#page-12-10)).

The crystal lattice parameter, (*c*) (Lupan et al. [2010\)](#page-13-12), crystallite size (*D*) (Sengupta et al. [2013\)](#page-14-4), dislocation density (δ) (Williamson and Smallman [1956\)](#page-14-5), strain (ε_c) and stress (σ_c) (Mia et al. [2017](#page-13-13); Muchuweni et al. [2017\)](#page-13-14) were obtained using the subsequent formulas:

$$
d_{hkl} = \frac{\lambda}{2\sin}, \frac{1}{d_{hkl}^2} = \frac{4}{3} \left(\frac{h^2 + hk + k^2}{a^2} \right) + \frac{l^2}{c^2}
$$
 (1)

$$
u = \frac{a^2}{3c^2} + \frac{1}{4}, L = \sqrt{\left(\frac{a^2}{3} + \left(\frac{1}{2} - u\right)^2 c^2\right)}
$$
(2)

$$
D = \frac{0.9\lambda}{(\beta^2_{obs} - \beta^2_{ins})^{1/2} \cos\theta}, \delta = \frac{1}{D^2}
$$
 (3)

Here λ is the X-ray wavelength (λ_{CuK_a} =1.54060 Å), $\beta = (\beta_{obs}^2 - \beta_{ins}^2)^{1/2}$ is the full width of the peak at half maximum ($FWHM$) once corrected in radians and θ is the Bragg diffraction angle.

$$
\varepsilon_c = \frac{C\text{film} - C\text{bulk}}{C\text{bulk}} 100\%, \sigma_c = -2.33 \times 10^{11} \left(\frac{C_{\text{film}} - C_{\text{bulk}}}{C_{\text{bulk}}} \right) \tag{4}
$$

wherec c_{film} and c_{bulk} are the lattice parameters of the prepared films and bulk ZnO, respectively.

As shown in Table [1,](#page-5-0) the lattice parameter (c) values for co-doped films are inferior to the obtained for pure ZnO flms. The results were infuenced by the diference between the ionic radius of copper $(r_{\text{Cu+2}}=0.72\text{\AA})$ and that of cobalt $(r_{\text{Co+2}}=0.65\text{\AA})$, compared to the zinc $(r_{Zn+2}=0.74\text{\AA})$ (Sreedhar et al. [2016](#page-14-6); Benzitouni et al. [2017\)](#page-12-11). In addition, we note that the Co and Cu inclusion in the ZnO structure increased the

Samples	2θ (deg.)	FWHM	c(A)	D(nm)	$\delta (10^{-3}/\text{nm}^2)$	$\varepsilon_c (10^{-3})$	σ _o (GPa)
Un-doped ZnO	34.414	0.330	5.205	25.140	1.582	0.1096	-0.2554
ZnO:Co 2% :Cu 2%	34.431	0.302	5.203	28.701	1.213	1.258	-0.147
$ZnO:Co 4\%:Cu 4\%$	34.436	0.301	5.202	28.131	1.263	1.254	-0.114
ZnO:Co 6% :Cu 6%	34.425	0.252	5.204	34.472	0.841	1.050	-0.186

Table 1 The peak position 2 θ , FWHM, lattice parameter (a and c), grain size (D), dislocation density (δ) , strain (ε_c) and stress (σ_c) of the (Co–Cu) co-doped ZnO thin films

crystalline size, ranging from 26.276 nm for the pure ZnO film to 34.472 nm for the 6% Co–Cu co-doped ZnO flm. This result could be attributed to the fact that, the co-doping may have ameliorated the crystal goodness, favoring the growth and nucleation mechanisms (Narayanan and Deepak [2018](#page-13-15); Kaphle and Hari [2018](#page-13-16)). In addition, the crystallite size increase may be related to the fact that the flms have preferential orientation in the c-axis. On the other hand, we note variations in the strain values, increasing the Co–Cu dopants concentration ratios. Finally, negative stress values point that the crystal structure is in a stress state due to the dopant atoms infuence, obtaining method and temperature, as well as the variance in thermal coefficient factor between the film and substrate (Joshi et al. [2016](#page-13-17)).

3.3 Optical characterization

Figure [4](#page-5-1) exhibits the optical transmittance and refectance spectra of the pure and codoped ZnO flms**.**In the visible spectrum, the optical transmittance of co-doped flms is relatively low, compared to the pure ZnO flm; around of 42% for the flm co-doped at 2% and 85% for pure ZnO flm. For wavelengths less than of 400 nm, the transmittance decreases rapidly, which confrms that flms have shift absorption. The optical absorption coefficient $\alpha(\lambda)$ was determined for various photon energies using the transmission spectra and the equation (Gumus et al. [2006\)](#page-12-12):

Fig. 4 a Optical transmittance and **b** refectance of (Co–Cu) co-doped ZnO thin flms as a function of wavelength

$$
\alpha = \frac{\text{Ln}(\frac{1}{T})}{t} \tag{5}
$$

Here T is the transmittance and t, is the thickness of the flms, that is equal to 150 nm in our case. The ZnO is a direct gap semiconductor. Thus, its energy-gap (E_{ρ}) could be deduced from the x interception of the linear extrapolation of the curve $(ahv)^2$ as a function of photon energy radiation $(h\nu)$ (inset of Fig. [5](#page-6-0)) by the Tauc's relationship (Kaphle and Hari [2018](#page-13-16)):

$$
(\alpha h v)^n = B(hv - Eg) \tag{6}
$$

where B is a constant and $n=2$, is used for the direct-gap energy.

In Fig. [5,](#page-6-0) the energy band-gap values (E_{α}) are presented as a function of Co–Cu dopants concentration. We can observe that the energy band gap decreases linearly increasing the Co–Cu concentration (3.37–3.16 eV for Co–Cu concentration ranging from 0.00 to 0.06). The energy-gap decrease can be explained by the atomic disorder (oxygen vacancy and zinc interstitial defects) generated in the ZnO structure due to the dopant cations inclusion. The defects provoke free electrons, with minor energy than the ZnO in the valence band, generating others electronic levels in the ZnO band gap, which will contribute to the energy band gap band reduction. In addition, some authors, attribute the variation in the energy gap to the charge transfer between the 4f level electrons and the conduction band or valence band of ZnO (Diouri et al. [1985](#page-12-13); Elilarassi and Chandrasekaran [2010;](#page-12-14) Li et al. [2011\)](#page-13-18). On the other hand, the small variance in the electronegativity between Cu (1.9), Co (1.88) and Zn (1.65) cations can also lead to a narrowing of the energy band gap (Ferhat et al. [2009\)](#page-12-15).

Fig. 5 a: Plot of $(\alpha h\nu)^2$ versus (hv) **b**: band-gap energy versus (Co–Cu) concentration

3.3.1 Linear optical parameters

The extinction coefficient (*k*), refractive index (*n*), real and imaginary parts (ε_r and ε_i) of the dielectric constant and optical conductivity (σ_{opt}) (Islma and Podder [2009](#page-13-19); Caglar et al. [2007,](#page-12-16) [2008\)](#page-12-17) have been calculated as follows:

$$
k = \frac{\alpha \lambda}{4\pi} \tag{7}
$$

$$
n = \left(\frac{1+R}{1-R}\right) + \sqrt{\frac{4R}{(1-R)^2} - k^2}
$$
 (8)

$$
\varepsilon_{\rm r} = n^2 - k^2 \varepsilon_{\rm i} = 2nk \tag{9}
$$

$$
\sigma_{\text{opt}} = \frac{\omega}{4\pi} \sqrt{\varepsilon_i^2 + (1 - \varepsilon_r)^2}
$$
 (10)

where $\omega = \frac{hv}{\hbar\lambda}$, α is the absorption coefficient and R represents the optical reflectance. The optical constants versus the wavelength are shown in Fig. [6](#page-8-0). It is to be noted that in the visible feld n is 1.75 for ZnO. This value increases for co-doped samples until it reaches about 2.5. Similar results have been reported in the literature by other authors (Hamidi et al. [2018](#page-12-18); Istrate et al. [2019\)](#page-13-20). Because of weak absorption, K is almost non-existent. The values of ε_r vary between 3 and 6 and the values of ε_i are almost zero. It can be said that the electric charge polarization varies with the electric range variation of incident wave. We also note an enhancement in the refractive index, damping factor, and the imaginary part appearance. This is owing to the attendance of great absorption and electron transfer in ultraviolet felds (Mahdhi et al. [2018\)](#page-13-21).

On the other hand, the Fig. [7](#page-9-0)a displays the change of optical conductivity for the Co–Cu co-doped ZnO flms in terms of the wavelength. As observed, the conductivity changes are like those of the absorption and the imaginary part of the dielectric constant. In addition, the optical conductivity was deduced in terms of the Co–Cu dopant percentages and are shown in Fig. [7](#page-9-0)b. Note that the optical conductivity values vary between 1.68×10^{16} and 1.30×10^{16} (1/s). Compared to the previous report, for Cu-doped ZnO thin films, there was an improvement due to the simultaneous Co and Cu dopant cations insertion in the ZnO crystal structure (Mohammedi et al. [2021](#page-13-6)).

The refractive index at elevated frequencies (n_{∞}^2) (Walton and Moss [1963\)](#page-14-7), the individual oscillator energy of electronic transitions (E_0) and the dispersal energy (E_d) (Caglar et al. [2007\)](#page-12-16) were calculated using the following equations:

$$
\frac{n_{\infty}^2 - 1}{n^2 - 1} = 1 - \left(\frac{\lambda_0}{\lambda}\right)^2\tag{11}
$$

$$
n^2 = 1 + \frac{E_d E_0}{E_0^2 + (h\nu)^2}
$$
 (12)

Plotting $(n_{\infty}^2-1)^{-1}$ in terms of λ^{-2} , the value of the n_{∞}^2 may be deduced from the inter-section with the ordinal axis of Fig. [8a](#page-9-1). Plotting $(n^2 - 1)^{-1}$ in terms of $(hv)^2$, the values of

Fig. 6 a: Refractive index n, **b**: extinction coefficient k, **c**: real part of dielectric constant ε _r and **d**: imaginary part of dielectric constant ε _iof the (Co–Cu) co-doped ZnO thin films with various wavelengths

 E_0 and E_d can be calculated by intersecting the order axis and the slope as shown in Fig. [8](#page-9-1). The E_0 , E_d and n_{∞} values for the Co–Cu co-doped ZnO thin films are illustrated in the Table [2.](#page-9-2) Note that the values of E_d and n_{∞} are improved increasing the Co–Cu concentration and these results are almost consistent for reported by Gao Xiao-Yong et al. (Gao et al. [2010\)](#page-12-19). All the values of E_0 of the doped films are higher than that of the undoped film; on the other hand, E_0 decreases with the increase of the doping concentration.

Fig. 7 Optical conductivity of (Co–Cu)co-doped ZnO, **a**: versus wavelength and **b**: versus Co–Cu concentration

Fig. 8 a: The plot of $(n^2 - 1)^{-1}$ various $(\lambda)^{-2}$ and **b**: the plot of $(n^2 - 1)^{-1}$ various $(hv)^2$ of the (Co–Cu) codoped ZnO thin flms

3.3.2 Nonlinear optical parameters

The investigation of the interaction of the electromagnetic feld with the physical medium, where the interaction of the electric feld with the incidental wave is of non-linear polarization is shown by the subsequent formula (Frumar et al. [2003\)](#page-12-20)

$$
P_{NL} = \chi^{(1)}E + \chi^{(2)}E^2 + \dots \chi^{(n)}E^n \tag{13}
$$

Here, $\chi^{(1)}$, $\chi^{(2)}$ E² and $\chi^{(3)}$ E³ are the polarizabilities, $\chi^{(1)}$ is the linear optical susceptibility, and $\chi^{(2)}$ and $\chi^{(3)}$ are the second- and third-order nonlinear optical susceptibility, respectively.

The n becomes non-linear according to the following equation,

$$
n(\lambda) = n_0(\lambda) + n^{(2)}(E^2)
$$
\n(14)

Here , $n^{(0)}$ is linear, n and $n^{(2)}$ is nonlinear. The n is allied to the electric field power. Various quasi-empirical equations are nominated to calculate the third-order non-linear optical susceptibility $\chi^{(3)}$ and the non-linearn⁽²⁾. Amongst these relations, one may obtain the Miller formula generalized in the subsequent relation (Ticha and Tichy [2002](#page-14-8)),

$$
\chi^{(3)} = A(\chi^{(1)})\tag{15}
$$

According to Adair et al. (Ferhat et al. [2009](#page-12-15)), the valueof the constant (*A*) is equal to 1.79×10^{-10} (for $\chi^{(1)}$ in esu). For a different type of materials,

$$
\chi^{(1)} = \frac{(n^2 - 1)}{4\pi} \tag{16}
$$

Considering the Eq. ([13](#page-7-0)), at small frequencies hv \rightarrow 0 and n=n₀, ($\chi^{(1)}$) is explained by:

$$
\chi^{(1)} = \frac{E_d}{E_0 4\pi} \tag{17}
$$

$$
n^{(2)} = \frac{12\pi \chi^{(3)}}{n_0} \tag{18}
$$

We have calculated the quantities of $\chi^{(1)}$, $\chi^{(3)}$ and $n^{(2)}$ in terms of the wavelength (Fig. [9a](#page-10-0)–c). We notice that the values of these parameters increase in the ultraviolet feld, but they are almost constant in the visible feld. The NLO constants values increase with the Co–Cu co-dopant cations insertion (Table [3](#page-11-2)). This phenomenon is related to a crystallization improved of the samples (Table [1](#page-5-0)). Everything indicates that our ZnO thin flms co-doped with Co and Cu are candidate for NLO applications.

$n^{(2)}$, esu
4.161×10^{-10}
4.808×10^{-10}
9.326×10^{-10}
1.109×10^{-9}
$1.89 - 9.119 \times 10^{-10}$
$0.5 \times 10^{-10} - 1 \times 10^{-9}$
$0.25 - 4.59 \times 10^{-12}$

Table 3 Nonlinear optical parameters of reported and present work on ZnO thin flms

4 Conclusions

In the present study, thin films of ZnO co-doped with cations of Co^{2+} and Cu^{2+} were obtained utilizing the sol–gel method and spin coating technique. The morphological, structural, and optical linear and nonlinear properties are analyzed in detail. The SEM images revealed that the pure ZnO flm is composed by small spherical grains that present interstitial spaces, while the flms obtained from the simultaneous Co and Cu insertion in the ZnO structure are more dense and interstitial spaces disappear. The EDAX data confrm the attendance of Co, Cu, Zn and O elements in the ZnO thin flms. The X-ray difraction patterns confrmed the single-phase formation of ZnO and preferential orientation in the (002) direction. In addition, the Zn^{2+} cations by Co^{2+} and Cu^{2+} cations replacement, provokes signifcant variations in the lattice parameter (c), crystallite size (D), dislocation density (δ), strain (ε_c) and stress (σ_c) of the hexagonal structure wurtzite from ZnO. In general, the results obtained in this work provide new alternatives for designing thin flms with optoelectronics applications. This is because the layers have the desired nonlinear optical properties to efectively transparent conductive screens.

Author contributions AM: Performed the experiences of this work. OM: Performed the experiences of this work. MI: Supervised and developed the experience. BM and RP-G: Verifed the development of experiences. NB: Supervised the fndings of this work. All authors discussed the results and contributed to the fnal manuscript.

Funding No funding was received to assist with the preparation of this manuscript.

Declarations

Confict of interest The authors declare that they have no conficts of interest.

References

Ali, R.N., Naz, H., Li, J., Zhu, X., Liu, P., Xiang, B.: Band gap engineering of transition metal (Ni/Co) codoped in zinc oxide (ZnO) nanoparticles. J. Alloy. Compd. **744**, 90–95 (2018)

Andriotis, A.N., Menon, M.: Band gap engineering via doping: a predictive approach. J. Appl. Phys. **117**, 125708 (2015)

- Baghdad, R., Lemée, N., Lamura, G., Zeinert, A., Hadj-Zoubir, N., Bousmaha, M., Bezzerrouk, M., Bouyanff, H., Allouche, B., Zellama, K.: Structural and magnetic properties of Co-doped ZnO thin flms grown by ultrasonic spray pyrolysis method. Superlattices Microstruct. **104**, 553–569 (2017)
- Bahedi, K., Addou, M., El Jouad, M., Bayoud, S., Sofiani, Z.: Effects of deposition temperature on the surface roughness and the nonlinear optical susceptibility of sprayed deposited ZnO: Zr thin flms. Appl. Surf. Sci. **255**, 9054–9057 (2009a)
- Bahedi, K., Addou, M., El Jouad, M., Sofani, Z., Lamrani, M.A., El Habbani, T., Fellahi, N., Bayoud, S., Dghoughi, L., Sahraoui, B.: Diagnostic study of the roughness surface efect of zirconium on the third-order nonlinear-optical properties of thin flms based on zinc oxide nanomaterials. Appl. Surf. Sci. **255**, 4693–4695 (2009b)
- Benzitouni, S., Zaabat, M., Ebothe, J., Boudine, B., Coste, R.: The use of advanced atomic force microscopy for the quantitative nanomechanical characterization of Co-doped ZnO thin flms. Chin. J. Phys. **55**, 2458–2467 (2017)
- Caglar, Y., Ilican, S., Caglar, M.: Single-oscillator model and determination of optical constants of spray pyrolyzed amorphous SnO 2 thin flms. Eur. Phys. J. B **58**, 251–256 (2007)
- Caglar, M., Ilican, S., Caglar, Y., Yakuphanoglu, F.: The efects of Al doping on the optical constants of ZnO thin flms prepared by spray pyrolysis method. J. Mater. Sci.: Mater. Electron. **19**, 704–708 (2008)
- Chaitra, U., Kekuda, D., Rao, K.M.: Efect of annealing temperature on the evolution of structural, microstructural, and optical properties of spin coated ZnO thin flms. Ceram. Int. **43**, 7115–7122 (2017)
- Chen, Z.-W., Yao, C.-B., Han, Y., Bao, S.-B., Jiang, G.-Q., Cai, Y.: Synthesis, structure and femtosecond nonlinear absorption properties of Ce-ZnO flms. Appl. Surf. Sci. **502**, 144133 (2020)
- Chouhan, R., Baraskar, P., Agrawal, A., Gupta, M., Sen, P.K., Sen, P.: Efects of oxygen partial pressure and annealing on dispersive optical nonlinearity in NiO thin flms. J. Appl. Phys. **122**, 025301 (2017)
- Costa-Silva, M., Araujo, F.P., Guerra, Y., Viana, B.C., Silva-Filho, E.C., Osajima, J.A., Almeida, L.C., Skovroinski, E., Peña-Garcia, R.: Photocatalytic, structural and optical properties of Ce–Ni codoped ZnO nanodisks-like self-assembled structures. Mater. Chem. Phys. **292**, 126814 (2022)
- El Hamidi, A., Meziane, K., El Hichou, A., Jannane, T., Liba, A., El Haskouri, J., Amorós, P., Almaggoussi, A.: Refractive index controlled by flm morphology and free carrier density in undoped ZnO through sol-pH variation. Optik **158**, 1139–1146 (2018)
- Deekshitha, U., Upadhya, K., Antony, A., Ani, A., Nowak, M., Kityk, I., Jedryka, J., Poornesh, P., Manjunatha, K.: Efect of Na doping on photoluminescence and laser stimulated nonlinear optical features of ZnO nanostructures. Mater. Sci. Semicond. Process. **101**, 139–148 (2019)
- Diouri, J., Lascaray, J., El Amrani, M.: Efect of the magnetic order on the optical-absorption edge in Cd 1–x Mn x Te. Phys. Rev. B **31**, 7995 (1985)
- Elilarassi, R., Chandrasekaran, G.: Structural, optical and magnetic characterization of Cu-doped ZnO nanoparticles synthesized using solid state reaction method. J. Mater. Sci.: Mater. Electron. **21**, 1168–1173 (2010)
- Ferhat, M., Zaoui, A., Ahuja, R.: Magnetism and band gap narrowing in Cu-doped ZnO. Appl. Phys. Lett. **94**, 142502 (2009)
- França, R., Araujo, F.P., Neves, L., Melo, A., Lins, A., Soares, A.S., Osajima, J.A., Guerra, Y., Almeida, L.C., Peña-Garcia, R.R.: Photoresponsive activity of the Zn0. 94Er0. 02Cr0. 04O compound with hemisphere-like structure obtained by Co-precipitation. Materials **16**, 1446 (2023)
- Frumar, M., Jedelský, J., Frumarova, B., Wagner, T., Hrdlička, M.: Optically and thermally induced changes of structure, linear and non-linear optical properties of chalcogenides thin flms. J. Non-Cryst. Solids **326**, 399–404 (2003)
- Ganesh, V., Salem, G., Yahia, I., Yakuphanoglu, F.: Synthesis, optical and photoluminescence properties of Cu-doped ZnO nano-fbers thin flms: nonlinear optics. J. Electron. Mater. **47**, 1798–1805 (2018)
- Ganesh, V., Yahia, I., AlFaify, S., Shkir, M.: Sn-doped ZnO nanocrystalline thin flms with enhanced linear and nonlinear optical properties for optoelectronic applications. J. Phys. Chem. Solids **100**, 115–125 (2017)
- Gao, X.-Y., Feng, H.-L., Ma, J.-M., Zhang, Z.-Y., Lu, J.-X., Chen, Y.-S., Yang, S.-E., Gu, J.-H.: Analysis of the dielectric constants of the Ag2O flm by spectroscopic ellipsometry and single-oscillator model. Physica B **405**, 1922–1926 (2010)
- Goktas, A.: High-quality solution-based Co and Cu co-doped ZnO nanocrystalline thin flms: comparison of the efects of air and argon annealing environments. J. Alloy. Compd. **735**, 2038–2045 (2018)
- Gumus, C., Ozkendir, O., Kavak, H., Ufuktepe, Y.: Structural and optical properties of zinc oxide thin flms prepared by spray pyrolysis method. J. Optoelectron. Adv. Mater. **8**, 299 (2006)
- Hadimani, P., Ghosh, S., Sil, A.: Preparation of Fe doped ZnO thin flms and their structural, magnetic, electrical characterization. Superlattices Microstruct. **120**, 199–208 (2018)
- Islam, M., Podder, J.: Optical properties of ZnO nano fber thin flms grown by spray pyrolysis of zinc acetate precursor. Crystal Res. Technol. J. Exp. Ind. Crystallogr. **44**, 286–292 (2009)
- Islam, M.R., Rahman, M., Farhad, S., Podder, J.: Structural, optical and photocatalysis properties of sol– gel deposited Al-doped ZnO thin flms. Surf. Interfaces **16**, 120–126 (2019)
- Istrate, A.-I., Nastase, F., Mihalache, I., Comanescu, F., Gavrila, R., Tutunaru, O., Romanitan, C., Tucureanu, V., Nedelcu, M., Müller, R.: Synthesis and characterization of Ca doped ZnO thin flms by sol–gel method. J. Sol-Gel. Sci. Technol. **92**, 585–597 (2019)
- Joshi, K., Rawat, M., Gautam, S.K., Singh, R., Ramola, R., Singh, F.: Band gap widening and narrowing in Cu-doped ZnO thin flms. J. Alloy. Compd. **680**, 252–258 (2016)
- Kaphle, A., Hari, P.: Enhancement in power conversion efficiency of silicon solar cells with cobalt doped ZnO nanoparticle thin flm layers. Thin Solid Films **657**, 76–87 (2018)
- Kim, Y., Choe, J., Nam, G., Kim, I., Leem, J.-Y., Lee, S.-H., Kim, S., Kim, D.Y., Kim, S.-O.: Infuence of Al-, Co-, Cu-, and In-doped ZnO bufer layers on the structural and the optical properties of ZnO thin flms. J. Korean Phys. Soc. **66**, 224–228 (2015)
- Kompa, A., Devi, B.L., Chaitra, U.: Determination of optical constants of vacuum annealed ZnO thin flms using Wemple Di Domenico model Sellmier's model and Miller's generalized rules. Mater. Chem. Phys. **299**, 127507 (2023)
- Li, X.-Y., Li, H.-J., Yuan, M., Wang, Z.-J., Zhou, Z.-Y., Xu, R.-B.: Infuence of oxygen partial pressure on electrical and optical properties of Zn0. 93Mn0. 07O thin flms. J. Alloys Compd. **509**, 3025–3031 (2011)
- Lupan, O., Pauporté, T., Chow, L., Viana, B., Pellé, F., Ono, L.K., Cuenya, B.R., Heinrich, H.: Efects of annealing on properties of ZnO thin flms prepared by electrochemical deposition in chloride medium. Appl. Surf. Sci. **256**, 1895–1907 (2010)
- Mahdhi, H., Djessas, K., Ayadi, Z.B.: Synthesis and characteristics of Ca-doped ZnO thin flms by rf magnetron sputtering at low temperature. Mater. Lett. **214**, 10–14 (2018)
- Mahroug, A., Mari, B., Mollar, M., Boudjadar, I., Guerbous, L., Henni, A., Selmi, N.: Studies on structural, surface morphological, optical, luminescence and UV photodetection properties of sol–gel Mg-doped ZnO thin flms. Surf. Rev. Lett. **26**, 1850167 (2019)
- Mhamdi, A., Boukhachem, A., Madani, M., Lachheb, H., Boubaker, K., Amlouk, A., Amlouk, M.: Study of vanadium doping efects on structural, opto-thermal and optical properties of sprayed ZnO semiconductor layers. Optik-Int. J. Light Electron Opt. **124**, 3764–3770 (2013)
- Mia, M.N.H., Pervez, M.F., Hossain, M.K., Rahman, M.R., Uddin, M.J., Al Mashud, M.A., Ghosh, H.K., Hoq, M.: Infuence of Mg content on tailoring optical bandgap of Mg-doped ZnO thin flm prepared by sol-gel method. Results Phys. **7**, 2683–2691 (2017)
- Mohammedi, A., Ibrir, M., Meglali, O., Berri, S.: Infuence of Cu-doping on linear and nonlinear optical properties of high-quality ZnO thin flms obtained by spin-coating technique. Physica Status Solidi (b) **258**, 2000472 (2021)
- Mohammedi, A., Ibrir, M., Meglali, O., Pena-Garcia, R.: Efect of annealing of Co-Doped ZnO thin flms on structural and magnetic properties deposited by sol–gel/spin-Coating technique. Surf. Rev. Lett. **29**, 2230007 (2022)
- Mostafa, A.M., Mwafy, E.A., Awwad, N.S., Ibrahium, H.A.: Linear and nonlinear optical studies of Ag/Zn/ZnO nanocomposite thin flm prepared by pulsed laser deposition technique. Radiat. Phys. Chem. **179**, 109233 (2021)
- Muchuweni, E., Sathiaraj, T., Nyakotyo, H.: Synthesis and characterization of zinc oxide thin flms for optoelectronic applications. Heliyon **3**, e00285 (2017)
- Nagaraja, K., Pramodini, S., Kumar, A.S., Nagaraja, H., Poornesh, P., Kekuda, D.: Third-order nonlinear optical properties of Mn doped ZnO thin flms under cw laser illumination. Opt. Mater. **35**, 431–439 (2013)
- Narayanan, N., Deepak, N.: Enhancement of visible luminescence and photocatalytic activity of ZnO thin flms via Cu doping. Optik **158**, 1313–1326 (2018)
- Oudjertli, S., Mohammedi, A., Ibrir, M.: Efect of Ni doping on the optical properties of ZnO thin flms prepared by sol-gel spin coating and investigation of ZnO powder nanostructures. Solid State Phenom. **336**, 103–107 (2022)
- Peng, Y., Wang, G., Yuan, C., He, J., Ye, S., Luo, X.: Infuences of oxygen vacancies on the enhanced nonlinear optical properties of confned ZnO quantum dots. J. Alloy. Compd. **739**, 345–352 (2018)
- Peña-Garcia, R., Guerra, Y., Milani, R., Oliveira, D., Rodrigues, A., Padrón-Hernández, E.: The role of Y on the structural, magnetic and optical properties of Fe-doped ZnO nanoparticles synthesized by sol gel method. J. Magn. Magn. Mater. **498**, 166085 (2020)
- Peña-Garcia, R., Guerra, Y., Milani, R., Oliveira, D., de Souza, F., Padrón-Hernández, E.: Infuence of Ni and Sr on the structural, morphological and optical properties of ZnO synthesized by sol gel. Opt. Mater. **98**, 109427 (2019)
- Rocha, M., Araujo, F.P., Castro-Lopes, S., de Lima, I.S., Silva-Filho, E.C., Osajima, J.A., Oliveira, C.S., Viana, B.C., Almeida, L.C., Guerra, Y.: Synthesis of Fe–Pr co-doped ZnO nanoparticles: structural, optical and antibacterial properties. Ceram. Int. **49**, 2282–2295 (2023)
- Sengupta, J., Ahmed, A., Labar, R.: Structural and optical properties of post annealed Mg doped ZnO thin flms deposited by the sol–gel method. Mater. Lett. **109**, 265–268 (2013)
- Shaaban, E., El-Hagary, M., Hassan, H.S., Ismail, Y.A., Emam-Ismail, M., Ali, A.: Structural, linear and nonlinear optical properties of co-doped ZnO thin flms. Appl. Phys. A **122**, 1–10 (2016)
- Sreedhar, A., Kwon, J.H., Yi, J., Kim, J.S., Gwag, J.S.: Enhanced photoluminescence properties of Cudoped ZnO thin flms deposited by simultaneous RF and DC magnetron sputtering. Mater. Sci. Semicond. Process. **49**, 8–14 (2016)
- Swapna, P., Reddy, S.V.: Synthesis and structural properties of (Co, Al) Co-doped ZnO nanoparticles. Adv. Sci. Lett. **24**, 5636–5639 (2018)
- Ticha, H., Tichy, L.: Semiempirical relation between non-linear susceptibility (refractive index), linear refractive index and optical gap and its application to amorphous chalcogenides. J. Optoelectron. Adv. Mater. **4**, 381–386 (2002)
- Walton, A., Moss, T.: Determination of refractive index and correction to efective electron mass in PbTe and PbSe. Proc. Phys. Soc. **81**, 509 (1963)
- Williamson, G., Smallman, R., III.: Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray debye-scherrer spectrum. Phil. Mag. **1**, 34–46 (1956)
- Yan, Z., Bao, J., Yue, X.-Y., Li, X.-L., Zhou, Y.-N., Wu, X.-J.: Impacts of preparation conditions on photoelectric properties of the ZnO: Ge transparent conductive thin flms fabricated by pulsed laser deposition. J. Alloy. Compd. **812**, 152093 (2020)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Authors and Afliations

Abdelkader Mohammedi^{1,2} · Omar Meglali^{2,3} · Miloud Ibrir^{1,2} · Bernabé Marí⁴ · **R. Peña‑Garcia5,6 · Nadir Bouarissa1,2**

 \boxtimes Nadir Bouarissa n_bouarissa@yahoo.fr

> Abdelkader Mohammedi abdelkader.mohammedi@univ-msila.dz

Omar Meglali omar.meglali@univ-msila.dz

Miloud Ibrir miloud.ibrir@univ-msila.dz

Bernabé Marí B_mari@yahoo.fr

R. Peña-Garcia ramon.raudel@ufrpe.br; rraudelp@gmail.com

¹ Laboratory of Materials Physics and Its Applications, University of M'sila, 28000 M'sila, Algeria

² Faculty of Sciences, University of M'sila, 28009 M'sila, Algeria

- ³ Materials Science and Informatics Laboratory, Ziane Achour University, Djelfa, Algeria
- ⁴ Institut de Disseny, Fabricació I Producció Automatitzada, Universitat Politècnica de València, 46022 València, Spain
- ⁵ Interdisciplinary Laboratory Advanced Materials (Limav), Federal University of Piauí, Teresina, PI, Brazil
- ⁶ Federal Rural University of Pernambuco, Academic Unit of Cabo de Santo Agostinho, Cabo de Santo Agostinho, PE 54518-430, Brazil