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Abstract
Monitoring of water quality is one of the world’s main intentions for countries. Classification techniques based on support 
vector machines (SVMs) and artificial neural network (ANN) has been widely used in several applications of water research. 
Water quality assessment with high accuracy and efficiency with innovational approaches permitted us to acquire addi-
tional knowledge and information to obtain an intelligent monitoring system. In this paper, we present the use of principal 
component analysis (PCA) combined with SVM and ANN with decision templates combination data fusion method. PCA 
was used for features selection from original database. The multi-layer perceptron network (MLP) and the one-against-all 
strategy for SVM method have been widely used. Decision templates are applied to increase the accuracy of the water 
quality classification. The specific classification approach was employed to assess the water quality of the Tilesdit dam in 
Algeria as a study area, defined with a dataset of eight physicochemical parameters collected in the period 2009–2018, such 
as temperature, pH, electrical conductivity, and turbidity. The selection of the excellent parameters of the used models can 
be improving the performance of classification process. In order to assess their results, an experiment step using collected 
dataset corresponding to the accuracy and running time of training and test phases, and robustness to noise, is carried out. 
Various scenarios are examined in comparative study to obtain the most results of decision step with and without feature 
selection of the input data. From the results, we found that the integration of SVM and ANN with PCA yields accuracy up 
than 98%. The combination by decision templates of two classifiers SVM and ANN with PCA yields an accuracy of 99.24% 
using k-fold cross-validation. The combination data fusion enhanced expressively the results of the proposed monitoring 
framework that had proven a considerable ability in surface water quality assessment.

Keywords Surface water quality monitoring · Principal component analysis · Feature selection · Support vector machine · 
Artificial neural network · Decision templates

Introduction

The quality of surface water plays a crucial and strategic role 
in people’s health, sustainable development, and ecologi-
cal systems (Wang et al. 2013). However, due to its limited 
availability, freshwater is subject to contamination from 
various sources, including home and industrial pollutants, 
agricultural runoff, and other sources (Soltani et al. 2021; 
Oukil et al. 2021). The deterioration of freshwater quality 
currently is one of the biggest environmental issues (Dilmi 
and Ladjal 2021). Surface freshwater resources, such as 
rivers, lakes, and reservoirs, are also important and require 
careful treatment because the underground water supply is 
generally insufficient to meet market demand (Soltani et al. 
2020). Because it can be used immediately and does not 
require costly treatments or, more crucially, pose a danger 
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of disease, groundwater is typically selected as a source of 
freshwater. Efficient information about the location and qual-
ity of surface water and groundwater helps for approving 
the performances and assessment in diverse scientific fields, 
such as the surface water survey and management, water 
resource assessment, and monitoring and environmental 
pollution (Zhou and Wu 2008). Water quality control and 
monitoring play an important role in the ecological run-
ning management, and it presents a considerable concern 
for conservation and rational utilization of water supplies in 
the world (Bouamar and Ladjal 2012). The most generally 
used criteria for evaluating and monitoring water quality 
convey ecosystem health, public safety, the level of water 
pollution, and the quality of drinking water. Water quality 
parameters are determined by the intended usage. Water that 
has been treated for potability, industrial/domestic use, or 
restoration (of an environment/ecosystem, typically for the 
health of people/aquatic life) is the main subject of water 
quality study. Thresholds, usually known as guidelines, have 
been defined on selected parameters in order to measure the 
quality of water for drinking, irrigation, and other purposes. 
The quality of the water was determined by comparing a 
comprehensive number of measured parameters to threshold 
values (Soltani et al. 2020; Hamlat et al. 2016). A power-
ful technique for combining all hydrochemical indicators 
into one value is the water quality index (WQI) (Soltani 
et al. 2021; Rachedi and Amarchi 2015). Horton (1965) 
proposed the concept of WQI to assess the quality of river 
water in the USA (Soltani et al. 2021). Many WQIs with 
particular specifications have been developed as a result of 
this process. Traditional indices suffer from fundamental 
drawbacks, including shortages of selection parameters—
the majority of which do not account for toxic substances 
(heavy metals), a failure to take into account uncertainty, 
and subjective, deterministic formulations of the equation 
indices (Oukil et al. 2021; Ocampo-Duque et al. 2006). The 
methods used for classification evaluation of water quality, 
are matter element model (Wang et al. 2019), fuzzy syn-
thetic evaluation (Zou et al. 2006), gray analysis method 
(Zhang et al. 2018), logistic curve model (Jin et al. 2003), 
attribute recognition model (Wang and Zou 2008), fuzzy 
logic (Yan et al. 2010), and k-nearest neighbors method 
(k-NN) (Modaresi and Araghinejad 2014). These methods 
necessitate data analysis expertise as well as understand-
ing of water quality parameters. His methods are becom-
ing more and more useful and well-liked for water quality 
issues as these limitations can be solved utilizing machine 
learning methodologies, making water quality monitoring 
based on sensor-generated data viable and affordable (Liao 
et al. 2011). However, some conventional methods for water 
quality assessment are unsuitable and, as a result, unable 
to provide a better performance for real-time applications 
due to high computational time and complexity, as well as 

proper inaptitude and incapacity due to nonlinear compli-
cated relationships between all monitoring parameters and 
qualitative status. In the last few decades, robust methodolo-
gies and indices to classify water quality status have been 
developed. These approaches and indices solve previous 
limitations through natural language reasoning and suc-
cessful approximation of the calculated index among com-
plicated combined parameters. Neural network algorithms 
are frequently considered a solution to this kind of modeling 
process among others (Areerachakul and Sanguansintukul 
2010). Methods like support vector machines (SVMs) and 
artificial neural networks (ANNs) were efficiently used in 
several applications (Liao et al. 2011; Wu et al. 2007). In this 
study, the monitoring process is a multiclass classification 
problem, but the development of WQI is a regression prob-
lem that transforms the several parameters containing water 
into one single number to describe the allover water quality. 
Many studies have employed several water quality indicators 
(WQIs) to evaluate the water’s suitability for human con-
sumption utilizing a variety of factors that must be carefully 
selected in order to get significant results (Oukil et al. 2021; 
Abbasi and Abbasi 2012). The water quality index number 
may not accurately reflect the current state of the water’s 
quality because even one poor parameter value may change 
the water quality index’s entire story. Since it reflects general 
water quality, it does not represent any particular usage of 
water (Phadatare and Gawande 2016). Several parameters 
reflect an economic impact on the overall cost of the con-
trol and monitoring system (reduced physical sensors). The 
number of studies applying ANN- and SVM-based models 
that have been extensively employed in water quality moni-
toring has considerably increased in these recent years (Liao 
et al. 2011; Phadatare and Gawande 2016). SVMs, a class of 
data-based learning algorithms that are relatively new and 
were first described by Vapnik (1995) (Vapnik 2000), have 
come to be used as an alternative approach in hydrologic 
research fields where ANNs are most commonly used. Most 
SVM applications have been focused on surface water prob-
lems. Yoon et al. (2011) applied ANN and SVM in their case 
studies. They concluded that the SVM model performance 
was better than ANN. The traditional neural networks are 
greatly reliant on datasets and problems of the local opti-
mum in the training phase, resulting in bad learning results 
of the model and the limitations of classic artificial neural 
networks resulting in no memory being associated with the 
model, which is a problem for sequential data, like text or 
time series? The statistical learning theory and structural 
risk minimization are the theoretical foundations for the 
learning algorithms of SVMs. The SVM method is consid-
ered one of the strong and universal classifiers and approxi-
mators with a highly desired degree of accuracy in machine 
learning, solving the problem of gradient disappearance in 
traditional ANN (Nieto et al. 2015).
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To be efficient, the preparation of datasets requires a 
certain treatment, which ensures that the classifier mod-
els are well decided. Recently, the use of features selec-
tion for dataset treatment in classification applications has 
received significant attention which can increase the per-
formance of classifier (Widodo and Yang 2007; Cao et al 
2003). However, we need to select features to prevent the 
curse of dimensionality phenomenon and redundancy, since 
irrelevant features would decrease the classifier’s accuracy 
(Widodo and Yang 2007).

The curse of dimensionality with high-dimensional data 
refers to the phenomena that occur when classifying data in 
order to train a precise model. Therefore, the selection of a 
subset of relevant and useful features without any transfor-
mation is desirable (Yang et al. 2006). Many approaches to 
feature selection are based on linear methods such as prin-
cipal component analysis (PCA) (Widodo and Yang 2007). 
The use of feature selection can improve the performance 
of classification results by reducing the number of data 
inputs needed to attain training with a significant database 
and reducing running time (Widodo and Yang 2007; Kumar 
et al. 2005). The purpose of this paper is to integrate PCA 
in combination with SVM and ANN in the evaluation of the 
quality of water. The PCA is employed precisely here as a 
features selection method to easily describe the correlations 
between a list of variables (Ladjal et al. 2020) in the best 
way, by generating a set of orthogonal principal components, 
i.e., not correlated, thereby reducing the dimensionality of 
the original dataset. SVM and ANN are employed as mul-
ticlass classifiers based on three classes of water quality. A 
comparative study is examined with and without the features 
selection process. The combination data fusion by decision 
templates of two classifiers is performed. To the best of our 
knowledge, the classification of water quality status via data 
fusion that use the decision templates method has not yet 
been performed, and there are no references in this applica-
tion that make use of the suggested methodology. Decision 
templates combine seamlessly the outputs of the best models 
of both SVM and ANN classifiers to enhance accuracy of 
the water quality classification.

In order to develop better classification tasks with ANN, 
SVM has a good potential for achieving effective data rep-
resentation. The performance of the classification task is 
greatly enhanced by PCA, which helps in reconstructing 
the input representation and converts it to a reduced feature 
representation of data related to the input data. The main 
contributions of this work are as follows:

1. We used a novel approach based on the SVM frame-
work with ANN, studying the potential of our proposed 
approach to achieve an effective representation and 
dimensionality reduction using PCA method for the 
improvement of the binary classification results of shal-

low and traditional supervised machine learning algo-
rithms.

2. PCA reduces a set of features that may be correlated 
into a smaller set of uncorrelated features or variables, 
called as PCs, which reflect an impact on the control 
and monitoring system’s overall cost (reduced physical 
sensors). The selected parameters represent the overall 
quality of the water.

3. The combination data fusion using decision templates of 
two classifiers are applied in water quality monitoring. 
Decision templates combine seamlessly the outputs of 
the best models of both SVM and ANN classifiers to 
enhance the accuracy of the water quality classification

4. When compared to the results of similar approaches, bet-
ter or at least equal and competitive results are obtained. 
Additionally, our method significantly actually reduces 
on training and testing times.

This study is particularly limited to experimental work 
carried out using datasets collected from the study area. The 
choice of the suitable hybrid approach is the object of this 
work by the application of SVM and ANN multi-class meth-
ods combined with PCA and using decision template’s rule 
combination data fusion with respect to recognition rates, 
training times, and sensitivity to the noise.

Related works

Various methods, including support vector machines and 
artificial neural networks (ANN), have been employed in 
the selection of features and classification of water quality 
(SVM). The problem of classification with feature selection 
is crucial to data mining and machine learning. It has been 
used in a variety of applications in the real world. A user 
must first collect a set of training samples that are labeled 
with specified classifications in order to develop a classi-
fier. A classification algorithm is then applied to the train-
ing of selected data to build a classifier that is subsequently 
employed to assign the predefined classes to test instances 
(for evaluation) or future instances (for application). Haghi-
abi et al. (2018) investigated the performance of artificial 
intelligence techniques that include the artificial neural net-
work (ANN), the group data management method (GMDH), 
and the support vector machine (SVM) to predict the compo-
nents of the water quality. During the development process 
of ANN and SVM, it was found that tansig and RBF as 
transfer and core functions have the best performance among 
the tested functions. Chou et al. (2018) applied ANN, SVM, 
regression trees, and linear regression to determine the water 
quality in the reservoir using data collected over 10 years in 
Taiwan. The ANN model was more accurate than the other 
unique models, sets, and metaheuristic regression hybrids 
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(Gakii and Jepkoech 2019). Mohammadpour et al. (2014) 
and Muharemi et al. (2018) employed SVM and ANN to 
water quality data. The SVM algorithm is competitive with 
neural networks (Gakii and Jepkoech 2019; Mohammad-
pour et al. 2014). The best result was achieved by using 
the artificial neural network with non-linear autoregressive 
(Muharemi et al. 2018).

Feature selection is one of the crucial steps for a compre-
hensive classifier. Many approaches, such as principal com-
ponent analysis (PCA), linear discriminant analysis (LDA), 
and independent component analysis (ICA), were used for 
feature selection and data reduction to improve the accuracy 
of the classification analysis. Because of the fact that a small 
set of uncorrelated variables is much easier to understand 
and use in further analysis than a larger set of correlated 
variables, this data compression technique has been widely 
applied to virtually every substantive area. Dilmi et  al. 
(Dilmi and Ladjal 2021) employed LSTM RNNs and SVM 
with the three feature selection techniques. Additionally, we 
used three methods of cross-validation and two methods of 
the out-of-sample test to estimate the performance of LSTM 
RNN model. From the results, we found that the integra-
tion of LSTM RNNs with LDA and LSTM RNNs with ICA 
yields an accuracy of 99.72%, using Random-Holdout tech-
nique (Dilmi and Ladjal 2021).

Soltani et al. (2021) developed a new water quality index 
(WQI) based on Data Envelopment Analysis (DEA) to 
assess the water quality of 47 dams in Algeria. The devel-
opment of the WQI in this kind of research is a regression 
problem that combines the several water-related data into a 
single value to represent the overall water quality. This novel 
approach has demonstrated its efficacy not just for classi-
fying or evaluating areas based on water quality but also 
as an alternate tool to help decision-makers with resource 
management and funding allocation (Soltani et al. 2021). 
Also, Soltani et al. (2020) employed several techniques 
under the same framework, including the Canadian Council 
Ministers Environment Water Quality Index (CCME-WQI), 
principal component analysis and factor analysis (PCA/FA), 
the K-means clustering, and the ordinary least square (OLS) 
analysis (Soltani et al. 2020). Oukil et al. (2021) introduced 
a new approach, based on a unified framework incorporat-
ing data envelopment analysis (DEA) and ordered weighted 
averaging (OWA), for assessing water quality in contex-
tual settings that involve a large number of hydrochemical 
parameters by WQI development. Instead of using pre-estab-
lished borders, the k-means analysis was used to group the 
water quality of the wells into excellent, good, permissible, 
and unsuitable. Only one water source has been identified 
as excellent, whereas 17.65%, 45.10%, and 35.29% of the 
sampled wells, respectively, are categorized as good, per-
missible, and unsuitable water quality (Oukil et al. 2021). 
Chen et al. (2020) used large data with various parameters 

to examine the performance of the water quality prediction 
from the main rivers and lakes in China by applying 10 
learning models (7 traditional and 3 ensemble models). The 
outcomes demonstrated that learning models could perform 
better in the prediction of water quality with larger datasets.

Multisource data fusion was used by Jiang et  al. 
(2021) to combine a deep learning method with a linear 
method (multiple linear regression, MLR), as well as a 
more conventional learning algorithm (multilayer percep-
tion, MLP). These approaches take some indicators into 
account to comprehensively analyze and predict the drain-
age water quality in a city in southern China. The results 
showed that the deep learning algorithm, which consists 
of recurrent neural networks (RNNs), long-short term 
memories (LSTM), and gated recurrent units (GRUs), has 
good predictive performance, with GRU showing superior 
ability in predicting the chemical index of water quality 
and a faster learning curve (Jiang et al. 2021). Where the 
input data contains sequences that are too long, RNNs and 
LSTMs are quite good at extracting patterns in the input 
feature space. While traditional linear models can be dif-
ficult to adapt to problems with multiple or many inputs, 
they can nearly accurately depict problems with problems 
with many input variables, which is especially valuable in 
forecasting time series (Gakii and Jepkoech 2019).

To our best knowledge, the previous works were per-
formed using single and separate models. In this work, 
we have presented a specific classification approach based 
on output data combination fusion to suit water quality 
monitoring efficiently.

Proposed framework

In this study, water quality assessment can be examined 
as a multiclass classification modeling problem. In gen-
eral, it includes data acquisition and processing, selection 
of features, and classification of water quality. Figure 1 
illustrates our proposed framework, based first on prepar-
ing datasets using PCA algorithms for feature selection 
before entering into ANN and SVM classifiers. Decisions 
concerning water quality status are obtained by using only 
a subset of appropriate and usable characteristics, with-
out any transformation. In order to enhance the recogni-
tion rates, decision template combination data fusion is 
performed.

The aim is to classify the quality of water into three 
separate classes from the selected variables of water qual-
ity (I: excellent, II: middle, III: mediocre) according to the 
local environmental water quality guidelines. The next sec-
tions contain a short description of the principal methods 
employed in this paper.
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Principal component analysis based on features 
selection

PCA is a technique commonly used to reduce multivari-
ate problem dimensions. It was used in many areas like 
feature extraction and selections, high-dimensional data 
visualization, cluster analysis, pattern recognition, clas-
sification, and regression. Principal components (PCs) 
have a minimum loss of input data information in this 
method.

Without any transformation, PCA transforms a subset of 
features that may be correlated into smaller uncorrelated 
features or variables called PCs (Areerachakul and Sangu-
ansintukul 2010). All of these factors are orthogonal to each 
other, so no redundant features exist. By the following equa-
tion, PCs can be defined (Jolliffe 2002):

where zij represents PCs, aim the related eigenvectors, and xmj 
input features; i is the component number, j is the sample 
number, and m is the total number of features (Ladjal et al. 
2020). This information is obtained through the resolution 
of the equation (Semmlow 2004):

where I is the unit matrix, � is the eigenvector, and R is the 
variance–covariance matrix.

PCA results are generally evaluated by means of com-
ponent values (values of the transformed features that 
match a certain data point) or loading values, also known 
as factor scores (weight to multiply each standardized 
original function in order to achieve the component score).

(1)zij = ai1x1j + ai2x2j + ... + aimxmj

(2)|R − I�| = 0

We have N samples of M-dimensional data:

Step 1: To implement PCA, we should first calculate the 
variance–covariance matrix.

Step 2: Search for the matrix of the eigenvectors and diago-
nal matrix components as variance–covariance matrix 
values.

Step 3: Sort the PC eigenvectors in the decreasing order of 
importance of eigenvalues.

Step 4: By taking the dot product between the determined 
data and eigenvectors, project the data input into the 
directions of sorted eigenvectors.

Step 5: Based on the containment of a specified percentage 
of variability, select the first few PCs.

The PCs have the following characteristics (Jolliffe 2002):

– They are uncorrelated.
– They have sequentially maximum variance.
– The mean-squared approximation error in the represen-

tation by the first, several PCs of the initial inputs are 
minimal.

Artificial neural network

As shown in Fig. 2, artificial neural networks (ANN) are 
multi-layer, completely connected neural networks. ANN 
architectures have been classified into different types based 
on their training mechanisms and other features. By using 
the multi-layer perceptron (MLP) architecture (Jin et al. 
2003), non-linear data classification is carried out. Many 
recent studies have used effective ANN models for water 

Fig. 1  Flowchart of combining 
data fusion–based approaches 
with decision templates

Input variables
(Water quality parameters) 

Original data

ANN Classifier SVM Classifier ANN Classifier SVM Classifier

PCA features selection

Best accuracy assessment 

of each model

Combining data fusion-based approaches with Decision Templates 

Best accuracy assessment 

of each model

Final decision and performance assessment
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quality monitoring (Zou et al. 2006; Liu and Zou 2012). 
The supervised learning process consists of calculating 
the weights that reduce the differences in the training set 
between the target output values yr and the computed output 
values yd.

The mathematical expressions of the hyperbolic tangent 
activation function and a minimum of the problem of quad-
ratic optimization are, respectively, described by

N presents the sample number of the learning dataset.
We used in this application the algorithm of Leven-

berg–Marquardt that is known as the 2nd order method, and 
it is rather better because they supply however much good 
results.

Support vector machines

The SVM method developed by Vapnik has been exten-
sively used for classification, regression, and density esti-
mation (Vapnik 2000; Schölkopf et al. 2002). In this method, 
through the construction of the optimal hyperplane, which 
is evaluated to optimize the generalization potential of the 
classifier, an initial input data space is mapped in a higher 
dimension space by selecting some non-linear functions, 
called kernel functions (Übeyli 2009).

Non‑linear SVM classification

The initial input data should be implicitly mapped to a 
typically higher-dimensional feature space using kernel 

(3)f (u) = tanh(�u) =
e�u − e−�u

e�u + e−�u

(4)Cw =
1

N

N∑
i=1

(yri − ydi )

2

methods. In this mapping space, the classification method 
is then performed via the construction of the optimal lin-
ear separating hyperplane (Fig. 3). In this mapping space, 
the classification process is then carried out by building 
the optimal linear separating hyperplane (Fig. 3) with a 
maximization margin between it and the nearest point to 
obtain high generalization capacity via the quadratic opti-
mization problem. The problem of quadratic SVM opti-
mization for binary classification was established by the 
following dataset:

n is the number of observations, and x ∈ ℜd and yi is a dis-
tribution and the corresponding class label respectively.

The optimal separating hyperplane is determined by the 
vector of weight w and a constant b, defined by Ladjal 
et al. (2020) and Bae et al. (2010):

(5)(xi, yi), yi ∈ {−1,+1}, i = 1, ..., n

(6)w.x + b = 0

Fig. 2  Example of a multi-layer 
perceptron

Input
layer

Hidden
layers

Decision

Output
layer

Input 
Variables

Fig. 3  The optimal hyperplane and margin of a binary SVM
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Under constraints

The primal quadratic minimization problem according to 
w, b is given by (Singh et al. 2011)

The dual quadratic maximization problem using multi-
pliers of Lagrange αi is given by (Singh et al. 2011; Hend 
et al. 2010)

C is a penalization parameter that controls the level of 
errors in classification.

The nonlinear mapping ≺ Φ ≻ is carried out via a ker-
nel function K(xi, xj) from an input space to some higher 
dimensional feature space (Ladjal et al. 2020). The new dual 
quadratic maximization problem is defined by (Hend et al. 
2010; Horng 2009)

Thus, the vector solution �0 = (�0
i
, ..., �0

n
) . Using the theo-

rem of Karush–Kuhn–Tucker (KKT) for an optimal weight 
vector, α is (Horng 2009)

This means �0
i
= 0 or yi[(w0xi) + b0] = 1 , the letter corre-

sponds to the support vectors (SVs) present at the nearest point 
to optimal hyperplane, which is equivalent to (Horng 2009)

The function of decision is defined by (Singh et al. 2011; 
Horng 2009)

If f(x) < 0, then x belongs to class − 1; if not, it belongs to 
class 1, as b is the solution of the equation (Ladjal et al. 2020).

We can use all functions that satisfy Mercer’s theorem as 
a kernel function with appropriate parameter selection for 
more performances. The widely employed kernel functions 
are (Vapnik 2000; Schölkopf et al. 2002; Abedi et al. 2012):

(7)
(
w.xi

)
+ b ≥ +1, if yi = +1(

w.xi
)
+ b ≤ −1, if yi = −1

(8)
⎧⎪⎨⎪⎩

minw
1

2
‖w‖2 + C

n∑
i=1

�i

with yi(wx + b) ≥ 1 − �i �i ≥ 0, i = 1, ..., n

(9)

⎧⎪⎨⎪⎩

Max
�i

L(�) =
n∑
i=1

�i −
1

2

n∑
i,j=1

�i�jyiyjxixj

with
n∑
i=1

�iyi = 0, 0 ≤ �i ≤ C i = 1, ..., n

(10)

�
max
�i

L(�) =
∑n

i=1
�i −

1

2

∑n

i,j=1
�i�jyiyjK(xi, xj)

with
∑n

i=1
�iyi = 0, 0 ≤ �i ≤ C

(11)�0
i

{
yi[(w0xi) + b0] − 1

}
= 0, i = 1, ..., n

(12)SVs =
{
xi that 𝛼i ≻ 0

}

(13)f (x) = sign(
∑
SVs

�iyiK(xi.x) + b)

The polynomial function:

with c ≥ 0 and d ∈ N

The radial basis function (RBF):

One‑against‑all approach

The “one-against-all” approach is commonly used in mul-
ticlass classification problems (Burges 1998; Deng et al. 
2011). Consider a multi-class k-class problem, where we 
can have N examples of training set:

{
(x1, y1), ..., (xN , yN)

}
 . 

Here, xi ∈ ℜk is a k-dimensional input feature vector, 
and yi ∈ {1, 2, ..., k} is the corresponding class output. 
The one-against-all approach (OAA) constructs k binary 
SVM models where the number of classes needed is k. 
With all the training samples in the ith class with positive 
class and all the other samples with negative class, the ith 
SVM is trained. The ith SVM defines the following opti-
mization issue that results in the final decision function: 
fi(x) = wT

i
�(x) + bi (Wu et al. 2007; Deng et al. 2011):

where ŷj = 1 if yj = i and ŷj = −1 otherwise.
Sample x is classified as in class i* at the classification 

step, whose fi∗ produces the largest value (Wang and Yang 
2010):

Methods of classifier combination fusion

Integrating information from multiple sources and making 
combined decisions from them is becoming a common 
task across several disciplines and applications. A sim-
ple set of well-known combination data fusion methods 
such as minimum, maximum, majority voting and aver-
age compared with decision templates has been broadly 
applied to build a multiple classifier model for our pro-
posed approach.

(14)k(x, x�) = ( � .xT .x� + c)
d

(15)k(x, x�) = exp

�
−
‖x − x

�‖2
2�2

�

(16)

minimise
wi,bi,�i

1

2
‖wi‖2 + C

N∑
i=1

�i
j
(wi)

T

subject to (w
i

)
T
�(xj) + bi ≥ 1 − �i

j
, if yj = i,

(w
i

)
T
�(xj) + bi ≤ −1 + �i

j
, if yj ≠ i,

�i
j
≥ 0, j = 1, ..., N,

(17)i∗ = arg max
i=1,...,k

fi (x) = arg max
i=1,...,k

(wT
i
�(x) + bi).
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Conventional fusion methods

Average, maximum, and minimum There is a similar idea 
to these approaches. The maximum method selects the larg-
est value for each class among the outputs of the classifiers. 
Then, the limit is compared, and a class with a greater value 
is chosen. It is calculated as follows for a multi-class prob-
lem (M) with L classifier models (Kuncheva et al. 2001):

Here, dy,z(xi) is the degree of support determined, by the yth 
classifier for the example x of the class z. The average and 
the minimum methods are the same as the maximum method 
except that the smallest values are compared as (Kuncheva 
et al. 2001; Min and Cho 2007)

For the average, the maximum methods compare the 
mean values (Kuncheva et al. 2001):

Majority voting The theory of this system is that the votes 
obtained from each classifier are counted and that the class 
with the highest number of votes is affected (Ruta and 
Gabrys 2005).

Decision Templates

The application of decision templates (DT) as a method of 
classifier combination fusion was proposed by Kuncheva 
(Kuncheva et  al. 2001). DT is a method which makes 
employs all the base classifiers used on each of the m 
templates (or m datasets — one per class) with the same 
training set that is used for the set of classifiers (Haghighi 
et al. 2011). For the m multi-class problem, the classifier 
decisions can be organized in an output profile (DP(x)) as 
a matrix. The DP(x) for example x is a matrix composed of 
the dt.j �[0, 1] elements representing the support defined by 
the tth classifier to class �j . Decision templates DTj are the 
averaged output decision profiles obtained from Xj, the set 
of training examples belonging to the class �j (Zhang et al. 
2014; Chen et al. 2010):

(18)max
z=1,...,M

=

{
max
y=1,...,L

{
dy,z(x)

}}

(19)max
z=1,...,M

=

{
min

y=1,...,L

{
dy,z(x)

}}

(20)

max
z=1,...,M

=

{
avg
y

{
dy,z(x)

}}
, avg

{
dy,z(x)

}
y

=
1

L

L∑
y=1

dy,z(x)

(21)DP(xi) =

⎡⎢⎢⎣

d1,1(xi) ....

dy,z(xi)

dL,1(xi)

d1,M(xi)

dL,M(xi)

⎤⎥⎥⎦

where dy,z(xi) is the degree of support defined by the yth 
classifier for the example xi of the class z, and L is the num-
ber of classifiers in an ensemble. When decision output pro-
files are generated, the template of the class m is predicted as 
follows (Min and Cho 2007; Zhang et al. 2014):

The similarity S between the decision template DTj for 
a class �j and the decision output profile for a defined test 
example x is

The last final decision of the ensemble is determined 
by assigning the test example to the class with the biggest 
similarity:

The similarity between the decision output profile of a test 
example and each prototype is identified in the test process. 
In the class of the most comparable prototype, the example 
is then affected. Kuncheva (Kuncheva et al. 2001) studied 
DT with various distance measurements and achieved great 
success in classification compared to traditional combination 
data fusion techniques (Min and Cho 2007).

Results and discussion

In this study, the aforementioned proposed framework 
was applied to water quality data from Tilesdit station in 
Bouira (Algeria). For testing the applicability of the sug-
gested methodology, our monitoring model consists of three 
steps: features selection and recognition of the water quality 
status with data combination fusion. The feature selection 
technique is based on PCA, and the classification technique 
is based on SVM and ANN multi-class methods combined 
using decision template’s rule combination data fusion. 
The hardware used to perform our simulation experiments 
are as follows: we have used an Intel Core TM i7-6820HQ 
and 2.71 GHz CPU processor with 8 GB of memory. All 
proposed methods were implemented and assessed using 

(22)DTj =
1
|||Xj

|||

∑
x∈Xj

DP(x)

(23)DTm =

⎡
⎢⎢⎣

dtm(1,1) ....

dtm(y, z)

dtm(L, 1)

dtm(1,M)

dtm(L,M)

⎤
⎥⎥⎦

(24)dtm(y, z) =

n∑
l=1

um,ldy,z(xl)∕

n∑
l=1

um,l

(25)Sj(x) = 1 −
1

T × C

T∑
t=1

C∑
k=1

[
Dj(t, k) − dt,k(x)

]2

(26)D(x) = argmaxjSj(x)
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MATLAB2019b environment software with Windows 10 
(64-bit) operating system.

Study area and data descriptions

The study area (Tilesdit dam, Fig. 4), is situated in the region 
of Bechloul, 20 km southeast of Algeria’s Bouira Depart-
ment (Ladjal et al. 2016). It is located approximately 122 km 
east of Algiers (35° 13′ 22″ N 4° 14′ 23″ E) (Fig. 4). The 
research area is characterized by a semi-arid climate. Mean 
annual temperatures range from 20.4 to 37.9 °C. Yearly pre-
cipitation averages are about 440–660 mm/year.

The volume of reservoir was evaluated in March 2007 at 
167 million  m3. Water from the dam needs to be designed 
to curb the tension in water distribution in 12 cities. The 
transfer of water including the launch of the construction 
works was scheduled for early 2011. Work is underway to 
connect many towns of the Bouira Department. A processing 
plant with a capacity of 74,000  m3/day is equipped. Water 
collected in the dam is pumped to the treatment plant. This 
being at the same pace is commissioned since 2009. It per-
forms the purification process through the five processing 
levels: pre-treatment, pre-oxidation, clarification, disinfec-
tion, and refining. The clarification step is performed by the 
method of coagulation-flocculation, decantation, and filtra-
tion through a phase separator and a sand filtration stage.

In this paper, we search to develop our framework 
approach of control and monitoring of water quality using 
several descriptors provided in a water production plant by 
certain physical sensors. These parameters are collected dur-
ing 3 years from the Tilesdit production plant (2009–2018). 
The parameters like pH, temperature (T°), electrical con-
ductivity (EC), and turbidity (TU) are collected by sensors 
installed in all treatment process of the station (Ladjal et al. 
2020, 2016). Every week in the lab, some chemical param-
eters are examined such as magnesium (Mg), bicarbonate 
(B), total hardness (TH), and full title alkaline (FTA). The 
above-mentioned collected data will be applied to check the 

water quality assessment model. A summary table of statisti-
cal characteristics of the collected parameters of water under 
study is given by Table 1.

Data features selection

For data features selection, the PCA method is used with 
80–90% variation of eigenvalues, without any transforma-
tion of the resulting components which are uncorrelated (De 
León 2006). A total of 1800 samples from eight physico-
chemical water quality parameters are used in this phase 
(Fig. 5).

A variance–covariance matrix is formed by using PCA 
on input variables. Eight eigenvalues are obtained after solv-
ing Eq. (2). Table 2 presents the PCA results and statistical 
parameters such as eigenvalues, cumulative variance propor-
tion, and variance proportion. The four PCs indicate 84.68% 
of the total input samples variance proportion and eliminate 
the remaining components, as set out in Table 3. These PCs 
calculate mainly the initial data variance.

In addition, PCA applications are used to obtain eigenvec-
tors to evaluate the coefficients for the training of PCs. The 
correlations between each variable and the main acquired 
components are shown in Table 2. In this table, the most 
effective parameters in PCs training are exposed in bold 

Fig. 4  Map showing the Tilesdit 
dam–Bouira–Algeria (Google 
Maps)

Table 1  Statistical characteristics of the collected parameters

Variables Min Max Average Standard 
deviation

pH 7.15 8.30 7.57 0.25
EC (ms/cm) 414.00 624.00 585.40 36.28
T (°C) 9.70 24.20 16.13 3.48
TU (NTU) 1.32 23.81 3.,83 2.39
Mg (mg/l) 7.29 47.63 22.27 4.93
B (mg/l) 158.62 289.14 222.50 23.21
TH (mg/l  CaCO3) 0.00 168.00 32.29 23.03
FTA (mg/l  CaCO3) 130.00 237.00 181.84 18.70
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font. The total variance in the dataset accounts for 84.68% 
of the first four principal components together. The first 
component (PC1) is 32.07%, with 27.93% being the sec-
ond component (PC2), 14.05% being the third component 
(PC3), and 10.63% of the total variance being the fourth 
component (PC4). In general, the EC, B, and FTA concen-
trations are obvious to be the most effective for PC1 and 
represent more than 32% of input variable variance propor-
tions. Furthermore, the T° and TH concentrations also have 

the most effect on the PC2, which contains more than 27% 
of input variables’ variance proportions. Moreover, TU and 
pH concentrations are affected by PC3 and PC4 respectively 
(Ladjal et al. 2020).

In Table 2, the rapid decay of eigenvalues is apparent. 
For the evaluation of prevailing physicochemical pro-
cesses, the eigenvalues of the first fourth principal com-
ponents (PC1-PC4) can be used (Bhardwaj et  al. 2010; 
Ayeni 2013). The EC, B, and FTA concentrations are highly 

Fig. 5  Evolution section of the 
water quality variables [4]

Table 2  Statistical 
characteristics of the resulted 
PCs

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8

Eigenvalues
2.57 2.23 1.12 0.85 0.57 0.33 0.27 0.06

Total variance proportion (%)
32.07 27.93 14.05 10.63 7.16 4.10 3.32 0.74

Cumulative variance proportion (%)
32.07 60.00 74.05 84.68 91.84 95.93 99.26 100

Variables of eigenvectors obtained by applying PCA
pH  − 0.57  − 0.46  − 0.25 0.52  − 0.08 0.29 0.20 0.00
EC 0.74 0.30  − 0.37 0.08 0.26 0.33  − 0.21 0.00
T°  − 0.04 0.78  − 0.10  − 0.45  − 0.28 0.22 0.22 0.00
TU  − 0.26  − 0.47 0.73  − 0.27 0.07 0.29  − 0.10 0.00
Mg 0.38 0.48 0.43 0.48  − 0.44 0.03  − 0.13  − 0.01
B 0.87  − 0.41 0.11  − 0.03 0.01 0.01 0.20  − 0.17
TH  − 0.03 0.70 0.42 0.27 0.46  − 0.02 0.20 0.02
FTA 0.85  − 0.45 0.09  − 0.00  − 0.07  − 0.01 0.16 0.17
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positive (0.74–0.87), while the Mg concentration is low 
positive for the first component (0.38). T ° and TH have 
high positive loads in the PC2 (0.70–0.78), and the other 
concentrations show low positive loads (0.3–0.48). The con-
centrations of TU in the PC3 have high positive loadings 
(0.73), while concentrations of FTA have low positive loads 
(0.09). The pH concentrations for the PC4 show high posi-
tive charges (0.52), while the Mg displays moderate positive 
charges (0.48), and TU and TH show low positive charges 
(0.08–0.27) (Ladjal et al. 2020).

From Table 2, the first four PCs are the input features 
of the evaluated multi-class classifiers. Variables retained 
are pH, temperature (T°), electrical conductivity (EC), and 
turbidity (TU). As a result, monitoring must take place at 
the treatment plant and in a continuous way using selected 
parameters that are the most representative used due to 
strong existing correlations between all the parameters, as 
well as the most fundamental and easily measured by physi-
cal sensors in the monitoring water quality system. These 
results are equivalent to the results obtained in literature 
(Ladjal et al. 2020, 2016) with different database and period, 
which adopts the same selected variables, and these param-
eters were measured in the field, using the station’s sensors. 
In any case, this solution is not final; a relearning system 
should probably be conducted periodically so that situations 
that might arise can be taken into account and continuously 
adjusted to change water quality.

Samples classification with SVM and ANN

Traditional methods, in most drinking water production 
units, are based on knowing the various parameters of 
the raw water through chemical analyses carried out in 
the laboratory. These methods require human inspection 
and are time-consuming. This approach, in addition to 
the disadvantage of having a relatively long delay time, 
does not allow fine monitoring of the evolution of the raw 
water quality. There is a necessity to look into the water 
standards before usage. Water quality evaluation was 
assessed by comparing a long list of measured parameters 

with water standards. While it can be hard to probe into 
current practices and evaluate the methodologies of indi-
vidual sources of pollutants, the quality of a water body, 
to deem the purity of it, laboratory practices that are labor-
intensive and time-consuming need an automated techno-
logical alternative. Automatic machine learning facilities 
supply machine learning with a push of a button or, on a 
minimum level, ensure retaining algorithm execution; data 
pipelines and code, generally, are kept from sight and are 
anticipated to be the steppingstone for normalizing AI. 
However, it is still a field under research. This is a problem 
that can greatly benefit from artificial intelligence (AI) 
like ANN and SVM methods which makes it a good water 
quality classification tool and serves as a basic tool for 
decision support. It is wise to assume that the water quality 
monitoring operation can be seen as a pattern recognition 
problem, where the pattern represents the measurements 
related to water parameters, and the outputs correspond to 
the different water statuses. The proposed model could be 
considered an effective tool for identifying the water qual-
ity status. In addition, the major advantage of the proposed 
model is that it could be useful for ungagged catchments 
or those lacking enough numbers of monitoring stations 
for water quality parameters.

To carry on the training and classification process, 
datasets for the training and test phases are developed and 
arranged in three separate classes of water quality (I: excel-
lent, II: middle, III: mediocre) according to the local envi-
ronmental water quality guidelines (Décret 2011). A col-
lected data collection of 1800 samples (Table 1) was used.

In this work, diverse architectures of ANN and hyperbolic 
tangent activation functions have been applied to the hidden 
and output layers to establish the suitable number of hidden 
layers and neurons (Adem et al. 2019). The SVM using OAA 
approach is used to carry out the multiclass classification 
process. C, d and σ are the three parameters associated with 
the SVM kernel functions. The parameter d related to the 
polynomial degree and σ for RBF function, and C is the 
penalization factor. Therefore, good choice of all parameters 
in the two models ANN and SVM can show excellent results 

Table 3  Classification results using ANN models

Number of hidden 
layers

Number of neurons 
in hidden layers

Recognition rates (%)

Without PCA features selection (8 variables) With PCA features selection 
(4 variables)

Training Testing Training Testing

1 (4) 97.56% 86.63% 99.83% 97.94%
1 (8) 100% 84.18% 97.83% 98.11%
2 (4–8) 100% 84.15% 98.92% 98.07%
2 (10–10) 98.78% 83.86% 99.83% 98.42%
3 (4–8-12) 97.56% 86.61% 99.75% 99.13%
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and in the opposite case can cause under fitting or over fit-
ting problem (Widodo and Yang 2007).

To assess the two used methods, tenfold cross-validation 
has been performed in training and testing phases. The 
cross-validation process can stop the over fitting problem 
that is very important in subsample random selection used 
for testing and training datasets. We can develop classifica-
tion models with high performance and accuracy through 
the use of cross-validation.

Table 3 indicates the results of ANN multi-class models 
using data input with and without features selection. The dif-
ferent parameters of training, such as the global number of 
neurons and hidden layers and the recognition rates (training 
and testing), evaluated all the samples by using the correct 
classification rate.

Table 4 indicates the results of sample classification with 
SVM multi-class models. The performance criteria, such as 
number of support vectors (NSV), and the recognition rates 
for training and testing phases are determined for different 
kernel functions and its parameters and values of factor C.

In Tables 3 and 4, the recognition rates on the original 
dataset without features selection process are more than 
96% in training step and from 83.86 to 89.09% in the testing 
step for the two models (ANN and SVM). The existence of 
irrelevant and useless features decreases the performance of 
the classification process (Widodo and Yang 2007). Then, 
as shown in the cited tables, the recognition rate with PCA 
features selection ranged from 97.83 to 99.83% in the train-
ing step and from 97.80 to 99.13% in the testing step for the 
two models (ANN and SVM). It is better than the precedent 
classification without feature selection.

As shown in Table 4, the effect of choice of architecture 
and parameters of networks is important. Indeed, a good 
choice of the ANN architecture characteristics can improve 
the performance of classification. The best model for this 
application is the network with three hidden layers using 
the original feature set with and without the features selec-
tion process. This architecture is characterized by a recogni-
tion rate in the testing step with a features selection process 
of 99.13%. For the SVM model, the feature selection step 
increased the performance of the classification process. It 
can be compared with Tables 3 and 4 in the case of with and 
without features selection by PCA. In Table 4, the recogni-
tion rate in the training phase for linear kernel is usually 
lower than polynomial and Gaussian RBF kernel with and 
without features selection. Even though the degrees of poly-
nomials are 2, 3, and 4 in the process with features selec-
tion. However, the recognition rate reaches 98.48% using 
the Gaussian RBF kernel (σ = 0.1, C = 1000) due to the good 
quality of data input after the feature selection process. This 
model is characterized by the recognition rates in training 
and testing steps which are 99% and 98.48% respectively. 
Gaussian RBF kernel has shown to be the best choice for 

this application (Bouamar and Ladjal 2012; Widodo and 
Yang 2007; Djerioui et al. 2018). Therefore, a good choice 
of kernel function and its parameters C and σ or d and γ can 
achieve the best performance in classification steps (Widodo 
and Yang 2007).

The recognition rates of each model with features selec-
tion process are high. The features selection process searches 
the uncorrelated components from the input data using PCA 
which is useful to increase the performance of classification. 
The use of k-fold cross-validation (CV) with the SVM tech-
nique is typically the most appropriate method. These results 
are equivalent to the results obtained by Dilmi and Ladjal 
(2021). Generally, as listed in Tables 4 and 5, the SVM mod-
els using the strategy of OAA are better than ANN models 
mainly when using the original data without a features selec-
tion process in high-dimensional data classification (Widodo 
and Yang 2007). Moreover, using kernel parameters selec-
tion will increase the performance of classification. How-
ever, the ANN models are better than SVM models mainly 
when using the original dataset with the features selection 
process as listed in the table against the recognition rate in 
the testing step with a small improvement.

Noise robustness of classifiers

It is important to evaluate the robustness of techniques used 
to see their impact in the system decision. Adversarial exam-
ples, generated by adding small but intentionally impercep-
tible perturbations to normal examples, can mislead classi-
fiers to make incorrect decisions. The key is to compare and 
analyze the data paths of both the adversarial and normal 
examples. In this step, all input data values were standard-
ized and normalized between 0 and 1 to avoid having more 
weight being assigned to features with larger values. Nor-
malization is essential to get rid of biases in data for their 
accurate analysis.

In order to eliminate dimension differences, the following 
equation was used for data standardization and normaliza-
tion, and then all input and output data were standardized 
and normalized to the range [0, 1] (Msiza et al. 2008; Liu 
et al. 2013):

where x is the initial datasets, and xmin and xmax are the mini-
mum and maximum values, respectively.

The results showed that normalized data is easier to pro-
cess (Liao et al. 2011). To address this issue, we added arti-
ficially white noise to the initial unperturbed data inputs. 
We study the noise stability of such methods on unperturbed 
inputs and observe that internal activations of adversarial 
trained networks have a lower signal-to-noise ratio (SNR). 

(27)xnew =
x − xmin

xmax − xmin
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SNR is calculated via recognition rate using five different 
levels of white noise: 10, 20, 40, and 60 dB. A quantitative 
evaluation and a case study were conducted to demonstrate 
the robustness of the noise of our methods. Table 5 pre-
sents the results associated with ANN and SVM multi-class 
models using reduced real data input with additive white 
noise. The various parameters, such as the recognition rates 
according to the SNR which are calculated by using the cor-
rect classification rate of real data and the minimum square 
error (MSE_ANN) for the ANN model, are presented.

The results showed that normalized data is easier to 
process, but the recognition rate has dropped. Compared 
to ANN, we found a remarkable resistance to the white 
noise of SVM multi-class models. When the SNR is equal 
to or greater than 20 dB, the test vectors using SVM are 
absolutely insensitive to the different noise levels applied. 
This explains why this approach enjoys exceptional immu-
nity. For the ANN model, when the SNR decreases, we 
observe a strong deterioration of the recognition rate. In 
addition, for a ratio lower than or equal to 10 dB, there 
is a really clear immunity limitation. The MSE explains 
this situation. However, it has been noted that when this 
SNR is equal to or greater than 40 dB, the test vectors 
do not exhibit concrete degradation. We may assume that 
the ANN model offers an appropriate resistance an SNR 
above 40 dB. Ultimately, this model tends to be more noise 

sensitive and therefore less stable than the SVM model. 
Table 6 summarizes the characteristic results correspond-
ing to the two models carried out on the suggested real 
data.

It appears that the two models perform good results on 
the decisional level with recognition rates of more than 98% 
in the training and testing phases with the features selection 
process. In the training step, the SVM model is rather better 
positioned on the computing time, which gives it the ben-
efit of integration into a dynamic monitoring system. With 
SNR above or equal to 20 dB, the two multi-class models 
have slightly strong immunity. A classifier is robust if it is 
insensitive to outliers and noisy data. Thus, what is gained in 
robustness and lost in precision? It is therefore necessary to 
carefully choose these thresholds so as to make a good com-
promise between precision and robustness (Saint-Jean and 
Frélicot 2001). Furthermore, the ANN model suffers from 
a significant handicap related to its apparent noise sensitiv-
ity. The SVM model removes this limitation because of its 
excellent noise robustness. Finally, we can conclude that the 
classification method performed using the SVM technique 
on a real Tilesdit dam data provides the best performance 
and the acceptable solution combined with the PCA features 
selection strategy. These results are equivalent to the results 
obtained by Achmad et al. (Widodo and Yang 2007). This 
result is important because it reflected an economic impact 

Table 5  Recognition rates according to the SNR of PCA-SVM and PCA-ANN multi-class models

Input variables Models with features selection SNR (dB) Methods Recognition rate accord-
ing to the SNR

MSE_ANN

(4 variables) (EC, T°, 
TU, pH)

Without noise ANN 96.33% 0.04

SVM 97.24%
10 ANN – 1.4

ANN SVM 87.80%
(4–8-12) 20 ANN 83.17% 0.15

SVM 97.17%
SVM 40 ANN 95.83% 0.05
Gaussian RBF (σ =  2−1, C = 1000) SVM 97.17%

60 ANN 96.33% 0.04
SVM 97.24%

Table 6  Characteristics of ANN and SVM models

Input variables Models with features selection Characteristics

Training time (s) Recognition rate (%) Robustness

Training Testing

(4 variables)
(EC, T°, TU, pH)

ANN (4–8-12) 65.29 99.75% 99.13% Good (96.33% at 60 dB)
SVM
Gaussian RBF (σ = 0.1, C = 1000)

1.52 99.00% 98.48% Excellent (97.24% at 60 dB)
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on the overall cost of the control and monitoring system (less 
training time and reduced physical sensors).

Classification using decision template rule 
combination

The results were combined after obtaining the classification 
accuracy of the classifiers. In this study, the fusion of pri-
mary classification results is carried out in comparison with 
a set of well-known combination methods such as majority 
voting, minimum, maximum, average, and Bayes, using the 
rules of the decision template for classifier combination. 
These techniques are noted as the best among all combi-
nation data fusion methods in pattern recognition (Polikar 
2006; Kuncheva 2014). Because of this, it is important to 
find the viability of the combined structure preferred in this 
work. Table 7 illustrates the hybrid data fusion of the two 
ANN and SVM classifiers and the overall accuracy of the 
fusion approaches, and also of the suggested framework.

Referring to Table 7, it can be seen that the fusion of the 
classifiers proposed significantly increased the accuracy of 
the classification and enhanced the efficiency of the multi-
class system proposed. These results are equivalent to the 
results obtained by Kuncheva (2014), Chen et al. (2010), and 
Bigdeli et al. (2015) in different databases and applications. 
These results also are equivalent to the results obtained by 
Ladjal et al. (2016) and which examine the data combination 
fusion using Dempster-Shafer Theory and appear consider-
ably consistent with our findings in this study with the deci-
sion template method. By comparison of the results shown 
in this table, it can be found that the two models ANN and 
SVM have a good ability in water quality monitoring. The 
classifier combination data fusion is used to increase the 
classification accuracy and efficacy of the proposed process, 
meaning that the ANN and SVM results obtained have been 
combined. It can be shown that with the feature selection 
process, the classification precision increased by up to 98%. 
It can be shown that when we use the decision template tech-
nique, our approach offers greater classification precision, 
offering an increase in the recognition rate. The approach of 
fusing multi-classifiers with a decision template at the deci-
sion phase is more powerful compared to other approaches. 
This result denotes the high capability of using the classifier 

combination. Furthermore, it is useful for practical purposes, 
so that the proposed technique can be used efficiently for 
monitoring water quality. This means that the precision of 
water quality can be greatly enhanced by applying several 
classifiers. This growth is a strong explanation for the effi-
cacy of the process of data fusion and the principle of the 
decision template. The results obtained underline the use of 
multiple sources of knowledge for accurate monitoring of 
water quality.

Conclusion

In this work, we have provided a performance assessment 
for intelligent water quality monitoring of ANN and SVM 
multi-class models. The research area is the Tilesdit dam 
in Algeria. An adequate intelligent procedure was pro-
posed based on surface water physicochemical variables. 
It included PCA features selection, ANN, SVM, and data 
fusion method. We studied the theory and the practical 
implications of the proposed techniques and their adaption 
to the used classifiers models to help practitioners towards 
the implementation of the new tools on the decision-making 
front. These techniques have shown good results concern-
ing accuracies. PCA was successfully applied to the feature 
selection process; however, we carried out this approach to 
exclude irrelevant and redundant features. Therefore, the 
use and implementation in the field of water quality con-
trol of these approaches are well justified. We have used 
a cross-validation procedure, particularly in this study that 
can prevent over fitting problems by selecting random sub-
samples used for training and testing datasets. We trained 
the ANN and SVM models onto the real data input without 
and with feature selection to show the importance of this 
process. Because these are among the major sensor systems 
from which information is derived, an evaluation of the per-
formance of the ANN and SVM using real data from such 
sensor systems should have practical implications for water 
quality classification. With the use of PCA as a reducing 
technique of the input variables, the obtained results showed 
clearly excellent performances with a slight improvement 
in terms of recognition rates. Indeed, the use of PCA fea-
tures to select the number of input parameters is decreased, 

Table 7  Combination data fusion of the two classifiers ANN and SVM

Models with PCA features selection (4 variables: EC, T°, TU, pH)

ANN (4–8-12) SVM 
Gaussian RBF
(σ =  2−1, C = 1000)

Majority voting Maximum Minimum Average Decision template

Recognition rate (%) in testing 
steps

99.13% 98.48% 98.80% 99.13% 98.98% 99.20% 99.24%
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indicating a small number of sensors. That means, the PCA 
technique reflected an economic impact on the overall cost 
of the monitoring system. With this reduction operation, we 
can say that the storage of data in memory can be considered 
advantageous for the enrichment of the database collected 
by the expert system. In general, since it depends on several 
climatic and geographical parameters, continuous enrich-
ment of the database is necessary. The computational time 
assigned to the training dataset for the PCA-SVM model is 
extremely fast, which confers the advantage of integration 
in a dynamic multi-sensor monitoring system. The ANN 
model, however, suffers from a handicap related to its appar-
ent noise sensitivity. However, due to its best robustness, 
this limitation is eliminated by the SVM model in particu-
lar. The principle of the optimization algorithm is another 
significant feature of SVM relative to ANN; the solution 
has a global optimum, eliminating the use of gradient-based 
search techniques that can cover a local optimum. However, 
there are no clear rules for fixing the number of neurons 
and hidden layers in the ANN technique, which is a major 
concern for obtaining an optimal architecture. The results 
obtained showed that using a one-against-all multi-class 
approach, SVM can achieve high performance in classifica-
tion in terms of recognition rate, training time, and robust-
ness. Overall, the present application demonstrates SVM’s 
promising results. The use of multiple sources of knowledge 
is highly successful in enhancing classification accuracy. For 
this analysis, decision template (DT) has high potential. The 
precision of the system decision can be enhanced by using 
the decision template fusion method. With this method, the 
power of each classifier to achieve a more powerful classi-
fier was combined. The decision template has shown more 
success than each classifier. Furthermore, a recognition rate 
of 99.24% was obtained. Hence, the use of various sensors 
and multiple classifiers and subsequently combining them 
is strongly recommended for classification in water quality 
monitoring. The use of the DT algorithm for final decision-
making improves the system’s efficiency and the accuracy of 
the approved classification process. When chemical param-
eters are unable to be continuously measured, the precision 
of the system decision can be increased by using new input 
parameters or soft sensors. It is also important to assess 
the robustness of the proposed solution concerning noise. 
It should be noted that the domain’s sensitivity and unex-
pected threats need greater efforts to optimize the system’s 
immunity and to make more changes to reduce the risks to 
public health.
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