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Abstract
In this study, we employed the ab initio pseudopotential planewave approach, utilizing theGGA-
PBEsol exchange-correlation functional, to investigate the structural, elastic, and thermodynamic
properties of BaXCl3 (X= Li, Na) perovskites under hydrostatic pressures ranging from0 to 18GPa.
Apart fromutilizing theGGA-PBEsol functional, this study also employed theGGA-PBE, GGA-WC,
and LDA functionals to simulate the exchange-correlation interactions for computing the structural
parameters. Our results show that the optimized lattice parameters are in good agreementwith
previously predicted values. Based on the calculated elasticmoduli of a single crystal, we found that
both BaLiCl3 and BaNaCl3 perovskites retainmechanical stability under hydrostatic pressures of up to
18GPa. Furthermore, we calculated several other important parameters that describe the polycrystal-
line aggregates of these compounds, including themodulus of compressibility, the shearmodulus, the
Poisson’s ratio, Young’smodulus, the speeds of sound, and theDebye temperature. Additionally, we
examined the temperature and pressure dependencies of the thermal coefficients of the perovskites
using the quasi-harmonic approximation. Notably, all of the results presented in this study are
reported for thefirst time and require further confirmation through experimental investigations.We
hope that our findings contribute to amore comprehensive understanding of the structural and
thermodynamic properties of BaXCl3 (X= Li, Na) perovskites under pressure.

1. Introduction

Perovskites, named from theRussianmineralogist LevAlexeïevich Perovski (1792–1856), constitute a large
family of solidmaterials resembling themineral perovskite CaTiO3 [1]. Themost famous perovskitematerials
on Earth are fluoro-perovskites (ABF3), oxide-perovskites (ABO3), and nitride-perovskites (ABN3), whereA is
usually a rare Earth, alkalimetal or alkaline Earth element, andB is a transitionmetal atom [2–4]. This family of
materials includes insulators, conductors, semiconductors and superconductors [3–8]. Perovskitematerials
possess a range of exceptional physical and chemical characteristics that have been extensively studied fromboth
theoretical and experimental perspectives. These include exceptional structural flexibility, high light absorption,
tunable bandgaps, high thermoelectric power, remarkable charge transport parameters, highmobilities of
photogenerated charge carriers, spin-dependent transport, lower binding energy of exciton, ferroelectricity, and
colossalmagnetoresistance [7, 9–11]. These unique properties have attracted significant interest in the
development of perovskitematerials for awide range of applications, including photovoltaic cells, light-emitting
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diodes, sensors, lasers, andmemory devices, among others [2, 7, 12–15]. In particular, the high efficiency and
low cost of perovskite-based photovoltaics have spurred a significant effort towards their commercialization,
with the aimof offering a viable alternative to conventional silicon-based solar cells. Furthermore, the
exceptional optoelectronic properties of perovskitesmake thempromising candidates for use in various other
electronic and optical applications, such asmicroelectronics and telecommunications [3]. In thesefields,
perovskitesmay offer unique advantages, such as high dielectric constants and excellent optical and electrical
properties. Overall, the exceptional physical and chemical properties of perovskitematerials, alongwith their
potential applications in a range of systems and devices, highlight the importance of continued research and
development in thisfield.

Recently, ternary halide perovskites have attracted tremendous attention frommaterials science researchers
mainly due to the impressive power conversion efficiency of their solar cells,which is attributed to their
appropriate electronic and optical characteristics, such as highoptical absorption, tunable bandgap, board
absorption spectrum, small charge carrier effectivemasses, long charge diffusion lengths, andhigh charge carrier
mobility [7–12]. Notably, thepower conversion efficiency of solar cells basedonhalide perovskites increased from
3.8% in2009 to 25.8% today [16–18]. Furthermore, they are cheap and easy to synthesize [16, 19–24].

Perovskitematerials are renowned for their exceptional properties, which enable their excellent
performance in electronic devices. However, despite the immense success of hybrid organic-inorganic halide
perovskites AMIVXVII3, with A indicating a smallmonovalent organicmolecule,MIV representing a divalent
group-IVA cation, andXVII representing a halogen anion, in solar cell applications, they still face challenges that
hinder their large-scale commercial use. The foremost issue is their poor long-term stability in devices, especially
under conditions of high heat and humidity [25, 26]. Additionally, thesematerials are toxic due to their
inclusion of the toxic element Pb [27]. Consequently, considerable efforts have been devoted to addressing the
toxicity and instability concerns by seeking alternative non-toxic or low-toxicity, air-stable perovskites [27, 28].
Accordingly, researchers are actively exploring strategies for developing amore stable and less hazardous ABX3

structure, where A, B, andXdenote organic or inorganicmonovalent cations, inorganic divalent cations, and
halides, respectively [8]. Recently, Gomez-Peralta and Bokhimi [29] used anArtificial NeuralNetwork to predict
134AMX3 (X= F, Cl, Br or I, andM= an alkali or Earth-alkali element) compounds as potential candidates to
adopt thewell-knownperovskite structure. It was found that the predicted perovskites could find applications
such as new solar cells or transparent semiconductors [8]. Among the predicted compounds, the chloro-
perovskites BaLiCl3 and BaNaCl3 have been reported to crystalize stably in an ideal cubic structurewith the Pm
3̄ m space group [29]. Note that to date, there have been no theoretical or experimental studies exploring the
fundamental physical properties of these two perovskites. It is known that themismatch between the elaborate
films and the substrates can induce stresses on the filmswhich affect their physical properties. Therefore, it is
necessary to know the response of thesematerials to external stresses by exploring their elastic properties.
Additionally, devices based on thesematerials are usually used at environment different from the standard
conditions of temperature and pressure, so it is also necessary to determine howmaterials will respond to
changes in their environment, especially in regards to theirmacroscopic physical parameters. Knowing physical
and chemical properties ofmaterials and predicting how theywill respond to changes in their environment
allow engineers to design better devices. Thus, the present workwas devoted to the exploration of the structural,
elastic, and thermodynamic properties of BaXCl3 (X= Li, Na) perovskites.

2. Computationalmethodology and settings

The structural parameters, elasticmoduli, and thermodynamic properties of the BaXCl3 (X=Li,Na) crystalswere
investigated through thepseudopotential planewave (PP-PW) approach [30] as implemented in theCASTEP
computational software [31]. Tomodel the exchange-correlation interactions,weutilized various functionals
includingGGA-PBEsol [32], GGA-PBE [33], GGA-WC [34], andLDA [35] for geometry optimization.However,
for other properties considered,weused only theGGA-PBEsol functional. Interactions of the valence states: Ba:
5s25p66s2, Li: 1s22s1, Cl: 3s23p5 andNa: 2s22p63s1with core ionswere treated viaOTFGultrasoft pseudopotentials
[36]. A planewavebasis setwith a cutoff energyof 650 eVwas used to develop the electronwave functions.
Integrationover the reciprocal spacewas replaced by a summation on special points in theBrillouin zone (BZ)
defined via a sampling ofBZ to a12 12 12´ ´ Monkhorst-Pack grid [37]. Relaxations of the structural
parameters to their equilibrium statewere accomplished through theBFGS approach [38]. Calculationswere
performedwith total energy convergence,maximumforce tolerance,maximumstress andmaximum
displacement less than 5.0 10 6´ - eV/atom, 0.01 eV/Å, 0.02GPa and 5.0 10 4´ - Å, respectively.Numerical
estimates of the elastic constantswere obtained via the stress-strain approach as included in theCASTEP code [30].
The variations of somemacroscopic physical parameterswith temperature andpressurewere explored through
thequasi-harmonic approximation as incorporated in theGIBBS calculation software [39].
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3. Results and discussion

3.1. Structural parameters
The chloro-perovskites BaXCl3 (X= Li, Na) crystalize in a cubic crystal systemwith the space group Pm m3̄
(#221) [29]. The Ba atom takes position at the corners of the cube (0, 0, 0), theX atom is located at the center of
the cube (0.5, 0.5, 0.5), and theCl atoms are positioned at the face centers of the cube (0.5, 0, 5, 0), (0.5, 0, 0.5), (0,
0.5, 0.5). The geometry has been optimized using theGGA-PBEsol, GGA-PBE, GGA-WCand LDA functionals.
The optimized lattice parameters (a) for BaLiCl3 andBaNaCl3 are given in table 1. It is worth noting that the

Table 1.Optimized lattice parameter (a, in Å), modulus of compressibility (B,
inGPa), its pressure derivative (B’, dimensionless), tolerance factor (t),
Octahedral factor (μ), the formation enthalpy (ΔH, in eV/atom) and the
cohesive energy (Ecoh, in eV/atom) for BaXCl3 (X= Li, Na) compounds.

BaLiCL3 BaNaCl3

Present work Other [25] Present work Other [25]

α 4.7994a 4.8165 5.0463 a 5.0805

4.9051b 5.1549 b

4.7985c 5.0472 c

4.7180d 4.9479 d

B 38.6e, 38.6f 32.0e, 31.9f

39.3g 32.7g

B’ 4.63e, 4.62f

4.60g
4.71e, 4.71f

4.79g

t 0.87 0.79

μ 0.42 0.56

ΔH −3.6535 −3.4677

Ecoh −4.2489 −4.0181

a obtained usingGGA-PBEsol
b obtained usingGGA-PBE
c obtained usingGGA-PBE
d obtained usingGGA-PBE
e Obtained fromBirch E-VEOS;
f Obtained fromBirch-Murnaghan P−VEOS
g Obtained fromVinet P−VEOS.

Figure 1.Variation of total energy with unit cell volume (E-V ) for BaLiCL3 andBaNaCl3. The symbols display theE-V data obtained
via first-principles calculations (F.P. cal.) and the dashed line displays the fit of theE-V data to the Birch equation of state (B-EOS).
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variation between the values obtained using different versions of theGGA functional isminimal, with a
difference of less than 0.35% (0.67%) observed for BaLiCl3 (BaNaCl3). However, when using the LDA
functional, the results obtainedwere approximately 2% lower compared to those obtained using theGGA
functionals.We appreciate that our results are consistent with those previously reported in the literature [29].

The values of themodulus of compressibility (B) and its pressure derivative (B’) for BaLiCl3 and BaNaCl3
were estimated by fitting the variation of total energy (E)with unit cell volume (V ) to the Birch equation of state
(EOS) [40] and the variation of unit cell volume (V )with hydrostatic pressure (P) to the Birch-Murnaghan and
Vinet equations of state [41, 42], as shown infigures 1 and 2. The values ofB andB’ are tabulated in table 1.One
appreciates the concordance of the values ofB obtained using the adjustment by different equations of state,
proving the reliability of the results obtained. Themoderate values ofB for the two compounds under
consideration highlight theweak resistance of thesematerials to compression.

We calculated theGoldsmith tolerance factor (t) and octahedral factor (μ) to assess the structural stability of
the perovskite compounds being considered using the following relationships [43, 44]:

t
r r

r r

r

r2
,A X

B X

B

X( )
m=

+
+

=

In this context, rA, rB, and rX refer to the ionic radii of the A, B, andX ions in the ABX3 perovskite. The perovskite
structure is considered stable if the values of ‘t’ are between 0.7 and 1.0 [44]. For the BaXCl3 compoundswhere X
is either Li orNa, the calculated values of theGoldsmith tolerance factor and octahedral factor (see table 1) fell
within the aforementioned range, indicating the structural stability of these compounds in their cubic structure.
In order to gain a better understanding of the structural and thermodynamic stabilities of the BaXCl3 (X= Li,
Na) perovskites, we have calculated their formation enthalpy (ΔH) and cohesive energy (Ecoh) using the
following expressions [45]:

H
n n n

E n E n E n E

1

Ba X Cl

tot
BaXCl

Ba tot
Ba solid

X tot
X solid

Cl tot
Cl solid3[ ( )]( ) ( ) ( )

D =
+ +

´ - + +

Figure 2.Variation of unit cell volumewith pressure (P-V ) for BaLiCL3 andBaNaCl3. The symbols display theP-V data obtained via
first-principles calculations (F.P. cal.) and the dashed lines display the fits of theP-V data to the Birch-Murnaghan equation of state
(BM-EOS) and theVinet equation of state (V-EOS).
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E
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In this context, the total energy of the primitive cell of BaXCl3 is represented by E ,tot
BaXCl3 while the total energies

per atomof the solid state of the pure Ba, X (X= Li, Na) andCl elements are represented by E E,tot
Ba solid

tot
X solid( ) ( )

and E ,tot
Cl solid( ) respectively. E E,tot

Ba atom
tot
X atom( ) ( ) and Etot

Cl atom( ) represent the total energies of the isolated Ba, X,
andCl atoms, while n n,Ba X and nCl represent the number of Ba, X, andCl atoms in the primitive cell. The
calculated values for the formation enthalpies and cohesive energies of BaXCl3 (X= Li, Na) are shown in table 1.
Notably, both compounds have negative formation enthalpies and cohesive energies, indicating their structural
and energetic stabilities in the cubic structure.

Figure 3.Phonon dispersion curves for the BaLiCl3 and BaNaCl3 compounds.

Figure 4.Pressure dependence of a/a0 andV/V0 for BaLiCL3 andBaNaCl3. a andV are the lattice parameter and unit cell volume,
respectively, at a pressure P and a0 andV0 their corresponding values, respectively, at zero pressure.
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In order to evaluate the dynamic stability of the compounds under investigation, we utilized the linear
responsemethodwithin the density functional perturbation theory (DFPT) as implemented in theCASTEP
code [30] to compute their phonon dispersion diagrams. The resulting phonon dispersion curve is displayed in
figure 3. It is widely accepted that a phonon dispersion curve lacking softmodes (imaginarymodes; negative
frequencies) indicates dynamic stability in the correspondingmaterial [46]. Conversely, the presence of soft
modes (negative frequencies) in the phonon dispersion spectra for thematerial in question (as depicted in
figure 3) implies dynamic instability in certain vibrationalmodes. Softmodes have been known to trigger lattice
instability, whichmay result in a structural phase transition. Additionally, the presence of softmodes at all points
in the Brillouin zonemay suggest that the probability of successfully synthesizing the compound under normal
conditions is low. It should be noted that the occurrence of negative frequencies in the phonon dispersion curve
ofmaterials is not necessarily an indication that thesematerials, in their crystal structure, are unstable in the
majority of cases. In fact, a variety of synthesizedmaterials have exhibited vibrational softmodes [47–49].

Figure 4 illustrates variations of a/a0 andV/V0 with pressure; a andV are the lattice parameter and unit cell
volume, respectively, at a pressure P, and a0 andV0 are their corresponding values at zero pressure). Evolutions
of a/a0 andV/V0 with Pfit well to third-order polynomials.

a

a
p p P

V

V
p p P

BaLiCl

1 8.48 10 3.61 10 8.09 10

1 2.54 10 1.2 10 2.76 10
3

0

3 4 2 6 3

0

2 3 2 5 3

⎧

⎨
⎪

⎩⎪

= - ´ + ´ - ´
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- - -

a

a
p p P

V

V
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BaNaCl

1 1.03 10 5.09 10 1.23 10
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3

0
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2 3 2 5 3

⎧

⎨
⎪
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The calculated linear and volume compressibilities ( ab and Vb ), which are 8.48 10 3´ - and 2.54 10 ,2´ -

respectively, for BaLiCl3, and 1.03 10 ,2´ - and 3.09 10 ,2´ - respectively, for BaNaCl3, were used to evaluate

themodulus of compressibility (B) using the following relationships [45, 50]: B
1

3
;

ab
= B

1
.

Vb
= The

obtainedB values using the aforementioned relationships are: 39.3, and 39.4GPa for BaNaCl3, and 32.4 and 32.4
GPa for BaLiCl3. These results are consistent with the corresponding values derived from the E–V andP–V fits
with the corresponding equations of state; see table 1.

3.2. Elastic properties
3.2.1.Monocrystalline elastic constants
Monocrystalline elastic constants (Cij) are key physical parameters for describing themechanical properties of
materials.Cij provide information on how a crystal deforms under external stress and then returns to its original
shape once the stress is removed [51].Many physical properties of the crystal, such as itsmechanical stability,
elastic anisotropy, Debye temperature, and elastic wave propagation velocity, can be predicted from itsCij.
Numerical estimates of the independentmonocrystalline elastic constants, namelyC11,C12, andC44, of the cubic
perovskites BaLiCl3 and BaNaCl3 at zero pressure are given in table 2. Note the unavailability of data concerning
theCij values in the literature for the consideredmaterials; thus, these reported data are the first theoretical
prediction of these physical parameters. The predictedCij values for bothmaterials under consideration satisfy
the required conditions for themechanical stability of a cubic system [52, 53], viz. C C 0;11 12( )- >
C C2 0;11 12( )+ > C 0;11 > C 0;44 > C B C .12 11< < This highlights themechanical stability of BaLiCl3 and
BaNaCl3 at zero pressure. One notes themoderate values ofCij, which indicate theweak resistance of these
materials to external stresses. The value ofC11, which characterizes the resistance to compression/elongation
along the a-axis, is larger than the values ofC12 andC44, which characterize the resistance to shear, suggesting
that thesematerials aremore resistant to compression/elongation than to shear.

Figure 5 showsCij evolutions with hydrostatic pressure from0 to 18GPa. The calculatedCij values at the
pressures: 0, 3; 6, 9, 12, 15 and 18GPa verify the required conditions of themechanical stability under pressure

Table 2.Predictedmonocrystalline elastic
constants (Cij, inGPa) for BaXCl3 (X= Li,
Na) compounds.

Compound C11 C12 C44

BaLiCl3 72.5 21.5 22.1

BaNaCl3 75.3 10.3 8.6
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effect [54]: C P C P ;11 12( ) ∣ ∣- > + C P 0,11( )- > C P 0,44( )- > C C P2 0.11 12( )+ + > These suggest that
BaXCl3 (X= Li, Na) compounds are stillmechanically stable even under pressure. Figure 4 shows thatCij

increase almost linearly with increasing pressure.C44 is the least pressure sensitive whileC11 is themost pressure
sensitive. The variations ofCij as a function of the pressure adjust well by the following polynomials of the second
order:

Figure 5.Evolutions of the elasticmoduli:C11,C12,C44,B,G, andEwith pressure for BaLiCl3 and BaNaCl3 compounds.

Table 3.Predicted isotropicmodulus of compressibility (B, inGPa), modulus of shear (G, inGPa), Young’smodulus (E, inGPa), Poisson’s
ratio (σ), Debye temperature (θD, K), and transverse, longitudinal, and average sound velocities (Vt,Vl, andVm, inm s−1) for BaLiCl3 and
BaNaCl3materials.GV andGR are theG values calculated using theVoigt andReuss approximations, respectively.

Compound B GV GR G B/G E s Vl Vt Vm θD

BaLiCl3 38.5 23.44 23.32 23.4 1.64 58.3 0.247 2492.3 4301.7 2766.0 293.3

BaNaCl3 31.9 18.16 12.20 15.2 2.10 39.3 0.294 2099.2 3890,9 2343.2 236.3

Figure 6.Variation of the B/G ratio versus pressure for BaLiCl3 andBaNaCl3.

7

Phys. Scr. 98 (2023) 065949 SChabaMouna et al



C P P

C P P

C P P

BaLiCl
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3.2.2. Polycrystalline elastic parameters
Generally, a pair of isotropic elastic parameters, namely the isotropicmodulus of compressibility (B) and
isotropic shearmodulus (G), is used to characterize the elastic characteristics of the polycrystalline aggregate
phase of amaterial. Theoretically,B andG of the polycrystalline aggregate phase of amaterial can be estimated
numerically from the elastic constants (Cij) of itsmonocrystalline phase through theVoigt-Reuss-Hill (VRH)
approaches [54–58]. Another pair of isotropic elasticmoduli usually used to characterizemechanical properties
of the polycrystalline aggregates of amaterial, namely the Young’smodulus (E) and Poisson’s coefficient (σ), can
be also estimated numerically from the B andG values usingwell-known relationships [59]. Numerical estimates
of the isotropic elastic parametersB,G,E andσ for the polycrystalline phases of BaLiCl3 and BaNaCl3 are
provided in table 3. Pressure dependencies ofB,G, andE are represented infigure 5. Variations ofB,G andE as a
function of pressure fit well with second-order polynomials:

B P P

G P P

E P P

BaLiCl
38.,67 4.49 2.53 10

2347 215 123 10

58.57 5.60 3.25 10
3

2 2

2 2

2 2

⎧

⎨
⎩

= + - ´
= + - ´
= + - ´

-

-

-

B P P

G P P

E P P

BaNaCl
31.77 2.15 2.57 10

15.26 1.71 9.55 10

39.49 4.59 2.59 10
3

2 2

2 2

2 2

⎧

⎨
⎩

= + - ´
= + - ´
= + - ´

-

-

-

From the results obtained, it can be noted:

Figure 7.Variations of Debye temperature (θD) and of isotropic longitudinal, transversal, andmean sound velocities (Vl,Vt, andVm)
with pressure for BaLiCl3 and BaNaCl3.
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(i) The values of the elastic parametersB,G andE aremoderate, highlighting theweak resistance of the title
materials to applied deformations.

(ii) TheBvaluededuced fromtheCij values is in goodagreementwith the correspondingvaluededuced fromthe
adjustmentof theE-VandP-Vdatawith equationsof state, confirming the reliabilityof theperformedcalculations.

Anempirical criterionproposedbyPugh [60] iswidelyused todistinguishductile frombrittlematerials.A
material is ductile (brittle)when theB/G ratio is greater than1.75 (less than1.75). Figure6 shows thatB/G for
BaLiCl3 is less than1.75when theappliedhydrostaticpressure is in the rangeof0–3.6GPa, suggesting thatBaLiCl3
is brittle if it is underpressure in the aforementioned range, andductile if the appliedpressure is in the rangeof
3.6–18GPa.ForBaNaCl3,B/G is always greater than1.75 for appliedhydrostaticpressure in the rangeof0–18GPa,
suggesting that it is ductile innature evenunderpressure in this range.Thevariation in theB/Gratioobserved
betweenBaLiCl3andBaNaCl3 is primarily attributed to thedisparity in ionic radius (R)between theNaandLi
atoms. Specifically, theRvalueofNa is greater than thatofLi.

(iii) The stability of a crystal against shear deformation can be characterized by the Poisson’s ratio (σ). The
extreme values ofσ are−1 and 0.5, where the lower limit corresponds to the casewhen thematerial does
not change its shape and to the upper limit when the volume does not change [61, 62]. The Poisson’s ratio, a
fundamentalmechanical property, is widely used to distinguish ductile and brittlematerials. Specifically,
ductilematerials are characterized by Poisson’s ratios larger than 0.26, while brittlematerials exhibit

Figure 8. 3D-representation of the crystal direction dependence of the Young’smodulusE (inGPa) (left panels) and their projections
on the (x= y), (xy)/(xz)/ (yz) planes for BaLiCl3 and BaNaCl3 crystals.
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Poisson’s ratios smaller than 0.26 [63]. Our experimental findings indicate that BaLiCl3 (σ= 0.24) is a
brittlematerial, whereas BaNaCl3 (σ= 0.29) is ductile. This conclusion corroborates the outcomes derived
fromPugh’s ratio, a widely accepted criterion for the ductility and brittleness ofmaterials. The obtained
values forσ show that a large volume change is associatedwith the shear deformation of the considered
materials.

(iv) TheDebye temperature (θD), and the isotropic longitudinal, transversal andmean elastic wave velocities
(Vl, Vt andVm) are fundamental physical parameters that relate elastic and thermodynamic properties of
solidmaterials, such asmelting temperature, specific heat and vibrational entropy. These important
physical parameters can be deduced from the isotropic elasticmoduli B andG [64–69]. Debye temperature
can be calculated from the value of the average elastic wave velocity (Vm ) by this relationship [70, 71]:

h

k

n N

M
V

3

4
D

B

A
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1
3⎛

⎝
⎞
⎠
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V V
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B G
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3 4

3
,

m

t
3

l
3
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2
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Figure 9. 3D-representation of the crystal direction dependence of the shearmodulusG (inGPa) (left panels) and their projections on
the (x= y) and (xy)/(xz)/(yz) planes for BaLiCl3 and BaNaCl3 crystals.
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Here, ρ is themass density, h and kB are the Planck andBoltzmann constants, respectively, NA is theAvogadro
number,M is themolecular weight, n is the number of atoms per unit cell andVl,Vt ,Vm are the longitudinal,
transverse and averagewave velocities, respectively. Predicted numerical estimates for θD,Vl,Vt, andVm for
BaLiCl3 and BaNaCl3 are given in table 3. TheDebye temperature represents the temperature at which the
atomic vibrations in the lattice become large enough toweaken the interatomic bonds and reduce the stiffness of
thematerial. Therefore,materials with higherDebye temperatures tend to be stiffer, as they require higher
temperatures to disrupt the interatomic bonding forces and reduce their stiffness. Conversely,materials with
lowerDebye temperatures tend to be softer andmore deformable, as they experience weaker interatomic
bonding forces that are easier to disrupt. The calculated elasticmoduli values indicate that BaLiCl3 is relatively
stronger than BaNaCl3. This difference in strength between the twomaterials can explainwhy theDebye
temperature of BaLiCl3 is somewhat higher than that of BaNaCl3. In general, materials with higher strength have
stronger interatomic bonds, which require higher temperatures to break down the lattice structure and reduce
the stiffness of thematerial. Therefore, the somewhat higher strength of BaLiCl3 can lead to a somewhat higher
Debye temperature compared to BaNaCl3, which is consistent with the observed trend.

Figure 7 shows the variations of the values of θD,Vt,Vl, andVmof BaLiCL3 andBaNaCl3with pressure in a
range of 0 to 18GPa.One notes that the aforementioned parameters increase with increasing pressure. The θD,
Vl,Vt, andVm values of BaLiCl3 are larger than those of BaNaCl3. The average sound velocity andDebye

Figure 10.Evolutions of lattice parameter (a)with temperature atfixed pressures andwith pressure atfixed temperature for of BaLiCl3
and BaNaCl3 compounds.
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temperature are both closely related to the interatomic bonding forces and vibrationalmotion of atoms in the
crystal lattice. There is a relationship between the average sound velocity (Vm) and theDebye temperature (θD)
ofmaterials, as it is shownby the aforementioned relationship. The average sound velocity represents the speed
of soundwaves propagating through thematerial, which is related to the stiffness and interatomic bonding
forces in the crystal lattice. On the other hand, theDebye temperature is related to the thermal vibrations of
atoms in the crystal lattice, which can influence the interatomic bonding forces and stiffness of thematerial. In
general,materials with higher average sound velocities tend to have higherDebye temperatures, as the higher
stiffness and stronger interatomic bonding forces in the lattice require higher temperatures to break down the
lattice structure and reduce the stiffness of thematerial. Conversely,materials with lower average sound
velocities tend to have lowerDebye temperatures, as theweaker interatomic bonding forces and lower stiffness
make the lattice structure easier to disrupt. Therefore, the relationship betweenVm and θD can be used to predict
the thermal andmechanical properties ofmaterials, as the average sound velocity andDebye temperature are
both closely related to the interatomic bonding forces and vibrationalmotion of atoms in the crystal lattice. As
pressure intensifies, the interatomic bonding forceswithin the crystal lattice also intensify. This phenomenon
accounts for the rise in bothDebye temperature and average sound velocity as pressure increases. The variations
of theDebye temperature and sound velocities with pressure arewell adjusted second-order polynomials:

Figure 11.Evolutions of themodulus of compressibility (B)with temperature atfixed pressures andwith pressure atfixed
temperatures for BaLiCl3 and BaNaCl3 perovskites.
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3.2.3. Elastic anisotropy
The elastic anisotropy of crystals is a key important parameter that needs to be evaluated as it has implications in
engineering science. Indeed,mechanical failures andmicrocracks easily occur in crystals with strong elastic
anisotropy [47, 72]. Therefore, it is of great importance to estimate the degree of elastic anisotropy of crystals in
order to hopefully find procedures that will improve the crystal’s resistance tomicrocracking andmechanical

Figure 12.Evolutions of the thermal volume expansion coefficient (α)with temperature atfixed pressures andwith pressure atfixed
temperatures for BaLiCl3 and BaNaCl3 perovskites.
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failure. To quantify the degree of elastic anisotropy of crystals, some experimental and theoretical approaches
have been developed. Visualization of the dependence of elasticmoduli on crystal direction is themost used
metric to characterize the elastic anisotropy of crystals. The three-dimensional (3D) representation of the
dependence of an isotropicmodulus of elasticity on crystal direction exhibits a perfect spherical shape.
Therefore, the extent of the elastic anisotropy of amodulus of elasticity can be estimated from the deviation of its
3D representation from the perfect spherical shape. Crystal direction dependencies of the shearmodulus (G)
andYoung’smodulus (E) of a cubic system are expressed as follows [73, 74]:

G S SJ, 444
1( ) ( )q j = + -

E S SJ, 211
1( ) ( )q j = - -

S S S S0.511 22 44= - -

J sin cos sin cos. 0.125 1 42 2 4 ( )q q q j= + -

Here Sij are the elastic compliance constants, and q andj are the Euler angles. The 3D-representations of the
Young’smodulus and shearmodulus aswell as their 2D-representations in the (xy)/(xz)/(yz) and (x= y) planes
for the titlematerials are illustrated infigures 8 and 9. Theweak deviations of the 3D-representations and 2D-
presentations of the Young’smodulus (E) and shearmodulus (G) of BaLiCl3 crystal from the spherical and

Figure 13.Evolutions of the of the isochoric heat capacities (CV)with temperature atfixed pressures andwith pressure atfixed
temperatures for BaLiCl3 and BaNaCl3 perovskites.
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circular shapes, respectively, point out theweak elastic anisotropy of BaLiCl3.However, the remarkable strong
deviations of the 3D-representations and 2D-presentations of the Young’smodulus and shearmodulus (G) of
BaNaCl3 crystal from the spherical and circular shapes, respectively, highlight the strong elastic anisotropy of
BaNaCl3. The Young’smodulus of BaLiCl3 reaches itsmaximum (Emax) value of 62.7GPa along the<100>
crystal direction and itsminimum (Emin) value of 55.5GPa along the<111> direction. Themaximum (Gmax)
andminimum (Gmin) values of the shearmodulus of BaNaCl3, which occur along the<111> and<100>
directions, respectively, are 24.3 and 22.5GPa. Theweak differences between the Emax andEmin and between
Gmax andGmin values confirm theweak elastic anisotropy of BaLiCl3 crystal. For BaNaCl3, theEmax value that
occurs along the<100> direction, and theEmin value that occurs along the<111> direction, are equal to 73.0
and 23.6GPa, respectively, and theGmax value that occurs along the<111> direction, and theGmin value that
occurs along the<100> direction, are equal to 16.9 and 8.6GPa, respectively. For BaNaCl3, theEmax value is the
triple of theEmin value and theGmax value is the double of theGmin value, highlighting the strong elastic
anisotropy of the BaNaCl3 crystal.

3.3. Thermodynamic properties
Materials are generally used in high temperature and pressure environment; it is therefore important to study
their specific behavior when subjected to pressure and temperature effects. To examine the effects of pressure

Figure 14.Evolutions of the of the isobar heat capacities (Cp)with temperature atfixed pressures andwith pressure atfixed
temperatures for BaLiCl3 and BaNaCl3 perovskites.
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and temperature on somemacroscopic physical characteristic of the consideredmaterials, the quasi-harmonic
approximation as incorporated in theGibbs computational software was used [39].

Evolutions of the lattice parameter (a) of BaLiCl3 and BaNaCl3with temperature up to 800K at the fixed
pressures: 0, 4, 8, 12, and 16GPa, andwith pressure up to 16GPa at the fixed temperatures: 0, 200, 400, 600, and
800 are depicted infigure 10. It is well known that temperature and pressure have opposite effects on the lattice
parameter a, which increases with increasing temperature at afixed pressure and decreases with increasing
pressure at afixed temperature, as one can easily see it infigure 10.

Figure 11 shows the evolution of themodulus of compressibility (B)with temperature (T) and pressure (P)
for BaLiCl3 and BaNaCl3. One notesB decreases with increasingT. Note thatwith increasing pressure, the
decreasing rate ofBwith increasingT decreases.B is 32.5GPa for BaLiCl3 and 29.0GPa for BaNaCl3 at ambient
temperature (T= 300K) andP zero pressure.

Figure 12 shows the changes in the volume thermal expansion coefficient (α)with temperature and pressure.
It can be seen that with the increase in temperature,α increases rapidly up to 300K and then increases
moderately. Note that the effect of temperature onα decreases remarkablywith the increase of pressure, and it
becomes small at high pressure. The thermal expansion coefficient is 12.01 10 5´ - K−1 for BaLiCl3 and
11.32 10 5´ - K−1 for BaNaCl3 at ambient temperature and zero pressure.

Figure 13 depicts the changes in isochoric heat capacity (CV)with increasing temperature atfixed pressure
andwith increasing pressure at fixed temperature for of BaXCl3 (X= Li, Na) compounds. For temperatures

Figure 15.Evolutions of theDebye temperature (θD)with temperature atfixed pressures andwith pressure atfixed temperatures for
BaLiCl3 and BaNaCl3 perovskites.
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below 300K,CV increases rapidly with increasing temperature due to the exponential increase in the number of
excitatory phononmodes in this temperature range. For temperatures above 300K,CV increases slowly and
tends at high temperature towards thewell-knownDulong-Petit limit [75], which is approximately 124.6
J mol K. . .1 1- - For temperatures above 500K, the effect of pressure onCV is insignificant. As the pressure
increases,CV decreases. At Zero pressure and ambient temperature 300K,CV is 119.79 J mol K. .1 1- - for BaLiCl3
and 120.56 J mol K. .1 1- - for BaNaCl3.

Figure 14 shows the changes in isobaric heat capacity (CP)with temperature atfixed pressure andwith
pressure atfixed temperatures for BaLiCl3 and BaNaCl3. For temperatures lower than 300K,Cp increases rapidly
with increasing temperature, then its decreasing rate becomesmoderate. The increasing rate of Cpwith
temperature decreases with increasing pressure. At zero pressure and ambient temperature,CP is approximately
129.50 J mol K. .1 1- - for BaLiCl3 and BaNaCl3.

Figure 15 shows the effects of temperature and pressure on theDebye temperature (θD) for BaLiCl3 and
BaNaCl3. TheDebye temperature decreases with increasing temperature at fixed pressures and increases with
increasing pressure at fixed temperatures. This happens because as the pressure increases, the elastic wave
velocities gradually increase as the binding forces strengthen and hence theDebye temperature increases [76]. As
theDebye temperature is the highest temperature obtainable as a result of a single normal vibration, its increase
and decreasewith pressure and temperature, respectively, can be explained as follows. The increase of pressure,
which causes the increase of the vibrational frequencies of anions and cations, will cause the increase ofDebye
temperature, while the increase of temperature that causes expansive distortions of the structure causes the
increase of thewavelength of anions and cations vibrations, resulting in the decrease of the vibrational
frequencies and, therefore, Debye temperature decreases. The calculated θD through the quasi-harmonic
approximation at zero pressure and temperature is 285.4 K for BaLiCl3 and 261.3K for BaNaCl3. Note that the
calculatedDebye temperature value from the elastic constants is in acceptable agreementwith that calculated
using the quasi-harmonic approximation.

4. Conclusion

This article presents thefindings of a theoretical investigation into the structural, elastic, and thermodynamic
properties of BaXCl3 compounds (where X represents Li orNa) using the pseudopotential planewavemethod
based on the density functional theory. Various exchange-correlation functionals, includingGGA-PBE,GGA-
PBEsol, GGA-WC, and LDA,were utilized to calculate the structural properties. TheGGA-PBEsol functional
was chosen to compute the elastic and thermodynamic properties due to its ability tomodel exchange-
correlation interactions for solids. The equilibrium lattice parameters obtained through these calculations
matchedwell with previously reported results for the two compounds. The computed elastic constants
demonstrated that BaXCl3 (X= Li, Na)materials aremechanically stable even under hydrostatic pressures up to
18GPa. Isotropic elasticmoduli, such as themodulus of compressibility, Young’smodulus, shearmodulus,
Poisson’s ratio, speeds of sound, andDebye temperature, were calculated usingwell-known approximations
from the elastic constant ofmonocrystallinematerials. BaNaCl3 exhibited strong elastic anisotropy, while
BaLiCl3 showedweak elastic anisotropy. Pugh’s criterion suggested that BaNaCl3 is ductile, whereas BaLiCl3 can
be classified as brittle under a pressure range of zero to 3.6GPa, but exhibits ductile behavior at pressures greater
than 3.6GPa.Using the quasi-harmonic approximation, the effects of temperature and pressure on the lattice
parameter,modulus of compressibility, isobaric and isochoric heat capacities, coefficient of volumetric thermal
expansion, andDebye temperature were explored. Thesefindings are theoretical predictions that require
experimental verification in future studies, as no prior experimental or theoretical investigations exist on the
properties under consideration.
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