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Abstract. This paper discusses and theoretically studies the existence and uniqueness of radially sym-
metric solutions for a multidimensional nonlinear time and space-fractional reaction-diffusion/wave
equation that enables treating vibration and control, signal and image processing, and modeling earth-
quakes, among other physical phenomena. Additionally, application of Schauder’s and Banach’s fixed
point theorems facilitates identifying the existence and uniqueness of solutions for the selected equa-
tion. The applicability of our main results is demonstrated through examples and explicit solutions.
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რეზიუმე. სტატია განიხილავს და თეორიულად იკვლევს მრავალგანზომილებიანი არაწრფივი
დროისა და სივრცის ფრაქციული რეაქციულ-დიფუზიური/ტალღის განტოლების რადიალურად
სიმეტრიული ამონახსნების არსებობასა და ერთადერთობას, რაც საშუალებას იძლევა სხვა
ფიზიკურ მოვლენებთან ერთად განიხილულ იქნას რხევა, სიგნალისა და გამოსახულების
დამუშავების კონტროლი და მიწისძვრების მოდელირება. გარდა ამისა, შაუდერისა და ბანახის
უძრავი წერტილის თეორემების გამოყენება ხელს უწყობს ამონახსნების არსებობისა და ერთად-
ერთობის დადგენას არჩეული განტოლებისთვის. ძირითადი შედეგების გამოყენებადობა დემონ-
სტრირებულია მაგალითებითა და ცხადი ამონახსნებით.
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1 Introduction and statement of results
Partial differential equations (PDEs) with fractional order have recently become a valuable tool for
modeling numerous tangible incidents that science attempts to explain and have approached more
frequently in recent years. Their application spans studies of vibration and control, signal and image
processing, and modeling earthquakes, among others (Samko et al. 1993 [36], Podlubny 1999 [34],
Kilbas et al. 2006 [23], Diethelm 2010 [17]).

Exact solutions of fractional-order PDEs are crucial for rendering many qualitative features of nat-
ural science processes and phenomena fathomable, that become obtainable by using various methods
including the residual power series, symmetry, spectral, Fourier transform, similarity, etc. (for more
details, see [1–13,16,18,19,22,25–29,31,33,35,37–40]).

In this work, we give an example of a class of fractional-order PDEs, which helps to describe
various complex phenomena; it is a multidimensional nonlinear time and space-fractional reaction-
diffusion/wave equation which is written as follows:

∂αt u− κ2∆u = F
(
t, x, u, ∂βt u, (−∆)su

)
for 0 < s ≤ 1 < β ≤ α ≤ 2, (1.1)

where u = u(t, x) is a scalar function of the time t ≥ 0 and space variables x ∈ Rm, with m ∈ N. Also,
F : [0,∞)× Rm × C× C× C → C is a nonlinear function, κ ∈ R∗ is a real constant and

∂αt u(t, x) =


∂nu

∂tn
, α = n ∈ N,

In−α
0+ ∂nt u =

t∫
0

(t− τ)n−α−1

Γ(n− α)

∂n

∂τn
u(τ, x) dτ, n− 1 < α < n.

The symbol (−∆)s defines the fractional Laplacian operator [24]

(−∆)su = Cm,s P.V.
∫
Rm

u(t, x)− u(t, y)

|x− y|m+2s
dy for 0 < s < 1,

where P.V. stands for the Cauchy principal value, and the constant Cm,s is given by

Cm,s =
22ssΓ(m+2s

2 )

πm/2Γ(1− s)
.

We take the fractional power of (−∆) to obtain a positive operator. As a result, our definition
of the fractional Laplacian (−∆)s is the negative generator of the standard isotropic s-stable Lévy
process [24], which is reduced to −∆ = −∂2/∂2x1 − ∂2/∂2x2 − · · · − ∂2/∂2xm when s = 1.

1.1 The significance of the equation
Equation (1.1) is a representation of a large class of linear and nonlinear equations. Note that for
F ≡ 0 and α = 1 (resp. α = 2), the PDE (1.1) represents the standard heat equation (resp. the wave
equation). In addition, it becomes the Klein–Gordon equation when we choose F = κu, |κ| = 1 and
α = 2. All these equations fall under the name of the fractional reaction-diffusion/wave equation (see
Table 1).

Obviously, the development of accurate mathematical models for the description of complex anoma-
lous systems depends on swapping the fractional Laplacian with integer-order Laplacian.

Fractional equation (1.1) is an equation that arises in relativistic quantum mechanics and quantum
field theory, which is also crucial for high energy particle physics and is used to model many types
of phenomena, including the propagation of dislocations in crystals and the behavior of elementary
particles.

In [32], the authors investigated the first-order derivatives in space and half-order derivative in
time contained in a time-fractional derivative in relation to a diffusion equation. The relationship
that lays between the fractional diffusion equation proposed in their work and the classical diffusion
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Table 1: Significant equations involving fractional Laplacian

Fractional equation Formula

Reaction-diffusion/wave ∂αt u+ κ2(−∆)su+ c(t, x)u = 0
[8, 9, 11,18,19,22,28,31,33,40]

Quasi-geostrophic [13] ∂tv + θ · ▽v + κ(−∆)sv = f

Cahn–Hilliard [1–3] ∂tw + (−∆)s(−ε2∆w + f(w)) = 0

Porous medium [1–3,16] ∂tu+ (−∆)s(|u|m−1 signu) = 0

Schrödinger [25] ih̄∂tψ = ∂αt (−h̄
2∆)sψ + c(t, x)ψ

Ultrasound [12,37] 1

c20
∂2t θ = ▽2θ −

{
τ∂t(−∆)s + η(−∆)s+

1
2

}
θ

equation is also considered. Nigmatullin [30] noticed the possibility of the accurate modeling of several
universal electromagnetic, acoustic, and mechanical responses; according to him, such modeling can
be achieved by using diffusion-wave equations with time-fractional derivatives.

Additionally, usages of (1.1) include denoising and edge stabilizing in image processing. This
has been approached to examine diffusion processes and variational principles (heat equation and
energy method, respectively). Authors of [15] proposed the first approach to image processing (see
also [14,20]) by means of a simple two-dimensional fractional integrodifferential equation given by the
linear equation 

∂tu(t, x, y) =
1

Γ(α− 1)

t∫
0

(t− τ)α−2∆u(τ, x, y) dτ for 1 < α < 2,

u(0, x, y) = u0(x, y),

or, equivalently, ∂αu
∂tα (t, x, y) = ∆u(t, x, y), with u0 being the initial data representing the original

image. This linear integrodifferential equation preserves object boundaries and enhances the interior
regions in a stable and reliable way, even for grey-level images [14,15,20].

1.2 Problem statement and main results
Let 0 < s ≤ 1, 1 < β ≤ α ≤ 2, ε, ℓ > 0, and Tε = ℓε

2
α be such that Ω = [0, Tε] × [ε/

√
m,+∞)m. We

consider 
∂αt u− κ2∆u = F

(
t, x, u, ∂βt u, (−∆)su

)
, (t, x) ∈ Ω, κ ∈ R∗,

u(0, x) = |x|δu0,
∂u

∂t
(0, x) = 0, δ, u0 ∈ C,

(1.2)

where F : Ω× C× C× C → C is a nonlinear function.
This paper’s contribution regards determining the existence, uniqueness, and main properties of

the general solution of stability problems obtained through replacing classical rules with fractional
quadrature rules of the radially symmetric solution (see [8, 9, 11,18,19,22,26,31,35,38,39])

u(t, x) = |x|δf(|x|− 2
α t) for |x| =

√
x21 + · · ·+ x2m and δ ∈ C, (1.3)

the basic profile f is not known in advance and is to be identified.
Taking into consideration the regularization processes, our major aim is employing of the solutions’

intermediate properties for the fractional order PDEs problem (1.2). We consider the intermediacy of
the multidimensional nonlinear reaction-diffusion equation and the wave equation.

We illustrate that using analytical techniques to obtain the existence and uniqueness of weak
solutions via the use of form (1.3) is promising and can also bring new results for other applications
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in fractional-order PDEs. It permits us to reduce the fractional-order PDE (1.1) to a fractional
differential equation; the idea is well illustrated in this paper through selected examples and explicit
solutions.

For the forthcoming analysis, we impose the following hypotheses:

(Hyp. 1) F : Ω × C × C × C → C is a continuous function that is invariant by the change of scale
(1.3). It gives us

F
(
t, x, u, ∂βt u, (−∆)su

)
= |x|δ−2

(
J(η, f(η), f ′(η),CDβ

0+f(η)
)
− 4κ2

α2
η2f ′′(η)

)
, (1.4)

where η = |x|− 2
α t and J : [0, ℓ]× C× C× C → C is a continuous function.

(Hyp. 2) There exist three positive constants ω1, ω2, ω3 > 0 such that the continuous function J given
by (1.4) satisfies∣∣J(η, f, g, h)− J(η, f̃ , g̃, h̃)

∣∣ ≤ ω1|f − f̃ |+ ω2|g − g̃|+ ω3|h− h̃|

for any f, g, h, f̃ , g̃, h̃ ∈ C.

(Hyp. 3) There exist four positive functions a, b, c, d ∈ C([0, ℓ],R+) such that the continuous function
J given by (1.4) satisfies

|J(η, f, g, h)| ≤ a(η) + b(η)|f |+ c(η)|g|+ d(η)|h|

for any f, g, h ∈ C and η ∈ [0, ℓ].

λ denotes the positive constant defined by

λ = sup
{
αℓβ−1(|q|+ c∗) + d∗

ℓβ−αΓ(α− β + 1)
,
αℓβ−1(|q|+ ω2) + ω3

ℓβ−αΓ(α− β + 1)

}
,

where
q = −2κ2

α2

(
α(2δ +m+ 2) + 2

)
and

a∗ = sup
η∈[0,ℓ]

a(η), b∗ = sup
η∈[0,ℓ]

b(η), c∗ = sup
η∈[0,ℓ]

c(η), d∗ = sup
η∈[0,ℓ]

d(η).

Now, we present the main theorems of this work.

Theorem 1.1. Assume the hypotheses (Hyp. 1)–(Hyp. 3) hold. If we put λ ∈ (0, 1) and

Tα
ε (|δκ2(δ +m− 2)|+ b∗)

Γ(α+ 1)(1− λ)
< ε2, (1.5)

then there is at least one solution to problem (1.2) on Ω in the radially symmetric form (1.3).

Theorem 1.2. Assume the hypotheses (Hyp. 1) and (Hyp. 2) hold. We give λ ∈ (0, 1) and

K =
( Γ(α+ 1)(1− λ)

|δκ2(δ +m− 2)|+ ω1

) 1
α

.

If we put
Tε < ε

2
αK, (1.6)

then problem (1.2) admits a unique solution in the radially symmetric form (1.3) on Ω.
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2 Preliminaries and necessary definitions
In this section, we present the necessary definitions from the fractional calculus theory. By C([0, ℓ],C)
we denote the Banach space of continuous functions from [0, ℓ] into C with the norm

∥f∥∞ = sup
η∈[0,ℓ]

|f(η)|.

We start with the definitions introduced in [23] with a slight modification in the notation.

Definition 2.1 ([23]). The left-sided (arbitrary) fractional integral of order α > 0 of a continuous
function f : [0, ℓ] → C is given by

Iα
0+f(η) =

1

Γ(α)

η∫
0

(η − ξ)α−1f(ξ) dξ, η ∈ [0, ℓ].

Γ(α) =
∞∫
0

ξα−1 exp(−ξ) dξ is the Euler gamma function.

Definition 2.2 (Caputo’s fractional derivative [23]). The left-sided Caputo’s fractional derivative of
order α > 0 of a function f : [0, ℓ] → C is given by

CDα
0+f(η) =


dnf(η)

dηn
for α = n ∈ N0,

In−α
0+

dnf(η)

dηn
=

η∫
0

(η − ξ)n−α−1

Γ(n− α)

dnf(ξ)

dξn
dξ for n− 1 < α < n ∈ N.

Lemma 2.1 ([23]). Assume that CDα
0+f ∈ C([0, ℓ],C) for all α > 0, then

Iα
0+

CDα
0+f(η) = f(η)−

n−1∑
k=0

f (k)(0)

k!
ηk, n− 1 < α ≤ n ∈ N.

3 Basic-profile’s existence and uniqueness results
Our initial aim is to infer that the function f in (1.3) satisfies an equation that is employed in the
definition of radially symmetric solutions.

Theorem 3.1. Let δ, u0 ∈ C, α, β ∈ R be such that 1 < β ≤ α ≤ 2 and p = δκ2(δ +m − 2) with
κ ∈ R∗. If the hypothesis (Hyp. 1) holds, the problem of time and space-fractional order (1.2) is
reduced by transformation (1.3) to the fractional differential equation of the form

CDα
0+f(η) = φ(η), η ∈ [0, ℓ], (3.1)

where
φ(η) = pf(η) + qηf ′(η) + J

(
η, f(η), f ′(η),CDβ

0+f(η)
)
,

with the conditions
f(0) = u0 and f ′(0) = 0. (3.2)

Proof. Substituting expression (1.3) into the original PDE of fractional order (1.1) results in a frac-
tional equation that needs to be narrowed down to the standard bilinear functional equation (check
[8, 9, 11,18,19,22,26,31,35,38,39]). First, for η = |x|− 2

α t, we get η ∈ [0, ℓ] and

∆u(t, x) = |x|δ−2
(
δ(δ +m− 2)f(η)− 2

α2

[
α(2δ +m+ 2) + 2

]
ηf ′(η) +

4

α2
η2f ′′(η)

)
. (3.3)
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On the other hand, for ξ = |x|− 2
α τ , we get

∂αu

∂tα
=

1

Γ(2− α)

t∫
0

(t− τ)1−α ∂
2u(τ, x)

∂τ2
dτ =

|x|δ

Γ(2− α)

t∫
0

(t− τ)1−α d2

dτ2
f(|x|− 2

α τ) dτ

=
|x|δ−2

Γ(2− α)

η∫
0

(η − ξ)1−α d2

dξ2
f(ξ) dξ = |x|δ−2CDα

0+f(η). (3.4)

If we replace (1.4), (3.3) and (3.4) in the first equation of (1.2), we obtain
CDα

0+f(η) = φ(η),

From the conditions in (1.2), we find

u(t, x) = |x|δf(0) and ∂u

∂t
(0, x) = |x|δ− 2

α f ′(0),

which implies that
f(0) = u0 and f ′(0) = 0.

The proof is complete.

Lemma 3.1. Assume that J : [0, ℓ]×C×C×C → C is a continuous function, then problem (3.1), (3.2)
is equivalent to the integral equation

f(η) = u0 +
1

Γ(α)

η∫
0

(η − ξ)α−1φ(ξ) dξ ∀ η ∈ [0, ℓ],

where φ ∈ C([0, ℓ],C) satisfies the functional equation

φ(η) = p(u0 + Iα
0+φ(η)) + ψ(η, φ(η)),

where ψ : [0, ℓ]× C → C is a function satisfying

ψ(η, φ(η)) = qηIα−1
0+ φ(η) + J

(
η, u0 + Iα

0+φ(η), I
α−1
0+ φ(η), Iα−β

0+ φ(η)
)
.

Proof. Using Theorem 3.1, and applying Iα
0+ to equation (3.1), we obtain Iα

0+
CDα

0+f(η) = Iα
0+φ(η).

From Lemma 2.1, we simply find Iα
0+

CDα
0+f(η) = f(η)− f(0)− ηf ′(0). Substituting (3.2) gives us

f(η) = u0 + Iα
0+φ(η). (3.5)

As
f ′(η) =

d

dη

[
u0 + Iα

0+φ(η)
]
= Iα−1

0+ φ(η)

and
CDβ

0+f(η) =
CDβ

0+

[
u0 + Iα

0+φ(η)
]
= Iα−β

0+ φ(η),

then

φ(η) = pf(η) + qηf ′(η) + J
(
η, f(η), f ′(η),CDβ

0+f(η)
)

= p(u0 + Iα
0+φ(η)) + qηIα−1

0+ φ(η) + J
(
η, u0 + Iα

0+φ(η), I
α−1
0+ φ(η), Iα−β

0+ φ(η)
)

= p(u0 + Iα
0+φ(η)) + ψ(η, φ(η)).

Otherwise, starting by applying CDα
0+ on both sides of equation (3.5) and using the linearity of

Caputo’s derivative and the fact that CDα
0+u0 = 0, we easily find (3.1). Furthermore,

f(0) = (u0 + Iα
0+φ)(0) = u0,

f ′(0) = Iα−1
0+ φ(0) = 0.

The proof is complete.
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Theorem 3.2. Assume the hypotheses (Hyp. 2), (Hyp. 3) hold. If we put λ ∈ (0, 1) and

ℓα(|p|+ b∗)

Γ(α+ 1)(1− λ)
< 1, (3.6)

then problem (3.1), (3.2) has at least one solution on [0, ℓ].

Proof. To begin the proof, we will transform problem (3.1), (3.2) into a fixed point problem. Let us
define

Ag(η) = u0 +
1

Γ(α)

η∫
0

(η − ξ)α−1φ(ξ) dξ, (3.7)

where
φ(η) = pg(η) + ψ(η, φ(η)), η ∈ [0, ℓ],

with
ψ(η, φ(η)) = qηIα−1

0+ φ(η) + J
(
η, u0 + Iα

0+φ(η), I
α−1
0+ φ(η), Iα−β

0+ φ(η)
)
.

Since the hypotheses (Hyp. 2), (Hyp. 3) hold, we notice that if φ ∈ C([0, ℓ],C), then Ag is indeed
continuous (see the step 1 in this proof); therefore, it is an element of C([0, ℓ],C) and is equipped with
the standard norm

∥Ag∥∞ = sup
η∈[0,ℓ]

|Ag(η)|.

Clearly, the fixed points of A are solutions of problem (3.1), (3.2).
We demonstrate that A satisfies the assumption of Schauder’s fixed point theorem (see [21]). This

could be proved through three steps.

Step 1: A is a continuous operator. Let (gn)n∈N0
be a real sequence such that lim

n→∞
gn = g in

C([0, ℓ],C). Then ∀ η ∈ [0, ℓ],

|Agn(η)−Ag(η)| ≤ 1

Γ(α)

η∫
0

(η − ξ)α−1|φn(ξ)− φ(ξ)| dξ,

where
φn(η) = pgn(η) + ψ(η, φn(η)), φ(η) = pg(η) + ψ(η, φ(η)).

Consequently,

|φn(η)− φ(η)| =
∣∣∣p(gn(η)− g(η)) +

(
ψ(η, φn(η))− ψ(η, φ(η))

)∣∣∣
≤ (|p|+ ω1) |gn(η)− g(η)|+ (|q|+ ω2)

∣∣Iα−1
0+ (φn(η)− φ(η))

∣∣
+ ω3

∣∣Iα−β
0+ (φn(η)− φ(η))

∣∣.
We have ∣∣Iα−1

0+ (φn(η)− φ(η))
∣∣ ≤ ℓα−1

Γ(α)
∥φn − φ∥∞.

As Γ(α+ 1) > Γ(α− β + 1) for any 1 < β ≤ α ≤ 2, then

∣∣Iα−1
0+ (φn(η)− φ(η))

∣∣ ≤ αℓα−1

Γ(α− β + 1)
∥φn − φ∥∞.

In another way, we have

∣∣Iα−β
0+ (φn(η)− φ(η))

∣∣ ≤ ℓα−β

Γ(α− β + 1)
∥φn − φ∥∞.
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Then we get

∥φn − φ∥∞ ≤ (|p|+ ω1) ∥gn − g∥∞ +
αℓβ−1(|q|+ ω2) + ω3

ℓβ−αΓ(α− β + 1)
∥φn − φ∥∞

≤ (|p|+ ω1) ∥gn − g∥∞ + λ∥φn − φ∥∞.

As λ ∈ (0, 1), thus we have

∥φn − φ∥∞ ≤ |p|+ ω1

1− λ
∥gn − g∥∞.

Since gn → g, we get φn → φ when n→ ∞.
Now, let µ > 0 be such that for each η ∈ [0, ℓ], we get |φn(η)| ≤ µ, |φ(η)| ≤ µ. Then, we have

(η − ξ)α−1

Γ(α)
|φn(η)− φ(η)| ≤ (η − ξ)α−1

Γ(α)

[
|φn(η)|+ |φ(η)|

]
≤ 2µ

Γ(α)
(η − ξ)α−1.

The function ξ → 2µ
Γ(α) (η − ξ)α−1 is integrable on [0, η], ∀ η ∈ [0, ℓ]; thus, what the dominated

convergence theorem of Lebesgue implies is

|Agn(η)−Ag(η)| → 0 as n→ ∞,

and hence
lim
n→∞

∥Agn −Ag∥∞ = 0.

This indicates the continuity of A.

Step 2: Using (3.6), we put the positive real

r ≥
(
|u0|+

a∗ℓα

(1− λ)Γ(α+ 1)

) (1− λ)Γ(α+ 1)

(1− λ)Γ(α+ 1)− ℓα(|p|+ b∗)
,

and define the subset H as follows: H =
{
g ∈ C([0, ℓ],C) : ∥g∥∞ ≤ r

}
. It is clear that H is bounded,

closed and convex subset of C([0, ℓ],C).
Let A : H → C([0, ℓ],C) be the integral operator defined by (3.7), then A(H) ⊂ H.
Indeed, for each η ∈ [0, ℓ] we have

|φ(η)| =
∣∣pg(η) + ψ(η, φ(η))

∣∣ ≤ a∗ + (|p|+ b∗) |g(η)|+ λ∥φ∥∞.

Then we get

∥φ∥∞ ≤ a∗ + (|p|+ b∗)r

1− λ
.

Thus

|Ag(η)| ≤ |u0|+
1

Γ(α)

η∫
0

(η − ξ)α−1|φ(ξ)| dξ

≤
(|u0|+ a∗ℓα

(1−λ)Γ(α+1) )
(1−λ)Γ(α+1)

(1−λ)Γ(α+1)−ℓα(|p|+b∗)

(1−λ)Γ(α+1)
(1−λ)Γ(α+1)−ℓα(|p|+b∗)

+
ℓα(|p|+ b∗)r

(1− λ)Γ(α+ 1)
≤ r.

Then A(H) ⊂ H.

Step 3: A(H) is equicontinuous.
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Let η1, η2 ∈ [0, ℓ], η1 < η2, and g ∈ H. Then

|Ag(η2)−Ag(η1)| =
1

Γ(α)

∣∣∣∣
η2∫
0

(η2 − ξ)α−1φ(ξ) dξ −
η1∫
0

(η1 − ξ)α−1φ(ξ) dξ

∣∣∣∣
≤ 1

Γ(α)

η1∫
0

∣∣((η2 − ξ)α−1 − (η1 − ξ)α−1)φ(ξ)
∣∣ dξ + 1

Γ(α)

η2∫
η1

(η2 − ξ)α−1|φ(ξ)| dξ

≤ a∗ + (|p|+ b∗)r

Γ(α)(1− λ)

[ η1∫
0

|(η2 − ξ)α−1 − (η1 − ξ)α−1| dξ +
η2∫

η1

(η2 − ξ)α−1 dξ

]
. (3.8)

We have
(η2 − ξ)α−1 − (η1 − ξ)α−1 = − 1

α

d

dξ

[
(η2 − ξ)α − (η1 − ξ)α

]
,

then
η1∫
0

∣∣(η2 − ξ)α−1 − (η1 − ξ)α−1
∣∣ dξ ≤ 1

α

[
(η2 − η1)

α + (ηα2 − ηα1 )
]
,

we also have
η2∫

η1

(η2 − ξ)α−1 dξ = − 1

α

[
(η2 − ξ)α

]η2

η1
≤ 1

α
(η2 − η1)

α.

Thus (3.8) gives

|Ag(η2)−Ag(η1)| ≤
2(η2 − η1)

α + (ηα2 − ηα1 )

Γ(α+ 1)(1− λ)

(
a∗ + (|p|+ b∗)r

)
.

The right-hand side of the latter inequality tends to zero when η1 → η2.
As a consequence of steps 1 to 3, and through the Ascoli–Arzelà theorem, we infer the continuity

of A : H → H, its compact nature and its satisfaction of the assumption of Schauder’s fixed point
theorem [21]. Therefore, A has a fixed point which solves problem (3.1), (3.2) on [0, ℓ].

Theorem 3.3. Assume the hypothesis (Hyp. 2) holds. If we put λ ∈ (0, 1) and

ℓ <
(Γ(α+ 1)(1− λ)

|p|+ ω1

) 1
α

, (3.9)

then problem (3.1), (3.2) admits a unique solution on [0, ℓ].

Proof. Theorem 3.2 states that (3.1), (3.2) can be rendered a problem of a fixed point (3.7).
Let g1, g2 ∈ C([0, ℓ],C), then we get

Ag1(η)−Ag2(η) =
1

Γ(α)

η∫
0

(η − ξ)α−1(φ1(ξ)− φ2(ξ)) dξ,

where φi ∈ C([0, ℓ],C) are such that

φi(η) = p(c0 + Iα
0+φi(η)) + ψ(η, φi(η)) for i = 1, 2,

ψ(η, φi(η)) = qηIα−1
0+ φi(η) + J

(
η, c0 + Iα

0+φi(η), Iα−1
0+ φi(η), Iα−β

0+ φi(η)
)
.

Also,

|Ag1(η)−Ag2(η)| ≤
1

Γ(α)

η∫
0

(η − ξ)α−1|φ1(ξ)− φ2(ξ)| dξ. (3.10)
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We have
∥φ1 − φ2∥∞ ≤ |p|+ ω1

1− λ
∥g1 − g2∥∞.

From (3.10) we find

∥Ag1 −Ag2∥∞ ≤ ℓα(|p|+ ω1)

Γ(α+ 1)(1− λ)
∥g1 − g2∥∞.

Thus, according to (3.9), A is considered as a contraction operator.
The Banach contraction principle (see [21]) helps us to infer that A has only one fixed point which

is the unique solution of problem (3.1), (3.2) on [0, ℓ].

4 Proofs of main theorems and illustrative examples
This section demonstrates the proof of the existence and uniqueness of solutions of the given problem
for a multidimensional nonlinear time and space-fractional reaction-diffusion/wave equation, which is

∂αt u− κ2∆u = F (t, x, u, ∂βt u, (−∆)su), (t, x) ∈ Ω, κ ∈ R∗,

u(0, x) = |x|δu0,
∂u

∂t
(0, x) = 0, δ, u0 ∈ C,

(4.1)

under the radially symmetric form

u(t, x) = |x|δf(η), with η = |x|− 2
α t. (4.2)

Proof of Theorem 1.1. Assume that the hypotheses (Hyp. 1)–(Hyp. 3) hold. Given Theorem 3.1, us-
ing transformation (4.2), problem (4.1) is reduced to the fractional order ordinary differential equation
of the form

CDα
0+f(η) = φ(η), (4.3)

where
φ(η) = pf(η) + qηf ′(η) + J

(
η, f(η), f ′(η),CDβ

0+f(η)
)

with
p = δκ2(δ +m− 2) and q = −2κ2

α2

(
α(2δ +m+ 2) + 2

)
, (4.4)

along with the conditions
f(0) = u0 and f ′(0) = 0. (4.5)

By using (4.4), condition (1.5) is equivalent to (3.6), which is

ℓα(|p|+ b∗)

Γ(α+ 1)(1− λ)
< 1 with λ ∈ (0, 1).

Therefore, after proving that problem (4.3), (4.5) has a solution as in Theorem 3.2 when (3.6) holds, we
can similarly prove the existence of at least a solution of the problem for the multidimensional nonlinear
time and space-fractional reaction-diffusion/wave equation (4.1) under the radially symmetric form
(4.2). This can be achieved if (1.5) holds.

Example 4.1. If we choose s = 1, β = 3
2 , α = 7

4 , δ = 1, m = 2, ε = 1, κ =
√

7
96 and ℓ = 6

25 , we
obtain Ω = [0, 6

25 ]× [ 1√
2
,+∞)2. Consequently, the considered problem will be stated as follows:
∂

7
4
t u− 7

96
∆u = F (t, x, u, ∂

3
2
t u,∆u), (x, y) ∈ Ω,

u(0, x, y) =
√
x2 + y2,

∂u

∂t
(0, x, y) = 0,

(4.6)
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where

F (t, x, u, ∂
3
2
t u,∆u) =

|x|−1 exp(−|x|− 8
7 t)[2|x|+ |u|+ |x|2|∂

3
2
t u|]

(|x|− 8
7 t+ 2 ln(|x|− 8

7 t+ e))[|x|+ |u|+ |x|2|∂
3
2
t u|]

− 7

96
∆u

= |x|−1
[
J
(
η, f, f ′,CD

3
2

0+f(η)
)
− 2

21
η2f ′′(η)

]
with η ∈ [0, 6

25 ] and

J(η, f, g, h) =
exp(−η)[2 + |f |+ |h|]

(η + 2 ln(η + e))[1 + |f |+ |h|]
− 7

96
f +

25

42
ηg.

Clearly, the function J is jointly continuous. For any f, g, h, f̃ , g̃, h̃ ∈ C and η ∈ [0, 6
25 ], we get∣∣J(η, f, g, h)− J(η, f̃ , g̃, h̃)

∣∣ ≤ 55

96
|f − f̃ |+ 1

7
|g − g̃|+ 1

2
|h− h̃|.

Therefore, the hypothesis (Hyp. 2) is satisfied with

ω1 =
55

96
, ω2 =

1

7
and ω3 =

1

2
.

Also, we have
|J(η, f, g, h)| ≤ exp(−η)

η + 2 ln(η + e)

(
2 + |f |+ |h|

)
+

7

96
|f |+ 25

42
η|g|.

Thus, the hypothesis (Hyp. 3) is satisfied with

a(η) =
2 exp(−η)

η + 2 ln(η + e)
, b(η) =

exp(−η)
η + 2 ln(η + e)

+
7

96
, c(η) =

25

42
η , d(η) =

exp(−η)
η + 2 ln(η + e)

.

Then
a∗ = 1, b∗ =

55

96
, c∗ =

1

7
, d∗ =

1

2
,

and
λ = sup

{
αℓβ−1(|q|+ c∗) + d∗

ℓβ−αΓ(α− β + 1)
,
αℓβ−1(|q|+ ω2) + ω3

ℓβ−αΓ(α− β + 1)

}
≃ 0.87474 < 1.

Condition (1.5) gives
Tα
ε (|δκ2(δ +m− 2) + b∗)

Γ(α+ 1)(1− λ)
≃ 0.26381 < ε2 = 1.

It follows from Theorem 1.1 that problem (4.6) has at least one solution on Ω.
Proof of Theorem 1.2. Similarly to the steps that we followed during the proof of Theorem 1.1, the
existence and uniqueness of a radically symmetric solution to problem (4.1) is demonstrated by using
Theorem 3.3, provided that condition (1.6) holds true. The proof is complete.

Example 4.2. If we put s = 1, β = 5
4 , α = 3

2 , δ = 2, m = 4, ε = 4
3

√
1
π , κ = −

√
9

272 and ℓ = π
8 , we

get Ω = [0, 18 ]× [ 12
4
3

√
1
π ,∞)4. Thus, the studied problem will be written as follows:
∂

3
2
t u− 9

272
∆u = F (t, x, u, ∂

5
4
t u,∆u), (t, x1, . . . , x4) ∈ Ω,

u(0, x1, . . . , x4) = 2(x21 + · · ·+ x24),
∂u

∂t
(0, x1, . . . , x4) = 0,

(4.7)

where

F (t, x, u, ∂
5
4
t u,∆u) =

π|x|2 cos(|x|− 4
3 t)

(4π2 + tan(|x|− 4
3 t))[|x|2 + |u|+ |x|2|∂

5
4
t u|]

− 9

272
∆u

= J
(
η, f, f ′,CD

5
4

0+f(η)
)
− 1

17
η2f ′′(η),



Multidimensional Nonlinear Time and Space-Fractional Reaction-Diffusion/Wave Equation 13

with η ∈ [0, π8 ] and

J(η, f, g, h) =
π cos(η)

(4π2 + tan(η))[1 + |f |+ |h|]
− 9

34
f +

1

2
ηg.

As tan(η), cos(η) are positive continuous functions for η ∈ [0, π8 ], the function f is jointly continuous.
For any f, g, h, f̃ , g̃, h̃ ∈ C and η ∈ [0, π8 ], we have 1

2 (
√
2+2)

1
2 ≤ cos(η) ≤ 1, and 0 ≤ tan(η) ≤

√
2− 1,

also ∣∣J(η, f, g, h)− J(η, f̃ , g̃, h̃)
∣∣ ≤ ( 9

34
+

1

4π

)
|f − f̃ |+ π

16
|g − g̃|+ 1

4π
|h− h̃|.

Hence the hypothesis (Hyp. 2) is satisfied with

ω1 =
9

34
+

1

4π
, ω2 =

π

16
, ω3 =

1

4π

and
λ =

αℓβ−1(|q|+ ω2) + ω3

ℓβ−αΓ(α− β + 1)
≃ 0.79165 < 1.

It remains to show that condition (1.6) is satisfied. Indeed,

Tε =
1

8
< ε

2
α

( Γ(α+ 1)(1− λ)

|δκ2(δ +m− 2)|+ ω1

) 1
α ≃ 0.18825.

It follows from Theorem 1.2 that problem (4.7) has a unique solution on Ω.

5 Explicit solutions
Now, we present some explicit solutions of the radially symmetric form of problem (4.1).
Solution 5.1. Let p, q, γ ∈ C for s = 1 and 1 < β ≤ α ≤ 2, we get that

f(η) = ηγ with Re(γ) > 1

is a solution of (4.3), 4.5, where

J
(
η, f(η), f ′(η),CDβ

0+f(η)
)
=
ηβ−αΓ(γ − β + 1)

Γ(γ − α+ 1)
CDβ

0+f(η)− pf(η)− qηf ′(η).

Then the radially symmetric solution of problem (4.1) is presented as follows:

u(t, x) = |x|δ−
2γ
α tγ ,

where
F
(
t, x, u, ∂βt u, (−∆)su

)
=

Γ(γ − β + 1)u(t, x)

tα−β+γΓ(γ − α+ 1)
|x|

2γ
α −δ∂βt u(t, x)− κ2∆u(t, x).

Solution 5.2. Let p, q, γ ∈ C for s = 1 and 1 < β ≤ α ≤ 2, we have

f(η) = exp(γη)− γη,

which is a solution of (4.3), (4.5), where

J
(
η, f(η), f ′(η),CDβ

0+f(η)
)
=
ηβ−αE1,3−α(γη)

E1,3−β(γη)
CDβ

0+f(η)− pf(η)− qηf ′(η).

Here, Eα,β(η) is the Mittag–Leffler function. Then the solution of problem (4.1) is presented as follows:

u(t, x) = |x|δ
(
eγ|x|

− 2
α t − γ|x|− 2

α t
)
,

where

F
(
t, x, u, ∂βt u, (−∆)su

)
=

|x|−δtβ−αE1,3−α(γ|x|−
2
α t)u(t, x)

(eγ|x|
− 2

α t − γ|x|− 2
α t)E1,3−β(γ|x|−

2
α t)

∂βt u(t, x)− κ2∆u(t, x).



14 Bilal Basti, Rabah Djemiat, Noureddine Benhamidouche

Solution 5.3. Let p, q, γ ∈ C for s = 1 and 1 < β ≤ α ≤ 2, we get that

f(η) = sin(γη) + cos(γη)− γη

is a solution of problem (4.3), (4.5), where

J
(
η, f(η), f ′(η),CDβ

0+f(η)
)

=
ηβ−α[(i− 1)E1,3−α(iγη)− (1 + i)E1,3−α(−iγη)]

(i− 1)E1,3−β(iγη)− (1 + i)E1,3−β(−iγη)
CDβ

0+f(η)− pf(η)− qηf ′(η).

Then the solution of problem (4.1) is presented as follows:

u(t, x) = |x|δ
(

sin(γ|x|− 2
α t) + cos(γ|x|− 2

α t)− γ|x|− 2
α t
)
,

where

F (t, x, u, ∂βt u, (−∆)su) = −κ2∆u(t, x) + |x|−δtβ−αu(t, x)∂βt u(t, x)

(sin(γ|x|− 2
α t) + cos(γ|x|− 2

α t)− γ|x|− 2
α t)

× (i− 1)E1,3−α(iγ|x|−
2
α t)− (1 + i)E1,3−α(−iγ|x|−

2
α t)

(i− 1)E1,3−β(iγ|x|−
2
α t)− (1 + i)E1,3−β(−iγ|x|−

2
α t)

.

6 Conclusion
Using Schauder’s fixed point theorem and Banach contraction principle, this paper explored the main
properties and the existence of at least a radially symmetric solution and its uniqueness for a class
of multidimensional nonlinear time and space-fractional reaction-diffusion/wave equation with mixed
conditions, while Caputo’s fractional derivative was used as the differential operator. The behavior of
radially symmetric solutions for the mentioned equation enables treating several physical phenomena.

Acknowledgments
The authors are deeply grateful to the reviewers and editors for their insightful comments that helped
to improve the quality of this research, which was supported by the General Direction of Scientific Re-
search and Technological Development (DGRSTD). They would also like to extend their appreciation
to Ms. Ikhlas HADJI for proofreading the article.

References
[1] M. Ainsworth and Z. Mao, Analysis and approximation of a fractional Cahn–Hilliard equation.

SIAM J. Numer. Anal. 55 (2017), no. 4, 1689–1718.
[2] M. Ainsworth and Z. Mao, Well-posedness of the Cahn–Hilliard equation with fractional free

energy and its Fourier Galerkin approximation. Chaos Solitons Fractals 102 (2017), 264–273.
[3] G. Akagi, G. Schimperna and A. Segatti, Fractional Cahn–Hilliard, Allen–Cahn and porous

medium equations. J. Differential Equations 261 (2016), no. 6, 2935–2985.
[4] Y. Arioua, B. Basti and N. Benhamidouche, Initial value problem for nonlinear implicit fractional

differential equations with Katugampola derivative. Appl. Math. E-Notes 19 (2019), 397–412.
[5] B. Basti and Y. Arioua, Existence study of solutions for a system of n nonlinear fractional

differential equations with integral conditions. Zh. Mat. Fiz. Anal. Geom. 18 (2022), no. 3, 350–
367.

[6] B. Basti, Y. Arioua and N. Benhamidouche, Existence and uniqueness of solutions for nonlinear
Katugampola fractional differential equations. J. Math. Appl. 42 (2019), 35–61.



Multidimensional Nonlinear Time and Space-Fractional Reaction-Diffusion/Wave Equation 15

[7] B. Basti, Y. Arioua and N. Benhamidouche, Existence results for nonlinear Katugampola frac-
tional differential equations with an integral condition. Acta Math. Univ. Comenian. (N.S.) 89
(2020), no. 2, 243–260.

[8] B. Basti and N. Benhamidouche, Existence results of self-similar solutions to the Caputo-type’s
space-fractional heat equation. Surv. Math. Appl. 15 (2020), 153–168.

[9] B. Basti and N. Benhamidouche, Global existence and blow-up of generalized self-similar solutions
to nonlinear degenerate dffusion equation not in divergence form. Appl. Math. E-Notes 20 (2020),
367–387.

[10] B. Basti, N. Hammami, I. Berrabah, F. Nouioua, R. Djemiat and N. Benhamidouche, Stability
analysis and existence of solutions for a modified SIRD model of COVID-19 with fractional
derivatives. Symmetry 13 (2021), no. 8, 1431–1441.

[11] E. Buckwar and Yu. Luchko, Invariance of a partial differential equation of fractional order under
the Lie group of scaling transformations. J. Math. Anal. Appl. 227 (1998), no. 1, 81–97.

[12] W. Chen and S. Holm, Fractional Laplacian time-space models for linear and nonlinear lossy
media exhibiting arbitrary frequency power-law dependency. J. Acoust. Soc. Am. 115 (2004),
1424–1430.

[13] P. Constantin and J. Wu, Behavior of solutions of 2D quasi-geostrophic equations. SIAM J. Math.
Anal. 30 (1999), no. 5, 937–948.

[14] E. Cuesta and C. Palencia, A numerical method for an integro-differential equation with memory
in Banach spaces: qualitative properties. SIAM J. Numer. Anal. 41 (2003), no. 4, 1232–1241.

[15] E. Cuesta-Montero and J. Finat, Image processing by means of a linear integro-differential equa-
tion. In: Proceedings of 3rd IASTED International Conference on Visualization, Imaging, and
Image Processing 1 (2003), 438–442.

[16] A. de Pablo, F. Quirós, A. Rodríguez and J. L. Vázquez, A fractional porous medium equation.
Adv. Math. 226 (2011), no. 2, 1378–1409.

[17] K. Diethelm, The Analysis of Fractional Differential Equations. An Application-Oriented Exposi-
tion Using Differential Operators of Caputo Type. Lecture Notes in Mathematics, 2004. Springer-
Verlag, Berlin, 2010.

[18] R. Djemiat, B. Basti and N. Benhamidouche, nalytical studies on the global existence and blow-
up of solutions for a free boundary problem of two-dimensional diffusion equations of moving
fractional order. Adv. Theory Nonlinear Anal. Appl. 6 (2022), no. 3, 287–299.

[19] R. Djemiat, B. Basti and N. Benhamidouche, Existence of traveling wave solutions for a free
boundary problem of higher-order space-fractional wave equations. Appl. Math. E-Notes 22
(2022), 427–436.

[20] Y. Fujita, Integrodifferential equation which interpolates the heat equation and the wave equation,
II. Osaka J. Math. 27 (1990), no. 4, 797–804.

[21] A. Granas and J. Dugundji, Fixed Point Theory. Springer Monographs in Mathematics. Springer-
Verlag, New York, 2003.

[22] R. G. Iagar, A. Sánchez and J. L. Vázquez, Radial equivalence for the two basic nonlinear
degenerate diffusion equations. J. Math. Pures Appl. (9) 89 (2008), no. 1, 1–24.

[23] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential
Equations. North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam, 2006.

[24] M. Kwaśnicki, Ten equivalent definitions of the fractional Laplace operator. Fract. Calc. Appl.
Anal. 20 (2017), no. 1, 7–51.

[25] N. Laskin, Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A 268 (2000),
no. 4-6, 298–305.

[26] Yu. Luchko and R. Gorenflo, Scale-invariant solutions of a partial differential equation of fractional
order. Fract. Calc. Appl. Anal. 1 (1998), no. 1, 63–78.

[27] Yu. F. Luchko, M. Rivero, J. J. Trujillo and M. P. Velasco, Fractional models, non-locality, and
complex systems. Comput. Math. Appl. 59 (2010), no. 3, 1048–1056.



16 Bilal Basti, Rabah Djemiat, Noureddine Benhamidouche

[28] R. Metzler and T. F. Nonnenmacher, Space- and time-fractional diffusion and wave equations,
fractional Fokker–Planck equations, and physical motivation. Chemical Physics 284 (2002), no. 1–
2, 67–90.

[29] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential
Equations. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1993.

[30] R. R. Nigmatullin, The realization of the generalized transfer equation in a medium with fractal
geometry. R. R. Nigmatullin. Phys. Status Solidi B 133 (1986), no. 1, 425–430.

[31] F. Nouioua and B. Basti, Global existence and blow-up of generalized self-similar solutions for
a space-fractional diffusion equation with mixed conditions. Ann. Univ. Paedagog. Crac. Stud.
Math. 20 (2021), 43–56.

[32] K. B. Oldham and J. Spanier, The Fractional Calculus. Theory and Applications of Differen-
tiation and Integration to Arbitrary Order. With an annotated chronological bibliography by
Bertram Ross. Mathematics in Science and Engineering, Vol. 111. Academic Press [Harcourt
Brace Jovanovich, Publishers], New York–London, 1974.

[33] T. Pierantozzi and L. Vázquez, An interpolation between the wave and diffusion equations through
the fractional evolution equations Dirac like. J. Math. Phys. 46 (2005), no. 11, 113512, 12 pp.

[34] I. Podlubny, Fractional Differential Equations. An Introduction to Fractional Derivatives, Frac-
tional Differential Equations, to Methods of Their Solution and Some of Their Applications.
Mathematics in Science and Engineering, 198. Academic Press, Inc., San Diego, CA, 1999.

[35] A. D. Polyanin and V. F. Zaitsev, Handbook of Nonlinear Partial Differential Equations. Chapman
& Hall/CRC, Boca Raton, FL, 2004.

[36] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives. Theory and
Applications. Gordon and Breach Science Publishers, Yverdon, 1993.

[37] B. E. Treeby and B. T. Cox, Modeling power law absorption and dispersion for acoustic propa-
gation using the fractional Laplacian. J. Acoust. Soc. Am. 127 (2010), 2741–2748.

[38] L. Vázquez, J. J. Trujillo and M. P. Velasco, Fractional heat equation and the second law of
thermodynamics. Fract. Calc. Appl. Anal. 14 (2011), no. 3, 334–342.

[39] J. L. Vazquez and E. Zuazua, The Hardy inequality and the asymptotic behaviour of the heat
equation with an inverse-square potential. J. Funct. Anal. 173 (2000), no. 1, 103–153.

[40] M. Yamamoto, Asymptotic expansion of solutions to the dissipative equation with fractional
Laplacian. SIAM J. Math. Anal. 44 (2012), no. 6, 3786–3805.

(Received 01.04.2022; revised 28.05.2022; accepted 03.06.2022)

Authors’ addresses:

Bilal Basti
1. Department of Mathematics, Ziane Achour University of Djelfa, Djelfa 17000, Algeria.
2. Laboratory of Pure and Applied Mathematics, Mohamed Boudiaf University of M’sila, Algeria.
E-mails: bilalbasti@gmail.com, b.basti@univ-djelfa.dz

Rabah Djemiat
Laboratory of Pure and Applied Mathematics, Mohamed Boudiaf University of M’sila, Algeria.

Noureddine Benhamidouche
Laboratory of Pure and Applied Mathematics, Mohamed Boudiaf University of M’sila, Algeria.


	Introduction and statement of results
	The significance of the equation
	Problem statement and main results

	Preliminaries and necessary definitions
	Basic-profile's existence and uniqueness results
	Proofs of main theorems and illustrative examples
	Explicit solutions
	Conclusion



