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ABSTRACT
The aim of this paper is to investigate agricultural sustainability as a collective issue
involving multiple rather than individual farms. Through the utilization of energy
consumption as a proxy, we propose a novel methodology that evaluates the
impact of farm consolidations on agricultural sustainability while accounting for
resource preferences. Our approach incorporates the ordered weighted averaging
(OWA) operator within an inverse data envelopment analysis (IDEA) model to
identify post-merger farms that meet preset efficiency targets. We employ a DEA
cross-efficiency (DEA-CE) procedure to select merger plans that maximize
agricultural sustainability for each preference scenario. By analysing a case study of
43 tomato greenhouse farms in Biskra, northern Algeria, our findings demonstrate
that mergers can significantly enhance agricultural sustainability, surpassing the
potential of individual farms by a factor of over 15. Additionally, the adoption of
the most sustainable merger plan can lead to energy savings of more than 69%.
Irrespective of the preference scenario, substantial energy savings in machinery,
fertilizers, diesel, and electricity ranging from 22.92% to 73.73% were observed.
These results emphasize the strategic role of merger processes in promoting
agricultural sustainability and optimizing resource utilization.
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1. Introduction

The world population is projected to hit the cap of 8.5
billion in 2030 and grow further to 9.7 billion by 2050
(United Nations, 2022), which amplifies drastically the
challenge of meeting the global demand for food (Abu
Hatab et al., 2019). With the agricultural sector bearing
such a burden, more resources are required for the
operations performed on-farm and throughout the
agricultural food supply chain, such as water, land,
fuel, fertilizers, pesticides, machinery, etc. (Gorjian
et al., 2021). The extensive use of these resources
leads naturally to an increase of the environmental

impact of agriculture, a major issue that has drawn
an intense debate on sustainable agriculture (Lampridi
et al., 2019). Though a consensus could hardly be
reached regarding a common definition of the
concept (Binder et al., 2010; de Olde et al., 2017),
there is still an agreement among scholars that agricul-
tural sustainability needs to assess environmental,
economic, and social aspects associated with agricul-
tural practices (Pham & Smith, 2014). Per se, a sustain-
able agriculture is expected to be economically viable,
ecologically sound, socially just and humane (Zahm
et al., 2019). A huge number of publications appeared
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on sustainable agriculture. Recently, Piñeiro et al.
(2020) reviewed nearly 18,000 publications only on
incentive programmes for sustainable agricultural
practices. On another side, Chopin et al. (2021) pre-
sented a review of avenues for improving farming sus-
tainability assessment in terms of tools, framing and
indicators. The reader is referred to Lampridi et al.
(2019) for a systematic review of the literature relating
to agricultural sustainability.

At the farms’ level, production of goods and/or ser-
vices, management of resources, and influence on
rural dynamics are generally regarded as, respectively,
the economic, the environmental, and the social
pillars of a sustainable agriculture (Latruffe et al.,
2016). Nevertheless, it appears that most of the
studies focus more on the environmental rather
than on the economic and the social indicators of
agricultural sustainability (Dakpo et al., 2016). This
trend is notably due to the excessive consumption
of natural resources, especially energy, which exacer-
bates the risk of greenhouse gas (GHG) emissions and
hinders environmental sustainability (Liu et al., 2016).
Thus, ensuring efficient agricultural energy consump-
tion is an important step towards balancing the need
for energy with responsible and sustainable energy
management practices (Rasheed et al., 2022).

The evaluation of energy efficiency is a typical
multi-criteria decision making (MCDM) problem,
which often involves many agricultural production
factors (Gésan-Guiziou et al., 2020). The stochastic
frontier analysis (SFA) and data envelopment analysis
(DEA) are the most commonly used techniques for
agricultural efficiency assessment. The DEA approach
(Charnes et al., 1978) is a non-parametric approach
that is based on linear programming and can evaluate
the efficiency of homogenous groups of decision
making units (DMUs) defined with multiple inputs
and multiple outputs (Oukil et al., 2016). As opposed
to the SFA approach (Aigner et al., 1977), DEA does
not require prior assumptions on the functional
form of the production technology nor the probability
distribution of the random error.

Recent applications of SFA to the evaluation of
agricultural energy efficiency include the studies of
Ali et al. (2019), Khan et al. (2021), Bibi et al. (2021)
and Khan et al. (2023). The environmental efficiency
of agricultural systems has also been investigated
through SFA in Vu et al. (2019), Khan and Ullah
(2020), Le et al. (2019) and Tu et al. (2019) but the
investigations were carried out from the perspective
of undesirable outputs rather than energy inputs.

Studies that apply DEA for the evaluation of
agricultural energy efficiency are relatively more abun-
dant. A recent survey reports that DEA applications to
agricultural sustainability account for not less than
63% of the extant literature (Zhou et al., 2018), with
a remarkable prevalence of the environmental
aspects (Dakpo et al., 2016), where energy is the
most critical indicator (Hercher-Pasteur et al., 2020).
The majority of DEA-based studies that deal with agri-
cultural energy efficiency are carried out for open field
agriculture where different crops are cultivated,
including sugarcane (Kaab et al., 2019), arecanut (Para-
mesh et al., 2018), cotton (Singh et al., 2022), rice (Naja-
fabadi et al., 2022; Nayak et al., 2023), almond (Baran
et al., 2020), chickpeas (Elhami et al., 2016), paddy
(Mohammadi et al., 2015; Nabavi-Pelesaraei et al.,
2017), wheat (Esfahani & Rafati, 2022; Ilahi et al.,
2019; Pishgar-Komleh et al., 2020; Singh et al., 2019;
Singh et al., 2021), peanuts (Hosseinzadeh-Bandbafha
et al., 2018), grape (Mohseni et al., 2018), saffron
(Saeidi et al., 2022), barley (Payandeh et al., 2021),
rice-wheat-green gram (Bhunia et al., 2021), and
maize (Mwambo et al., 2021). There are fewer studies
in the greenhouse (GH) production, conducted
mostly in arid regions, for tomato (Nourani & Bench-
eikh, 2020; Raheli et al., 2017), eggplant (Nourani &
Bencheikh, 2021), button mushroom (Ebrahimi &
Salehi, 2015), cucumber (Mardani Najafabadi & Taki,
2020; Soheilifard et al., 2021) and mix GH crops
(Elhag & Boteva, 2019; Liang et al., 2019).

The reader is refereed to Kyrgiakos et al. (2023) for
a recent review of DEA applications to sustainability
assessment in the agricultural sector.

Regardless of the DEA techniques that are
adopted, all the aforementioned studies deal with
the farms as independent production units, not
sharing any resources with each other. More specifi-
cally, the farms’ relative efficiency is evaluated to
capture performance gaps and identify the input
factors that may necessitate improvement for each
inefficient farm (Sow et al., 2016). The improvement
potential is estimated through the slack values of
these inputs. Though the slack schemes can lead to
efficiency improvement of individual farms, recent
studies have established that more savings are poss-
ible under Mergers & Acquisitions (M&A) schemes,
where a group of farms agree to merge resources
for the sake of enhancing collective production capa-
bilities (Oukil, 2023b).

Farm mergers are business deals that involve the
consolidation of two or more individual farms
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seeking various strategic, economic, or operational
goals. The scale of these mergers can vary from
small family farms to large commercial farming oper-
ations. A census of the Food and Agriculture Organiz-
ation (FAO) across 30 countries reveals that there are
approximately 500 million family farms, representing
globally not less than 88% of all farms (FAO, 2014).
Though most of these farms are small in size – operat-
ing under 2 hectares – and produce 80% of the
world’s food (Graeub et al., 2016), they definitely
face constraints related to scale, fragmentation and
resource access (Agarwal et al., 2021). Therefore, the
potential of farm mergers as an alternative model to
small family farms needs to be investigated in terms
of the economies of scale, which can result in more
savings, an increased production efficiency and an
enhanced approach to sustainability and environ-
mental practices.

Farm mergers have generally been promoted
within the framework of group farming (e.g.
Agarwal, 2018; Agarwal et al., 2021), land consolida-
tion (e.g. Xu et al., 2022; Zeng et al., 2018), and
farmers’ cooperatives (e.g. Candemir et al., 2021; Gra-
shuis & Su, 2019; Sarkar et al., 2022). Whether these
studies are conducted in India (e.g. Agarwal, 2020;
Sugden et al., 2021), Ireland (e.g. Cush & Macken-
Walsh, 2016), France (Agarwal & Dorin, 2019), or
the United Kingdom (Ingram & Kirwan, 2011), it is
notable that the common purpose remains the
evaluation of the impact of mergers decisions on
productivity besides identifying the factors which
influence potential changes (improvement/deterio-
ration). In a study carried out in Kerala, India,
Agarwal (2018) concluded, through a regression
model, that group farming outperforms individual
farms in terms of annual output per hectare and
net returns, with institutional design, state support,
group heterogeneity, commercial crops as the
major determinants of positive performance. Using
Jiangsu province, China, as a case study, Zeng et al.
(2018) applied SFA to assess the effect of land conso-
lidation on the agricultural technical efficiency.
Sarkar et al. (2022) adopted the theory of planned
behaviour to evaluate the roles of the kiwi-fruit
farmer’s cooperative in Meixian, China, for fostering
environmentally friendly production technologies.
Hýblová (2014) analysed agriculture mergers in the
Czech Republic from a financial performance per-
spective and proved that, though the size of the
merging entities in terms of balance sheet total
decreased, the corresponding performance

increased. Considering cow-calf farms, Holmström
et al. (2018) highlighted the positive impact of pas-
tures’ expansion on Swedish suckler-based beef pro-
duction due to lower operating costs brought on by
economies of scale. Ho et al. (2022) employed DEA to
assess the influence of sustainable land management
practices on the efficiency for orange cultivation in
northwest of Vietnam and concluded that
efficiency is strongly correlated with production
scale. Llones et al. (2022) applied SFA to show that
shared irrigation management among farmers can
improve significantly on-farm outcome for rice
farms in Northern Thailand. Başer and Bozoğlu
(2023) developed a multi-stage approach to prove
that a higher farm size has a positive effect on the
sustainability of beef cattle farming in Samsun Pro-
vince, Turkey. Ren et al. (2019) reported similar con-
clusions. Lozano and Adenso-Díaz (2021) proposed a
DEA model to determine the most gainful merger
within a set of dairy farms through estimating the
total technical efficiency.

Apart from Lozano and Adenso-Díaz (2021), no
known study has addressed explicitly farm mergers
through DEA. Furthermore, a recent systematic
review of research on sustainability in M&A (Gonzá-
lez-Torres et al., 2020) reveals that DEA has not been
used to investigate sustainability of merger processes
neither in agriculture nor any other business sector. As
such, to the best of the authors’ knowledge, the
present study introduces for the first time the
concept of DEA to the field of sustainability in M&A,
regardless of the business field.

On another hand, it is noteworthy that the aim of
Lozano & Adenso-Díaz’s study is restricted to estimat-
ing post-merger efficiency gains by employing the
entire input levels of the merging farms. Yet, before
sealing the merger deal, the farmers might be inter-
ested to know more about the optimal levels of
inputs that each merging farm must contribute for
the sake of achieving an efficiency target set a priori
for the planned merger. In other words, the
efficiency score of the planned merger becomes a
known parameter of an optimization problem for
which the decision variables are the input contri-
butions of the merging farms. Such a statement
reflects the essence of an inverse optimization
problem and, within a DEA setting, Inverse DEA
(IDEA) appears to be the perfect modelling tool (Pend-
harkar, 2002). Instead of pursuing the estimation of
the efficiency for known inputs and outputs of a
DMU, IDEA, contrary to the traditional DEA, searches
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for the optimal input and/or output levels that qualify
a DMU to reach a preset efficiency target.

There are relatively fewer studies related to the
application of IDEA to M&A. A recent review of
the IDEA literature reveals a clear domination of the
banking sector (Emrouznejad & Amin, 2023). Other
sectors include energy (Lin et al., 2020), higher edu-
cation (Amin & Oukil, 2019a), hospitality (Oukil et al.,
2024) and agriculture (Oukil, 2023b; Oukil, Nourani,
et al., 2022; Oukil et al., 2023), In the agricultural
sector, Oukil (2023b) is the first study that applied
IDEA to investigate prospective gains from the
merger of farms. This study’s findings reported pro-
portions of potential resource gains ranging
between 21% and 72%, on average, with the upper-
most gains expected for water and electricity. Also,
Oukil, Nourani, et al. (2022) used IDEA to evaluate
the impact of farm mergers on energy consumption.
The results indicated that the average proportions
of potential energy gains range between 20.68%
and 78.33% per post-merger GH farm. In spite of suc-
ceeding to underline the ability of mergers to
enhance resource gains in the agricultural sector,
the common drawback of these two studies resides
in the implicit assumption that the farm’s inputs
(resources) are equally important; a feature that is
clearly reflected through the adoption of an IDEA
model (Gattoufi et al., 2014) whose objective coeffi-
cients are all equal. In real-life situations, there are
resources that can be regarded as relatively more
important than others. The importance scale
depends primarily on the decision making settings,
which may involve local or global policies, corporate
strategies, market trends, or other technical factors
that are specific to the farming process. For instance,
water is commonly the most important resource for
agricultural production but its importance is more
emphasized in arid regions because of its scarcity
(Al-Mezeini et al., 2020). Electricity, as a requirement
for water pumping and distribution, is a key resource
for irrigated agriculture, regardless of the agricultural
context (Langarita et al., 2017). On the other hand,
organic fertilizers are rather essential for a sandy
soil, which requires frequent amendments with
organic matter to improve its ability to hold onto
nutrients (Yu et al., 2012). The role of human labour
is strategic to the agricultural sector, but its impor-
tance is likely to be greater for territories with low
involvement of the local populace, such as Sub-
Sahara Africa (Ibidunni et al., 2020). Hence, treating
all the resources in the same way is not always

appropriate and may lead to biased decisions. Thus,
another new aspect that the present study aims to
investigate is the impact of resource prioritization
on the agricultural sustainability of farm mergers. In
light of the reviewed literature, it is the first time
that such a topic is studied for either individual or
group farming. Considering the preferences of
different stakeholders towards the agricultural
resources, we develop a new approach that exploits
the properties of the Ordered Weighted Averaging
(OWA) operator (Yager, 1988) to produce an impor-
tance weight for each resource. As a result, we
propose an extended IDEA model that enables the
decision maker’s (DM) preference to be duly inte-
grated into the merger’s process.

As environmental sustainability is a collective issue
that does require collective actions, the next stage of
this study is also concerned with planning the best
matches between pairs of farms, in view of maximiz-
ing the sustainability of the whole agricultural pro-
duction sector. In other words, it is hypothetically
assumed that the pairs of farms to be merged are
not set a priori and the objective is to select collec-
tively the best partners for each merger. To this end,
we propose, for the first time, a DEA cross-efficiency
(DEA-CE) methodology to determine the most sus-
tainable merger plan for different DM’s preference
schemes.

Consequently, the present paper contributes to
the body of knowledge relating to sustainability
over four fronts.

(1) It is the first DEA-based study that investigates
sector-wide sustainability from M&A perspective.

(2) The IDEA approach is introduced for the first time
as a potent tool for evaluating mergers’
sustainability.

(3) A new IDEA model that incorporates the DM’s
preference is proposed as a way to prioritize the
farming resources over the merger decision
process.

(4) A new DEA-CE methodology is developed to
determine the most sustainable pairs of farms
and, hence, yield the most sustainable merger
plan..

The proposed methodological framework is
implemented on a case study of 43 tomato GH
farms from Biskra, Algeria.

The next sections of the paper are set out as
follows. In Section 2, the traditional approach of
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sustainability, based on standard DEA models, is
described, followed by the new IDEA model devel-
oped for enhancing sustainability through mergers
under DM’s preferences. Section 3 presents the case
study. In Section 4, the results are thoroughly dis-
cussed for selected DM’s optimism levels. Section 5
is dedicated to a new DEA-CE methodology for build-
ing the most sustainable merger plan with various
DM’s optimism levels. In Section 6, we close the
study with concluding remarks, policy implications,
some of the study’s limitations and potential venues
for future research.

2. Methodology

2.1. Traditional sustainability evaluation

Let’s consider a sample of K farms, each farm Gk is
defined with energy inputs Xik and energy outputs
Y jk , where i = 1, . . . , I and j = 1, . . . , J. Assume that
we are interested in evaluating the sustainability of
Go = (XioY jo). The sustainability of Go depends predo-
minantly on its performance in using the available
energy inputs Xio to produce energy outputs Y jo.

Within the production possibility set comprising the
K farms, G′

o s performance can be estimated through
its relative efficiency score E∗o , computed via the fol-
lowing input-oriented BCC model (Banker et al., 1984).

(BCC)

E∗o = min p

s.t.
∑K
k=1

akXik ≤ pXio i = 1, . . . , I

∑K
k=1

akY jk ≥ Y jo j = 1, . . . , J

∑K
k=1 ak = 1

ak ≥ 0 k = 1, . . . , K

E∗o represents the optimal efficiency score of farm Go.

Thus, Go is efficient if E∗o = 1, otherwise, it is ineffi-
cient. In the case Go is inefficient, it may need to
reduce its energy inputs with an amount S∗io (Oukil
et al., 2021; Soltani et al., 2021) where

S∗io = (1− E∗o)Xioi = 1, . . . , I (1)

Here, S∗io is the energy saving that is required for input
i, i = 1, . . . , I. If E∗o = 1 and S∗io = 0 for all i = 1, . . . , I,
Go is strongly efficient. Contrariwise, Go is weakly
efficient if S∗io . 0 for one energy input i or more
(Oukil & Al-Zidi, 2018).

In the coming sections, we show that, even if Go is
strongly efficient, its merger with another farm may

lead to substantial energy savings. As such, we
propose a methodology for enhancing sustainability
through farm mergers. Although the proposed math-
ematical model deals with pairwise mergers, its exten-
sion to more than two farms remains possible. To
enable discarding the impact on the results of poss-
ible fluctuations due to market disruptions or other
exogenous factors, we also assume that the energy
input consumption within the farms is deterministic
over the merger planning horizon.

2.2. Enhancing sustainability through mergers

Let’s consider the merger of two farms GA and GB into
a larger farm Fm. Regardless of the efficiency status of
GA and GB, the targeted efficiency of the post-merger
farm Fm is set a priori to p ≥ max (E∗A, E

∗
B). Assuming

that Fm retains the total energy outputs of GA and
GB, i.e. Y jm = Y jA + Y jB (j = 1, . . . , J), the DM is con-
cerned with finding the minimum levels of energy
inputs diA ≤ XiA and diB ≤ XiB (i = 1, . . . , I), which
are needed to operate Fm and achieve the target p.
If we also need to integrate the DM’s preference into
the merger’s evaluation, the IDEA model of (Amin &
Ibn Boamah, 2020) can be extended as follows:

(E-IDEA)

min
∑I
i=1

Wi(diA + diB)

s. t.∑
k[R

akXik + am(XiA + XiB)

−(diA + diB)× p ≤ 0 i = 1, . . . , I∑
k[R

akY jk + am(Y jA + Y jB)

≥ (Y jA + Y jB) j = 1, . . . , J∑
k[R

ak + am = 1

0 ≤ diA ≤ XiA,
0 ≤ diB ≤ XiB i = 1, . . . , I

ak ≥ 0, k [ R, am ≥ 0

The inverse property of E-IDEA stems from the fact
that, contrary to traditional DEA optimization
models, the targeted efficiency p is a known par-
ameter of the problem whereas the energy inputs
diA and diB (i = 1, . . . , I) are decision variables whose
optimal values must be determined. Here, Wi is the
weight of input i, which is integrated into the original
model to account for the relative importance of the
energy inputs. In real-life problems, the DM may set
a preference scale on the inputs, depending on the
application context. A specific energy input i may be
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perceived more important based, e.g. on its market
price, its scarcity, its indispensableness to the pro-
duction process or other considerations pertaining to
the decisional context.

The post-merger farm Fm is evaluated relatively to
the set of peers R, which may include either GA or GB,
or none. In a survival, the acquiring farm, i.e. GA or GB,
will carry on operating alone with the previous name.
In a consolidation, GA and GB will unite into a new
farm, like Fm. Enhancing the farms’ sustainability
being the main aim of our study, all the mergers will
be consolidations, i.e. none of the merging farms
will belong to R.

Definition 1: A merger Fm = (GA, GB), A = B, is sus-
tainable if a∗

m = 0 and d∗iA , XiA or d
∗
iB , XiB for one or

more input i (i = 1, . . . , I).

Definition 2: A merger Fm = (GA, GB), A = B, is a
major consolidation if and only if am = 1, d∗iA = XiA
and d∗iB = XiB for i = 1, . . . , I and p = 1.

As such, a major consolidation is not sustainable in
the sense that it does not lead to energy gains.

Definition 3: Given a sustainable post-merger
Fm = (GA, GB), A = B, the potential energy gains of
GA and GB for energy input i are miA = XiA − d∗iA and
miB = XiB − d∗iB, respectively.

Definition 4: The cumulative energy gains of post-
merger Fm = (GA, GB), A = B, for energy input i is
him = miA + miB for a proportion

him/(XiA + XiB)× , ?A3B2show[]? . 100% of the
initial energy inputs.

It is important to note that, although model E-IDEA
is developed for pairwise mergers, it can be easily
extended to the merger of more than two farms.

3. Case study

The new approach is illustrated through a case study
of 43 GH farms producing tomato in Biskra, north east
of Algeria (Figure 1).

3.1. Study area

Biskra serves as a transitional zone between the north-
ern and the southern parts of the country. With predo-
minantly flat terrain, apart from the surrounding
Ziban mountains, the outskirts of Biskra feature
small water sources, particularly within the oases
and canyons surrounding El Kantara. Located approxi-
mately 430 km south-east of the capital city of Algiers,
Biskra resides at an average elevation of 88 m above
the sea level.

Characterized by a subtropical hot desert climate,
Biskra experiences arid and exceedingly hot
summers, coupled with very cold winters. During
summer, temperatures average around 43.5°C, often
peaking above 48°C, with a relative humidity of
12%. Winters bring an average minimum temperature
of 4°C, a relative humidity of 89%, and an annual rain-
fall of 138 mm, occurring over fewer than 31 days
each year.

Figure 1. Map of the study area.
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Biskra, along with other regions in southern
Algeria, has recently witnessed significant develop-
ment in irrigated crops, primarily relying on ground-
water extraction. While renowned as the leading
producer of date palm fruits in Algeria, Biskra has
arisen as a prominent hub for greenhouse (GH) pro-
duction as well. Since its introduction to the region
in 1984, GH technology has experienced rapid expan-
sion, with the cultivated area growing from 1370 ha in
1999 to 4050 ha in 2013. Despite occupying no more
than 4% of the region’s entire irrigated land, GH veg-
etable production in Biskra accounts for over half the
country’s GH crop market. Among the various crops,
tomato GH production holds significant importance,
covering nearly 34% of the region’s area allocated to
GH production.

3.2. Data collection

Primary data were collected in the course of the crop-
ping season of 2017–2018 by conducting face-to-face
interviews with 43 farmers. These farmers were nomi-
nated in a random manner from six municipalities
known for their significant cultivation of tomatoes in
greenhouses. The municipalities include M’ziraa,
Ainnaga, Sidi-Okba, Elaghrous, Doucen, and Lioua
(Figure 1), where lycopersicon esculentum mill is the
only type of tomatoes that is cultivated. As such,
each GH farm is defined with six inputs, namely
human labour (X1), machinery (X2), fertilizers (X3), pes-
ticides (X4), diesel fuel (X5), and electricity (X6), in
addition to yield (Y), as an output. Table 1 presents
the descriptive statistics of the original data sample,
prior to its energy conversion.

Human labour refers to the total number of hours
spent on field by the workers. The majority of

workers are hired from neighbouring municipalities
and include both genders, males and females. The
workers who ensure the maintenance of the crop
are generally employed on permanent job contracts,
whereas the harvest and other casual agricultural
tasks are allocated on a seasonal contact basis.
These two categories are aggregated in the compu-
tation of the human labour time.

Farm machinery represents the time that is
required for handling mechanized agricultural activi-
ties. In Biskra’s GH farming, mechanization is limited
to tillage, commonly carried out with 45 horse
power tractors for drawing iron ploughs. The remain-
ing agricultural tasks are done manually.

Fertilizers comprise the amounts of nitrogen, phos-
phorus, and potassium as well as manure applied to
the soil. In the study’s specific context, the application
of the fertilizers is performed randomly without prior
analysis of the soil or the crop requirements. Accord-
ingly, the survey reveals an over-usage of fertilizers. Pes-
ticides are used by most farmers to manage weeds,
pests, and illnesses. Here, they are applied every year
for preventive purposes rather than treatment, which
may also explain the excessive usage amounts per
hectare. Here, it is worth noting that nitrogen, phos-
phorus, potassium and manure are aggregated under
the variable Fertilizers (X3), whereas fungicides and
insecticides are combined into Pesticides (X4). This
inputs’ aggregation is primarily meant to reduce the
number of variables involved in the DEA model and,
hence, increase its discriminatory power.

In our study, the GH farms’ irrigation system relies
fully on groundwater. As the major sources of agricul-
tural energy, Electricity and Diesel fuel are extensively
utilized to operate power generators, which supply
electricity to water pumps for abstraction besides
pressurization of the water into the irrigation
system. Diesel fuel is typically used in areas without
access to a power grid or as emergency backup
during grid failures. Thus, electricity and diesel fuel
are treated as proxies for water consumption. Water
consumption has not been included separately
among the inputs because all the farmers have
reported the same regulated quota for the consump-
tion amount. Having the same input value for all the
GH farms will not have any impact on the DEA results.

Table 2 summarizes the input and output values
per hectare of land along the energy equivalents for
the whole sample.

The energy equivalents are calculated using the
corresponding coefficients shown in Table A1 of the

Table 1. Descriptive statistics for the inputs and output.

Data Unit Avg STD Min Max

Inputs
Human labour h 3350 1254 930 6615
Machinery h 28 16 7 100
Fertilizers
N kg 237 240 0 1052
P2O5 kg 247 210 0 1074
K2O kg 218 175 0 944

Manure kg 49,913 29,417 11,600 177,000
Pesticides
Fungicides kg 12 14 0 58
Insecticides kg 65 98 3 456

Diesel fuel l 130 180 19 797
Electricity kWh 6814 6740 0 29,555

Ouput
Yield kg 134,512 70,707 40,000 400,000
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Appendices. Figure 2 presents the proportions of
energy inputs associated to the tomato GH pro-
duction sample. The energy proportions per input
are displayed in Figure 2 for the whole study sample.

The total energy consumption per GH farm is
81.388 GJ.ha−1, with fertilizers and electricity display-
ing proportions of 41.21% and 30.14%, respectively,
which are the highest. Pesticides follow with a share
of 11.20%, while machinery appears as the least
energy consuming resource.

4. Results and discussion

4.1. GH farming sustainability evaluation

For each farm Gk , k = 1, . . . , 43, BCC model is solved
to compute its optimal efficiency E∗k , its intensity
vector a∗

k and the associated slack values S∗ik ,
i = 1, . . . , 6. Though the average efficiency of
0.9653 may suggest that the GH tomato production
is highly efficient, 14 of the 43 farms, or 32.56%, are
inefficient (E∗k , 1) and display overconsumption of
energy for all the inputs, as shown in Table 3.

These results are comparable with those reported
in previous studies, such as, e.g. Rahbari et al. (2013)
and Oukil, Nourani, et al. (2022) where the mean
efficiency scores are, respectively, 0.9955 and 0.9784
for tomato GH production. However, there appears
to be more variability for the proportions of inefficient
GH farms, which are 29.41% (Oukil, Nourani, et al.,
2022) and 13.33% (Rahbari et al., 2013). Such inconsis-
tency can be partially attributed to the differences
between the size of the samples of GH farms in com-
parison with the corresponding number of inputs and
outputs in these studies.

To become efficient, each inefficient farm Gk must
reduce its energy consumption by S∗ik (i = 1, . . . , 6)
with its energy output unaffected. As a result, the
energy savings associated to the GH tomato pro-
duction are presented in the following Table 4.

The slack analysis reveals a potential of 155.7 GJ
ha−1 energy savings, where fertilizers have the
highest proportion of 41.11%, more than electricity,
whose share is 34.60%. Thus, the energy saving
index is 4.45% for 3499.17 GJ ha−1 energy usage. In
other words, the GH tomato production can be
declared sustainable if the inefficient farms can save,
individually, 4.45% of the total energy consumption.
Although the latter index is more than double the
value of 2.08% reported in Oukil, Nourani, et al.
(2022), it is much lower than the 24.46% of Khoshne-
visan et al. (2013).

Whatever the savings achievable at the GH farm
individual level, the next section will show that
group actions involving more than one GH farm
may generate better results.

4.2. Computation of the importance weights

In order to derive a comprehensive judgment regard-
ing the importance of the energy inputs, 15 agricul-
tural experts, including researchers, academicians
and professionals, have been presented with a list of
6 inputs and they have been requested to rank
them from 1 to 6, where 1 and 6 represent, respect-
ively, the ranks of the inputs that are the most and
the least important for the production process The
responses are displayed in Table 5.

For instance, we can see that Expert #8 judges that
Human labour is the most important production input
whereas Pesticides are the least important. Irrigation
water being the next important input may suggest
that Expert #8’s ranking is motivated by the scarcity
of the resources rather than any other consideration.

Figure 2. Distribution of the energy equivalents of the tomato GH
production.

Table 2. Data summary with energy equivalents.

Data Unit Quantity per ha
Energy eq. (GJ

ha−1) Energy %

Inputs
X1 h 144,033.40 282.31 8.07
X2 h 1195.00 74.93 2.14
X3 kg 2,176,452.10 1442.26 41.21
X4 kg 3288.87 391.49 11.20
X5 l 5581.25 253.39 7.24
X6 kWh 292,997.01 1054.79 30.14

Totals 3499.17 100.00
Output
Y kg 5,784,001.00 4627.20
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Such an approach is emphasized in the ranks assigned
by Expert #13 who places Human labour, Irrigation
water and Pesticides at the same importance level.
Overall, it seems that a similar ranking strategy is
adopted by most of the area experts, even if the
ranking patterns could be different.

The preference voting matrix Q that is derived
from the ranking matrix R is presented in Table 6.

The columns ofQ represent the rank positions r of
the production inputs while each value uir provides
the number of times the experts voted for input i to
be ranked rth. For instance, 10 out of 15 experts
voted for Human labour to be 1st, which may
qualify this input to be the most important under an
optimistic stance but the least important under a

pessimistic stance, though no such conclusion is poss-
ible before aggregating the votes over each row. In
order to measure the impact of the inputs’ impor-
tance weights on the GH farms’ mergers, we consider
three aggregation scenarios, depending on the atti-
tude of the DM: optimistic (α = 0.73), neutral (α = 0.5)
and pessimistic (α = 0.27). Hence, we solve the
minimax disparity model (WP) presented in Appendix
3 for each optimism level α and I = 6, to produce the
OWA weight vectors g shown in Table 7.

The aggregate votes corresponding to each of
these scenarios are exhibited in Table 8.

For instance, when α = 0.27, W1 is computed as
follows:

W1 =
∑I

r=1

gru1r

= 0.00238× 10+ 0.06810× 2+ 0.13381× 3

+ 0.19952× 0+ 0.26524× 0+ 0.33095× 0

= 0.5614

As expected, W1, which is the weight of Human
labour, is the smallest (W1 = 0.5614) with a pessi-
mistic DM (α = 0.27) and the highest (W1 = 4.4386)
with an optimistic DM (α = 0.73).

Table 3. Results for the inefficient GH farms.

GH farm E∗k

Slack values (MJ ha−1)

Labour
S∗1k

Machinery
S∗2k

Fertilizers
S∗3k

Pesticides
S∗4k

Diesel
S∗5k

Electricity
S∗6k

G02 0.9432 463.53 142.58 5225.51 562.52 371.01 210.75
G11 0.9922 85.88 9.73 120.39 22.44 17.61 137.76
G14 0.9600 348.11 58.53 1674.25 470.59 652.69 131.82
G15 0.7818 1450.05 273.67 10,701.78 1303.57 309.62 10,337.48
G16 0.8159 1789.86 346.31 9628.85 2540.50 5615.99 811.26
G17 0.8923 734.75 337.71 2967.51 414.18 611.33 1173.61
G18 0.9566 245.63 45.37 1157.55 108.56 307.97 1645.15
G21 0.9688 220.31 58.77 678.64 63.25 66.49 1479.98
G25 0.8604 850.28 321.03 4490.04 1924.25 198.11 4365.58
G28 0.9277 417.61 120.90 2272.20 286.93 102.59 4110.12
G34 0.8517 996.03 154.97 6025.42 645.35 231.44 14,049.60
G36 0.9396 523.60 113.69 2741.62 2335.89 102.90 1145.17
G38 0.9840 207.83 25.13 454.95 770.88 15.92 433.88
G41 0.6347 3064.29 534.44 15,871.97 2676.91 1140.21 13,843.19

Table 4. Energy savings patterns per resource.

Input
Energy saving
(GJ ha−1) Contribution to savings (%)

Labour 11.40 7.32
Machinery 2.54 1.63
Fertilizers 64.01 41.11
Pesticides 14.13 9.07
Diesel 9.74 6.26
Electricity 53.88 34.60
Total 155.70 100.00

Table 5. Ranking matrix R of the production inputs.

Input 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Human labour 3 1 3 2 1 1 3 1 1 2 1 1 1 1 1
Machinery 3 6 5 6 5 6 3 5 4 1 5 5 6 5 6
Fertilizers 3 4 2 5 4 4 3 4 3 5 3 4 4 4 4
Pesticides 6 3 6 4 6 5 6 6 5 3 4 6 1 6 5
Irrigation water 1 2 1 1 2 2 1 2 2 4 2 2 1 2 2
Electricity 1 5 4 3 3 3 1 3 6 6 6 3 4 3 3
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4.3. Mergers of GH farms

With a sample of G = 43 GH farms, 903 pairwise
mergers Fm = (GA, GB), A = B, are possible. The sol-
ution of model (E-IDEA) for each potential merger
Fm, m = 1, . . . , 903, with p = 1 efficiency target,
produces the optimal input blends for each prefer-
ence scenario. Out of 903 potential mergers, only
742 are found potentially sustainable, i.e. 82.17%.
This proportion is the same for all preference scen-
arios and the corresponding pairs of merging farms
are also the same. These results suggest that the
importance weights of the energy inputs have no
effect on the sustainability status of the mergers. It
is also worth noting that 345 sustainable post-
merger GH farms, i.e. 46.5%, are hybrid pairs that com-
prise one efficient along with one inefficient GH farms,
while only 75 sustainable mergers, i.e. 10.1%, include
solely inefficient GH farms. Nevertheless, the most
notable result is indeed the presence of 312 sustain-
able mergers, i.e. 43.4%, which are pairs of only
efficient GH farms. Therefore, regardless of its
efficiency status from an individual assessment per-
spective, a GH farm has potential for energy savings
under a merger.

Due to the large number of sustainable mergers
and, in the interest of space, Table 9 shows only 10
sustainable mergers under the optimistic stance. In
the meantime, the results are discussed for all sustain-
able mergers under the three preference scenarios.

Consider, for instance, the consolidation of G01 and
G12 into F6. With an efficiency target p = 1, the
optimal energy levels of labour, machinery, fertilizers,
pesticides, diesel and electricity required for the
post-merger F6 are d∗11 = 5329, d∗112 = 0,
d∗21 = 1359, d∗212 = 247, d∗31 = 0, d∗312 = 17734,
d∗41 = 1733, d∗412 = 2569, d∗51 = 7558, d∗512 = 0,

d∗61 = 5124 and d∗612 = 0. The fact that d∗112 = 0,
d∗512 = 0 and d∗612 = 0 suggests that the collective
contributions to the merger F4 in terms of labour,
diesel and electricity, respectively, are at the level of
the energy inputs of G01 or less.

The energy inputs of G01 and G12 at the pre-merger
stage are X11 = 6055, X112 = 6110, X21 = 1359,
X212 = 1463, X31 = 6565, X312 = 24977, X41 = 1733,
X412 = 6131, X51 = 8229, X512 = 851, X61 = 6534
and X612 = 28421. Thus, the potential energy gains for
fertilizers, due to the merger F6, include a portion of
the pre-merger energy usage of G12, that is,
m312 = X312 − d∗312 = 24977− 17734 = 7243MJ/ha in
addition to the entire energy input of G01, which is
m31 = X31 − d∗31 = 6565− 0 = 6565MJ/ha. Hence,
the cumulative energy gains derived for fertilizers are
h36 = m31 + m312 = 13808MJ/ha, which accounts for
not less than 43.77% of the collective energy inputs
allotted individually to the GH farms G01 and G12. Like-
wise, the gains for labour, diesel, electricity, machinery
and pesticides are, respectively, 56.19%, 16.76%,
85.34%, 43.10%, and 45.30%. It is also important to
note that G01 and G12 are both strongly efficient, i.e.
E∗1 = 1 and E∗12 = 1 and no energy savings are needed
from neither GH farms while operating individually.
Yet, the merger of these farms into F6 leads to energy
savings at the proportion levels given earlier. Table 10
presents the results for 10 post-merger GH farms Fm,
m = 1, . . . , 10.

The full picture about the extent of the energy
gains is illustrated through the average proportions
shown in Figure 3, which include the whole set of sus-
tainable post-merger GH farms Fm,m = 1, . . . , 742.

The average proportions of energy gains are
almost the same for machinery, fertilizers, diesel and
electricity, nearing 60.92%, 70.32%, 22.92% and
73.73%, respectively, regardless of the preference
stance. Under the optimistic and the neutral

Table 6. Preference voting matrix Q of the production inputs.

Input 1 2 3 4 5 6

Human labour 10 2 3 0 0 0
Machinery 1 0 2 1 6 5
Fertilizers 0 1 4 8 2 0
Pesticides 1 0 2 2 3 7
Irrigation water 5 9 0 1 0 0
Electricity 2 0 7 2 1 3

Table 7. OWA weight vectors g.

α g1 g2 g3 g4 g5 g6

0.27 0.00238 0.06810 0.13381 0.19952 0.26524 0.33095
0.50 0.16667 0.16667 0.16667 0.16667 0.16667 0.16667
0.73 0.33095 0.26524 0.19952 0.13381 0.06810 0.00238

Table 8. Aggregate votes Wi .

α W1 W2 W3 W4 W5 W6

0.27 0.5614 3.7157 2.7300 3.7814 0.8243 2.5986
0.50 2.5000 2.5000 2.5000 2.5000 2.5000 2.5000
0.73 4.4386 1.2843 2.2700 1.2186 4.1757 2.4014
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scenarios, labour and pesticides have still close pro-
portions, with averages of 66.89% and 53.77%,
respectively, slightly different from the pessimistic
stance, which is lower for labour (47.92%) and
higher for pesticides (71.04%). Such a gap can be
partly explained by looking closer at the patterns of
energy gains. Indeed, almost 97% sustainable post-
merger GH farms of the neutral case show results
that are similar to those of the optimistic case. This
fraction falls to 57% when the latter results are com-
pared to those of the pessimistic stance. In the mean-
time, the proportions of energy gains can reach, for

some sustainable post-merger GH farms, picks as
high as 81.28%, 88.62%, 95.27%, 98.09%, 85.45%
and 96.55%, respectively, for labour, machinery, ferti-
lizers, pesticides, diesel and electricity. In other words,
there are post-merger GH farms that can be operated
with only 18.72%, 11.38%, 4.73%, 1.91%, 14.55% and
3.45% of their current usages of respective energy
inputs. The latter proportions are consistent with the
findings of Oukil, Nourani, et al. (2022) where the
minimum operating requirements for the post-
merger GH farms were 19.22%, 7.76%, 2.73%, 2.71%,
10.66%, and 3.28% for labour, machinery, fertilizers,
pesticides, diesel and electricity, respectively. Here,
the slight gaps between the results can be attributed
to the impact of the importance weights assigned to
the inputs in the E-IDEA model as well as the size of
the GH farms’ sample.

To perceive more tangibly the impact of a merger
on sustainability, let’s consider, for instance, the con-
solidation of G01 and G03 into F2. Under a standard
DEA framework, G01 and G03 are found strongly
efficient, that is, none of them needs to reduce its
current energy consumption. After merging, the
derived post-merger GH farm F2 could preserve
the efficiency level p = 1 by using only fractions of

Table 9. Optimal energy usages (MJ ha−1) of 10 post-merger GH farms with.

Farms Labour Machinery Fertilizers Pesticides Diesel Electricity

Fm GA GB d∗1A d∗1B d∗2A d∗2B d∗3A d∗3B d∗4A d∗4B d∗5A d∗5B d∗6A d∗6B
F1 G01 G02 5078 0 1359 333 0 21,601 1733 3458 7326 0 4637 0
F2 G01 G03 5357 0 1359 238 0 17,305 1733 2470 7584 0 5179 0
F3 G01 G05 4799 0 1359 428 0 25,897 1733 4446 7068 0 4095 0
F4 G01 G08 4659 0 1359 475 0 28,045 1733 4940 6939 0 3824 0
F5 G01 G11 5357 0 1359 238 1781 15,524 1733 2470 7584 0 5179 0
F6 G01 G12 5329 0 1359 247 0 17,734 1733 2569 7558 0 5124 0
F7 G01 G14 5427 0 1359 214 0 16,231 1733 2223 7648 0 5314 0
F8 G01 G15 5078 0 1359 333 0 21,601 1733 3458 7326 0 4637 0
F9 G01 G22 5218 0 1359 285 0 19,453 1733 2964 7455 0 4908 0
F10 G01 G23 4659 0 1359 475 1837 26,207 1733 4940 6939 0 3824 0

Table 10. Cumulative energy gains (MJ.ha−1) of 10 post-merger GH farms with related proportions.

Fm

Labour Machinery Fertilizers Pesticides Diesel Electricity

h1m % h2m % h3m % h4m % h5m % h6m %

F1 9131 64.26 2176 56.27 76,883 78.07 6437 55.36 7429 50.35 5604 54.72
F2 8122 60.25 1017 38.91 82,768 82.71 9999 70.41 11,995 61.26 5618 52.04
F3 5741 54.47 2603 59.31 61,404 70.34 14,117 69.56 37,339 84.08 3331 44.86
F4 5727 55.14 5795 75.97 20,020 41.65 2347 26.02 4127 37.30 14,078 78.64
F5 11,772 68.72 1017 38.91 4784 21.66 423 9.15 2915 27.76 19,118 78.69
F6 6836 56.19 1216 43.10 13,807 43.77 3562 45.30 1522 16.76 29,830 85.34
F7 9330 63.22 1249 44.28 32,186 66.48 9541 70.69 16,896 68.84 4515 45.93
F8 7621 60.01 922 35.27 34,002 61.15 2516 32.64 2322 24.06 49,265 91.40
F9 4934 48.60 3477 67.90 29,254 60.06 7644 61.94 8577 53.50 4726 49.06
F10 6609 58.65 1406 43.40 4728 14.43 664 9.04 13,349 65.80 4270 52.76

Figure 3. Average proportions of energy gains per input.
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the collective energy inputs of the original GH farms,
as small as 39.75% for labour, 61.09% for machinery,
17.29% for fertilizers, 29.59% for pesticides, 38.74%
for diesel and 47.96% for electricity.

These proportions, together with the averages, are
enough evidence to support the potential of mergers
in enhancing sustainability, notwithstanding the opti-
mistic case. To better corroborate such a statement, it
is important to evaluate the impact of a broader scale
merger on the sustainability of the whole tomato GH
farming sector. To this end, we develop a procedure
for building the most sustainable merger plan for
each DM’s preference stances, as detailed in the
next section.

5. Most sustainable merger plan

To develop the most sustainable merger plan, we
develop an approach that enables selecting the best
post-merger farms based on the potential energy
gains him associated to the inputs of the alternative
pairs Fm = (GA, GB), A = B.

The energy gains him satisfy the dictum ‘more is
better’ and qualify to be viewed as an output of the
merger process (Oukil & El-Bouri, 2021). Hence, con-
sidering each pair Fm as a DMU defined with the
outputs him (i = 1, . . . , 6), DEA-CE (Sexton et al.,
1986) is adopted to rank the pairs Fm prior to selecting
the most sustainable merger plan.

5.1. Computing the matrix of CE scores

Here, we introduce the following Sustainable Merger
Model (SMM):

(SMM)

eff∗kk = min vk
s.t.∑6
i=1

hikuik = 1

vk −
∑6
i=1

himuik ≥ 0m = 1, . . . , 742

uik ≥ 0i = 1, . . . , 6

where uik is themultipliers associated to the ith output
and vk is the measure of returns to scale. As a self-
efficiency model, SMM can only categorize the post-
merger farms into efficient (eff∗kk = 1) and inefficient
(eff∗kk . 1) and, hence, cannot fully rank the whole set
of farms. For this reason, we resort to DEA-CE.

Under a CE methodological framework, each post-
merger farm Fk is enabled to evaluate its peers with its

optimal multipliers (u∗kv
∗
k ) (Oral et al., 2014; Oukil &

Govindaluri, 2020). However, as SMM is likely to
have alternative optima, different scores may result
for the same CE evaluation and, hence, the unique-
ness of the ranking is not guaranteed. One way to alle-
viate such a drawback is the adoption of a secondary
goal for the CE evaluation (Doyle & Green, 1994).
Though many secondary goal models are proposed
in the DEA literature, we extend the Most Resonated
Appreciative (MRA) model (Oral et al., 2015; Oukil &
Amin, 2015) as follows.

(MRA)

eff∗ko = min vo

s.t.
∑6
i=1

hiouio = 1

vo −
∑6
i=1

himuio ≥ 0m = 1, . . . , 742; m = k

vo − eff∗kk
∑6
i=1

hikuio ≥ 0

uio ≥ 0i = 1, . . . , 6

MRA is the only model that generates a customized
vector of multipliers for each CE evaluation, which
enhances discrimination at an early stage of the
ranking process (Amin & Oukil, 2019b; Oukil & Govin-
daluri, 2017). Here, eff∗ko is the CE score of post-merger
farm Fo, as assigned by the assessing farm Fk , using
the multipliers (uk∗o vk∗o ) that preserve Fk ’s self-
efficiency score at the level eff∗kk (Oukil, Soltani, et al.,
2022; Oukil & Amin, 2023). Once each post-merger
farm Fk (k = 1, . . . , 742) completes the evaluation of
its 741 peers Fo (o = k, o = 1, . . . , 742), a separate
matrix of CE scores C = (eff∗ko)742×742 is obtained for
each optimistic stance, with the self-efficiency scores
forming the diagonal of C. Matrix C cannot be pre-
sented here due to its size (742 × 742). Next, C is
used to compute the ultimate efficiency scores,
which are required for ranking the 742 sustainable
farms, as explained in the next section.

5.2. Ranking the sustainable post-merger
farms

Using the matrix of CE scores C as a ground, we
present the successive steps for computing the ulti-
mate efficiency score 1k corresponding to each post-
merger farm Fk.

Let effk denote the column of CE scores assigned
to Fk in C. The computation of 1k entails aggregating
the elements of effk (Oukil, 2018, 2019, 2020, 2022,
2023a). In order to take the preference scenario into
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account, we employ again OWA aggregation, as
explained below.

. Step 1: Sort the CE scores

The CE scores of each column effk are sorted in
ascending order to enable attaching more importance
to smaller scores assigned to post-merger farm Fk by
its peers Fo (o = k, o = 1, . . . , 742). The smaller eff∗ok
the more important is farm Fk perceived by farm Fo.
Let fk = (f1kf2k . . . f742k) be the vector of sorted CE
scores for column, where f1k , f2k , . . . , f742k.

. Step 2: Generate the vector of OWA weights

Model (WP) is used to generate the aggregation
weights gr, r = 1, . . . , 742. Three different optimism
levels are considered for each preference scenario,
namely a = 0.6671, a = 0.5 and a = 0.3329
depending on whether matrix C corresponds to the
optimistic, neutral and pessimistic stance.

The solution of WP is a vector g of 742 weights
gr [ [0.00000013, 0.00269528],

∑742
r=1 gr = 1, with

decreasing values for a = 0.6671 and increasing
values for a = 0.3329.

For a = 0.5, all the weights gr are equal.

. Step 3: Compute the ultimate efficiency score

With the OWA weights on hand, the ultimate
efficiency score 1k can be computed for post-merger
farm Fk through aggregating the CE scores of vector

fk = (f1kf2k . . . f742k) by using formula (3) as

1k =
∑742
r=1

grfrk.

Once steps 1 to 3 are completed for each post-
merger farm k (k = 1, . . . , 742), these farms are
ranked from the most to the least sustainable.

Table 11 presents an excerpt of the 10 leading farms
under each optimistic stance.

To evaluate the effect of the DM’s preference on
the variability of the ultimate efficiency scores, we
run a two-tail Student test at 5% significance level
with paired samples. Each sample consists of 742
1k-values of same post-merger farms under different
optimistic stances. Thus, three tests are run separately,
with the outcomes exhibited in Table 12.

Based on the p-values, there is not enough evidence
to reject the hypothesis that the difference between
the means of the ultimate efficiency scores’ popu-
lations is significant. Hence, at 5% significance level,
we can assert that the DM’s preference has an impact
on the variability of the ultimate efficiency scores.

Would the same conclusion stand with the ranking
patterns?

The smaller the ultimate efficiency score 1k the
better the ranking of the efficient post-merger farm
Fk. Hence, as shown in Table 11, F166 is the leading
post-merger farm for the pessimistic as well as the
neutral samples whereas the optimistic sample is led
by F61. Again, we may need to investigate whether
the DM’s preference affects the variability of the
ranking patterns. Here, we perform a two-tailed Wil-
coxon signed-ranks test for paired samples at 5% sig-
nificance level to test the following null hypothesis:

H0: The ranking patterns produced under both stances
are identical.

The tests’ results are summarized in Table 13,
where T =min(T+, T–) with T+ and T– representing,
respectively, the rank sums associated to positive
and negative differences.

At 5% significance level, we can conclude that
the ranking patterns produced under the neutral
and the pessimistic stances are not identical. The
same conclusion stands for the neutral and the opti-
mistic stances. However, p-value > 0.05 suggests

Table 11. Ranking patterns of the 10 leading post-merger GH farms.

Pessimistic Neutral Optimistic

Fk GA GB 1k Rank Fk GA GB 1k Rank Fk GA GB 1k Rank

F166 G05 G38 1.200 1 F166 G05 G38 1.116 1 F61 G02 G38 1.041 1
F417 G16 G38 1.305 2 F417 G16 G38 1.170 2 F417 G16 G38 1.043 2
F416 G16 G36 1.370 3 F30 G02 G05 1.232 3 F166 G05 G38 1.048 3
F167 G05 G39 1.379 4 F164 G05 G36 1.259 4 F733 G38 G41 1.056 4
F162 G05 G34 1.380 5 F162 G05 G34 1.262 5 F257 G08 G38 1.074 5
F163 G05 G35 1.382 6 F167 G05 G39 1.262 6 F714 G35 G38 1.079 6
F414 G16 G34 1.398 7 F163 G05 G35 1.267 7 F141 G05 G08 1.082 7
F415 G16 G35 1.410 8 F416 G16 G36 1.270 8 F256 G08 G36 1.093 8
F164 G05 G36 1.435 9 F414 G16 G34 1.272 9 F704 G34 G35 1.094 9
F30 G02 G05 1.446 10 F714 G35 G38 1.274 10 F163 G05 G35 1.096 10
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that the ranking patterns of the optimistic and the
pessimistic stances are identical. Although the
latter conclusion applies only to the case study, it
is apparently reliable enough to refute the hypoth-
esis that the DM’s preference may affect the
mergers’ ranking.

5.3. Building the most sustainable merger plan

To build the most sustainable merger plan, the best
mergers are selected according to the rank orders

while discarding subsequent pairs that overlap with
previously selected pairs. As such, the pairs of farms,
presented in Table 14, are selected as the potential
most sustainable mergers for each preference stance.

Overall, the most sustainable merger plans devel-
oped for the three preference stances are different
although exhibiting similarities for some of the
selected post-merger farms.

In the pessimistic plan, F417 = (G16, G38) has not
been selected in spite of ranking 2nd because F417
has G38 in common with F166 = (G05, G38). The same
applies to the neutral plan where six pairs are dis-
carded, namely F417, F30, F164, F162, F167 and F163,
which share either G38 or G05 with the leading post-
merger farm F166. Thus, the exclusion of better
ranked post-merger farms is essentially based on the
occurrence of an overlap between these pairs and
the ones that are previously selected. Such exclusion
criterion applies also to F417, F166, F733, F257 and
F714, which occupy the next five positions of the opti-
mistic ranking pattern but share, at least, one GH farm
with F61. Therefore, the next pair to be selected is
F141 = (G05, G08), because it does not overlap with
F61 = (G02, G38).

Under the pessimistic stance, all the GH farms are
paired except G09, G32 and G42. Two additional
exceptions, i.e. G01 and G04, are found for both
the neutral and the optimistic cases. Practically, pair-
wise mergers are still possible among the excluded
GH farms but remain not sustainable. Remarkably,

Table 12. Tests of the effect of preference on the variability of the
ultimate efficiency scores.

Test samples Mean STD* p-value

Pessimistic vs. Neutral 0.589 1.082 10−43

Pessimistic vs. Optimistic −11.243 140.691 0.0298
Neutral vs. Optimistic −11.832 140.676 0.0222

*Standard deviation.

Table 13. Tests of the effect of preference on the variability of
ranking patterns.

Test samples T Mean STD*
p-

value

Pessimistic vs.
Neutral

120,262.50 133,773.00 5711.14 0.0180

Pessimistic vs.
Optimistic

125,896.50 135,976.50 5781.62 0.0813

Neutral vs.
Optimistic

118,478.50 135,976.50 5781.56 0.0025

*Standard deviation.

Table 14. Most sustainable merger plans.

Pessimistic Neutral Optimistic

Fm GA GB Rank Gains (GJ ha−1) Fm GA GB Rank Gains (GJ ha−1) Fm GA GB Rank Gains (GJ ha−1)

F166 G05 G38 1 223.88 F166 G05 G38 1 223.88 F61 G02 G38 1 205.79
F416 G16 G36 3 179.93 F416 G16 G36 8 179.93 F141 G05 G08 7 165.50
F58 G02 G35 22 231.27 F58 G02 G35 22 231.27 F704 G34 G35 9 247.56
F374 G14 G34 23 200.88 F710 G34 G41 25 210.71 F418 G16 G39 25 127.08
F71 G03 G08 48 160.49 F71 G03 G08 47 160.49 F723 G36 G41 54 177.26
F550 G22 G41 121 142.68 F379 G14 G39 85 119.36 F77 G03 G15 146 205.04
F404 G15 G39 143 125.58 F515 G21 G25 175 124.85 F284 G11 G25 195 95.07
F574 G24 G28 209 110.46 F393 G15 G26 220 130.21 F521 G21 G31 214 100.67
F217 G07 G25 235 98.68 F642 G28 G31 251 116.99 F609 G26 G28 250 119.62
F425 G17 G21 273 92.42 F264 G10 G22 258 105.17 F262 G10 G14 253 120.28
F453 G18 G26 349 108.49 F433 G17 G29 319 134.10 F426 G17 G22 321 83.91
F288 G11 G29 388 121.53 F451 G18 G24 390 90.21 F579 G24 G33 401 62.29
F493 G20 G23 434 112.56 F279 G11 G20 412 107.92 F456 G18 G29 485 166.25
F191 G06 G31 510 75.59 F222 G07 G30 479 72.21 F222 G07 G30 562 72.21
F698 G33 G37 557 95.35 F701 G33 G40 513 89.62 F509 G20 G40 616 144.32
F627 G27 G30 566 84.86 F311 G12 G23 591 76.67 F340 G13 G27 633 75.92
F302 G12 G13 609 70.17 F340 G13 G27 620 75.92 F311 G12 G23 658 76.67
F027 G01 G43 648 67.87 F196 G06 G37 629 98.91 F486 G19 G37 686 96.18
F269 G10 G40 655 94.33 F491 G19 G43 672 77.43 F202 G06 G43 687 88.53
F117 G04 G19 734 43.25
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almost 50% of the selected pairs consist solely of GH
farms that are strongly sustainable, no matters the
preference case. Such a result brings more support
to the potential of mergers in enhancing sustainabil-
ity, even if the merging entities are individually
efficient.

5.4. Managerial implications

At this stage of the analysis, it is important to evaluate
the impact of the prospective merger plans on
environmental sustainability. Table 15 summarizes
the total energy savings for each merger plan.

The results reveal that the most sustainable merger
plan is more likely under the pessimistic stance, where
the largest energy savings are 2440.26 GJ ha−1. The
neutral merger plan is probably the least sustainable
with almost 15 GJ ha−1 less savings. Thus, with the
current energy usage estimated to 3499.17 GJ ha−1,
the energy savings indices are 69.74%, 69.33% and
69.45% for the pessimistic, neutral and optimistic sus-
tainable merger plans, respectively. Hence, there is
potential for more than 15 times improvement of
the GH production sustainability. Specifically, Figure
4 displays the proportions of savings for each prefer-
ence scenario.

Regardless of the sustainable merger plan, the
energy savings on each input are close to each
other and follow almost a similar pattern. Fertilizers
and electricity are prevailing, with proportions that
exceed 40.5% and 33.8%, respectively. The lowest
proportions are found for machinery, whose shares
are less than 1.9%. Relatively higher proportions are
expected for labour and diesel at levels of more
than 5.8% and 4.7%, respectively. The proportions of
energy savings on pesticides fall between 12.1% and
12.7%. Interestingly, these sustainability patterns
comply with the current distribution of energy
usage (refer to Figure 2), which suggests that the pro-
posed merger plans can be an important step towards
an optimal energy consumption and, hence, more
sustainable agricultural production.

In practical terms, chemical fertilizers energy
savings can be achieved by adopting more precise

fertilization practices. Conducting seasonal soil ana-
lyses can assist in determining the most adequate
quantities on a weather basis. However, replacing
chemical fertilizers with organic or microbial alterna-
tives is certainly the preferable choice. The Integrated
Pest Management (IPM) method can be adopted as a
long-term pest management approach.

Diesel fuel is typically used to power electric gen-
erators in areas without access to a power grid or as
emergency backup during grid failures. To minimize
reliance on diesel and electricity, the adoption of
renewable energy sources is recommended. Given
the region’s high solar irradiation all over the year,
solar panels can possibly be installed to provide a
cleaner and more sustainable energy alternative.
Alternatively, the energy needed for irrigation can
be reduced by using low-flow resistance foot
valves for pumps besides rigid PVC pipes for the
suction and delivery operations. More
energy savings are also possible through an appro-
priate substitution of undersized pipes in addition
to employing less elbows and friction-causing
fittings.

Implementing conservation tillage practices sig-
nificantly decreases the need for machinery through-
out various agricultural tasks. These practices
also improve soil structure through the retention of
vegetative matter, facilitating carbon storage in the
soil.

However, it is crucial not to overlook the human
aspect of the entire process. GH farmers should
receive training on implementing new practices and

Table 15. Energy savings for sustainable merger plans.

Merger plan
Labour
GJ ha−1

Machinery
GJ ha−1

Fertilizers
GJ ha−1

Pesticides
GJ ha−1

Diesel
GJ ha−1

Electricity
GJ ha−1

Energy savings
GJ ha−1

Pessimistic 143.43 44.98 999.02 309.36 117.28 826.18 2440.26
Neutral 158.52 45.68 982.40 296.70 118.58 823.98 2425.87
Optimistic 160.57 44.76 986.30 294.29 115.64 828.61 2430.17

Figure 4. Proportions of energy input savings per sustainable merger
plan.
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be educated about the importance of energy mitiga-
tion as a global imperative for sustainable farming.

6. Concluding remarks

The present study investigated the impact of
mergers among farms on environmental sustainabil-
ity from different preference perspectives, with a
focus on energy consumption. Based on experts’
judgments, a preference vector, produced through
an OWA-based approach, is incorporated into an
IDEA model to estimate the energy input require-
ments for a preset sustainability target under three
preference stances: pessimistic, neutral and
optimistic.

Using a case study of 43 GH farms for an efficiency
target p = 1, the proposed IDEA model is solved for
pairwise consolidations under each preference scen-
ario. The results revealed that 742 post-merger
farms are potentially sustainable, where 43.4% are
pairs involving only sustainable GH farms, i.e. GH
farms that have been declared individually efficient
and, hence, do not require energy input savings.

Thus, we can establish that neither the sustainabil-
ity status of the merging DMUs nor the preference of
the DM have an influence on the sustainability status
of the post-merger DMUs.

In terms of energy inputs, the results of the case
study show average proportions of gains that are
almost the same with the three preference scenarios
for machinery, fertilizers, diesel and electricity, reaching
60.92%, 70.32%, 22.92% and 73.73%, respectively. A
slight deviation is noted, under the pessimistic stance,
for energy gains on labour and pesticides, which still
remain relatively high. In all cases, the energy gains
per post-merger farm can reach proportions as high as
80.78%, 88.62%, 95.27%, 97.29%, 85.45% and 96.55%,
respectively, for labour, machinery, fertilizers, pesticides,
diesel and electricity. These proportions, together with
the corresponding averages, substantiate the potential
of mergers to enhance sustainability, regardless of the
preference stance.

The next stage of the present study is concerned
with maximizing the collective sustainability effort
through determining the most sustainable merger
plans under different preference stances. A DEA-CE
model is developed to select the sets of post-
mergers with the best matching pairs of GH farms
under each preference stance.

The most sustainable merger plans that are built
under the three preference stances include different

post-merger farms even if similarities can be found.
Almost half of the selected pairs entail individual GH
farms that are strongly efficient. This result brings
more support to the potential of mergers in enhan-
cing sustainability, no matters the efficiency status
of the merging farms.

The majority of individual GH farms are paired,
except a few. The excluded ones can still form
mergers, which are de facto not sustainable.

The total energy savings of the sustainable merger
plans exceed 69% for all preference scenarios, repre-
senting more than 15 times relating outcomes
under the individual GH farm sustainability frame-
work. The distribution of these energy savings
among inputs follows almost the same pattern. Ferti-
lizers and electricity prevail with proportions of over
40.5% and 33.8%, respectively, followed by 12.1% to
12.7% for pesticides. Relatively lower proportions are
observed for labour and diesel, with more than 5.8%
and 4.7%, respectively, whereas machinery records
the lowest share of less than 1.9%. Interestingly, the
sustainability patterns conform to the energy usage
distribution. For that reason, the proposed merger
plans can be an important platform for an optimal
energy consumption and, hence, more sustainable
agricultural production.

6.1. Policy implications

This study’s findings underscore the imperative for
the development of progressive policies to reinforce
sustainability within the GH farming sector. In practi-
cal terms, such a step is particularly vital to ensure a
meaningful engagement of diverse stakeholders
throughout the GH agricultural production supply
chain.

One key policy recommendation revolves around
incentivizing GH farmers to adopt energy-efficient
practices within the context of potential mergers.
These incentives might encompass state-level direct
and indirect subsidies, tax exemptions besides relax-
ation of import duties. The GH farmers could be
eligible for these incentives as they embrace energy-
saving initiatives, contributing to reduced GHG emis-
sions and optimal resource consumption. These
initiatives may involve (1) the procurement of biode-
gradable plastic films and versatile construction
materials for infrastructure development; (2) the tran-
sition from chemical to environmentally friendly
organic or microbial fertilizers; (3) the adoption of
integrated pest management (IPM) strategies for
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sustainable pest control; (4) the installation of solar
panels to harness cleaner, renewable energy sources
as an alternative to fossil fuels; and (5) the incorpor-
ation of cutting-edge technologies and techniques
for fertilization and irrigation, including the
implementation of smart irrigation systems (Zaier
et al., 2015).

Recognizing the central role of the human factor
in merger dynamics entails an additional set of pol-
icies, which should be primarily dedicated to raising
awareness among GH farmers regarding the benefits
of mergers. These policies may consist of the organ-
ization of comprehensive awareness campaigns
aimed at promoting mergers and highlighting their
potential to optimize energy usage and mitigate
environmental impacts. Furthermore, state-spon-
sored training sessions could be developed to
provide GH farmers with the knowledge and skills
required for collaborative management in post-
merger GH farms. Additionally, an incentivizing
framework could be established, featuring an
annual award to commend and incentivize the
best-performing post-merger GH farms.

Though, it is paramount to underscore that prior to
the adoption of merger-related policies, extensive
investigations are necessary to gauge GH farmers’
readiness to participate in merger initiatives and
identify market-driven incentives that are likely to
spur their willingness to join such plans. Conducting
these investigations will provide crucial insights for
crafting policies that effectively address the unique
needs and challenges of GH farmers while advancing
sustainability within the sector.

6.2. Future research directions

While this study has made substantial progress in
highlighting the benefits of GH farm mergers, it
has also brought to light several key research areas
that warrant further investigation. These future
research directions would build upon the foundation
laid by this study and expand our understanding of
the complex dynamics surrounding GH farm
mergers.

. Consider the geographical locations of the farms

The geographical distribution of GH farms is a
crucial aspect that has been inadvertently over-
looked in the present study but holds significant rel-
evance for the prospects of mergers. Current

assumptions suggest that mergers are feasible irre-
spective of the farms’ physical locations, leading to
the representation of pairwise consolidations as a
complete graph with N = G(G− 1)/2 edges for G
farms (Oukil, 2008). However, this approach raises
practical challenges, particularly for large values of
G, due to the computational cost associated with
solving N IDEA models. Furthermore, proximity
issues among merging GH farms may render the
field implementation of optimal energy-saving sol-
utions impracticable. Future research should con-
sider addressing these limitations by adopting a
more realistic approach that accounts for the
sparse graph structure depicted through the GH
farms’ network. In this context, only adjacent farms
would be considered as merger candidates, poten-
tially leading to geographically advantageous and
more feasible merger plans.

. Conduct a profitability analysis of the mergers

The implementation of energy-efficient measures
within post-merger GH farms incurs additional costs,
necessitating a deeper exploration of pertaining
economic aspects. Such analysis can be critical in
supporting merger decisions and providing more
accurate estimates of each partner’s share of the
incremental expenses. To achieve this objective,
researchers can envisage an energy-cost efficiency
analysis that incorporates cost-weighted energy
inputs. This approach will produce a robust frame-
work for quantifying the dollar value of the merger
per unit of energy input, offering stakeholders a
more comprehensive financial perspective (Amin &
Ibn Boamah, 2020).

. Assess the long-term impact of the mergers

The present study has been carried out over a
single cropping season, which may restrict the tem-
poral scope of its findings. Understanding the long-
term implications of GH farm mergers is essential for
assessing their sustainability and adaptability. Future
studies should investigate the impact of mergers
over extended time horizons, encompassing mul-
tiple periods to account for the dynamic nature of
the system (Moghaddas et al., 2022). This multi-
period analysis will provide valuable insights into
the evolving dynamics of merged GH farms, aiding
in the development of strategies for long-term
success.
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. Extend the sample size and the methodology

It is known that the discriminatory power of the
standard DEA approach is attenuated when the
number of inputs and outputs is too large, compared
to the number of DMUs (GH farms in our case). As
such, the number of inputs considered for the
present study has been reduced through aggregation
for the sake of increasing discrimination. Future
studies may provide better insights if the inputs are
used without aggregation but with larger samples
of GH farms. On the methodology side, the IDEA
model can be extended to include GHG emissions as
undesirable inputs and/or outputs. Another research
direction may consider the integration of the
mergers’ gain estimation and the building of the
most sustainable merger plan into a unified
framework.

. Expand the application scope

Although this study’s practical context was focused
on agricultural GH production, its methodological
framework holds potential for applications in other
agricultural sectors where energy consumption is a
critical concern, such as livestock production
systems (Sefeedpari et al., 2020) and dairy farms
(Nacer et al., 2016). Prospective research could also
explore the implementation of the proposed
approach across non-agricultural sectors to better
identify the energy efficiency challenges of mergers.

Disclosure statement

No potential conflict of interest was reported by the author(s).

ORCID

Amar Oukil http://orcid.org/0000-0002-5330-6404

References

Abu Hatab, A., Cavinato, M. E. R., Lindemer, A., & Lagerkvist, C. J.
(2019). Urban sprawl, food security and agricultural systems
in developing countries: A systematic review of the litera-
ture. Cities, 94, 129–142. https://doi.org/10.1016/j.cities.
2019.06.001

Agarwal, B. (2018). Can group farms outperform individual
family farms? Empirical insights from India. World
Development, 108, 57–73. https://doi.org/10.1016/j.
worlddev.2018.03.010

Agarwal, B. (2020). A tale of two experiments: Institutional inno-
vations in women’s group farming in India. Canadian Journal

of Development Studies/Revue canadienne d’études du
développement, 41(2), 169–192. https://doi.org/10.1080/
02255189.2020.1779673

Agarwal, B., Dobay, K. M., & Sabates-Wheeler, R. (2021).
Revisiting group farming in a post-socialist economy: The
case of Romania. Journal of Rural Studies, 81, 148–158.
https://doi.org/10.1016/j.jrurstud.2020.10.006

Agarwal, B., & Dorin, B. (2019). Group farming in France: Why do
some regions have more cooperative ventures than others?
Environment and Planning A: Economy and Space, 51(3),
781–804. https://doi.org/10.1177/0308518X18802311

Aigner, D., Lovell, C. K., & Schmidt, P. (1977). Formulation and
estimation of stochastic frontier production function
models. Journal of Econometrics, 6(1), 21–37. https://doi.org/
10.1016/0304-4076(77)90052-5

Ali, Q., Yaseen, M. R., & Khan, M. T. I. (2019). Energy budgeting
and greenhouse gas emission in cucumber under tunnel
farming in Punjab, Pakistan. Scientia Horticulturae, 250, 168–
173. https://doi.org/10.1016/j.scienta.2019.02.045

Al-Mezeini, N. K., Oukil, A., & Al-Ismaili, A. M. (2020).
Investigating the efficiency of greenhouse production in
Oman: A two-stage approach based on data envelopment
analysis and double bootstrapping. Journal of Cleaner
Production, 247, Article 119160. https://doi.org/10.1016/j.
jclepro.2019.119160

Amin, G. R., & Ibn Boamah, M. (2020). A new inverse DEA cost
efficiency model for estimating potential merger gains: A
case of Canadian banks. Annals of Operations Research, 295
(1), 21–36. https://doi.org/10.1007/s10479-020-03667-9

Amin, G. R., & Oukil, A. (2019a). Flexible target setting in mergers
using inverse data envelopment analysis. International
Journal of Operational Research, 35(3), 301–317. https://doi.
org/10.1504/ijor.2019.101196

Amin, G. R., & Oukil, A. (2019b). Gangless cross-evaluation in
DEA: An application to stock selection. RAIRO – Operations
Research, 53(2), 645–655. https://doi.org/10.1051/ro/2018060

Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some models
for estimating technical and scale inefficiencies in data envel-
opment analysis. Management Science, 30(9), 1078–1092.
https://doi.org/10.1287/mnsc.30.9.1078

Baran, M. F., Eren, O., Gökdoğan, O., & Oğuz, H. I. (2020).
Determination of energy efficiency and greenhouse gas
(GHG) emissions in organic almond production in Turkey.
Erwerbs-Obstbau, 62(3), 341. https://doi.org/10.1007/s10341-
020-00507-9

Başer, U., & Bozoğlu, M. (2023). The impact of farm size on sus-
tainability of beef cattle farms: A case study of the Samsun
province, Turkey. International Journal of Agricultural
Sustainability, 21(1), Article 2253647. https://doi.org/10.
1080/14735903.2023.2253647

Bhunia, S., Karmakar, S., Bhattacharjee, S., Roy, K., Kanthal, S.,
Pramanick, M., & Mandal, B. (2021). Optimization of energy
consumption using data envelopment analysis (DEA) in
rice-wheat-green gram cropping system under conservation
tillage practices. Energy, 236, Article 121499. https://doi.org/
10.1016/j.energy.2021.121499

Bibi, Z., Khan, D., & Haq, I. U. (2021). Technical and environmental
efficiency of agriculture sector in South Asia: A stochastic
frontier analysis approach. Environment, Development and
Sustainability, 23(6), 9260–9279. https://doi.org/10.1007/
s10668-020-01023-2

18 A. OUKIL ET AL.

http://orcid.org/0000-0002-5330-6404
https://doi.org/10.1016/j.cities.2019.06.001
https://doi.org/10.1016/j.cities.2019.06.001
https://doi.org/10.1016/j.worlddev.2018.03.010
https://doi.org/10.1016/j.worlddev.2018.03.010
https://doi.org/10.1080/02255189.2020.1779673
https://doi.org/10.1080/02255189.2020.1779673
https://doi.org/10.1016/j.jrurstud.2020.10.006
https://doi.org/10.1177/0308518X18802311
https://doi.org/10.1016/0304-4076(77)90052-5
https://doi.org/10.1016/0304-4076(77)90052-5
https://doi.org/10.1016/j.scienta.2019.02.045
https://doi.org/10.1016/j.jclepro.2019.119160
https://doi.org/10.1016/j.jclepro.2019.119160
https://doi.org/10.1007/s10479-020-03667-9
https://doi.org/10.1504/ijor.2019.101196
https://doi.org/10.1504/ijor.2019.101196
https://doi.org/10.1051/ro/2018060
https://doi.org/10.1287/mnsc.30.9.1078
https://doi.org/10.1007/s10341-020-00507-9
https://doi.org/10.1007/s10341-020-00507-9
https://doi.org/10.1080/14735903.2023.2253647
https://doi.org/10.1080/14735903.2023.2253647
https://doi.org/10.1016/j.energy.2021.121499
https://doi.org/10.1016/j.energy.2021.121499
https://doi.org/10.1007/s10668-020-01023-2
https://doi.org/10.1007/s10668-020-01023-2


Binder, C. R., Feola, G., & Steinberger, J. K. (2010). Considering the
normative, systemic and procedural dimensions in indicator-
based sustainability assessments in agriculture.
Environmental Impact Assessment Review, 30(2), 71–81.
https://doi.org/10.1016/j.eiar.2009.06.002

Bojacá, C. R., Casilimas, H. A., Gil, R., & Schrevens, E. (2012).
Extending the input–output energy balance method-
ology in agriculture through cluster analysis. Energy,
47(1), 465–470. https://doi.org/10.1016/j.energy.2012.09.
051

Candemir, A., Duvaleix, S., & Latruffe, L. (2021). Agricultural coop-
eratives and farm sustainability – a literature review. Journal
of Economic Surveys, 35(4), 1118–1144. https://doi.org/10.
1111/joes.12417

Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the
efficiency of decision making units. European Journal of
Operational Research, 2(6), 429–444. https://doi.org/10.1016/
0377-2217(78)90138-8

Chopin, P., Mubaya, C. P., Descheemaeker, K., Öborn, I., &
Bergkvist, G. (2021). Avenues for improving farming sustain-
ability assessment with upgraded tools, sustainability
framing and indicators. A review. Agronomy for Sustainable
Development, 41(2), 1–20. https://doi.org/10.1007/s13593-
021-00674-3

Cush, P., & Macken-Walsh, A. (2016). Farming ‘through
the ages’: Joint farming ventures in Ireland. Rural Society,
25(2), 104–116. https://doi.org/10.1080/10371656.2016.
1225833

Dakpo, K. H., Jeanneaux, P., & Latruffe, L. (2016). Modelling pol-
lution-generating technologies in performance benchmark-
ing: Recent developments, limits and future prospects in
the nonparametric framework. European Journal of
Operational Research, 250(2), 347–359. https://doi.org/10.
1016/j.ejor.2015.07.024

de Olde, E. M., Moller, H., Marchand, F., McDowell, R. W.,
MacLeod C, J., Sautier, M., Halloy, S., Barber, A., Benge, J.,
Bockstaller, C., Bokkers, E. A. M., de Boer, I. J. M., Legun, K.
A., Le Quellec, I., Merfield, C., Oudshoorn, F. W., Reid, J.,
Schader, C., Szymanski, E., & Manhire, J. (2017). When
experts disagree: The need to rethink indicator selection for
assessing sustainability of agriculture. Environment,
Development and Sustainability, 19(4), 1327–1342. https://
doi.org/10.1007/s10668-016-9803-x

Doyle, J., & Green, R. (1994). Efficiency and cross-efficiency in
DEA: Derivations, meanings and uses. Journal of the
Operational Research Society, 45(5), 567–578. https://doi.org/
10.1057/jors.1994.84

Ebrahimi, R., & Salehi, M. (2015). Investigation of CO2 emission
reduction and improving energy use efficiency of button
mushroom production using data envelopment analysis.
Journal of Cleaner Production, 103, 112–119. https://doi.org/
10.1016/j.jclepro.2014.02.032

Elhag, M., & Boteva, S. (2019). Conceptual assessment of energy
input-output analysis and data envelopment analysis of
greenhouse crops in Crete Island, Greece. Environmental
Science and Pollution Research, 26(35), 35377–35386. https://
doi.org/10.1007/s11356-019-05544-w

Elhami, B., Akram, A., & Khanali, M. (2016). Optimization of
energy consumption and environmental impacts of chickpea
production using data envelopment analysis (DEA) and multi
objective genetic algorithm (MOGA) approaches. Information

Processing in Agriculture, 3(3), 190–205. https://doi.org/10.
1016/j.inpa.2016.07.002

Emrouznejad, A., & Amin, G. R. (2023). Advances in inverse data
envelopment analysis: Empowering performance assess-
ment. IMA Journal of Management Mathematics, 34(3), 415–
419. https://doi.org/10.1093/imaman/dpad004

Esfahani, S. M. J., & Rafati, M. (2022). The share of farm-scale on
optimizing energy consumption and greenhouse gas emis-
sions in irrigated wheat farms in eastern Iran. Sustainable
Energy Technologies and Assessments, 53, Article 102465.
https://doi.org/10.1016/j.seta.2022.102465

FAO. (2014). The state of food and agriculture report, innovation in
family farming. United Nations Food and Agricultural
Organization (FAO). ISBN 978-92-5-108536-3.

Gattoufi, S., Amin, G. R., & Emrouznejad, A. (2014). A new inverse
DEA method for merging banks. IMA Journal of Management
Mathematics, 25(1), 73–87. https://doi.org/10.1093/imaman/
dps027

Gésan-Guiziou, G., Alaphilippe, A., Aubin, J., Bockstaller, C.,
Boutrou, R., Buche, P., & van der Werf, H. M. (2020).
Diversity and potentiality of multi-criteria decision analysis
methods for agri-food research. Agronomy for Sustainable
Development, 40(6), 1–11. https://doi.org/10.1007/s13593-
020-00650-3

González-Torres, T., Rodríguez-Sánchez, J.-L., Pelechano-
Barahona, E., & García-Muiña, F. E. (2020). A systematic
review of research on sustainability in mergers and acqui-
sitions. Sustainability, 12(2), 513. https://doi.org/10.3390/
su12020513

Gorjian, S., Ebadi, H., Trommsdorff, M., Sharon, H., Demant, M., &
Schindele, S. (2021). The advent of modern solar-powered
electric agricultural machinery: A solution for sustainable
farm operations. Journal of Cleaner Production, 292, Article
126030. https://doi.org/10.1016/j.jclepro.2021.126030

Graeub, B. E., Chappell, M. J., Wittman, H., Ledermann, S., Kerr, R.
B., & Gemmill-Herren, B. (2016). The state of family farms in
the world. World Development, 87, 1–15. https://doi.org/10.
1016/j.worlddev.2015.05.012

Grashuis, J., & Su, Y. (2019). A review of the empirical literature
on farmer cooperatives: Performance, ownership and gov-
ernance, finance, and member attitude. Annals of Public
and Cooperative Economics, 90(1), 77–102. https://doi.org/
10.1111/apce.12205

Hamedani, S. R., Shabani, Z., & Rafiee, S. (2011). Energy inputs
and crop yield relationship in potato production in
Hamadan province of Iran. Energy, 36(5), 2367–2371.
https://doi.org/10.1016/j.energy.2011.01.013

Hercher-Pasteur, J., Loiseau, E., Sinfort, C., & Hélias, A. (2020).
Energetic assessment of the agricultural production system.
A review. Agronomy for Sustainable Development, 40(4), 1–
23. https://doi.org/10.1007/s13593-020-00627-2

Ho, B. V., Kingsbury, A., & Ho, N. S. (2022). Production efficiency
and effect of sustainable land management practices on the
yield of oranges in northwest Vietnam. International Journal
of Agricultural Sustainability, 20(7), 1237–1248. https://doi.
org/10.1080/14735903.2022.2088003

Holmström, K., Hessle, A., Andersson, H., & Kumm, K. I. (2018).
Merging small scattered pastures into large pasture-forest
mosaics can improve profitability in Swedish suckler-based
beef production. Land, 7(2), 58. https://doi.org/10.3390/
land7020058

INTERNATIONAL JOURNAL OF AGRICULTURAL SUSTAINABILITY 19

https://doi.org/10.1016/j.eiar.2009.06.002
https://doi.org/10.1016/j.energy.2012.09.051
https://doi.org/10.1016/j.energy.2012.09.051
https://doi.org/10.1111/joes.12417
https://doi.org/10.1111/joes.12417
https://doi.org/10.1016/0377-2217(78)90138-8
https://doi.org/10.1016/0377-2217(78)90138-8
https://doi.org/10.1007/s13593-021-00674-3
https://doi.org/10.1007/s13593-021-00674-3
https://doi.org/10.1080/10371656.2016.1225833
https://doi.org/10.1080/10371656.2016.1225833
https://doi.org/10.1016/j.ejor.2015.07.024
https://doi.org/10.1016/j.ejor.2015.07.024
https://doi.org/10.1007/s10668-016-9803-x
https://doi.org/10.1007/s10668-016-9803-x
https://doi.org/10.1057/jors.1994.84
https://doi.org/10.1057/jors.1994.84
https://doi.org/10.1016/j.jclepro.2014.02.032
https://doi.org/10.1016/j.jclepro.2014.02.032
https://doi.org/10.1007/s11356-019-05544-w
https://doi.org/10.1007/s11356-019-05544-w
https://doi.org/10.1016/j.inpa.2016.07.002
https://doi.org/10.1016/j.inpa.2016.07.002
https://doi.org/10.1093/imaman/dpad004
https://doi.org/10.1016/j.seta.2022.102465
https://doi.org/10.1093/imaman/dps027
https://doi.org/10.1093/imaman/dps027
https://doi.org/10.1007/s13593-020-00650-3
https://doi.org/10.1007/s13593-020-00650-3
https://doi.org/10.3390/su12020513
https://doi.org/10.3390/su12020513
https://doi.org/10.1016/j.jclepro.2021.126030
https://doi.org/10.1016/j.worlddev.2015.05.012
https://doi.org/10.1016/j.worlddev.2015.05.012
https://doi.org/10.1111/apce.12205
https://doi.org/10.1111/apce.12205
https://doi.org/10.1016/j.energy.2011.01.013
https://doi.org/10.1007/s13593-020-00627-2
https://doi.org/10.1080/14735903.2022.2088003
https://doi.org/10.1080/14735903.2022.2088003
https://doi.org/10.3390/land7020058
https://doi.org/10.3390/land7020058


Hosseinzadeh-Bandbafha, H., Nabavi-Pelesaraei, A., Khanali, M.,
Ghahderijani, M., & Chau, K. W. (2018). Application of
data envelopment analysis approach for optimization of
energy use and reduction of greenhouse gas emission in
peanut production of Iran. Journal of Cleaner Production,
172, 1327–1335. https://doi.org/10.1016/j.jclepro.2017.10.
282

Hýblová, E. (2014). Analysis of mergers in Czech agriculture com-
panies. Agricultural Economics, 60(10), 441–448. https://doi.
org/10.17221/15/2014-agricecon

Ibidunni, A. S., Ufua, D. E., Okorie, U. E., & Kehinde, B. E. (2020).
Labour productivity in agricultural sector of sub-Sahara
Africa (2010–2017) a data envelopment and panel regression
approach. African Journal of Economic and Management
Studies, 11(2), 207–232. https://doi.org/10.1108/ajems-02-
2019-0083

Ilahi, S., Wu, Y., Raza, M. A. A., Wei, W., Imran, M., &
Bayasgalankhuu, L. (2019). Optimization approach for
improving energy efficiency and evaluation of greenhouse
gas emission of wheat crop using data envelopment analysis.
Sustainability, 11(12), 3409. https://doi.org/10.3390/
su11123409

Ingram, J., & Kirwan, J. (2011). Matching new entrants and
retiring farmers through farm joint ventures: Insights
from the fresh start initiative in Cornwall, UK. Land Use
Policy, 28(4), 917–927. https://doi.org/10.1016/j.landusepol.
2011.04.001

Kaab, A., Sharifi, M., Mobli, H., Nabavi-Pelesaraei, A., & Chau, K. W.
(2019). Use of optimization techniques for energy use
efficiency and environmental life cycle assessment modifi-
cation in sugarcane production. Energy, 181, 1298–1320.
https://doi.org/10.1016/j.energy.2019.06.002

Khan, D., Nouman, M., Popp, J., Khan, M. A., Ur Rehman, F., &
Oláh, J. (2021). Link between technically derived energy
efficiency and ecological footprint: Empirical evidence from
the ASEAN region. Energies, 14(13), 3923. https://doi.org/10.
3390/en14133923

Khan, D., Nouman, M., & Ullah, A. (2023). Assessing the impact of
technological innovation on technically derived energy
efficiency: A multivariate co-integration analysis of the agri-
cultural sector in South Asia. Environment, Development and
Sustainability, 25(4), 3723–3745. https://doi.org/10.1007/
s10668-022-02194-w

Khan, D., & Ullah, A. (2020). Comparative analysis of the technical
and environmental efficiency of the agricultural sector: The
case of Southeast Asia countries. Custos E Agronegocio Line,
16, 2–28.

Khoshnevisan, B., Rafiee, S., Omid, M., & Mousazadeh, H. (2013).
Reduction of CO2 emission by improving energy use
efficiency of greenhouse cucumber production using DEA
approach. Energy, 55, 676–682. https://doi.org/10.1016/j.
energy.2013.04.021

Khoshroo, A., Mulwa, R., Emrouznejad, A., & Arabi, B. (2013). A
non-parametric data envelopment analysis approach for
improving energy efficiency of grape production. Energy,
63, 189–194. https://doi.org/10.1016/j.energy.2013.09.021

Kyrgiakos, L. S., Kleftodimos, G., Vlontzos, G., & Pardalos, P. M.
(2023). A systematic literature review of data envelopment
analysis implementation in agriculture under the prism of
sustainability. Operational Research, 23(1), 7. https://doi.org/
10.1007/s12351-023-00741-5

Lampridi, M. G., Sørensen, C. G., & Bochtis, D. (2019). Agricultural
sustainability: A review of concepts and methods.
Sustainability, 11(18), 5120. https://doi.org/10.3390/su11185120

Langarita, R., Chóliz, J. S., Sarasa, C., Duarte, R., & Jiménez, S.
(2017). Electricity costs in irrigated agriculture: A case study
for an irrigation scheme in Spain. Renewable and
Sustainable Energy Reviews, 68, 1008–1019. https://doi.org/
10.1016/j.rser.2016.05.075

Latruffe, L., Diazabakana, A., Bockstaller, C., Desjeux, Y., Finn, J.,
Kelly, E., Ryan, M., & Uthes, S. (2016). Measurement of sustain-
ability in agriculture: A review of indicators. Studies in
Agricultural Economics, 118(3), 123–130. https://doi.org/10.
7896/j.1624

Le, T. L., Lee, P. P., Peng, K. C., & Chung, R. H. (2019). Evaluation of
total factor productivity and environmental efficiency of agri-
culture in nine East Asian countries. Agricultural Economics, 65
(6), 249–258. https://doi.org/10.17221/50/2018-AGRICECON

Liang, Y., Jing, X., Wang, Y., Shi, Y., & Ruan, J. (2019). Evaluating
production process efficiency of provincial greenhouse veg-
etables in China using data envelopment analysis: A green
and sustainable perspective. Processes, 7(11), 780. https://
doi.org/10.3390/pr7110780

Lin, Y., Wang, Y. M., & Shi, H. L. (2020). Mergers and acquisitions
matching for performance improvement: A DEA-based
approach. Economic Research – Ekonomska istraživanja, 33
(1), 3545–3561. https://doi.org/10.1080/1331677X.2020.
1775673

Liu, C., Cutforth, H., Chai, Q., & Gan, Y. (2016). Farming tactics to
reduce the carbon footprint of crop cultivation in semiarid
areas. A review. Agronomy for Sustainable Development, 36
(1), 1–16. https://doi.org/10.1007/s13593-016-0404-8

Llones, C. A., Mankeb, P., Wongtragoon, U., & Suwanmaneepong,
S. (2022). Production efficiency and the role of collective
actions among irrigated rice farms in Northern Thailand.
International Journal of Agricultural Sustainability, 20(6),
1047–1057. https://doi.org/10.1080/14735903.2022.2047464

Lozano, S., & Adenso-Díaz, B. (2021). A DEA approach for
merging dairy farms. Agricultural Economics – Zemedelska
Ekonomika, 67(6), 209–219. https://doi.org/10.17221/418/
2020-agricecon

Mardani Najafabadi, M., & Taki, M. (2020). Robust data envelop-
ment analysis with Monte Carlo simulation model for optim-
ization the energy consumption in agriculture. Energy
Sources, Part A: Recovery, Utilization, and Environmental
Effects. https://doi.org/10.1080/15567036.2020.1777221

Moghaddas, Z., Oukil, A., & Vaez-Ghasemi, M. (2022). Global
multi-period performance evaluation: A new model and a
new productivity index. RAIRO Operations Research, 56(3),
1503–1521. https://doi.org/10.1051/ro/2022065

Mohammadi, A., & Omid, M. (2010). Economical analysis and
relation between energy inputs and yield of greenhouse
cucumber production in Iran. Applied Energy, 87(1), 191–
196. https://doi.org/10.1016/j.apenergy.2009.07.021

Mohammadi, A., Rafiee, S., Jafari, A., Keyhani, A., Dalgaard, T.,
Knudsen, M. T., & Hermansen, J. E. (2015). Joint life cycle
assessment and data envelopment analysis for the bench-
marking of environmental impacts in rice paddy production.
Journal of Cleaner Production, 106, 521–532. https://doi.org/
10.1016/j.jclepro.2014.05.008

Mohseni, P., Borghei, A. M., & Khanali, M. (2018). Coupled life
cycle assessment and data envelopment analysis for

20 A. OUKIL ET AL.

https://doi.org/10.1016/j.jclepro.2017.10.282
https://doi.org/10.1016/j.jclepro.2017.10.282
https://doi.org/10.17221/15/2014-agricecon
https://doi.org/10.17221/15/2014-agricecon
https://doi.org/10.1108/ajems-02-2019-0083
https://doi.org/10.1108/ajems-02-2019-0083
https://doi.org/10.3390/su11123409
https://doi.org/10.3390/su11123409
https://doi.org/10.1016/j.landusepol.2011.04.001
https://doi.org/10.1016/j.landusepol.2011.04.001
https://doi.org/10.1016/j.energy.2019.06.002
https://doi.org/10.3390/en14133923
https://doi.org/10.3390/en14133923
https://doi.org/10.1007/s10668-022-02194-w
https://doi.org/10.1007/s10668-022-02194-w
https://doi.org/10.1016/j.energy.2013.04.021
https://doi.org/10.1016/j.energy.2013.04.021
https://doi.org/10.1016/j.energy.2013.09.021
https://doi.org/10.1007/s12351-023-00741-5
https://doi.org/10.1007/s12351-023-00741-5
https://doi.org/10.3390/su11185120
https://doi.org/10.1016/j.rser.2016.05.075
https://doi.org/10.1016/j.rser.2016.05.075
https://doi.org/10.7896/j.1624
https://doi.org/10.7896/j.1624
https://doi.org/10.17221/50/2018-AGRICECON
https://doi.org/10.3390/pr7110780
https://doi.org/10.3390/pr7110780
https://doi.org/10.1080/1331677X.2020.1775673
https://doi.org/10.1080/1331677X.2020.1775673
https://doi.org/10.1007/s13593-016-0404-8
https://doi.org/10.1080/14735903.2022.2047464
https://doi.org/10.17221/418/2020-agricecon
https://doi.org/10.17221/418/2020-agricecon
https://doi.org/10.1080/15567036.2020.1777221
https://doi.org/10.1051/ro/2022065
https://doi.org/10.1016/j.apenergy.2009.07.021
https://doi.org/10.1016/j.jclepro.2014.05.008
https://doi.org/10.1016/j.jclepro.2014.05.008


mitigation of environmental impacts and enhancement of
energy efficiency in grape production. Journal of Cleaner
Production, 197, 937–947. https://doi.org/10.1016/j.jclepro.
2018.06.243

Mwambo, F. M., Fürst, C., Martius, C., Jimenez-Martinez, M.,
Nyarko, B. K., & Borgemeister, C. (2021). Combined appli-
cation of the EM-DEA and EX-ACT approaches for integrated
assessment of resource use efficiency, sustainability and
carbon footprint of smallholder maize production practices
in sub-Saharan Africa. Journal of Cleaner Production, 302,
Article 126132. https://doi.org/10.1016/j.jclepro.2021.126132

Nabavi-Pelesaraei, A., Rafiee, S., Mohtasebi, S. S., Hosseinzadeh-
Bandbafha, H., & Chau, K. W. (2017). Energy consumption
enhancement and environmental life cycle assessment in
paddy production using optimization techniques. Journal of
Cleaner Production, 162, 571–586. https://doi.org/10.1016/j.
jclepro.2017.06.071

Nacer, T., Hamidat, A., & Nadjemi, O. (2016). A comprehensive
method to assess the feasibility of renewable energy on
Algerian dairy farms. Journal of Cleaner Production, 112,
3631–3642. https://doi.org/10.1016/j.jclepro.2015.06.101

Najafabadi, M. M., Sabouni, M., Azadi, H., & Taki, M. (2022). Rice
production energy efficiency evaluation in north of Iran;
application of robust data envelopment analysis. Cleaner
Engineering and Technology, 6, Article 100356. https://doi.
org/10.1016/j.clet.2021.100356

Nayak, H. S., Parihar, C. M., Aravindakshan, S., Silva, J. V., Krupnik,
T. J., McDonald, A. J., & Sapkota, T. B. (2023). Pathways and
determinants of sustainable energy use for rice farms in
India. Energy, 272, Article 126986. https://doi.org/10.1016/j.
energy.2023.126986

Nourani, A., & Bencheikh, A. (2020). Energy requirement optim-
ization of greenhouse vegetable production using data
envelopment analysis (DEA) method in Algeria. Acta
Technologica Agriculturae, 23(2), 60–66. https://doi.org/10.
2478/ata-2020-0010

Nourani, A., & Bencheikh, A. (2021). Applying of DEA approach to
optimize the energy required and GHG emission for green-
house vegetable production in Algeria. Agricultural
Engineering International: CIGR Journal, 23(3), 156–164.

Oral, M., Amin, G. R., & Oukil, A. (2015). Cross-efficiency in DEA: A
maximum resonated appreciative model. Measurement, 63,
159–167. https://doi.org/10.1016/j.measurement.2014.12.006

Oral, M., Oukil, A., Malouin, J.-L., & Kettani, O. (2014). The appreci-
ative democratic voice of DEA: A case of faculty academic
performance evaluation. Socio-Economic Planning Sciences,
48(1), 20–28. https://doi.org/10.1016/j.seps.2013.08.003

Oukil, A. (2008). Exploiting sparsity in vehicle routing algorithms
[Doctoral diss., Lancaster University], https://eprints.lancs.ac.
uk/id/eprint/45150.

Oukil, A. (2018). Ranking via composite weighting schemes
under a DEA cross-evaluation framework. Computers &
Industrial Engineering, 117, 217–224. https://doi.org/10.
1016/j.cie.2018.01.022

Oukil, A. (2019). Embedding OWA under preference ranking for
DEA cross-efficiency aggregation: Issues and procedures.
International Journal of Intelligent Systems, 34(5), 947–965.
https://doi.org/10.1002/int.22082

Oukil, A. (2020). Exploiting value system multiplicity and prefer-
ence voting for robust ranking. Omega, 94, Article 102048.
https://doi.org/10.1016/j.omega.2019.03.006

Oukil, A. (2022). Selecting material handling equipment through
a market weight scheme based DEA cross-efficiency
approach. International Journal of Management Science and
Engineering Management, 1–14. https://doi.org/10.1080/
17509653.2022.2116122

Oukil, A. (2023a). A two-level induced OWA procedure for
ranking DMUs under a DEA cross-efficiency framework. In
Intelligent and Transformative Production in Pandemic Times:
Proceedings of the 26th International Conference on
Production Research (pp. 495–521). Springer International
Publishing. https://doi.org/10.1007/978-3-031-18641-7_47

Oukil, A. (2023b). Investigating prospective gains from mergers
in the agricultural sector through inverse DEA. IMA Journal of
Management Mathematics, 34(3), 465–490. https://doi.org/10.
1093/imaman/dpac004

Oukil, A., & Al-Zidi, A. (2018). Benchmarking the hotel industry in
Oman through a three-stage DEA-based procedure. Journal
of Arts and Social Sciences [JASS], 9(2), 5–23. https://doi.org/
10.24200/jass.vol9iss2pp5-23

Oukil, A., & Amin, G. R. (2015). Maximum appreciative cross-
efficiency in DEA: A new ranking method. Computers &
Industrial Engineering, 81, 14–21. https://doi.org/10.1016/j.
cie.2014.12.020

Oukil, A., & Amin, G. R. (2023). An induced OWA aggregation
operator with dual preference setting for DEA cross-
efficiency ranking. Soft Computing, 27(24), 18419–18440.
https://doi.org/10.1007/s00500-023-09235-0

Oukil, A., Channouf, N., & Al-Zaidi, A. (2016). Performance evalu-
ation of the hotel industry in an emerging tourism destina-
tion: The case of Oman. Journal of Hospitality and Tourism
Management, 29, 60–68. https://doi.org/10.1016/j.jhtm.2016.
05.003

Oukil, A., & El-Bouri, A. (2021). Ranking dispatching rules in multi-
objective dynamic flow shop scheduling: A multi-faceted per-
spective. International Journal of Production Research, 59(2),
388–411. https://doi.org/10.1080/00207543.2019.1696487

Oukil, A., & Govindaluri, S. M. (2017). A systematic approach for
ranking football players within an integrated DEA-OWA
framework. Managerial and Decision Economics, 38(8), 1125–
1136. https://doi.org/10.1002/mde.2851

Oukil, A., & Govindaluri, S. M. (2020). A hybrid multi-attribute
decision-making procedure for ranking project proposals: A
historical data perspective. Managerial and Decision
Economics, 41(3), 461–472. https://doi.org/10.1002/mde.3113

Oukil, A., Kennedy, R. E., Al-Hajri, A., & Soltani, A. A. (2024).
Unveiling the potential of hotel mergers: A hybrid DEA
approach for optimizing sector-wide performance in the hos-
pitality industry. International Journal of Hospitality
Management, 116, Article 103620. https://doi.org/10.1016/j.
ijhm.2023.103620

Oukil, A., Nourani, A., Soltani, A. A., & Benchikh, A. (2022). Using
inverse data envelopment analysis to investigate potential
impact of mergers on energy use optimization – application in
agricultural production. Journal of Cleaner Production, 381(1),
Article 135199. https://doi.org/10.1016/j.jclepro.2022.135199

Oukil, A., Soltani, A. A., Al-Mezeini, N., Al-Ismaili, A., & Nourani, A.
(2023). Mergers as an alternative for energy use optimization:
Evidence from the cucumber greenhouse production using
the inverse DEA approach. Environment, Development and
Sustainability, 1–26. https://doi.org/10.1007/s10668-023-
04144-6

INTERNATIONAL JOURNAL OF AGRICULTURAL SUSTAINABILITY 21

https://doi.org/10.1016/j.jclepro.2018.06.243
https://doi.org/10.1016/j.jclepro.2018.06.243
https://doi.org/10.1016/j.jclepro.2021.126132
https://doi.org/10.1016/j.jclepro.2017.06.071
https://doi.org/10.1016/j.jclepro.2017.06.071
https://doi.org/10.1016/j.jclepro.2015.06.101
https://doi.org/10.1016/j.clet.2021.100356
https://doi.org/10.1016/j.clet.2021.100356
https://doi.org/10.1016/j.energy.2023.126986
https://doi.org/10.1016/j.energy.2023.126986
https://doi.org/10.2478/ata-2020-0010
https://doi.org/10.2478/ata-2020-0010
https://doi.org/10.1016/j.measurement.2014.12.006
https://doi.org/10.1016/j.seps.2013.08.003
https://eprints.lancs.ac.uk/id/eprint/45150
https://eprints.lancs.ac.uk/id/eprint/45150
https://doi.org/10.1016/j.cie.2018.01.022
https://doi.org/10.1016/j.cie.2018.01.022
https://doi.org/10.1002/int.22082
https://doi.org/10.1016/j.omega.2019.03.006
https://doi.org/10.1080/17509653.2022.2116122
https://doi.org/10.1080/17509653.2022.2116122
https://doi.org/10.1007/978-3-031-18641-7_47
https://doi.org/10.1093/imaman/dpac004
https://doi.org/10.1093/imaman/dpac004
https://doi.org/10.24200/jass.vol9iss2pp5-23
https://doi.org/10.24200/jass.vol9iss2pp5-23
https://doi.org/10.1016/j.cie.2014.12.020
https://doi.org/10.1016/j.cie.2014.12.020
https://doi.org/10.1007/s00500-023-09235-0
https://doi.org/10.1016/j.jhtm.2016.05.003
https://doi.org/10.1016/j.jhtm.2016.05.003
https://doi.org/10.1080/00207543.2019.1696487
https://doi.org/10.1002/mde.2851
https://doi.org/10.1002/mde.3113
https://doi.org/10.1016/j.ijhm.2023.103620
https://doi.org/10.1016/j.ijhm.2023.103620
https://doi.org/10.1016/j.jclepro.2022.135199
https://doi.org/10.1007/s10668-023-04144-6
https://doi.org/10.1007/s10668-023-04144-6


Oukil, A., Soltani, A. A., Boutaghane, H., Abdalla, O., Bermad, A.,
Hasbaia, M., & Boulassel, M. R. (2021). A Surrogate
Water Quality Index to assess groundwater using a unified
DEA-OWA framework. Environmental Science and Pollution
Research, 28(40), 56658–56685. https://doi.org/10.1007/s11356-
021-13758-0

Oukil, A., Soltani, A. A., Zeroual, S., Boutaghane, H., Abdalla, O.,
Bermad, A., Hasbaia, M., & Boulassel, M. R. (2022). A DEA
cross-efficiency inclusive methodology for assessing water
quality: A Composite Water Quality Index. Journal of
Hydrology, 612, Part A, Article 128123. https://doi.org/10.
1016/j.jhydrol.2022.128123

Ozkan, B., Ceylan, R. F., & Kizilay, H. (2011). Comparison of
energy inputs in glasshouse double crop (fall and
summer crops) tomato production. Renewable Energy, 36(5),
1639–1644. https://doi.org/10.1016/j.renene.2010.11.022

Paramesh, V., Arunachalam, V., Nikkhah, A., Das, B., & Ghnimi, S.
(2018). Optimization of energy consumption and environ-
mental impacts of arecanut production through coupled
data envelopment analysis and life cycle assessment.
Journal of Cleaner Production, 203, 674–684. https://doi.org/
10.1016/j.jclepro.2018.08.263

Payandeh, Z., Jahanbakhshi, A., Mesri-Gundoshmian, T., & Clark,
S. (2021). Improving energy efficiency of barley production
using joint data envelopment analysis (DEA) and life cycle
assessment (LCA): Evaluation of greenhouse gas emissions
and optimization approach. Sustainability, 13(11), 6082.
https://doi.org/10.3390/su13116082

Pendharkar, P. C. (2002). A potential use of data envelopment
analysis for the inverse classification problem. Omega, 30(3),
243–248. https://doi.org/10.1016/S0305-0483(02)00030-0

Pham, L. V., & Smith, C. (2014). Drivers of agricultural sustainabil-
ity in developing countries: A review. Environment Systems
and Decisions, 34(2), 326–341. https://doi.org/10.1007/
s10669-014-9494-5

Piñeiro, V., Arias, J., Dürr, J., Elverdin, P., Ibáñez, A. M., Kinengyere,
A., Opazo, C. M., Owoo, N., Page, J. R., Prager, S. D., & Torero,
M. (2020). A scoping review on incentives for adoption of sus-
tainable agricultural practices and their outcomes. Nature
Sustainability, 3(10), 809–820. https://doi.org/10.1038/
s41893-020-00617-y

Pishgar-Komleh, S. H., Zylowski, T., Rozakis, S., & Kozyra, J. (2020).
Efficiency under different methods for incorporating undesir-
able outputs in an LCA+ DEA framework: A case study of
winter wheat production in Poland. Journal of
Environmental Management, 260, Article 110138. https://doi.
org/10.1016/j.jenvman.2020.110138

Rahbari, H., Mahmoudi, A., & Ajabshirchi, Y. (2013). Improving
energy use efficiency of greenhouse tomato production
using data envelopment analysis (DEA) technique.
International Journal of Agriculture, 3(3), 559.

Raheli, H., Rezaei, R. M., Jadidi, M. R., & Mobtaker, H. G. (2017). A
two-stage DEA model to evaluate sustainability and energy
efficiency of tomato production. Information Processing in
Agriculture, 4(4), 342–350. https://doi.org/10.1016/j.inpa.
2017.02.004

Rasheed, N., Khan, D., & Magda, R. (2022). The influence of insti-
tutional quality on environmental efficiency of energy con-
sumption in BRICS countries. Frontiers in Energy Research,
10, Article 943771. https://doi.org/10.3389/fenrg.2022.
943771

Ren, C., Liu, S., Van Grinsven, H., Reis, S., Jin, S., Liu, H., & Gu, B.
(2019). The impact of farm size on agricultural sustainability.
Journal of Cleaner Production, 220, 357–367. https://doi.org/
10.1016/j.jclepro.2019.02.151

Saeidi, E., Dehkordi, A. L., & Nabavi-Pelesaraei, A. (2022).
Potential for optimization of energy consumption and costs
in saffron production in central Iran through data envelop-
ment analysis and multi-objective genetic algorithm.
Environmental Progress & Sustainable Energy, 41(5), e13857.
https://doi.org/10.1002/ep.13857

Saeidi, R. G., Oukil, A., Amin, G. R., & Raissi, S. (2015). Prioritization
of textile fabric defects using ordered weighted averaging
operator. The International Journal of Advanced
Manufacturing Technology, 76(5), 745–752. https://doi.org/
10.1007/s00170-014-6227-3

Sarkar, A., Wang, H., Rahman, A., Qian, L., & Memon, W. H. (2022).
Evaluating the roles of the farmer’s cooperative for fostering
environmentally friendly production technologies – a case of
kiwi-fruit farmers in Meixian, China. Journal of Environmental
Management, 301, Article 113858. https://doi.org/10.1016/j.
jenvman.2021.113858

Sefeedpari, P., Shokoohi, Z., & Pishgar-Komleh, S. H. (2020).
Dynamic energy efficiency assessment of dairy farming
system in Iran: Application of window data envelopment
analysis. Journal of Cleaner Production, 275, Article 124178.
https://doi.org/10.1016/j.jclepro.2020.124178

Sexton, T. R., Silkman, R. H., & Hogan, A. J. (1986). Data envelopment
analysis: Critique and extensions. New Directions for Program
Evaluation, 1986(32), 73–105. https://doi.org/10.1002/ev.1441

Singh, G., Singh, P., & Sodhi, G. P. S. (2019). Applying DEA optim-
ization approach for energy auditing in wheat cultivation
under rice-wheat and cotton-wheat cropping systems in
north-western India. Energy, 181, 18–28. https://doi.org/10.
1016/j.energy.2019.05.147

Singh, G., Singh, P., Sodhi, G. P. S., & Tiwari, D. (2021). Energy
auditing and data envelopment analysis (DEA) based optim-
ization for increased energy use efficiency in wheat cultiva-
tion (Triticum aestium L.) in north-western India. Sustainable
Energy Technologies and Assessments, 47, Article 101453.
https://doi.org/10.1016/j.seta.2021.101453

Singh, J. (2002). On farm energy use pattern in different cropping
systems in Haryana, India [Master of Science, International
Institute of Management, University of Flensburg].

Singh, P., Singh, G., & Sodhi, G. P. S. (2022). Data envelopment
analysis based optimization for improving net ecosystem
carbon and energy budget in cotton (Gossypium hirsutum
L.) cultivation: Methods and a case study of north-western
India. Environment, Development and Sustainability, 24(2),
2079–2119. https://doi.org/10.1007/s10668-021-01521-x

Soheilifard, F., Taki, M., & van Zelm, R. (2021). Impact of energy
flow optimization on the mitigation of environmental conse-
quences and costs in greenhouse cucumber production.
Environmental Science and Pollution Research, 28(7), 8421–
8433. https://doi.org/10.1007/s11356-020-11219-8

Soltani, A. A., Oukil, A., Boutaghane, H., Bermad, A., & Boulassel,
M. R. (2021). A new methodology for assessing water quality,
based on data envelopment analysis: Application to Algerian
dams. Ecological Indicators, 121, Article 106952. https://doi.
org/10.1016/j.ecolind.2020.106952

Sow, O., Oukil, A., Ndiaye, B. M., & Marcos, A. (2016). Efficiency
analysis of public transportation subunits using DEA and

22 A. OUKIL ET AL.

https://doi.org/10.1007/s11356-021-13758-0
https://doi.org/10.1007/s11356-021-13758-0
https://doi.org/10.1016/j.jhydrol.2022.128123
https://doi.org/10.1016/j.jhydrol.2022.128123
https://doi.org/10.1016/j.renene.2010.11.022
https://doi.org/10.1016/j.jclepro.2018.08.263
https://doi.org/10.1016/j.jclepro.2018.08.263
https://doi.org/10.3390/su13116082
https://doi.org/10.1016/S0305-0483(02)00030-0
https://doi.org/10.1007/s10669-014-9494-5
https://doi.org/10.1007/s10669-014-9494-5
https://doi.org/10.1038/s41893-020-00617-y
https://doi.org/10.1038/s41893-020-00617-y
https://doi.org/10.1016/j.jenvman.2020.110138
https://doi.org/10.1016/j.jenvman.2020.110138
https://doi.org/10.1016/j.inpa.2017.02.004
https://doi.org/10.1016/j.inpa.2017.02.004
https://doi.org/10.3389/fenrg.2022.943771
https://doi.org/10.3389/fenrg.2022.943771
https://doi.org/10.1016/j.jclepro.2019.02.151
https://doi.org/10.1016/j.jclepro.2019.02.151
https://doi.org/10.1002/ep.13857
https://doi.org/10.1007/s00170-014-6227-3
https://doi.org/10.1007/s00170-014-6227-3
https://doi.org/10.1016/j.jenvman.2021.113858
https://doi.org/10.1016/j.jenvman.2021.113858
https://doi.org/10.1016/j.jclepro.2020.124178
https://doi.org/10.1002/ev.1441
https://doi.org/10.1016/j.energy.2019.05.147
https://doi.org/10.1016/j.energy.2019.05.147
https://doi.org/10.1016/j.seta.2021.101453
https://doi.org/10.1007/s10668-021-01521-x
https://doi.org/10.1007/s11356-020-11219-8
https://doi.org/10.1016/j.ecolind.2020.106952
https://doi.org/10.1016/j.ecolind.2020.106952


bootstrap approaches–Dakar Dem Dikk case study. Journal of
Mathematics Research, 8(6), 114–127. https://doi.org/10.5539/
jmr.v8n6p114

Sugden, F., Agarwal, B., Leder, S., Saikia, P., Raut, M., Kumar, A., &
Ray, D. (2021). Experiments in farmers’ collectives in Eastern
India and Nepal: Process, benefits, and challenges. Journal
of Agrarian Change, 21(1), 90–121. https://doi.org/10.1111/
joac.12369

Tu, V. H., Can, N. D., Takahashi, Y., Kopp, S. W., & Yabe, M. (2019).
Technical and environmental efficiency of eco-friendly rice
production in the upstream region of the Vietnamese
Mekong delta. Environment, Development and Sustainability,
21(5), 2401–2424. https://doi.org/10.1007/s10668-018-0140-0

United Nations. (2022). Peace, dignity and equality on a healthy
planet. Retrieved October 6, 2023, from https://www.un.
org/en/global-issues/population

Vu, T. H., Peng, K. C., & Chung, R. H. (2019). Evaluation of
environmental efficiency of edible canna production in
Vietnam. Agriculture, 9(11), 242. https://doi.org/10.3390/
agriculture9110242

Wang, Y.-M., & Parkan, C. (2005). A minimax disparity approach
for obtaining OWA operator weights. Information Sciences,
175(1), 20–29. https://doi.org/10.1016/j.ins.2004.09.003

Xu, X., Chen, Q., & Zhu, Z. (2022). Evolutionary overview of land
consolidation based on bibliometric analysis in web of
science from 2000 to 2020. International Journal of
Environmental Research and Public Health, 19(6), 3218.
https://doi.org/10.3390/ijerph19063218

Yager, R. R. (1988). On ordered weighted averaging aggregation
operators in multicriteria decision making. IEEE Transactions
on Systems, Man, and Cybernetics, 18(1), 183–190. https://
doi.org/10.1109/21.87068

Yager, R. R. (1995). An approach to ordinal decision making.
International Journal of Approximate Reasoning, 12(3), 237–
261. https://doi.org/10.1016/0888-613X(94)00035-2

Yu, H., Ding, W., Luo, J., Geng, R., & Cai, Z. (2012). Long-term
application of organic manure and mineral fertilizers on
aggregation and aggregate-associated carbon in a sandy
loam soil. Soil and Tillage Research, 124, 170–177. https://
doi.org/10.1016/j.still.2012.06.011

Zahm, F., Ugaglia, A. A., Barbier, J. M., Boureau, H., Del’homme,
B., Gafsi, M., Gasselin, P., Girard, S., Guichard, L., Loyce, C.,
Manneville, V., Menet, A., & Redlingshöfer, B. (2019). Évaluer
la durabilité des exploitations agricoles. La méthode IDEA
v4, un cadre conceptuel combinant dimensions et
propriétés de la durabilité. Cahiers Agricultures, 28(5), 1–11.
https://doi.org/10.1051/cagri/2019004

Zaier, R., Zekri, S., Jayasuriya, H., Teirab, A., Hamza, N., & Al-
Busaidi, H. (2015). Design and implementation of smart irriga-
tion system for groundwater use at farm scale. In 7th
International Conference on Modelling, Identification and
Control (ICMIC) (pp. 1–6). IEEE.

Zeng, S., Zhu, F., Chen, F., Yu, M., Zhang, S., & Yang, Y. (2018).
Assessing the impacts of land consolidation on agricultural
technical efficiency of producers: A survey from Jiangsu pro-
vince, China. Sustainability, 10(7), 2490. https://doi.org/10.
3390/su10072490

Zhou, H., Yang, Y., Chen, Y., & Zhu, J. (2018). Data envelopment
analysis application in sustainability: The origins, development
and future directions. European Journal of Operational Research,
264(1), 1–16. https://doi.org/10.1016/j.ejor.2017.06.023

Appendices

Appendix 1. List of abbreviations

BCC Banker, Charnes, and Cooper
CE Cross-Efficiency
DEA Data Envelopment Analysis
DM Decision Maker
DMU Decision Making Unit
E-IDEA Extended Inverse DEA
FAO Food and Agriculture Organization
GH Greenhouse
GHG Greenhouse Gas
IDEA Inverse DEA
LP Linear Programming
M&A Merger & Acquisition
MCDM Multi-Criteria Decision Making
MRA Most Resonated Appreciative
OWA Ordered Weighted Averaging
SFA Stochastic Frontier Analysis
SMM Sustainable Merger Model

Appendix 2
Table A1. Energy equivalent coefficients in tomato GH production.

Data Unit
Energy equivalent

(MJ Unit−1) References
Inputs
Human labour h 1.96 Hamedani et al.

(2011)
Machinery h 62.70 Singh (2002)
Diesel fuel l 45.40 Bojacá et al. (2012)
Fertilizers kg
Nitrogen N 60.60 Ozkan et al. (2011)
Phosphate
P2O5

11.10 Ozkan et al. (2011)

Potassium
K2O

6.70 Ozkan et al. (2011)

Manure kg 0.30 Khoshroo et al.
(2013)

Pesticides kg
Fungicides 216.00 Mohammadi and

Omid (2010)
Insecticides 101.20 Mohammadi and

Omid (2010)
Electricity kWh 3.60 Ozkan et al. (2011)
Output
Tomato kg 0.80 Ozkan et al. (2011)

Appendix 3. OWA aggregation operator

An OWA aggregation operator of dimension I is a mapping
fg:RI � R, associated with a weigh vector g [ [0, 1]I and
defined as fg(ui ; g) =

∑I
r=1

gruir where uir is the value of the
rth largest factor of the vector of arguments ui = (ui1ui2 . . . uiI)
and gr its associated OWA weight (Saeidi et al., 2015). In our
case, we use the following minimax disparity model (Wang &
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Parkan, 2005) to generate the OWA weight vector g.

(WP)

min d
s. t.∑I−1

r=1

I− r

I− 1

( )
gr = a a [ [0, 1]

∑I
r=1

gr = 1

−d ≤ gr − gr+1 ≤ d r = 1, . . . , I− 1
gr ≥ 0 r = 1, . . . , I

(A1)

The objective of model (WP) consists of minimizing the devi-
ation d between successive aggregation weights gr and gr+1,
r = 1, . . . , I. Such a deviation is duly formulated through con-
straints (A1). The DM’s optimism level is reflected by the par-
ameter a, also known as orness value (Yager, 1995).

In each vector of votes ui = (ui1ui2 . . . uiI), relating to
energy input i, the importance of each vote uir is implicitly
induced by the associated rank r, i.e. the smaller the value
of r the more important is the vote uir. Therefore, the
vector of weights g can be used directly to aggregate the
votes of ui into a single vote Wi without an a priori ordering,
where

Wi =
∑I

r=1

gruir (A2)

The aggregate vote Wi reflects the relative importance of
input i from the perspective of a DM whose optimism level
is a. High values of Wi imply that a large number of
experts voted for energy input i to be among the leading
inputs.
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