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Introduction

T o understand the physical phenomena, we use in general, partial differential equations,
the last are generally denoted in abbreviation PDEs.

In everyday life, the majority of mechanical engineers as well as in physics encounter
problems related to the phenomenon of fluid dynamics and mass transport, and in partic-
ular, the biological phenomena are describe by PDEs models.

In general it is very difficult to solve these problems, but in some cases we can find
analytical solution in particular forms.

In this work we shall study the Burgers equation with her different forms: the first
type, the second type and the third type which called the forced Burgers equation.

These types of Burgers equation, are studied by many authors [20] ,[5],[3],[9], some
class of methods are used by these authors:
-The reduction method, which transform the PDEs to EDOs, and finding a particular so-
lutions, such as self similar solutions and travelling wave solutions.
- The Cole-Hopf transformation, is used particularly for all types of Burgers equations,
which transform them to a linear equations and in particular the heat equation. Our ob-
jectif in this thesis, is to develop all these methods for resolving the three types of the
Burgers equations.

This work is organized in three chapters:

The first chapter, we present some ideas about partial differential equations, heat
equation, wave equation, definition of the self-similar solution, some notions about differ-
ential equations and reduction methods for PDEs. We also gave some biological models
for the PDE.

In the second chapter, we give the definition of the Burgers equation and it types,
Cole-Hopf transformation and we find by reduction methods ,the self similar solution, the
travelling wave solution for the Burgers equation with the following form:
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ut + uux = 0. (1)

We also find a self similar solution and travelling wave solution and a solution based on
the Cole-Hopf transformation, for the Burgers equation for the second type with the form:

ut + uux = uxx. (2)

In the third chapter, we introduce the forced Burgers equation in the form:

ut − uux − uxx = Fx,t,u, (3)

we study some particular cases, when F = C, is constant, and F = Fx which call stationary
forcing, and finally, the case which F = Fx,t, which call transient forcing, and find an exact
solution for it, using the Cole-Hopf transformation, and searching a travelling wave solution.
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Chapter 1

Introduction to partial differential
equations

1.1 General definitions
We first give some definitions on the partial differential equations.

1.1.1 Definition
Let u a variable (unknow) depends on n independent variables:

(x1.....xn) ∈ Rn.

All relation between u, and xi, (i = 1....n) and the partial derivatives of u

relative to xi,

F (u, x1....xn, ux1 , ux2 ...., ux1x2 , ux1x2 .....ux1.....xn) = 0. (1.1)
Constitutes an equation to partial differential (for short:PDE).

Definition

A PDE is said linear when it is compared to u and to all of it partial

differential. If u is it partial differential appear separately in the PDE, than it is

linear.

Example

The heat equation:
ut − uxx = 0.
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Definition

The PDE is non-linear, means that the relation between the partial

differential, is non-linear.

For example the Burgers equation :

ut = uux.

1.2 The heat equation
In mathematics and theoretical physics, the heat equation is a parabolic partial

differential equation, Originally introduced in 1811 by Fourier to describe the

physical phenomenon of the heat conduction, and it is given by The following form:

ut = cuxx x ∈ R t ≻ 0, (1.2)
where c ≻ 0 is a given constant.

Here u = u(x, t) is the temperature in a one-dimensional capacitor. The value of

u (x, t) is depends on the time t ≥ 0, and the position x.

So we want to solve the following problem:


∂u

∂t
(x, t) = c

∂2u

∂2x
(x, t), x ∈ R

u(x, 0) = u0, x ∈ R.
(1.3)

1.2.1 Fundamental solution of the heat equation
To find a function u(x, t) satisfies problem (1.8), we apply the exponential Fourier

transform.

We define :

U(t, ξ) = 1√
2π

∫
R
u(x, t)e−iξxdx ξ ∈ R, (1.4)

Step 1:(Transformation) After replacing (1.9) in the Eq (1.8), we
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get the following ordinary differential equation :Ut(t) + |ξ2|U(t) = 0 t ≻ 0.
U0 = F[u0],

(1.5)

Step 2 :(solving the transformed problem) The solution for Eq.(1.10) is:

U(t, ξ) = F[u0](ξ)e−|ξ|2t.

Step 3: (Finding the inverse transform)
We have,

u(x, t) = F−1[U(t, ξ)] = F−1
[
F[u0](ξ)e−|ξ|2t

]
,

than
u(x, t) = F−1 [F[u0](ξ)] ∗ F−1

[
e−|ξ|2t

]
,

u(x, t) = u0(x) ∗
[

1√
2t
e−|x|2/(4t)

]
,

u(x, t) = 1√
4πt

∫
R
e−|x−y|2/(4t)u0(y)dy,

so the
Fundamental solution for the heat equation is written as:ϕ(x, t) = 1√

4πt

∫
R
e−|x|2/(4t). x ∈ R, t ≻ 0,

0 x ∈ R, t ≺ 0,
(1.6)

1.3 The wave equation
The wave equation[3] is a second-order partial differential equation, used to describe

the waves that happens in the classical physics. The form of the wave equation is:

∂2u

∂t2
= c2∂

2u

∂x2 , (1.7)

where c is a fixed non-negative real coefficient.

1.3.1 Travelling wave solution
Travelling wave[4] is a temporary wave, that creates a disturbance and moves along the

transmission line at a constant speed. It is occurs for a short duration. Such waves are
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observed in fluid dynamics, solid mechanics we get it once we solve a PDEs.

These travelling waves solutions are presented as:

u(x, t) = v(ξ),
and

ξ = x− ct,

when the travelling wave approaches a constant state,

v(−∞) = ul,

and
v(∞) = ur,

with
ul ̸= ur,

we call it a wave front. which mean we have the following transformations:

ut = −cv′,

and
ux = v′,

and
uxx = v′′.

1.3.2 Solution to the wave equation
Let consider the following Cauchy problem for the wave equation:

∂2u
∂t2 = c2 ∂2u

∂x2 ,

u(x, 0) = f(x),
∂u
∂t

(x, 0) = g(x).
(1.8)

The solution of the problem (1.13), is written as:

u(x, t) = ϕ(ϵ) + φ(µ),

where
ϵ = x+ ct,

and
µ = x− ct,

so,
u(x, 0) = ϕ(x) + φ(x) = f(x),
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and
∂u

∂t
(x, 0) = cϕ′(x) − cφ′(x) = g(x),

integrating the last equation we get

cϕ(x) − cφ(x) =
∫
R
g(x),

now we have these system: ϕ(x) + φ(x) = f(x),
cϕ(x) − cφ(x) =

∫
g(x).

After resolving the system, we find

ϕ(x) = cf(x) +
∫
g(x)

2c ,

φ(x) = −cf(x) +
∫
g(x)

−2c ,

than
u(ϵ, µ) = −2cf(ϵ) − 2

∫
g(µ)

−2c ,

since ϵ = x+ ct, and µ = x− ct,.

Finally
u(x, t) = 1/2 [f(x+ ct) + f(x− ct)] + 1/2c

∫ x+ct

x−ct
g(s)ds,

1.4 Some reminders about differential equations

1.4.1 The Riccati equations
They are equations in the form:

y′ = a(t)y2 + b(t)y + c(t), t ∈ R. (1.9)

The general solution of eq (1.14), is

y = y1(x) + 1
z(x) ,

where y1 is a particular solution to the eq.(1.14), which mean that

dy

dx
= dy1

dx
− 1
z2
dz

dx
,

replacing this equation in the Riccati equation, we get a linear differential equation

for k. Ones we find k, we have the solution to the Riccati equation.
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1.4.2 The Bernoulli equations
They are equations in the form:

y′ = p(t)y + q(t)yα, t ∈ R, (1.10)

where α is a real different from 1, to solve the Eq.(1.15)

first we divide the differential equation on yα we get,

y′y−α = p(t)y1−α + q(x), (1.11)

then we put

z = y1−α,

which mean that

z′ = (1 − α)y−αy′.

Now matching this equations with (1.16), we obtain:

1
1 − n

z′ + p(x)z = q(x).

This is a linear differential equation that we can solve for z, then we can get the

solution to the original differential equation (1.16).

1.5 Exact solution for PDE
In order to find a solutions to the PDEs, we have some methods for solving them.

1.5.1 Some methods for resolving a PDE
To reduce a partial differential equation, to an ordinary differential equation (PDE ↪→
ODE).

There are several methods , which are:

-The classical method [5] "Lie group of infinitesimal transformation".

-The direct method of Clarkson and Kruskal.
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- The Cole-Hopf transformation.

We have also the self similar solutions and the travelling waves solutions.

1.5.2 The direct method
In 1989 Clarakson and Kruskal have developed the direct method [5], to obtain previously

unknown reductions of the Burgers equation, and also they have found the similarity

reduction of several non-linear partial differential equations.

The Principe of the method

It is enough to look for a solution of the general form:

u(x, t) = α(x, t) + β(x, t)ω(z), x ∈ R, t ≻ 0,

where α, β and z = z(x, t) are functions to be determined subsequently, it is

enough to replace the solution of this form in the equation to be solved.

To transform the obtained differential equation into an ordinary differential equation
(ODE),

we take coefficients so that each coefficient is the product of ∏i(z),

i = 1, ....., n, with the coefficients of the derivative function (of the similarity function
ω(z)).

The result obtained (the product) will be compared with the rest of the coefficients of

the previous differential equation.
The comparison generates a set of partial

differential equations that must be solved.

To solve this system ,special cases are used which finally gives the similar solution .
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1.5.3 Self-similar solution
A solution for an PDE is said self-similar[1], if it is invariant by scale, which mean

we apply this change of variables:

u = aλu , x = asx, t = aγt,

so:

ut =
∂
(
aλu

)
∂ (aγt) = aλ−γ ∂u

∂t
,

uxx = ∂2(aλu)
∂ (asx)2 = aλ−2s∂

2u

∂x2 ,

we get
aλγ ∂u

∂t
= aλ−2s∂

2u

∂x2 ,

so we have
aλ−γ = aλ−2s,

the similarity condition is:
λ− γ = λ− 2s,

imply

γ = 2s if we pose aγ = 1 ⇒ a = t
1
γ ,

imply
u(x, t) ⇒ aλu (asx, aγt) ⇒ t

−1
γ u (asx, 1) = t

−λ
γ ϕ(t

−s
λ x),

and because we have
γ = 2s,

we obtain the form
t

−λ
γ ϕ(t−1

2 x),

this give us a particular form of self similar solution witch written as:

u(x, t) = tαϕ(ξ), ξ = xt−β,
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1.5.4 Example
We will apply self similarity on the heat equation(1.8)

Let us search for a solution with the form:

u(x, t) = tαϕ(ξ), ξ = xt−β,

so :
∂u

∂t
= αtα−1ϕ− βξtα−1ϕξ,

∂2u

∂x2 = tα−2βϕξξ,

we get :
αtα−1ϕ− βξtα−1ϕξ = tα−2βϕξξ,

we divides by tα−1 we get:

αϕ− βξϕξ = t1−2βϕξξ,

which imply
t1−2β = 0,

means that 1 − 2β = 0 so β = 1/2.

Then the differential equation corresponding is,

αϕ− 1/2ξϕξ = ϕξξ,

the goal is to find for each problem ϕ.

1.5.5 The Cole-Hopf transformation
In 50’s century Hopf and Cole independently[22], showed that the Burgers equation is

equivalent to the linear diffusion equation, for a new variable U(x, t),

Ut = Uxx,

which is a heat equation, than we put the following transformation:

u(x, t) = Ux

U
.

Generally the goal of Cole-Hopf transformation, is to change a non-linear differential

equations into a linear differential equation.

We will see an application of this method in the next chapter.
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1.6 Biological model of PDEs
Many PDEs and differential equations has application in different fields Mathematical

models, these PDEs can help understanding the interactions inside and between cells,

population dynamics, DNA molecules.

1.6.1 Exponential growth model
Exponential growth definition in math, is growth with a constant growth rate,

such that the y-values are multiplied by a constant amount for any given change in x.

When applied in biology, it is growth with constant growth rate.

Exponential growth can occur in biology if the population size is small,compared to the

environment.

du

dt
= cu, (1.12)

where u is the number of cells, and c is the population growth rate. This model assumes

that, the population rate of change, is proportional to the population size u.

By integration, we can obtain an analytic solution that describes the number of cells in

the population, as a function of time t and growth rate,

u(t) = u0e
ct, (1.13)

where u0 is the initial number of cells in the population. A typical exponential

growth curve is shown in figure. 1.1.

16



Figure 1.1
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Chapter 2

The Burgers equations

2.1 Introduction
Burgers equation[12] or Bateman-equation is a model of partial differential equations

non linear and convection diffusion equation, occurring in various areas of applied

mathematics, such as fluid mechanics, gaz dynamics, and traffic flow. The equation was

introduced by Harry Bateman in 1915, and later studied by Johannes martinus Burgers

in 1948. In this chapter we will search some particular solutions for this equation.

2.1.1 Types of the Burgers equations
There are two types of Burgers equation.

-First type

It is equation which is written in this form

ut = uux x ∈ R t ≻ 0, (2.1)

this equation is called also the non-linear conservation law.

-Second type

The equation is written in the following form:

ut = uux + uxx x ∈ R, t ≻ 0. (2.2)

18



There exist also another type of Burgers equation, called the forced Burgers equation

which is written in this form:

ut − uux − uxx = F (x, t, u) x ∈ R, t ≻ 0. (2.3)
we will study it in the chapter 3.

In this chapter, we will see three methods to solve the Burgers equations of the

first type and second type.

Firstly, we search two solutions forms as follow:

1. The self similar solutions

2. Travelling wave solutions.

Secondly, we use the Cole-Hopf transformation to search a solutions which is related
with

the heat equation.

2.2 Solutions to the first type of Burgers equation
We have the following equation,

ut = uux x ∈ R, t ≻ 0. (2.4)
Firstly, we want to find a particular solution of this equation, in the self similar form.

2.2.1 Self similar solution
Consider the following transformation, where the exponents α and β must be

found. We replace the following form of the solution in eq (2.4), we obtain:

u = tαϕ(ξ), ξ = x

tβ
, (2.5)

then :

ut = αtα−1ϕ(ξ) − βtα−1ξϕξ, (2.6)

and

19



uux = t2α−βϕϕξ,

so eq (2.4), become

αtα−1ϕ(ξ) − βtα−1ξϕξ = t2α−βϕϕξ,

we divide on tα−1, we get:

αϕ(ξ) − βξϕξ = tα−β+1ϕϕξ,

means that
β = α + 1,

we obtain

αϕ− (α + 1)ξϕξ = ϕϕξ,

In other hand we suppose∫
u(x, t)dx = 1 (conservation of mass).

So ∫
tαϕ(ξ)dξ = 1,

imply
tα+β

∫
ϕ(x)dx = 1,

so
α + β = 0,

then
α = −β.

Now we have: α = β − 1,
α = −β,

(2.7)

which mean that α = −1
2 , and β = 1

2 ,
so

−1
2ϕ− 1

2ξϕξ = ϕϕξ,

equal to

−1
2(ϕ+ ξϕξ) = 2

2(ϕϕξ),

20



we get:
−1

2(ξϕ)′ = 1
2(2ϕϕξ)

imply
−(ξϕ)′ = (ϕ2)′,

after the integration we get:
−ξϕ = ϕ2 + c,

if we put c = 0, (ϕ(0) = 0)

we obtain
ϕ(ξ) = −ξ.

Finally we have the self similar solution to the eq (2.4),

u(x, t) = − x√
t
. (2.8)

2.2.2 Travelling wave solution
Now we will try to find a travelling wave solution for Burgers equation first type,

ut = uux x ∈ R, t ≻ 0, (2.9)

we define the next transformation:

u(x, t) = v(ξ), (2.10)

where ξ = x− ct and c is the speed of the wave.

Now we replace (2.10) in the equation (2.9), we obtain an ordinary equation

−cdv
dξ

= v
dv

dξ
, (2.11)

this equal to
v(ξ) = −c, (2.12)

so the travelling wave solution for eq (2.9) is:

u(x, t) = −c.
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2.3 Solutions to the second type of Burgers equations
In this section, we will search for a particular solution to the Burgers equations

of second type.
ut = uux + uxx x ∈ R, t ≻ 0. (2.13)

We find firstly self similar solution, secondly a travelling wave solution, and also a

solution, with the Cole-Hopf transformation method.

2.3.1 Self similar solution
To search a self similar solution for eq(2.13),

we do this transformation:

u(x, t) = tαϕ(ξ),
with ξ = x

tβ , where the exponents α and β must be

found. So

ut = αtα−1ϕ− βtα−1ξϕξ,

and

uux = (t2α−βϕ)ϕξ,

and

uxx = tα−2βϕξξ,

after we replace the previews changes in Eq.(2.13),

we obtain

αtα−1ϕ− βtα−1ξϕξ = (t2α−βϕ)ϕξ + tα−2βϕξξ,

then we divide on tα−1, we get:

αϕ− βξϕξ = t1−2βϕξξ + t1+α−βϕϕξ,

then

1 − 2β = 0
1 + α− β = 0,
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imply
α = −1/2, and β = 1/2,

so,

−1/2 (ϕ+ ξϕξ) = ϕξξ + ϕϕξ,

means that,

−1/2(ξϕ)′ = ϕ′′ +
(
ϕ2/2

)′
,

after integrating we get:

ϕ′ +
(
ϕ2/2

)
+ 1/2 (ξϕ) = 0. (2.14)

Eq (2.14) is a Bernoulli equation, (see section (1.15)), with:

a(x) = 1, γ = 2, c(x) = 1/2ξ, b(x) = 1/2.

We divide the equation (2.14) on ϕ2,

we find
ϕ′ϕ−2 + 1

2 + 1
2
(
ξϕ−1

)
= 0, (2.15)

we put:

z(x) = ϕ−1,

imply
z′(x) = −ϕ′ϕ−2,

so eq (2.15) become
z′ − 1

2ξz = −1
2 . (2.16)

This is a linear differential equation for z,

let
p(ξ) = 1

2ξ, q(ξ) = −1
2 .

To solve eq (2.16), we have

1. µ = e
∫

p(ξ)dξ = e
∫

1
2 ξdξ = e

1
4 ξ2
.

1. µz =
∫
µq(ξ)dξ.
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So,
z = −1

2

(∫
e

1
4 ξ2
)
e− 1

4 ξ2
,

now we replace z to get ϕ(ξ),

then
ϕ(ξ) =

(1
2

(∫
e

1
4 ξ2
)
e− 1

4 ξ2
)−1

.

Finally, the self similar solution to the the Burgers equation is:

u(x, t) = 1√
t

(1
2

(∫
e

1
4

x2
t

)
e− 1

4
x2
t

)−1
.

2.3.2 Travelling wave solution
Consider the second type of burgers equation in the form:

ut + 2uux = uxx, (2.17)

we look for a travelling wave solution to eq (2.17), we put u(x, t) = v(ξ)

where ξ = x− ct, c being the speed of the wave.

We get:
ut = c

dv

dξ
,

and
ux = dv

dξ
,

also

uxx = d2v

dξ2 ,

our equation takes the form:

c
dv

dξ
+ 2vdv

dξ
+ d2v

dξ2 = 0, (2.18)

let
dv

dξ
= φ(v),

where φ(v) is an unknown function to be
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determined so,

d2v

dξ2 = d

dξ
φ(v),

so
dφ

dv

dv

dξ
= φ

dφ

dv
,

then we obtain from (2.17):
dφ

dv
+ 2v + c = 0,

we integrate for v, we get

φ(v) = −v2 − cv + C0, (2.19)
Let us consider the following conditions at infinity:

u(x → −∞, t) = u−, u(x → ∞, t) = u+,

which mean

dv(ξ → ±∞)
dξ

= 0,

so

φ(u+) = φ(u−) = 0,
imply that u− and u+ are the roots to the square

polynomial (2.19), then

φ(v) = −(v − u−)(v − u+), (2.20)
so

−v2 + v[u− + u+] − (u−u+), (2.21)

From comparison between (2.19) and (2.21) we get,

c = −(u− + u+),

C0 = −(u− − u+).
We know that φ(v) = dv

dξ
, then we can solve Eq (2.20) :

dv

dξ
= −(v − u−)(v − u+),

so
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− dv

(v − u+)(v − u−) = d(ξ),

so,
−
∫ 1

(v − u+)
1

(v − u−) =
∫

(dξ),

we obtain
log

∣∣∣∣∣v − u+

v − u−

∣∣∣∣∣ = (ξ − ξ0), (2.22)

where ξ0 is the integration constant.

Now, we can find v(ξ),
we have from eq (2.22),

v − u+

v − u−
= eξ−ξ0 ,

then
v[1 − eξ−ξ0 ] = u+ − u−e

ξ−ξ0 ,

we get

v = u+ − u−e
ξ−ξ0

1 − eξ−ξ0
,

we suppose u− = 0, and u+ = 1.

Finally the travelling wave for the second type Burgers equation is:

u(x, t) = v(ξ) = 1 +
(
1 + exp(ξ−ξ0)

)−1
. (2.23)

while the wave speed c = −1.

.
Figure 2.1 this is a figure of the exact solutions to the Burgers equation

second type.

Curves 1 to 4 show the wave profiles at t = 0, t = 20,

t = 40 and t = 60, respectively.
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Figure 2.1

2.3.3 The Cole-Hopf transformation
Now, we are going to apply the Cole-Hopf transformation on the second type of Burgers

equation ,
ut + 2uux = uxx, (2.24)

we put the following transformation:

u(x, t) = Ux

U
, (2.25)

we obtain

ut = UxtU − UxUt

U2
,

and

2uux = 2Ux

U

(
UxxU − U2

x

U2

)
,

also
uxx = UxxxU

2 − 3UxxUxU + 2U3
x

U3 ,

replace the changes in (2, 24), we obtain
(
Uxt

U
− UxUt

U2

)
+ 2Ux

U

(
Uxx

U
− U2

x

U2

)
=
(
Uxxx

U
3UxxUx

U2 + 2U
3
x

U3

)
, (2.26)
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then

Uxt

U
− UxUt

U2 + 2UxUxx

U2 − 2UxU
2
x

U3 = Uxxx

U
− 3UxxUx

U2 + 2U
3
x

U3 ,

so

(Ut − Uxx)x

U
+ Ux(Ut − Uxx)

U2 = 0, (2.27)

imply
UUxt − UxxxU + UxUt − UxUxx

U2 = 0.

then

UUxt − UxxxU + Ux[Ut − Uxx] = 0,

equals to

Ux[Ut − Uxx] = −UUxt + UxxxU,

equals to

Ux[Ut − Uxx] = −U [Ut − Uxx]x.

If U is a solution to the heat equation Ut − Uxx = 0,

it means that u(x, t), giving by transformation (2.25), solve our Burgers equation.

In other hand, eq (2.26) can be written as:

u = log(U)x,

we get,

U(x, t) = exp
(∫

u(x, t)dx
)
. (2.28)

Let us consider the initial value for Eq (2.24) in an infinite domain,

−∞ ≺ x ≺ ∞ , with the initial conditions being described by a

certain function u0(x),

it means that

U(x, 0) = U0(x) = exp
(∫ ∞

−∞
u0(ζ)dζ

)
, (2.29)
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so we have changed the eq (2.24) to this problem:

Ut − Uxx = 0, x ∈ R, t ≻ 0,
U(x, 0) = U0(x) = exp

(∫∞
−∞ u0(ζ)dζ

)
, x ∈ R.

(2.30)

2.3.4 Heat equation
Now we will solve problem (2.30), applying the Fourier transformation respect to x

(section (1.3)), on both the heat equation and the initial condition U0(x),

we obtain

Ût = ξ2Û , ξ ∈ R t ≻ 0
Û(ξ, 0) = Û0(ξ) ξ ∈ R,

where
Û(ξ, t) =

∫∞
−∞ U(x, t)eiξxdx.

The solution of this problem is:

Û(ξ, t) = 0̂(ξ)eξ2t.

To find U(x, t), we use the inverse Fourier transformation F−1,

U(x, t) = F−1(Û(ξ, t)) = F−1(Û0(ξ)eξ2t = U0(x) ∗ F−1eξ2t,

we have
F−1eξ2t = 1√

4πt
e−(x−ξ)2/4t,

we get
U(x, t) = 1√

4π

∫ ∞

−∞
U0(ξ)e−(xξ)2/4dξ.
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Finally, from the transformation (2.25) ,the solution of second type Burgers equation
is:

u(x, t) =
∫∞

−∞
x−ξ

t
U0(ξ)e

(x−ξ)2
4πt dξ∫∞

−∞
x−ξ

t
U0(y)e

(x−ξ)2
4πt dξ

. (2.31)
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Chapter 3

A forced Burger equation

3.1 Introduction
We shall now study the third type of Burgers equation, which called the forced Burgers

equation, abbreviated (FBE).

The forced Burgers equation is a Burgers equation with a non trivial right-hand side,

and F is an external force.

The general form of the forced Burgers equation is:

ut − 2uux − uxx = F (x, t, u). (3.1)

Eq. (3.1) is applied to population dynamics.

The general case F = F (x, t, u) is however very difficult to treat analytically.

instead, we will consider separately three cases: The first case, where F (x) = C which

called Constant forcing.

The second case, F = F (x), which called stationary forcing , And the third case,

F = F (x, t) which called the transient forcing.
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3.2 Exact Solutions for the forced Burgers equation
In the next section, we will find a particular solutions to the forced Burgers equation.

We begin with the first case.

3.2.1 Constant forcing
Let us consider the Burgers equation with a constant forcing:

ut − 2uux − uxx = C, C ∈ R. (3.2)

We will use two methods to find exact solutions to this equation.

The first method:

we search a traveling wave solution to this equation, we put the next transformations

u(x, t) = v(ξ),

where ξ = x− ct, so :

ut = dv

dξ
,

and
uux = v

dv

dξ
,

and
uxx = d2v

dv2 .

Replacing this changes into eq (3.2), we get

−d2v

dξ2 − 2vdv
dξ

+ dv

dξ
= C,

equals to

−d2v

dξ2 − (v2)′ + dv

dξ
= C,

because 2(v dv
dξ

) = (v2)′.

Now we integrate over ξ, we get:

−v′ − (v2) + v = Cξ. (3.3)
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Equation (3.3) is a Riccati equation ( see (1.4.1))

with, a(t) = −1, b(t) = 1, c(t) = Cξ,

to solve equation (3.3), we need to know the particular solution vp, so we can put

v = vp + 1
z(x) ,

imply

v′ =
(
dvp

dξ

)
−
(

1
z2
dz

dξ

)
.

Substituting the previews equations in eq (3.3), we get

−
(
dvp

dξ
− 1
z2
dz

dξ

)
−
(
vp + 1

z

)2
+
(
vp + 1

z

)
= Cξ,

these equals to
1
z2
dz

dξ
− dvp

dξ
− v2

p − 2vp

z
+ vp + 1

z
− Cξ = 0,

multiplying by z2:

dz

dξ
= z2

[
dvp

dξ
− v2

p + vp − Cξ

]
− z [2vp − 1] .

since vp is a solution to eq (3.3), then

dvp

dξ
− v2

p + vp = 0,

we obtain
dz

dξ
+ z [2vp − 1] = 0.

This is a homogenous linear differential equation order one,

so that zh = e−
∫

(2vp+1)ξdξ,

imply ze
∫

−(2vp+1)ξ =
∫
e−(2vp+1)ξdξ + C,

then z =
[∫
e−(2vp+1)ξ + e

∫
−(2vp+1)ξ

]
,
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going back to v = vp + 1
z

⇒ z = 1
v−vp

,

imply
v(ξ) =

(∫
e−(2vp+1)ξ + C

)−1 (
e−
∫

(2vp+1)ξ
)

+ vp.

We have already put u(x, t) = v(ξ).

Finally, the exact solution to the constant forcing Burgers equation is:

u(x, t) =
(∫

e−(2vp+1)(x−ct) + C
)−1 (

e−
∫

(2vp+1)(x−ct)
)

+ vp.

The second method:

to solve eq (3.2), we will use the Cole -Hopf transformation,

let us consider a new modification:

u = Ux

U
+ k, (3.4)

where k is a constant, while

ut = UxtU − UxUt

U2
,

and
2uux = 2

(
Ux

U
+ k

)(
UxxU − U2

x

U2

)
,

and
uxx = UxxxU

2 − 3UxxUxU + 2U3
x

U3 ,

replacing the above changes into (3.2), we get:

UtxU − UxUtUU
2 − 2

[
Ux

U
+ k

] [
UxxU−U2

x

U2

]
− 3UUxxUx − U2Uxxx

U3 = C,

imply

U2Uxt − UUxUt − 2UUxUxx + 2UxU
2
x − 2kU2Uxx + 2kU2

xU − UxxxU
2 + 3UxxUxU − 2UxU

3

U3 = C,

so
(Ut − 2kUx − Uxx)x = (k + C)x ,

we integrate over x, we get:
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Ut − 2kUx − Uxx = (k + C) .

Since the right-hand side of constant forcing Burgers equation, means that t = 0

ut = 0, we obtain a linear equation:

−2kUx = Uxx,

and k = −C, we will now solve the linear equation.

Let us look for travelling wave solution to eq: −2kUx = Uxx,

we put U(x, t) = v(ξ), with ξ = x−y(t), replacing these transformations into the linear

equation we get :

−
(
dy

dt
+ 2k

)
dv

dξ
= d2v

dξ2 . (3.5)

These imply that dy/dt+ 2k = ϕ(ξ), where ϕ(ξ) is a certain function, these

move is possible only if ϕ(ξ) = βξ + γ, we obtain:

dy

dt
+ 2k = βξ + γ,

which can be written as

dy

dt
+ 2C = β(x− y(t)),

so

y(t) = eβt(γ−2c).

We know y(t), and k, we can find v(ξ),

then:
−(2Cξ + γ)dv

dξ
= d2v

dξ2 .

Putting q(ξ) = dv
dξ

, the above equation become

q(−2C + γ) = dq

dξ
,

which lead to
q = e(βξ2+γξ),
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then we have v(ξ) = (1 + erf [β(ξ + γ)]) , where erf(z), is

the error function.

Coming back to U(x, t) = v(ξ), we obtain:

U(x, t) =
(
1 + erf

[
β(x− eβt(γ−2C) + γ)

])
.

Finally the exact solution to the Burgers equation with constant forcing is:

u(x, t) = C +
exp

[
−C(x+ eβt(γ−2C))

]
2[π/(4C)]erf [C(x− γe−2Ct

)].

3.2.2 Stationary forcing
Now consider the following stationary forcing Burgers equation:

ut − 2uux − uxx = f(x), (3.6)

to solve eq (3.2), we start with the Cole -Hopf transformation, we consider new modifica-
tion:

u = Ux

U
+ k(x), (3.7)

where k(x) is a function we must find,

with

ut = UxtU − UxUt

U2
,

and
2uux = 2

(
Ux

U
+ k(x)

)(
UxxU − U2

x

U2 + k′k

)
,

and
uxx = UxxxU

2 − 3UxxUxU + 2U3
x

U3 + (k′k′′ + kk′) ,

replacing the above changes in (3.6), we get:

UtUx − UxtU

U2 −2
[
Ux

U
+ k(x)

] [
UxxU − U2

x

U2

]
+(k′k)−2U3

x − 3UUxxUx − U2Uxxx

U3 (k′k + k′k′′) = f(x),

imply
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U (−UtUx + UUxt) − 2U [UxU +K] [UxxU − U2] + U3kk′

U3

−UxxxU
2 − 3UxxUxU + 2UxU

3 + U3 (k′k′′ + kk′)
U3 − f(x) = 0,

so (
Ut − 2kUx − Uxx

U

)
x

=
(
dk

dx
+ k2 + f(x) − C(t)

)
x

,

C(t) is a function of time.

Now we integrate over x, we obtain:

Ut − 2kUx − Uxx =
(
dk

dx
+ k2 + ψ(x) − C(x)

)
,

ψ(x), is the primitive of f(x), which means that

dψ

dx
= f(x).

The equation (3.6) is transformed into the above equation, where the left-hand side

which is under the form:

Ut − 2kUx = Uxx. (3.8)

And the right-hand side which is written as:

dk

dx
+ k2 = −ψ(x) + C(t), (3.9)

is a Riccati equation.

If k(x) is a solution to the Riccati equation (3.9), then U(x, t) is a solution to

eq (3.8) .

Equation (3.9) has the time only as a parameter, which mean that we can put C(t) = 0,

so

the Riccati equation equivalent to the Burgers equation in stationary space where
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ut ≡ 0. This mean that k is a stationary solution to eq (3.6),

and the transformation we’ve put (3.7) has a meaning. Then the linear equation (3.8)

become
−2kUx = Uxx. (3.10)

It is very difficult to solve the Riccati equation with a right hand side (3.9),

for that we will try to search a travelling wave solution to the equation (3.8),

we put

U(x, t) = v(ξ),

where
ξ = x− y(t),

replacing this change in eq (3.8),

we obtain

−
(
dy

dt
+ 2k(x)

)
dv

dξ
= d2

v
dξ2. (3.11)

this move is correct, only if the eq (3.11) contains x, and t for the new variable

ξ.

Now we put

dy

dt
+ 2k(x) = ϕ(ξ), (3.12)

since x and ξ are related in a linear equation (ξ = x− y(t)),

the change we have put on eq (3.12), is possible only when k and ϕ are linear

functions, which means that
k(x) = Bx+B1,

and
ϕ(ξ) = βξ + γ,
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where B, β,B1, γ are parameters.

Now, we replace k(x) = Bx+B1 in our Riccati equation (3.9), it become:

B + (Bx+B1)2 = −ψ(x) + C,

then we derive it over x, we obtain

d(B + (Bx+B1)2

dx
= −dψ

dx
.

so
f(x) = −2B(Bx+B1),

because
(f(x) = dψ

dx
).

We can put B1 = 0, the forced Burgers equation has a travelling wave solution

only when the force is linear to x, f(x) = −2B2x,

so B + (Bx+B1)2 = −
∫
f + C, then B + (Bx+B1)2 = B2x2,

matching the two above equation we get, B = C, and k(x) = Bx, we obtain:

dy

dt
+ 2Bx = βξ + γ = β(x− y(t)) + γ,

equal to
dy

dt
+ βy − γ = (β − 2B)x,

the previous equation is possible in case both of it sides are equal to zero

which mean β = 2B, and

dy

dt
+ βy − γ = 0. (3.13)

For t = 0 we get ξ = x, so y(0) = 0, then

dy

dt
= −βy + γ,

so
dy

y
= −(β + γ)dt,

then
y(t) = δ(1 − e−2Bt),
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with δ = γ/(2B),

after finding y(t) and k(x), we get:

−(2Bξ + γ)dv
dξ

= d2v

dξ2 ,

we put new variable p(ξ) = dv/dξ the above equation change to :

dp

dξ
= −(2Bξ + γ)p,

we can solve this equation :

dp

p
= (−2Bξ − γ)dξ.

So p = C.exp(−Bξ2 − γξ),

equivalent to

dv

dξ
= C.exp(−Bξ2 − γξ). (3.14)

There are two cases of B :

for B ≺ 0 has no mean in biology because p(ξ) will increase non stop when x goes
to infinity.

When B ≻ 0, we get the solution to (3.14):

v(ξ) = a+ b
(
1 + erf

[
B1/2(ξ + γξ)

])
,

where a and b are paremeters can be found by the initial conditions, erf(z) is the

error function.

Now replacing the value of ξ = x− y(t) and y(t) = δ(1 − e−2Bt),

getting :

U(x, t) = a+ b
(
1 + erf

[
B1/2

(
x+ δe−2Bt

)])
.

Finally, going back to eq (3.6) we obtain the exact solution of the Burgers equation

with stationary forcing, giving by
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Figure 3.1

u(x, t) = Bx+
exp

[
−B

(
x+ δe−2Bt

)2
]

µ+ [π/(4B)]1/2erfB1/2(x+ δe−2Bt) .

FIGURE 3.1 This is a figure of the exact solution to the stationary forcing

Burgers equation with k(x) = Bx. Parameters are :

δ1 = 40, δ2 = 25 δ3 = −30, x = 0.000001, x2 = 0.1, x3 = 0.899999, B = 0.5

and µ = 1.2532957,

41



3.2.3 Transient forcing
The previews case (stationary forcing), the right-hand side of the Burgers equation

depended on x, here the force depended both on t and x. The general form of the

transient forcing Burgers equation is:

ut − 2uux − uxx = f(x, t). (3.15)
It is clear to see that in this case transformation (3.7),

also leads to linear equation (3.8), where k now depends on x and t.

However ,the coupling equation is no longer a Riccati equation, but coincides

with the original equation , in the case of transient forcing.

Substitution (3.7) describes an "self transformation" of the solution so that,

if k(x, t) is a solution of the forced Burgers equation F , then

u(x, t) = Ux

U
+ k(x, t), (3.16)

is another solution (corresponding to different initial conditions), provided that

U(x, t) is a solution of Eq (3.8).

Relation(3.16) can be used to construct exact solution of the forced Burgers equation,

when F depends on time.

It is very difficult to resolve this case, but we can give an example which takes a

particular form.

Special case

As an example, let us consider the special case when forcing include time:

ut − 2uux − uxx = − ax

(t+ t0)2 , (3.17)

where a and t0 are parameters. in order to avoid singularities for t ≻ 0,
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we assume that t0 ≻ 0 it is readily seen that the function

k(x, t) = bx

t+ t0
, (3.18)

is a solution of Eq (3.17), if (b+ 2b)2 = a, the solutions of Eq.(3.17) may have

different properties depending on the sign of a and b.

Since our goal here is, more to show how the self transformation (3.16) can be

used to generate exact solutions of the Burgers equation with transient forcing, rather

than to investigate it in all details, we restrict our consideration to the case a ≻ 0.

The solution (3.18) by it self is unlikely to be of mush interest because its behavior

is too simple. However, it can be used to construct other solution with more

interesting properties. By replacing (3.17), the function u = k + (Ux/U),

is also a solution in case U(x, t) is a solution of the following equation:

Ut − 2bx
t+ t0

Ux = Uxx, (3.19)

the combination of x and t, in which they appear in Eq. (3.19), gives us a hint

that it may be possible to look for a self-similar solution, in the form

u(x, t) = w(θ), where θ = xϕ(t), and functions w and ϕ are to

be determined. having substituted it into Eq.(3.19) we obtain:(
xϕ−2∂ϕ

∂t
− 2bx

(t+ t0)ϕ

)
∂w

∂θ
= ∂2w

∂θ2 ,

the transition to self-similar variables is mathematically correct only in case the

expression in parentheses is a function of θ.

In order to satisfy this condition, we require that

ϕ−2∂ϕ

∂t
= λϕ,

1
(t+ t0)ϕ

= η−2ϕ, (3.20)
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where λ and η are certain constants, we immediately arrive to

ϕ(t) = η(t+ t0)−1/2,

λ = −0.5η−2.

Letting θ(x, 0) = x, we obtain η = t
1/2
0 .

Eq.(3.20) then takes the following form:

−2α2θ
∂w

∂θ
= ∂2w

∂wθ2 ,

where α2 = (b+ 0.25)/t0, The last equation is solved easily to the

following solution:
w(θ) = A1erf(αθ) + A2, (3.21)

where A1 and A2 are parameters determined by the initial conditions.

Taking into account (3.15), we arrive at the following exact solution of Eq.(3.16):

u(x, t) = bx

t+ t0
+ 2α√

π

(
t0

t+ t0

)1/2 exp(−α2θ2)
k + erf(αθ) . (3.22)

where k = (A2/A1)andθ = x[t0/(t+ t0)]1/2 For |k| ≻ 1,

the function given by (3.21) is continuous at all x and t ≻ 0, exact solution

(3.19) describes self-similar diffusion, and decay of a dome-shaped initial disturbance

of the linear distribution. The simple solution (3.15), was used (3.13), to generate

a more interesting solution (3.19).
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Conclusion

I n this work we have searched for solutions to the three types of Burgers equations,
we have studied the first type, and fond two solutions and for the second type we fond

three solutions, also the third type which called the forced Burgers equation, we resolve it
in her three cases, constant forcing, stationary forcing and the transient forcing.

We have used many methods, the first method is the self-similar method, the travelling
wave solutions and the Cole-Hopf transformation.

We have detailed all forms of these methods and finding an analytical solutions for all
the three type of Burgers equation. The only case where it is not possible to calculate
analytical solution is in the third type, where the right side depend on x,t and u.

The last case will be treated in futur work.
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Résumé

Ce travail a pour objet l’étude des méthods de réduction pour l’EDPs non-linear,

particuliérement, l’étude de l’équation de Burgers sous ses trois formes et

en servant de trois méthode de auto similarité solutions,l’équation des ondes

et on utilisé le transformation de Cole-Hopf pour obtenie une equation de Burgers en

EDO, de plus trouver la solution auto similaire et travelling a travers des cas

particuliers.

Mots clés

Equation de Burgers, solution auto similaire, le onde progressive, Cole-Hopf transforma-
tion.

Summary

The object of this work is the study of reduction methods for non-linear EDPs, in particular

the study of the Burgers equation in its three forms and using my method of self-

similarity, and we used the Cole-Hopf transformation to obtain an equation of Burgers

in EDO, moreover find the similar auto solution and traveling through special cases.

Key words

Burgers equation, similar auto solution, the progressive wave, Cole-Hopf transformation.
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