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Abstract
This paper investigates the merits of Mergers & Acquisitions (M&A), as strategic deci-
sions, in optimizing energy use. The impact of M&A decisions on reducing energy con-
sumption and, as a result, GHG emissions, are evaluated through the inverse data envelop-
ment analysis (DEA) approach. Moreover, a new index, identified as synergy merge index 
(SMI), is developed to measure the merger’s synergetic effect and determine accordingly 
the most productive merger plan.
Although the proposed methodology could be applied in any sector where energy use opti-
mization is of interest, the investigations were carried out in the greenhouse (GH) pro-
duction through a sample of 30 GH farms from Al-Batinah region, Oman. The standard 
DEA model declared 40% of the GH farms efficient, with an average technical efficiency 
of 0.872, yet, the inverse DEA results revealed that nearly 45% of the productive mergers 
involve at least one efficient GH farm, i.e., energy gains are still possible even if the merg-
ing farms are presumably efficient. The post-merger GH farms showed a substantial poten-
tial for energy gains, ranging between 17.56 and 74.47%, on average, with the most signifi-
cant proportions observed for electricity. The highest notable proportions of energy gains 
reached 81.26%, 78.13%, 89.74%, 75.60%, 90.36%, and 77.41% for fertilizers, machinery, 
water chemicals, electricity, and labor, respectively. The most productive merger plan 
revealed that GH farm mergers farms can improve the energy savings by a factor of more 
than 4, where the share of electricity represents alone 94.92%, followed by 3.83% for fer-
tilizers and only 0.60% for water. These findings unequivocally demonstrate that mergers 
can have a considerable impact on enhancing energy efficiency, which, along the way, pro-
vides strong support for the implementation of local policies that endorse mergers as a 
viable strategy to achieving optimal energy utilization.
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1  Introduction

More than half of carbon emissions causing global warming are from burning fossil fuels 
(US-Environmental Protection Agency, 2015), to such an extent that a reduction of carbon 
dioxide (CO2) emissions to 350 ppm in the atmosphere may prevent no less than 2 °C tem-
perature rise (Mathiesen et al., 2011). Carbon emissions can also affect negatively people’s 
health as a result of potential increase of smog and air pollution (WHO, 2019).

It was reported that the agricultural sector’s emissions amount 670 million tons of CO2, 
corresponding approximately to 14% of the global warming impact (Nguyen et al., 2010). 
Therefore, ensuring efficient energy use is a major priority to mitigating environmen-
tal impacts and greenhouse gas (GH) emissions, besides reducing production costs and, 
consequently, improving market competitiveness (Mohammadi et  al., 2014; Unakıtan & 
Aydın, 2018).

Dulling the negative effects of CO2 emissions requires more penetration of alternative 
clean energy sources, such as wind and solar energy, in the design of new electric energy 
production systems (Papaefthymiou & Dragoon, 2016), along with ingenious managerial 
tools for the optimization of energy usage. Thus, developing robust tools becomes neces-
sary to identify the energy consumption patterns that may boost the energy use efficiency 
as well as the sustainability of production systems (Yildizhan & Taki, 2019).

Data envelopment analysis (DEA) stands out as an extensively applied technique in 
agricultural efficiency research (Oukil & Zekri, 2021). Due to its nonparametric nature, 
the DEA methodology utilizes linear programming as a modeling framework to assess 
decision-making units (DMUs) relative to benchmarks that are possibly identified within 
the related homogeneous groups (Amin & Oukil, 2019b). DEA offers a notable advantage 
in its aptitude to deal with DMUs that are characterized by numerous inputs and outputs 
(Oral et  al., 2015). Notably, DEA serves as a valuable tool for distinguishing inefficient 
DMUs and pinpointing the factors, i.e., inputs or outputs, that require reduction or expan-
sion to enhance the overall performance of the unit (Hassan & Oukil, 2021). Moreover, 
as opposed to stochastic frontier analysis (SFA), DEA is able to achieve such assessment 
without necessitating neither specific functional forms for the data nor reliance on prob-
ability distributions (Oukil & Govindaluri, 2017; Sow et al., 2016).

Owing to its robust methodological framework, DEA’s application scope is well rec-
ognized in optimizing energy consumption along with reducing environmental impacts of 
open field agricultural systems, where a variety of crops are cultivated, such as sugarcane 
(Ullah et al., 2019), apple (Zalaghi et al., 2021) and cotton (Singh et al., 2022), some of the 
most recent applications.

In the GH production, the contribution of DEA to energy efficiency is restricted to a few 
crops, including tomato (Nourani & Bencheikh, 2020), and cucumber (Soheilifard et al., 
2021), which have apparently been studied exclusively in Iran and Algeria, two countries 
categorized as arid regions. In these studies, there is a consensus among all researchers that 
energy overconsumption is an inveterate trait of the GH production, regardless of the culti-
vated crop. Hence, the GH production is one of the most intensive agricultural production 
systems in terms of energy consumption as well as investments and yield (Bolandnazar 
et al., 2014).

The traditional application of the DEA approach to optimizing energy consumption often 
starts with a categorization of the GH farms into efficient and inefficient. Once the inef-
ficient GH farms have been duly identified, potential energy savings are estimated through 
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the associated slack values (Tho & Umetsu, 2022). Even so, it is still worthwhile to inquire 
whether the efficiency improvement scheme produced through slack analysis tactically the 
best.

To answer this question, we propose a restructuring strategy built on sharing resources 
among the GH farms instead of addressing inefficiency on an individual GH farm basis. The 
business transaction entailing consolidation of assets and resources within a group of DMUs 
is a corporate decision that falls under the strategic frame, referred to as Mergers & Acquisi-
tions (M&A). Its primary objective is fundamentally fostering the collective production capa-
bilities of the group (Gerami et al., 2021).

In the framework of mergers’ assessment, the majority of DEA applications tend to focus 
on the estimation of the post-merger improvements in cost and profit efficiency, considering 
the levels of the existing inputs and/or outputs (Zeinodin & Ghobadi, 2020). Regarded from 
a more practical perspective, a decision maker (DM) may preferably adopt a rather prudent 
attitude by anticipating, even before the merger occurs effectively, the required amounts of the 
inputs and/or outputs that would allow the intended merger to accomplish an efficiency target, 
set a priori but does not need to necessarily be 100%. Inverse DEA (InvDEA) emerged as the 
best method to address such a scenario (Pendharkar, 2002). Lin et al. (2020) is the only M&A 
related study where InvDEA is applied to the energy sector, besides agriculture (Oukil, 2023; 
Oukil et al., 2022b) and higher education (Amin & Oukil, 2019a). All the remaining applica-
tions are found in the banking sector, See Emrouznejad and Amin (2023) for a recent review.

In light of the literature reviewed to date, the present paper’s contribution resides in (1) 
emphasizing the merits of M&A for energy optimization, regardless of the application con-
text; (2) evaluating the impact of M&A decisions on reducing energy consumption and, as 
a result, GHG emissions; (3) applying inverse DEA as a modeling tool for quantifying the 
energy gains that can be generated through potential merger decisions and (4) developing a 
new index, identified as synergy merge index (SMI), to measure synergy of a post-merger unit.

The real-world relevance of the recommended methodology is evidenced through an in-
depth investigation conducted on 30 GH farms situated within Oman’s Al-Batinah region. 
This investigation is exclusively dedicated to the GH production of cucumber, a crop that 
holds a pivotal importance within the country’s GH agricultural landscape. The cucumber 
production not only dominates the GH cultivation sector but also represents the singular GH 
product exported from Oman.

Finally, it is essential to emphasize that, although the entire investigation is centered on the 
GH agriculture production as an illustrative contextual setting, the scope of application of the 
new procedure is readily expandable to encompass a larger spectrum of other industries facing 
energy-related challenges.

The rest of the paper proceeds as follows: In Sect. 2, we delve into the description of the 
study area. Section 3 presents the foundational aspects of the proposed procedure, encompass-
ing concepts tied to DEA, as well as an exploration of the inverse DEA model. Moving on 
to Sect. 4, we offer an extensive discussion of the findings based notably on our case study. 
Section 5 introduces of a novel methodology dedicated exclusively to the optimal selection 
of post-merger partners. Lastly, in Sect. 6, we encapsulate the managerial implications arising 
from the proposed procedure, concluding with our final remarks.
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2 � Study area

Oman, situated along the Tropic of Cancer, falls within the category of some of the 
hottest and driest regions in the world. However, it is worth noting that the southern 
part of the country experiences a tropical climate (Oukil & Al-Zidi, 2018). With tem-
peratures exceeding 50  °C, scarce rainfall and persistent drought, Oman’s agricultural 
sector is completely dependent on irrigation (Naifer et al., 2011; Zekri, 2008). Despite 
these harsh conditions, the Omani government continues its journey toward transform-
ing its oil wealth into large-scale economic growth, which involves agriculture as one 
of the vital sectors. A series of incentive programs are underway to promote new irriga-
tion systems and GH farming (Al-Mezeini et al., 2020). The implementation of the GH 
technology is favorable to the arid climate of Oman as it increases humidity inside the 
GH and contributes 60–80% reduction in crop evapotranspiration, which represents a 
significant water saving, compared to outdoor farming (Al-Ismaili & Jayasuriya, 2016; 
Fernandes et  al., 2003). Nevertheless, the GH production is primarily dependent on 
the availability of water resources for both irrigation and fan-pad cooling systems. The 
water requirements for the cooling systems alone represent about 67% of the total water 
demand (Al-Mulla, 2006). Moreover, alike most farming systems, a diversity of energy 
types are used over the crop production, the irrigation mechanisms, the chemical fertili-
zation, and the applications of synthetic pesticides and herbicides (Raheli et al., 2017). 
The large dependence on fossil energy sources being established for the GH cultivation, 
it is worth emphasizing its effect not only on human health but also on the atmosphere 
via the nexus GH emissions-climate change phenomenon (Bolandnazar et al., 2014).

The GH agriculture production is primarily concentrated in Al-Batinah South, which 
happens to be Oman’s most agriculturally intensive region. Cucumber cultivation takes 
a prominent role in this area, representing a dominant force through 89% of the entire 
GH agriculture production capacity (MAF, 2014) (Fig. 1).

Al-Batinah South is situated in the northern part of Oman, roughly 300 km northwest 
of Muscat, along the western coastline of the Sea of Oman. Its geographical coordinates 
range from latitudes 23°42′28″ to 23°32′55″ N and longitudes 57°19′49″ to 58°03′28″ 
E.

Dry climatic conditions with a pronounced rate of evaporation are the key character-
istics of the Al-Batinah region. It is predominantly renowned for mild winters with low 
humidity levels and very hot, but occasionally humid, summers, with possible occur-
rence of sporadic and unpredictable showers. In the coastal areas, the average long-term 
annual air temperature stands at 28.5 °C, whereas in the mountainous regions, it aver-
ages 17.8 °C. In stark contrast to the coastal zone, the southern highland region expe-
riences heavy rainfall as a common occurrence. Over an extended period, the region 
records an average annual precipitation of 50 mm, marked by considerable rainfall vari-
ability over time and location. High-rainfall years are often followed by extended dry 
periods (Kwarteng et al., 2009).

In recent years, Al-Batinah region witnessed significant expansion in its agricultural 
activities (Choudri et al., 2015). This agricultural growth within Al-Batinah contributes 
to over 53% of Oman’s total cultivated land and serves as the primary source for the 
production of vegetables destined to the markets of the capital Muscat and the coastal 
city.

Among the six cities in Al-Batinah South, Barka stands out with 53% of the GH 
farms, and Al-Musannah comes next with 23%, while the remaining portion is 
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distributed among the others. Notably, the majority of GH farms fall under the category 
of "small scale," averaging 6.7 GHs per farm, with 55% of these farms operating with 
fewer than 5 GHs (Al-Maimani et al., 2019).

3 � Methodology

The cucumber GH production accounts for the most significant proportion of Oman’s GH 
facilities, nearing 89%. As such, cucumber GH farms are the exclusive focus of the pre-
sent study as a viable sample to represent the GH agricultural production. Furthermore, 
concentrating on GH producers cultivating the same crop guarantees a consistent level of 
technological homogeneity, which is a prerequisite for employing conventional DEA mod-
els (Oukil et al., 2016).

Fig. 1   Al-Batinah South on the map of Oman (Al-Maimani et al., 2019)
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The BCC and the CCR models, developed, respectively, by Banker et  al. (1984) and 
Charnes et  al. (1978), are the DEA models that are most frequently used for efficiency 
evaluation.

Irrespective of the specific model used, it is assumed that the resources of GH farms are 
fully controllable, and the central issue at hand is determining the most efficient management 
approach for these resources. In this regard, the study context aligns well with a DEA input-
oriented model (Soltani et al., 2021).

3.1 � Assessment of GH farm efficiency

Let’s consider the problem of assessing G GH farms, where I and J represent the numbers of 
inputs x and outputs y for each GH farm GHg . Taking into account the production process, 
GHg is demarcated by its inputs xig and outputs yjg, for i = 1, ..., I and j = 1, ..., J. Consider-
ing GH farm GHo = (xo yo), its efficiency score e∗

o
 can be computed via the following DEA 

model:

Model BCC adopts an input orientation stance with variable returns to scale assumption. 
In other words, the DM is interested to know more about the inputs that must be reduced to 
improve the performance of an inefficient GH farm GHo , assuming its outputs unchanged. As 
such, e∗

o
, which is the optimal efficiency of GHo represents the minimal input reduction level 

that is needed for GHo to upgrade its status to full efficiency (Oukil & Govindaluri, 2020). 
Consequently, GHo is considered efficient if e∗

o
= 1 ; otherwise, it is deemed inefficient, imply-

ing that it is not utilizing its inputs in an optimal way. Constraints (1) and (2) describe the 
projection of GHo on the efficiency frontier and establish formally that its inputs and outputs 
are linear combinations of the reference points. Constraint (3) serves as the convexity con-
straint. The intensity vector � = (�1 �2... �G) is the weighting scheme associated with the 
peers involved in evaluating GHo (Oral et al., 2014).

Let’s denote the optimal vector �∗ = (�∗
1
�∗
2
... �∗

G
) . A scenario where 𝛼∗

g
> 0 signifies that 

the strongly efficient farm GHg could potentially serve as a benchmark for GHo In this case, 
the reference set for GHo encompasses all feasible benchmark farms. Hence, the value of �∗

g
 is 

practically interpreted as the level of endorsement provided by farm GHg to GHo with regard 
to achieving its efficiency goals (Oukil et al., 2021).

We utilize s∗
io

 to calculate the savings required from GHo in terms of input i:

s∗
io

 is known as the slack value of input i and it is derived from the set of constraints (1).

(BCC)

e∗
o
= min �

s.t.
G
∑

g=1

�gxig ≤ �xio i = 1, ..., I (1)

G
∑

g=1

�gyjg ≥ yjo j = 1, ..., J (2)

∑G

g=1
�g = 1 (3)

�g ≥ 0 g = 1, ...,G

(4)s∗
io
= e∗

o
x
io
−

G
∑

g=1

�∗

g
x
ig
i = 1, ..., I
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s∗
io
= 0 for i = 1, ..., I and �∗ = 1 denote the conditions for GHo to be strongly efficient. 

On the other hand, if e∗
o
= 1 but some or all of the values of s∗

io
 are strictly positive then, 

GHo is weakly efficient (Moghaddas et al., 2022).
In the following section, we introduce the input-orientation form of the InvDEA linear 

program, which allows the evaluation of mergers involving pairs of GH farms.

3.2 � Inverse DEA model for mergers

For the sake of modeling simplicity, we assume that there are two GH farms, GHA and 
GHB, planning to merge and form a new GH farm, which is hypothetically larger, denoted 
as Fm. However, it is worth noting that this assumption does not exclude the applicability of 
the proposed methodology to the mergers of more than two farms.

Let � represent the preset efficiency target for the post-merger GH farm Fm. When 
employing a DEA input-oriented approach, Fm preserves all the pre-merger outputs of GH 
farms GHA and GHB, while using the bare minimum of the corresponding input levels in 
order to achieve �.

Let �iA and �iB be the minimum quantities of the ith input associated with GHA and GHB, 
respectively. As a result, the ith input level for Fm becomes �iA + �iB, whereas its jth out-
put level remains yjA + yjB , with i = 1,… , I and j = 1,… , J. Finding the optimal levels of 
inputs for Fm, under the aforementioned conditions, is an inverse optimization problem that 
can be modeled as follows (Amin & Ibn Boamah, 2020; Gattoufi et al., 2014).

The above InvDEA is referred to as an inverse DEA model due to the fact that the opti-
mization problem is not any more concerned with finding the efficiency score for given 
amounts of inputs and outputs; Instead, the efficiency score � is now a known parameter, 
and the DM is rather interested in finding the minimum levels of inputs that are just needed 
for the merger Fm to reach �, i.e., the optimal values �∗

iA
 and �∗

iB
 for i = 1,… , I.

Let P represent the set of GH farms that are involved in evaluating Fm. The set P can 
be presented under two configurations. (1) P includes either GHA or GHB , which matches 
a survival. (2) Neither GHA nor GHB belong to P, which depicts a consolidation (Amin & 
Oukil, 2019a). In a survival, the acquiring GH farm will carry on operating with its previ-
ous name. However, in the case of a consolidation, the merging farms combine to form a 
new farm with a new name, such as Fm. Since the present study aims to enhance GH farm 
efficiency through consolidation, neither of the two merging GH farms is intended to be 
present in P.

Notwithstanding the type of merger, the intensity variables �k will be restricted to 
k ∈ P, which necessarily comprises �m corresponding to Fm. If the only optimal solu-
tion to the (InvDEA) model consists of �m = 1 and � = 1 , the merger becomes a major 

(InvDEA)

min
I
∑

i=1

(�iA + �iB)

s. t.
∑

k∈P

�kxik + �m(xiA + xiB) − (�iA + �iB) × � ≤ 0 i = 1,… , I

∑

k∈P

�kyjk + �m(yjA + yjB) ≥ (yjA + yjB) j = 1,… , J

∑

k∈P

�k + �m = 1

0 ≤ �iA ≤ xiA, 0 ≤ �iB ≤ xiB i = 1,… , I

�k ≥ 0, k ∈ P, �m ≥ 0
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consolidation (Amin & Ibn Boamah, 2020). A major consolidation is a scenario where 
the optimal values satisfy the equations �∗

iA
= x

iA
 and �∗

iB
= x

iB
 for i = 1,… , I.

4 � Application

4.1 � Data sampling

Data were systematically collected throughout the entire cropping season from a sam-
ple of 30 GH farms. To gain insights into cucumber GH production, the farmers were 
handed data sheets, enabling them to meticulously record information about both yield 
(output) and the array of resources (inputs) employed. The study encompassed a com-
prehensive examination of six inputs, which included labor (x1), machinery (x2), fertiliz-
ers (x3), chemicals (x4), water (x5), and electricity (x6), alongside the sole output variable, 
yield (y). For reference, Table  1 presents a concise summary of the values associated 
with these variables per hectare of land, as drawn from the sample of 30 GH farms.

The determination of energy-equivalent values has been accomplished through the 
utilization of a set of energy-equivalent coefficients, which are documented in Table 9. 
These coefficients were collated from an extensive array of literature sources, ensuring a 
comprehensive and reliable compilation. Figure 2, in turn, exhibits a graphical represen-
tation of the energy allocation proportions per individual input across the entire dataset 
of cucumber GH farms.

Electricity and fertilizers stand out as the primary consumers of energy, account-
ing for the highest proportions at 85.02% and 12.69%, respectively. This dominance of 
electricity as the foremost energy-consuming input is quite expected, given that all GH 
facilities rely on fan-pad cooling systems to maintain an optimal environment for crop 
growth. Additionally, the reliance on groundwater as, almost, the only source of irriga-
tion necessitates the use of electric pumps for water extraction, which contributes sig-
nificantly to the overall electricity consumption.

Table 1   Descriptive summary of the data sample

Data Unit Quantity per ha Energy equivalent 
(MJ ha−1)

Proportion (%)

Inputs
 Labor h 3878.16 7601.20 0.83
 Machinery h 105.66 1379.89 0.15
 Fertilizers kg 19,507.67 116,891.38 12.69
 Chemicals kg 52.88 6345.92 0.69
 Water m3 5696.85 5810.79 0.63
 Electricity kWh 65,656.75 783,284.97 85.02

Total energy input 921,314.16 100.00
Output
 Cucumber kg 123,454.80 98,763.84

Total energy output 98,763.84
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4.2 � Energy input–output analysis

To reach a thorough understanding of the energy dynamics within the cucumber GH pro-
duction, we computed the following energy indicators:

A high Energy use efficiency ratio indicates a more efficient utilization of input energy. 
In our case, a ratio of 0.1072 implies that the production process of a single MJ of energy 
output necessitates at least 9.3285 MJ of energy inputs. In comparison to the findings of 
other studies, carried out within similar GH production conditions, Taki et  al. (2012), 
Bolandnazar et al. (2014), Firoozi et al. (2014) and Pahlavan et al. (2012) have reported 
notably superior ratios of 0.56, 0.51, 0.26, and 0.29, respectively, indicating more efficient 
energy usage than what we have observed in our study. It is worth noting that Khoshne-
visan et al. (2013) are the sole authors to report a ratio of 0.0912.

Here, high values of Energy productivity indicate a more productive GH production 
system. In our study, we find that only 134 g of cucumber is produced for every 1 MJ of 
energy input. In practical terms, this means that a GH farmer must spend 7.4628 MJ of 
energy to produce 1 kg of cucumber, which is an extremely low productivity when com-
pared to, for instance, the 0.64 kg/MJ reported by Bolandnazar et al. (2014).

The specific energy is the input energy to yield ratio of the farms in the cucumber GH 
production system. As the reciprocal of the energy productivity, the smaller its value, the 
better.Net Energy = Energy Output (MJ ha−1) − EnergyInput (MJ ha−1)

Net energy represents the overall energy flow balance between the resources and the 
yield. It assumes a negative value when energy use efficiency is below 1, indicating energy 

Energy Use Efficiency =
Energy Output (MJ ha−1)

Energy Input (MJ ha−1)
= 0.1072

Energy Productivity =
Cucumber yield (kg ha−1)

EnergyInput (MJ ha−1)
= 0.134 kg/MJ

Specific Energy =
Energy Input (MJ ha−1)

Cucumber yield (kg ha−1)
= 7.4628 MJ/kg

Fig. 2   Distribution of energy 
inputs of cucumber GH produc-
tion
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loss, whereas it becomes positive when energy use efficiency exceeds 1 In our study, the 
calculated Net Energy stands at − 822.55 GJ/ha, which can be interpreted as an energy 
deficit or loss of 822.55 GJ/ha within the context of the research.

4.3 � Assessing the performance of GH farms

The optimal efficiency score e∗
g
 along with the corresponding optimal intensity vector �∗

�
 

are computed for each GH farms GHg, for g = 1, ..., 30, by solving the associated BCC 
model. The IBM-ILOG CPLEX software is duly used for this purpose. A concise presenta-
tion of the results is provided in Table 2.

Table 2   GH farms’ DEA efficiency results with slack values

GH farm e∗
g

Slack values (MJ ha−1)

Labor s∗
1g

Machinery s∗
2g

Fertilizers s∗
3g

Chemical s∗
4g

Water s∗
5g

Electricity s∗
6g

GH01 0.8819 1005.55 95.34 6461.55 936.58 1182.13 155,882.33
GH02 0.8614 995.70 270.69 10,885.87 251.08 1257.38 183,962.09
GH03 1 0 0 0 0 0 0
GH04 0.9057 886.17 81.01 5166.19 306.01 920.93 115,588.49
GH05 0.6991 1425.13 436.60 18,907.66 3209.30 3059.72 190,142.03
GH06 0.5612 6060.51 1172.94 113,394.29 3271.72 4542.01 496,557.71
GH07 0.9986 3.18 1.11 161.99 15.13 12.09 1518.60
GH08 1 0 0 0 0 0 0
GH09 1 0 0 0 0 0 0
GH10 0.7792 2198.47 366.22 36,553.88 466.89 1097.34 223,564.97
GH11 0.5140 6562.30 705.26 57,355.45 3645.12 2211.43 438,804.00
GH12 1 0 0 0 0 0 0
GH13 0.5049 3154.05 692.84 59,543.87 1545.55 1740.11 264,523.54
GH14 1 0 0 0 0 0 0
GH15 0.5830 3632.41 620.61 56,021.49 4975.32 3099.76 321,005.89
GH16 0.9999 2.01 0.11 4.59 0.74 0.48 128.20
GH17 0.6637 2472.72 656.90 25,213.56 862.27 702.05 258,493.45
GH18 1 0 0 0 0 0 0
GH19 1 0 0 0 0 0 0
GH20 1 0 0 0 0 0 0
GH21 0.8094 2228.83 291.20 50,894.42 1421.45 637.58 50,665.78
GH22 1 0 0 0 0 0 0
GH23 0.7929 581.53 276.78 74,700.42 1307.91 2213.65 118,749.31
GH24 1 0 0 0 0 0 0
GH25 1 0 0 0 0 0 0
GH26 0.7875 2707.71 308.41 33,690.71 2213.91 317.39 64,396.11
GH27 0.9175 721.22 107.47 11,087.53 984.69 170.88 52,505.54
GH28 1 0 0 0 0 0 0
GH29 0.9197 285.40 122.69 7255.36 402.17 481.12 33,789.09
GH30 0.9803 207.76 29.30 1284.96 52.83 72.14 12,533.53
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The efficiency stands, on average, at 0.8720 together with a standard deviation of 
0.1649. These statistics point to a notable degree of inefficiency within the sample of 
cucumber GH farms under study. It is also worth noting that 12 out of the 30 GH farms, 
that is 40%, are identified as strongly efficient. The latter proportion is comparable with a 
36% level in Taki et al. (2012) while the average efficiency score is slightly below the score 
of 0.90 reported in Soheilifard et al. (2021).

Other cucumber GH production studies revealed average scores of 0.95 (Taki et  al., 
2012) and 0.99 (Bolandnazar et al., 2014; Firoozi et al., 2014; Khoshnevisan et al., 2013).

In order to reach efficiency, inefficient GH farms GHo need to reduce energy consump-
tion by the slack value s∗

io
 for each input i (i = 1, ..., 6).  The latter values are the energy 

savings that are required from inefficient GH  farms if they are aiming to achieve strong 
efficiency while keeping the energy outputs unchanged. Table 3 presents the energy saving 
pattern of the cucumber GH production per resource.

Through the results shown in Table 3, it appears that the overall input energy savings 
are 3997.49 GJ ha−1, with electricity accounting for 74.62% of the total, followed by fer-
tilizers at 14.22%. As a result, there is significant opportunity to increase energy usage 
efficiency by applying appropriate methods for optimal electricity and fertilizer utilization. 
The obtained energy saving index percentage is 13.06%. In more practical terms, assuming 
all inefficient GH farms succeed in improving their daily farming operations with regard to 
energy usage, the total energy savings achievable will not surpass 13.06%. This percentage 
is low contrasted to the highest value of 24.46% (Khoshnevisan et al., 2013) but slightly 
above the lowest value of 8.12% (Taki et al., 2012), reported by these authors for cucumber 
GH production systems.

The lower the input savings, the less work is required to increase efficiency when a 
GH farm’s performance is assessed as a standalone unit. However, reviewing the strategy 
becomes necessary once the impact of a certain input is likely to be globally perceptible, 
as is the situation with energy and its environmental effects (Oukil et al., 2022a). In the 
sections that follow, we suggest GH farm merger as a method for strategically optimizing 
resources and look at how it affects energy savings.

4.4 � Mergers of GH farms

Using the selected GH farms as a sample, we applied the InvDEA model to assess every 
potential pairwise GH farm merger, denoted as Fm = (GHA, GHB), where A ≠ B. In each 
case, we set the efficiency target at � = 1.  Given that we have a total of G = 30 GH farms, 

Table 3   Energy savings per resource

Input Present use (MJ ha−1) Target use (MJ ha−1) Energy saving (MJ ha−1) Contribution 
to savings (%)

Labor 228,036.02 192,905.36 35,130.66 0.88
Machinery 41,396.70 35,161.19 6235.51 0.16
Fertilizers 3,506,741.51 2,938,157.70 568,583.80 14.22
Chemicals 190,377.71 164,509.01 25,868.70 0.65
Water 174,323.73 150,605.53 23,718.20 0.59
Electricity 23,498,549.20 20,515,738.55 2,982,810.65 74.62
Total 30,602,339.98 26,604,848.82 3,997,491.16 100.00
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there exist 435 potential mergers Fm.  The solution of the successive 435 InvDEA models 
to optimality reveals that 205 out of the 435 evaluated mergers qualify as major consolida-
tions, where the post-merger GH farm Fm preserves the entire amounts of inputs from the 
merging GH farms, GHA and GHB, i.e., �∗

iA
= xiA, �∗iB = xiB, for all i = 1, ..., 6, and �∗

m
= 1. 

In the other hand, there are 230 post-merger GH farms that exhibit potential for enhanced 
productivity.

In the interest of space, Table 4 displays only the mergers involving GH01.

The most striking feature of these results is certainly the fact that almost 45% of the 
mergers involve at least one efficient GH farm, with 13 mergers comprising exclusively 
strongly efficient GH farms. Though no further input gains are possible from an efficient 
GH farm that operates individually, the latter results suggest that the situation can be differ-
ent under a merger scenario. Specifically, input gains are possible through mergers, even if 
the merging GH farms are both efficient.

Let’s look, for example, at the post-merger GH farm F4 that involves GH01 and GH05. 
Table 4 shows clearly that the creation of requires GH01 and GH05 to contribute, respec-
tively, with minimum energy levels of �∗

11
= 7760 and �∗

15
= 0 for labor, �∗

21
= 807 and 

�∗
25

= 758 for machinery, �∗
31

= 54721 and �∗
35

= 62843 for fertilizers, �∗
41

= 7932 and 
�∗
45

= 3122 for chemicals, �∗
51

= 4017 and �∗
55

= 0 for water, and �∗
61

= 293906 and �∗
65

= 0 

Table 4   GH farm mergers with potential energy usages

Farms Labor Machinery Fertilizers Chemicals Water Electricity

Fm GHA GHB �∗
1A

�∗
1B

�∗
2A

�∗
2B

�∗
3A

�∗
3B

�∗
4A

�∗
4B

�∗
5A

�∗
5B

�∗
6A

�∗
6B

F1 GH01 GH02 7647 0 807 539 54,721 78,558 7932 1812 4552 0 606,046 0
F2 GH01 GH03 5246 0 807 246 54,721 34,805 7932 1734 4622 0 662,587 0
F3 GH01 G04 5816 0 807 291 54,721 54,793 7932 1874 4710 0 690,363 0
F4 GH01 G05 7760 0 807 758 54,721 62,843 7932 3122 4017 0 293,906 0
F5 GH01 G06 8516 4451 0 2124 13,641 258,422 5235 7456 4358 0 319,214 0
F6 GH01 G07 8516 482 807 816 54,721 118,643 0 9347 3236 0 234,460 0
F7 GH01 G08 8516 135 0 1726 45,036 86,439 0 11,495 3868 0 195,614 0
F8 GH01 G10 8516 2028 124 1658 54,441 165,531 7932 2114 3491 0 274,481 0
F9 GH01 G11 8516 738 218 1451 54,721 118,011 3884 7500 4294 0 389,760 0
F10 GH01 G13 8516 717 345 1399 38,361 120,257 7932 3121 3753 0 219,802 0
F11 GH01 G15 8516 722 91 1488 54,721 134,348 0 11,163 4571 0 527,426 0
F12 GH01 G16 5714 0 807 369 54,721 34,622 7932 2062 4420 0 549,729 0
F13 GH01 G17 8516 178 0 1637 54,721 74,977 7932 2564 4052 0 331,007 0
F14 GH01 G18 5936 0 807 472 54,721 26,149 7932 2325 4186 0 427,502 0
F15 GH01 G20 5083 0 807 207 54,721 34,109 7932 1630 4680 0 695,592 0
F16 GH01 G21 8516 3746 531 1527 0 249,078 5039 7456 4278 0 299,007 0
F17 GH01 G22 8516 1318 807 816 50,381 163,812 7271 2593 3849 0 424,647 0
F18 GH01 G23 8516 629 435 1337 0 147,563 5316 6316 3924 0 209,759 0
F19 GH01 G26 8516 1864 434 1451 29,268 158,518 1557 10,417 4064 0 245,121 0
F20 GH01 G27 8516 722 277 1302 54,721 134,348 0 11,163 4571 0 527,426 0
F21 GH01 G28 7635 0 807 622 54,721 52,090 7932 821 3784 0 394,519 0
F22 GH01 G29 7502 0 807 547 54,721 90,328 7932 2590 4581 0 580,075 0
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for electricity, all expressed in MJ/ha. Apparently, the values �∗
15

= 0, �∗
55

= 0 and �∗
65

= 0 
suggest that GH farm GH05 does not need to contribute to the post-merger F4 with regard to 
human labor, water and electricity, expecting GH farm GH01 to be the exclusive provider of 
these energy inputs.

Observing that the energy inputs of GH01 and GH05 before the merger are 
x11 = 8516, x15 = 4737, x21 = 807, x25 = 1451, x31 = 54721, x35 = 62843, x41 = 7932, 
x45 = 10667, x51 = 10011, x55 = 10170, x61 = 1320117 and x65 = 631970, the cal-
culation of the potential energy gains resulting from the merger F4 amount to 
�11 = x11 − �∗

11
= 8516 − 7760 = 756 MJ/ha for labor. This represents a portion of 

the current energy usage of GH01, with the labor energy of GH05 being fully saved, i.e., 
�15 = x15 − �∗

15
= 4737 − 0 = 4737 MJ/ha. Consequently, the merger F4 generates cumu-

lative energy gains that resulting from amount to g
13

= �11 + �15 = 5493 MJ/ha for labor, 
constituting no less than 41.45% in labor energy savings jointly allocated to GH farms GH01 
and GH05. In a similar vein, the cumulative energy gains amount proportions of 30.69% for 
machinery, 0% for fertilizers, 40.57% for chemicals, 80.09% for water, and 84.94% for elec-
tricity. A comprehensive breakdown of these proportions alongside the associated cumula-
tive energy gains g

im
 is presented in Table 5 for the mergers involving GH01 and all inputs 

i = 1, ..., 6. Meanwhile, the averages provided in Table 5 correspond to the entire set of 230 
potentially productive post-merger GH farms.

The highest proportions of energy gains that are computed on the averages are 74.47% 
for electricity and 60.58% for water. The mergers’ energy gains for labor, machinery, ferti-
lizers, chemicals, water and electricity reach proportions as high as 77.41% (F184), 78.13% 
(F129), 81.26% (F129−), 75.60% (F68), 89.74% (F68) and 90.36% (F6), respectively. Recall, 
for instance, that F6 is the merger of GH01 and GH07 whose efficiency scores are, respec-
tively, e∗

01
= 0.8819 and e∗

07
= 0.9986. Under the individualist scheme, this means that 

GH01 and GH07 must shrink their current energy consumptions by, respectively, 11.81% 
and 0.14% to be able to aspire for full efficiency. Upon merging, these two GH farms have 
the potential to reach an efficiency target of � = 1 by preserving only portions of their com-
bined energy inputs, as low as 9.64% for electricity and 17.15% for water. These propor-
tions of energy gains are distributed among the post-merger GH farms as visualized in 
Fig. 3.

A notable trend emerges with electricity, where 200 post-merger GH farms out of a 
total of 230 record proportions of 60% and above of energy gains. Remarkably, the same 
proportion falls below 20% only two post-merger GH farms. This means that a substan-
tial 86.95% of the mergers utilize less than 40% of the combined energy of the mergers 
while still achieving full efficiency. The pattern shifts slightly when it comes to energy 
gains from water. In this scenario, 130 post-merger GH farms record gain proportions that 
vary within the range [60%, 80%] and only 21 mergers exceed gain proportions of more 
than 80%. Though most of the energy gain proportions for fertilizers and chemicals fall 
on the bottom side of the picture, it is noticeable that there are picks of 81.26% (F129) and 
75.60% (F68) for these inputs, respectively, which reflect substantial energy reductions. The 
distribution of gain proportions for the labor energy is apparently more uniform.

In a broader perspective, the energy inputs of fertilizers and chemicals stand as the 
resources that are the least impacted by the merger process, recording average propor-
tion gains of 17.56% and 20.15%, respectively. While the mergers may not appear to sig-
nificantly contribute to gains for certain inputs, itis important to recognize their potential 
within the GH production sector, which cannot be underestimated, especially considering 
the substantial proportions of potential gains across all resources, notably water and elec-
tricity. It is worth noting that these inputs are not only considered as scarce resources in 
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arid regions but also happen to be the most extensively consumed resources in the cucum-
ber GH production, as highlighted in prior studies (Al-Mezeini et al., 2020; Bolandnazar 
et  al., 2014). Practically, such findings are strategically significant and could certainly 
prompt substantial support to framing state policies that would encourage mergers among 
GH farms. Viewed as long range decisions, mergers can confirm optimal consumption 
of scarce resources, like water and also electricity, rather than handling such important 
issues individually for separate GH farms. Besides their economic contribution, needless to 
emphasize the environmental influence of these decisions as a ground for GHG emissions 
mitigation.

It is worth noting that the majority of productive post-merger GH farms Fm, are pairs 
with shared partners. As an example, all mergers from F1 to F22 involve GH01 alongside 
other GH farms. Clearly, a single GH farm cannot engage in a merger more than once with 
the same partner. Therefore, the DM becomes responsible for choosing carefully the most 
suitable partner for each individual GH farm from the list pairs (GHA, GHB). In practice, 
such a process requires ranking alternative pairs Fm = (GHA, GHB) , and choosing the opti-
mal set of mergers that do not overlap. In other words, pairs that consist of dissimilar GH 
farms GHA and GHB should be prioritized. In the following section, we will develop a novel 
approach designed to identify the best possible partnerships.

5 � Identifying optimal partners for post‑mergers

The synergistic impact of a post-merger GH farm Fm = (GHA, GHB) starts to be percepti-
ble once the merger of the individual GH farms GHA and GHB yields outcomes that con-
siderably surpass the combined results of operating these GH farms independently (Oukil, 
2023).

To foster the creation of an optimal synergy through mergers, it is crucial to develop a 
selection methodology that capitalizes on the potential post-merger results of the whole set 
of alternative pairs Fm. Accordingly, we introduce the Efficiency Merge Index (EMI) for 
assessing these alternatives.

Under the post-merger rationale, there is no doubt that the higher the cumulative energy 
gains g

im
 (i = 1, ..., 6) the more striking the related post-merger GH farm Fm. Thus, g

im
 can 

Fig. 3   Distribution of energy gains’ proportions of GH mergers
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be considered as the most convenient measure of a synergy merge. On this basis, the syn-
ergy merge index (SMI) of Fm can be defined as:

SMIm = Energy gains of Fm

Energy usage ofFm
= 100 ×

∑6
i=1 gim

∑6
i=1 xim

 where x
im

= x
iA
+ x

iB
 for i = 1, ..., 6.

As a ratio of the total energy gains of the post-merger GH farm Fm over its current 
energy consumption, SMIm measures the impact of the merger on reducing energy usage. 
The SMIs have been computed for all post-merger GH farms. Table 6 shows the results for 
the mergers F1 to F22.

First, the post-merger GH farms Fm are ranked in decreasing order of associated SMI
m
, 

m = 1, ..., 230. The best mergers are selected according to the rank orders while discarding 
subsequent pairs that overlap with previously selected pairs.

As such, only eleven pairs of GH farms, presented in Table 7, are selected as best poten-
tial mergers.

F203 = (GH18, GH23), ranked 1st due to its highest SMI, is the first selected pair in the list. 
The next selected pair is F7 = (GH01, GH08), which ranks 4th. Here, F76 = (GH05, GH18) and 
F108 = (GH07, GH18) are discarded, in spite of being ranked 2nd and 3rd, because of the over-
laps on GH18 with F203 that has already been selected. Therefore, out of 30 GH farms, the merg-
ers are apparently most productive with only 22 farms, excluding GH09, GH12, GH14, GH19,

GH24, GH25, GH29 and GH30. All pairwise mergers of GH farms from the latter list are unpro-
ductive. Interestingly, both GH farms in F211 are strongly efficient. Meanwhile, F7, F37, F179 and 
F203 are mergers of efficient and inefficient GH farms, whereas the rest of the mergers involve 
only inefficient ones.

Table 6   Computation of synergy 
merge indices for post-merger 
GH farms

Fm GHA GHB Gains (MJ ha−1) Usage (MJ ha−1) SMI
m
(%)

F1 GH01 GH02 2,065,643.85 2,828,258.38 73.04
F2 GH01 GH03 1,793,035.40 2,565,735.11 69.88
F3 GH01 G04 1,884,806.06 2,706,113.76 69.65
F4 GH01 G05 1,688,075.01 2,123,940.72 79.48
F5 GH01 G06 2,203,038.15 2,826,455.24 77.94
F6 GH01 G07 2,225,064.29 2,656,093.53 83.77
F7 GH01 G08 1,845,625.84 2,198,454.31 83.95
F8 GH01 G10 2,078,408.68 2,598,724.69 79.98
F9 GH01 G11 1,860,883.19 2,449,977.22 75.96
F10 GH01 G13 1,666,803.00 2,071,004.92 80.48
F11 GH01 G15 1,592,793.99 2,335,840.81 68.19
F12 GH01 G16 1,768,605.61 2,428,981.67 72.81
F13 GH01 G17 1,774,131.13 2,259,714.19 78.51
F14 GH01 G18 1,787,909.50 2,317,938.88 77.13
F15 GH01 G20 762,774.63 1,567,534.80 48.66
F16 GH01 G21 1,379,674.62 1,958,853.78 70.43
F17 GH01 G22 1,606,677.90 2,270,689.04 70.76
F18 GH01 G23 1,973,613.31 2,357,408.33 83.72
F19 GH01 G26 1,428,501.12 1,889,712.50 75.59
F20 GH01 G27 1,453,663.23 2,196,710.04 66.17
F21 GH01 G28 1,066,306.83 1,589,237.96 67.10
F22 GH01 G29 1,180,096.66 1,929,180.26 61.17
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With eleven post-merger GH farms entering the market, the total savings on energy 
inputs amount to 14,707.12  GJ  ha−1. Considering the current total energy consumption, 
which amounts to 27,639.42GJ ha−1, adding the energy inputs of unmerged GH farms, the 
percentage of energy savings for the post-merger GH production system becomes 53.21%. 
Here, it is noteworthy that the latter figure unveils a significant enhancement of the energy 
savings, with more than fourfold its pre-merger value, which was 13.06% as determined 
through slack analysis. Figure 4 shows the distribution of these savings among the energy 
inputs.

Interestingly, the share of electricity consumption represents alone 94.92% of the post-
merger energy gains, followed by 3.83% for fertilizers and only 0.60% and 0.39% for water 
and labor, respectively, besides relatively neglectable shares for chemicals and machinery 
energy inputs. The proposed pattern’s shape aligns to a large extent with the energy inputs’ 

Table 7   Selected post-merger GH farms with potential energy usage & gains

Farms Gains (MJ ha−1) Usage (MJ ha−1) SMI
m
(%) Rank

Fm GHA GHB

F203 G18 G23 1,582,753.83 1,871,139.20 84.59 1
F7 G01 G08 1,845,625.84 2,198,454.31 83.95 4
F106 G07 G16 1,914,175.55 2,280,867.20 83.92 5
F75 G05 G17 1,271,432.94 1,579,446.90 80.50 25
F37 G03 G06 1,975,562.62 2,587,982.34 76.34 62
F135 G10 G11 1,676,032.64 2,244,493.89 74.67 74
F34 G02 G26 1,419,720.90 1,913,762.86 74.18 79
F58 G04 G13 1,440,015.79 1,972,910.68 72.99 92
F179 G15 G28 658,348.85 1,120,870.76 58.74 187
F217 G21 G27 664,633.13 1,351,355.81 49.18 208
F211 G20 G22 258,821.95 1,034,015.82 25.03 227
Total 

energy 
level

14,707,124.04 20,155,299.76

Fig. 4   Distribution in the post-merger energy gains per input’
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distribution that has been duly discussed in Sect. 3.2. It also enables the farmers to address 
effectively the primary sources of energy overconsumption, notably electricity and fertiliz-
ers, which have been clearly identified.

6 � Practical scope

The energy input contributions of each partner to pertaining post-merger GH farm are 
shown in Table 8.

For most post-merger GH farms, it is understood that the supply of water and electric-
ity is the full responsibility of only one partner. Meanwhile, there is a better task sharing 
with the rest of energy inputs. Such a collaborative pattern enables not only relieving a part 
of the managerial burden from GH farmers but also consolidating the partnership through 
delegating responsibilities and sharing experience among the mergers’ partners.

Given the region’s consistently high solar irradiation levels year-round, there exists an 
opportunity to reduce electricity consumption by adopting solar energy (Saadi et al. 2016) 
as an alternative source for greenhouse sustainable production (Çakır & Şahin, 2015; Esen 
& Yuksel, 2013; Hassanien et al., 2016; Vourdoubas, 2015).

Energy savings for fertilizers can be incorporated through more appropriate fertiliz-
ers application besides seasonal soil analyses for a more accurate estimation of the needs. 
However, an exclusive usage of organic or microbial fertilizers is the preferred alternative.

The extensive use of machinery for on-farm operations, such as planting, harvesting, 
residue chopping fertilizer, and pesticide applications, is significantly reduced if conserva-
tion tillage procedures can be implemented. Furthermore, these approaches reinforce soil 
structure with a better potential for carbon storage as a result of more retention of vegeta-
tive matter. The application of chemical pesticides can be abridged or even discarded via an 
Integrated Pest Management (IPM) plan that ensures long-standing pest avoidance. Mean-
while, the human factor should not be overlooked over the entire process; planning training 
programs is an essential step toward developing the GH farmers’ skills with respect to the 
application of the new practices and operating techniques besides raising their awareness 
about the eminence of energy mitigation as a global critical issue.

7 � Concluding remarks

In this paper, we investigated possible contribution of M&As, as a strategic decision tool, 
toward an optimal energy usage and, a result, GH emissions mitigation in the GH produc-
tion. To measure the scale of this contribution, we applied the inverse DEA methodology 
for the mergers of cucumber GH farms. Our study revolved around a case study featuring 
30 cucumber GH farms in Oman’s Al-Batinah region. Each GH farm was presented with 
six energy inputs: labor, machinery, fertilizers, chemicals, water, and electricity. Cucumber 
yield was the sole energy output considered over the study. Our results highlighted the 
predominance of electricity and fertilizers, with shares of energy consumption accounting 
for 85.02% and 12.69%, respectively. The fact that electricity is the main energy input was 
expected due to its extensive usage for cooling systems as well as groundwater abstraction 
for irrigation.

With an energy use efficiency of 0.1072, an energy productivity of 134 g/MJ and a spe-
cific energy of 7.4628 MJ/kg, the results revealed a high inefficiency level into the energy 
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usage. In spite of the pessimistic traits of these results, the standard DEA model pro-
duced an average relative efficiency of 0.872 with 40% of the GH farms declared efficient. 
Accordingly, the percentage of energy saving index was 13.06%, which is lower when 
compared with similar indices of previously reported studies.

Subsequently, we employed the inverse DEA approach to explore potential consolida-
tions between pairs of GH farms besides estimating the energy input levels needed for a 
merger to reach complete efficiency and pertaining potential energy gains. With 230 pro-
ductive post-merger GH farms identified, our results indicate that more input gains can be 
achieved through mergers, irrespective of whether the merging GH farms are efficient or 
inefficient. More specifically, almost 45% of the productive mergers involve at least one 
efficient GH farm, with 13 mergers consisting of pairs of GH farms that are both strongly 
efficient. Thus, though no further input gains are possible from an efficient GH farm that 
operates individually, the situation is different under a merger scenario. In addition, the 
results relating to the energy gains that could potentially be achieved by each post-merger 
GH farm exhibited proportions that range from 17.56 to 74.47%, with electricity yielding 
the highest gains. Energy improvements post-merger were remarkable, with labor, machin-
ery, fertilizers, chemicals, water, and electricity achieving substantial proportions as sub-
stantial as 77.41%, 78.13%, 81.26%, 75.60%, 89.74%, and 90.36%, respectively.

The consolidation process may produce pairs of post-merger GH farms that have one 
pre-merger GH farms in common. As such, the next step of the proposed methodology 
aimed at identifying the best selection of GH farms that can be paired without any overlap 
of. For this purpose, we introduced the SMI which enables determining the best matching 
among GH farms based on the expected post-merger savings. The implementation of the 
new approach enabled the selection of eleven most productive pairs of GH farms among 
the 230 candidate post-mergers. The inclusion of these GH post-merger farms into the GH 
farms’ sample increased the percentage of energy saving from 13.06% to 53.21%, that is, 
more than 4 times improvement. In the meantime, it was noted that the share of electricity 
consumption represents alone 94.92% of the post-merger energy gains, followed by 3.83% 
for fertilizers and only 0.60% and 0.39% for water and labor, respectively, besides relatively 
insignificant shares for chemicals and machinery energy inputs.

Practically, such findings are strategically significant and could certainly prompt sub-
stantial support to framing policies that would eventually encourage mergers amongst 
GH farms. As longstanding options, mergers can optimize the consumption of scarce 
resources, like water and electricity, rather than handling such important issues individu-
ally for separate GH farms. Besides their economic contribution, needless to emphasize 
the environmental influence of these decisions as a ground for GHG emissions mitigation. 
Nonetheless, before developing merger related policies, additional inquiries may be essen-
tial to pinpoint the market incentives capable of motivating farmers to engage in merg-
ers. Furthermore, expanding the data sample to encompass a larger number of GH farms 
becomes imperative for a more comprehensive assessment of the practical applicability of 
the present study.

In the future, research endeavors can delve into devising more rigorous approaches to 
address the selection problem. One alternative may consist in developing more advanced 
ranking techniques, which could potentially be based on the DEA cross-efficiency con-
cepts (Oukil & Amin, 2015; Oukil & El-Bouri, 2021; Oukil et al., 2022c) where all the 
energy inputs could be used explicitly instead of resorting to aggregates. Meanwhile, 
it might be important to highlight the fact that the best partners’ selection problem can 
be modeled as a network where the GH farms would stand as nodes connected with an 
edge for each productive merger. Hence, a very interesting route toward selecting the 
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optimal set of partners could exploit the graphical properties of such a network, like 
sparsity (Letchford & Oukil, 2009; Oukil, 2008) and solve the corresponding combina-
torial problem.

With regard to the inverse DEA model adopted for the present study, another pos-
sible research avenue may consider its extension into a formulation that may assign 
weights to the energy inputs to account for the individual importance of each input as 
perceived by the decision maker. Here, the implementation of an ordered weighted aver-
aging operator (see, e.g., Saeidi et  al., 2015) could be one option, which can also fit 
within the DEA cross-efficiency framework (2020b, 2022; Oukil, 2018, 2019, 2020a). 
Under the latter scheme, another venue may research the integration of the merger and 
the selection stage into a unified framework.

Finally, it is noteworthy that the results of the present study are restricted to pairwise 
mergers of GH farms under the operating conditions of the data sample employed for the 
case study. Other results may emerge if more than two GH farms are merging together. 
This particular aspect could be an interesting topic for future investigations. 

Appendix

See Table 9. 

Table 9   Energy equivalent coefficients in cucumber GH production

Data (Unit) Energy 
equivalent (MJ 
Unit−1)

References

Inputs
 Human labor (h) 1.96 (Esengun et al., 2007; Hamedani et al., 2011; Zangeneh et al., 2010))
 Machinery (h) 13.06 (Heidari et al., 2012; Mohammadi and Omid, 2010)
 Fertilizers (kg):
  Nitrogen 66.14 (Mohammadi et al., 2010; Omid et al., 2011), Mandal et al. (2002)
  Phosphate,P2O5 12.44 (Mohammadi et al., 2010; Omid et al., 2011), Rafiee et al. (2010)
  Potassium, K2O 11.15 (Mohammadi et al., 2010; Omid et al., 2011)
  Micronutrients 120.00 (Banaeian et al., 2011; Zahedi et al., 2014)
  Manure (kg) 0.30 (Khoshroo et al., 2013; Mohammadi et al., 2010)

 Chemicals (kg) 120.00 (Heidari et al., 2012)
 Water (m3) 1.02 (Mohammadi and Omid, 2010; Zangeneh et al., 2010)
 Electricity (kWh) 11.93 (Banaeian et al., 2011; Mohammadi and Omid, 2010)
 Seed (kg) 1.00 (Heidari et al., 2012; Mohammadi and Omid, 2010)
Output
 Cucumber (kg) 0.80 (Heidari et al., 2012; Mohammadi and Omid, 2010)
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