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Introduction

Introduction

Heusler alloys have gotten a great experimental and theoretical attention in the latest
decade due to their characteristics, since they are theoretically assumed as half metals at room
temperature (RT) [1]. These Alloys have a high Curie temperature above RT [2,3], and
intermetallic controllability for spin of states at the Fermi level [4].

Due to their physical properties, Heusler compounds have the advantage of emerging
as basic materials in many research fields such as superconductivity, magnetism, thermoelectric
devices [4-9], ....etc. Therefore, research has focused on this family of materials and their
characteristics, notably those relevant to the half-metallic property necessary in a wide range of
technology domains. Furthermore, the magnetic characteristics of these materials have attracted
the interest of many researchers, as understanding the origins of magnetism in these materials
is an important part of condensed matter physics study. For this reason we have been interested
in studying ScoZrX (X = P, As, Ge) Heusler alloys despite that there are few studies on these
compounds in hoping that our work adds more fruitful information and represents a trusted and

useful source about the properties of these compounds.

The aforementioned objectives were achieved theoretically, as first-principles
calculations based on density functional theory considerably aided us in studying and
comprehending the structural, electronic, and magnetic behavior of these compounds.

This work is divided into two chapters: in the first, we reviewed the foundations of
density functional theory (DFT), the Kohn-Sham equations, and the approximations that allow
us to estimate the potential of exchange-correlation, namely the generalized gradient GGA and
modified Becke-Johnson approximations (mBJ). The obtained results are presented in the
second chapter, where we used Wien2k code to compute structural parameters of all three
Sc2ZrP, ScoZrAs, and ScoZrGe compounds, such as lattice parameter, bulk modulus, and
cohesive energy. We also investigated the electronic behavior by determining the band
structure, total density of states (DOS), and partial density of states (PDOS), then investigating
the magnetic behavior. Finally, we finished our work by a general conclusion.
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1- The Schrédinger equation

In 1926, the physicist Erwin Schrodinger proposed a partial
differential equation known as the Schrodinger equation in the
framework of quantum theory [1]. The solution of this equation
allows us to describe the instantaneous quantum state of a system

through its wave function, which includes all the information about

the system studied [2—4]. The Schrédinger equation has the

following expression:
H¥(R,, %) = E¥(R,,7)
The two vectors R,and #are the coordinates of the nucleus (1) and of the electron (i).

H: Hamiltonian operator related to the sum of the kinetic energy and the potential energy of
the system.

E: Energy eigenvalue of the system.
¥: Wave function which depends on the coordinates of electrons and nuclei.

The Hamiltonian system - made up of nuclei and electrons - includes the kinetic energy
of electrons and nuclei, as well as the potential energies (electron-electron, electron-nucleus,
and nucleus-nucleus), therefore the expression of the total Hamiltonian of the system is

written by the following expression:

H=T6+TN+I/€e+Ve—N+VN—N

2 o
T, =— Zizh_mi VZ — Electronic Kinetic energy (mi the mass of electron i).

2 = - - -
T, = — leh_ml V2 — Nuclei kinetic energy (m; the mass of the nucleus I).

= Yrx) Ii ’Iz_’e | — The interaction part between the nuclei.
=Y IR — | — The nuclei-electrons interaction part.
= Dizj | | — The interaction part between the electrons.

e
4
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|Re — Rg| — The distance between the two nuclei a and p
|r; — R,| — The distance between the nucleus o and the electron i
|, —7;] - The distance between the two electrons i and j.

In practice, the Schrodinger equation is difficult to solve and the exact solution cannot
be obtained, especially for systems containing large numbers of electrons and nuclei in
motion and interaction between them, so simplifications and approximations must be used to
obtain an approximate solution that is as close to the real solution as possible. The following

are some of the most notable approximations and simplifications to the Schrédinger equation:

2- Born-Oppenheimer approximation

The Born-Oppenheimer approximation [5], developed in 1927 by physicists Max Born
and Robert Oppenheimer, allowed to separate the
movement of nuclei from the movement of electrons.
Despite its movement, the nucleus remains very close to
its equilibrium with respect to the electrons, which are
very fast, and thus it is possible to ignore the nuclei's

Kinetic energy in regards to the electrons' kinetic energy

and consider the nucleus-nucleus interaction energy as a

constant quantity (Van = Constant).

According to the Born-Oppenheimer approximation we can rewrite the total wave

function of the system ¥ (ﬁ,o,ﬁ-)in the form of a product of an electronic function ¥, (ﬁ,o,ﬁ)

and a nuclear function ¥, (ﬁ,o), thus, we can separate the motion of nuclei from that of

electrons. Then the wave function is written:
@ (ﬁ,o, ﬁ-) =y (ﬁ,o) @, (ﬁ,o, ﬁ-)
[Te + Vee + Ven]"”e (ﬁlor 7_)'1) = Ee (ﬁlo) llJe (ﬁlor ‘?'1)

\ [Tn + Vo, + E, (ﬁlo)] @ (ﬁlo) = E¥, (ﬁlo)
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Despite applying this simplification to the Schrédinger equation, the problem remains
difficult and cannot be solved using current mathematical methods due to the extremely

complicated electron-electron interaction, thus we used additional approximations.

3- Hartree and Hartree-Fock approximations (HF)

The Hartree-Fock approximation was proposed to modify
and correct the shortcomings of the Hartree approximation.
Hartree proposed in 1928 [6,7] that all electrons be treated as
identical particles that move independently without interacting
with other particles ( independent particle approximation [8]). In
this approximation, Hartree treats the interactions between
electrons as particles carrying a charge without taking into
account the spin state, i.e. the interactions that occur between them
are Columbian repulsion interactions with neglecting both exchange
and correlation terms. Furthermore, the wave function is not "anti-
symmetric” since it does not take into consideration the Pauli

exclusion principle [3,4].

Although the Hartree approximation does not take in account the electron spin and the
Pauli exclusion principle, it simplifies the Schrddinger equation from studying a large number
of electrons to studying a single electron, so that the total Hamiltonian H of electrons is the
sum of the Hamiltonians h; of each electron, while the total wave function of the electronic
system represents by multiplication the individual wave functions of each electron [3,4].
Finally, the total energy of the electronic system is the sum of the energies of all electron.
According to Hartree's approximation, the Hamiltonian equation for single electron can be

written as follows:
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Eezzgi

i

In 1930, Fock [9] improved and modified Hartree's model by substituting the wave
functions of the electron with a Slater determinant[10], allowing him to accommaodate for the
exchange effect that Hartree neglected. In this way, the interaction between electrons takes
into account both the coulomb interaction and the exchange effect, and thus the previous
functions have been replaced by anti-symmetric functions, and therefore, Fock introduced the
term spin in its dealing with electronic interactions and replaced the wave function of the

electronic system by a Slater determinant expressed by the formula:

[‘111(71) UAGY R TG IR ‘lh(?N)]
L G a6 ) w6
Pur (T, 7273, 0, Ty) = ﬁlllhgﬁ) ‘~|J3§7_”)2) Vs (773) - L|13(_7N) |

UG UnF) NG - WFN)J

1

Where N

is a normalization factor.

4- Density Functional Theory (DFT)

The aim behind Density Functional Theory (DFT) is to rewrite the Hamiltonian of the
electron using electron density rather than wave functions. Researchers like Dirac [11], Slater
[12], Hohenburg, and Kohn [13] have made significant contributions to this theory through
their theoretical work.

The DFT theory was first discovered in the works of Thomas and Fermi in 1927[13,4],
where they created the main idea in expressing the total energy of an electronic system as a
function of electron density by considering the electronic system as a homogeneous and
regular gas of electrons where the continuous partitioning of the Brillouin zone (without
taking into consideration electron correlations) was carried out by the two scientists Thomas
and Fermi in order to achieve regions where the electron density is constant in each part. The
following two formulas provide expressions for the density and kinetic energy of a

homogeneous electronic gas:

N|w

1 32/72m
—_ 2 €
p_3ﬂ2Ef(h2)

e
7
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25
(3m*)3p2

The following table presents a comparison between Hartree-Fock method and density

functional theory and the characteristics of each method [3].

Table I. 1: Comparison between the two methods, Hartree-Fock and the Density Functional

Theory (DFT) [16,17].

HF method

Principle: Solving the Schrddinger
equation by considering the wave
functions as a variable basic.

Based on the mean field theory
(MFT).

Calculates wave functions and
eigenvalue energy to obtain ground
state energy.

Depend on the large number of
variables, which makes the equation
very complicated and time
consuming.

The wave functions obtained as
solutions for the Schrodinger
equation have no physical meaning.
Does not take into account the

correlation terms.

Principle: Solving the Schrodinger
equation by considering the electron
density as a variable basic.

Based on the two Hohenburg — Sham
theorems and shifting from the
Schrodinger equation to the Kohn-
Sham equations to find the solution.
Use electron density which has
physical meaning.

Reduce the number of variables

which makes the equation simpler

and faster compared to the HF
method.

Enable to treat the correlation terms.




15T CHAPTER THEORETICAL STUDY OF MANY-PARTICLES SYSTEM

4-1 Formalism of density functional theory (DFT)

The density functional theory (DFT) is based on describing the total energy of a
system with many interacting electrons as a function of the electronic density, rather than its
wave function, where the electronic density is expressed by the formula:

GEYIG

The density functional theory (DFT) is based on two main theorems.

I. The theorems of Hohenburg and Kohn

The two theorems presented by Hohenburg and Kohn in 1964, are considered to be the basis

of the density functional theory.
A-1) First theorem:

The total energy of an electronic system is a

functional of the electron density for an external

potential V (r), so it is possible to know all the properties of the system

when determining the electron density[3,18].
EI@)] = FIG) + [ v (ar?

Where F [p] is universal functional.

The external potential and the universal functional F [p] are expressed in the form:

Zs

Vext (?'1) = - ”
i

Flp] =Tlpl + Ulp]

Where Za is the charge of the nucleus, ria is the distance between nucleus A and electron i.
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A-2) Second theorem:

The second theory appears that to obtain the total energy of the ground state of the
electronic system, it is enough to find the corresponding electron density which makes the

density function at its minimum value.
E(po(#)) < E[p(¥)]
E(po) = MinE(p) Lim{¥|T + X Vext + Vee| ¥ )

We can get the corresponding electron density of the ground state, by applying the

variational principle via the differential of total energy in terms of electron density:

dF[p(r)]

—dp(r) +V(r)=0

Therefore, if the electron density which minimizes the energy function is known, we

can easily determine the wave function and the exact energy of the ground state.

I1. The Kohn - Sham equation

One of the difficulties in studying a many-

electrons system is the inability to express the kinetic

¥ k%

o B
N
S
o -

initial idea of replacing the real electronic system with a fictive system in which the behavior

energy and electron-electron interactions analytically

in terms of electron density.

In 1965, scientists Kohn and Sham suggested the

of the electron is independent, unrelated, and unaffected by the behavior of other electrons. It
is only affected by the effective potential (Kohn-Sham potential), which involves both the
external potential created by the nuclei's influence and the potential caused by the remaining

particles effect on this electron[3,19,20].
The fictive system proposed by Kohn-Sham is characterized by:

v The Kohn-Sham orbits which are space wave functions of a single electron are
solutions of the Schrddinger equation in this vacuum space.

v" The fictive electronic system has the same electronic density as a real system.

e
10
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v The kinetic energy of the fictive system is the kinetic energy of the electrons without
the correlation effect and it is positive, while the kinetic energy in the real system “Tr”
is the sum of the kinetic energy of the fictive system “Tf” and an additional term that
expresses the effect of the correlation “T¢” on the kinetic energy of the electron [3]
that is:

Te =Tr + T,

= (¥ITI¥) — (o|Tslp)

The Ve interaction between electrons in the real system which is written in the following

relation:

(PVeel¥) = Uy + Uy + U,
Where the terms represent:
Un: The electron-electron coulomb interaction (Hartree potential)
Ux: The exchange energy between electrons of the same spin.
Uc: The correlation energy between the electrons.

The Kohn-Sham equation for an electronic system is given as a function of the kinetic
energy of the electron: external potential energy, Hartree interaction and exchange-correlation
energy as follows:

v" The kinetic energy of an electron in a fictitious system:
Ts[p] = <§01| ZmA|§01 = ZIQDlVZ @;"dr;

v" The external potential generated by the effect of nuclei (nucleus-electron

Z,p(r)
Vaelp j Z i

interaction):

v The Hartree potential (electron-electron coulomb interaction)

e
11
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Ulp] = %fwdrdr’

[7 = 7]

v" The exchange-correlation energy, which is the sum of the correlation and
exchange terms, it does not have an exact mathematical expression, but it is
estimated by approximations

Exclp] = Exlp] + Eclp]

And finally, the Kohn-Sham equation is written as follows [21-23]:
Hyspi(7) = [Tslp] + Vs (7) = e*°¢,(7)
Vis(P) = Vext (F) + Vg () + +Vxc (7)
Elp] = Tslp] + Vnelp] + Unlp] + Exclp]

B-1) Solution of the Kohn - Sham equation

Solving the Kohn-Sham equation depends on two basic steps:

* The first step: define all the terms of the effective Kohn-Sham potential, i.e. the exchange-
correlation potential Exc must be determined because this term has no mathematical formula

but it can be estimated by approximations.

* The second step: find the wave functions (Kohn-Sham orbits), which represent a solutions

for the Kohn-Sham equation given by [3]:
pis(T) = z Cij @; ()
J

Where ¢;(7) are the basic functions, and Cij are are the development coefficients.

Z Cij Hysloj | = Z Cijeks @
Jj Jj

(ol Z Cyj HKSlq)j = (@il Z Cijégs |§0j
J j

12
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Z (@rlHks| ;) — eks{@il@NCij = 0
J

It remains to determine the Cj; coefficients.

The Kohn-Sham equation is solved according to an iterative cycles illustrated by
figure (1.1), where the process starts using an initial density p;,for the first iteration, this
density is used to solve the Kohn-Sham equation, then, We use a superposition of the atomic
densities and we compute the Kohn-Sham matrix, to solve the equations, then obtain the
Kohn-Sham orbitals.

After this step, we calculate the new densityp,,, to check the convergence condition (if the
density or energy has changed a lot or not) and we mixed the two charge densities p,,and
pinas follow:

i+1

Pin~ = 1- a)piin + péut

Thus the iterative procedure can be repeated until the convergence condition is fulfilled.

13
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\
Pin *

[ Calculate V(r) ]
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Figure 1. 1: Self-consistent calculation.
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5-The different types of approximations of the E,..[p]

As the exchange-correlation potential between electrons has no analytical term, several
scenarios have been used to obtain approximate values for this potential, the accuracy of the

results obtained being mainly related to the mathematical formula of this potential[3].

5-1 Local density approximation (LSDA)

This model was first proposed by Kohn and Sham in 1964 [24] where the
inhomogeneous electronic system is approximated by a local homogeneous electronic system
after dividing the Brillouin region into small regions, and the expression energy exchange -

correlation is given by the relation :

B = [ 0@ Beclo@lar

y BRI e o deRR!
xc dp XC p dp

For each spin up or down magnetic order, the total electron density becomes the sum of

the two electron densities
p(@) = pr(F) + p, ()

The Kohn-Sham equation for the two spins in the form [3]:

_hz - - -
(% v? + VeTff(T)> @i(F) = 51T<5(Pi(7")

—h?
L<_ v? + Velff(F)> @;(7) = 51l<s(Pi(77)

2m

The effective potential for the two spins is written as [3]:

degiP4pr(P), py(P)]

Vi@ =V, vi.=V 9
eff(r) ext + XC ext + de (T‘)

dege 4 [pr(P), py ()]
dp,(7)

lvéff(f:) = Vext + V)ic = Vext +

15
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5-2 The generalized gradient approximation GGA

The previous approximation considered the electron density to be uniformly
distributed, making its density homogeneous, but this approximation produced results that
were inconsistent with the experimental results on several times, so a new approximation was
developed, in which the localized electron density was considered to be non-homogeneous
and varied from place to place. Thus, the total energy of the electron system is proportional

to both the electron density p (¥) and its gradient Vp (1), as shown by the equation [25]:

ESSA[p(@)] = f Eip®exc [p ), Vp ()]

6- Full-potential linearized augmented plane-wave method (FP-LAPW)

After solving the exchange-correlation potential problem, the search for wave functions
as solutions to the Kohn-Sham equation became necessary. After extensive research, certain
approaches emerged, including the OPW method presented by Herring theory in 1940 [26],
the LMTO method [27], and the FP-LAPW method, where these methods are dependent on
the quality of the effective potential utilized.

6-1 The plane wave method (APW)

This method was carried out by the scientist Slater [10] who divided the crystal space
into two parts based on the Muffin-Tin approximation [28] (see Figure 1.2) by representing
the atoms as non-overlapping spheres of radius Ro in which the core electrons are located, and
between these spheres, an interstitial region containing free electrons that are away from the

nuclei of their atoms.

=
(
Q%%%

Figure 1. 2: Diagram of the distribution of the elementary cell in atomic spheres and in

interstitial region.
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According to Slater's approximation [10], the core electrons located inside the sphere
are subjected to the spherical potential, on the other hand, in the interstitial region the
potential is constant [3]. So, the potential in the two regions is given in the form:

V(r)r <R,
V(7)) =
0r > R,

Also, the waves that describe the behavior of electrons inside MT spheres differ from
those in the interstitial region, they are described by plane waves in the interstitial region,
while inside spheres by functions radials multiplied by spherical harmonics[3]. The two

different wave functions are given by the following expression:

00 m

,
D0 D AU im () r< Ry
. I=0 -m
o(r) = A
LZ ¢, elR+E)F > Ry
W&

Where Q: The cell volume

Yim: Spherical harmonics

A;m: Development coefficients
U, : The regular solution of the Schrodinger equation given by[29] :

<—d2 I(L+1)

drz TZ V(F))TUI = ElUl

Where E;: An energy parameter.

6-2 The linearized augmented plane wave method (LAPW)

The downside of using the APW method is its slow process in calculations due to the
common radial function Uy ; additionally, it is difficult to define the radial function for each
value of energy E,. So that, Anderson [30] made improvements to the APW method [31]by
using the Taylor expansion to write the radial functions U, (r) in the following form:
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dUl(T,E)

U, E)=U,E)+ (E,— E) dE

+ O(E, — E)?
E=E;
Where the term O (E — E}) ? represents the quadratic error.

After several simplifications, he has got the expression of potential inside and outside of
Muffin-Tin balls as follows:

( m
D Vi im r< R
Im
V(r) = A«
m
Z Vi (r)etkr r > R,
\ Im

As well as the wave functions inside the spheres in terms of radial functions and their

derivatives. Where the wave functions are written as follows [32,33]:

( :
> (Al + Binlh () Yin () 7= Ry
Im

Pric(P) =

1 P
_ C el(K+G)r r>R
L\/EEG: G 0

Where:
K: represents the wave vector.
G: is the vector of the reciprocal lattice.
A are coefficients corresponding to the function U,.
B, are coefficients corresponding to the function U;.
We can determine the coefficients A;,, and B, for each wave vector, and for each atom
by applying the conditions of continuity of the basic functions in the vicinity of the limit of
the spheres. After some simplifications we find the coefficient formula A4;,, and B, in the

following forms:

4'7TT'02iL N
Alm = \/ﬁ Y lm(K + G)al(K + G)
By = T e K4 GYb(K +G)
m — \/ﬁ m l
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7- WIEN2K simulation code

With the technological development, especially programming languages, researchers
from the Institute of Materials Chemistry in Vienna were able to design the Wien2k program
package [34], which is considered to be one of the most important programs used to study the
properties of solid materials. This program consists of many subprograms written in Fortran
language, the last of which are algorithms that translate the equations of the crystal system
treated according to the density functional theory (DFT) which adopt the method of The full
potential linearized augmented plane wave FP-LAPW as a way to compute algorithms to

study the properties of compounds [3].
The most important subprograms and its role in the Wien2k code are shown in Figure
1.3 which are organized as follows:[3]:

v NN : This subprogram calculates the distances between nearest neighbors up to a
specified limit which therefore helps to determine the value of the radius of the atomic
sphere.

v" SGROUP : determines the space group of the compound.

v' SYMMETRY : is a program that defines the symmetry number and space group
symmetry operations of our structure.

v' LSTART : calculates electron densities in free atoms and show how different orbitals
will be treated in band structure calculations.

v" KGEN : generates a mesh of K points in the irreducible part of the first Brillouin zone
(B.Z). We specify the number of K points in the whole 1°B.Z.

v" DSTART : produces an initial density for the SCF cycle (self-consistent cycle) by a
superposition of atomic densities produced in the LSTART subprogram.
After the last subprogram ; we enter a loop of SFC calculations and therefore we shall reach

five steps :
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<\

LAPWO (POTENTIAL) : uses the total electron density to calculate the coulomb and
exchange potential (Hartree-Fock potential). In addition to that, it divides the space into
a MT (muffin-tin) sphere and an interstitial region.

LAPW1 (BANDS) : calculate eigenvalues and wave functions for valence electrons
from solving the equation (I11.1).

LAPW2 (RHO) : calculate the valence electron densities obtained in the step LAPWO.
LCORE : calculates eigenvalues and wave functions to obtain core electron densities.

MIXER : calculate the new density by mixing.
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THE SUBPROGRAMS
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Figure 1. 3 : Programs incorporated in Wien2k code [3].
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1- Heusler alloys family

Heusler alloys were discovered in 1903, when Heusler revealed that the addition of “sp
elements (Al, In, Sn, Sb, or Bi) transforms a Cu-Mn alloy into a ferromagnetic material despite
the alloy containing no ferromagnetic elements [1]. After this discovery, research intensified
in order to reveal the properties of numerous compounds belonging to this family, which were
later classified according to the chemical formula and the positions of the atoms that make up
them into four types:

- Half-Heusler Alloys (HHA) with XYZ chemical formula (more details in reference

[2D).

- Full-Heusler Alloys (FHA) with X2Y Z chemical formula (more details in reference[3]).
- Quaternary Heusler alloys (QHA) with XX’YZ chemical formula (more details in
reference [4,5]).
- Half-Heusler Alloys (DHA) with X2YY'Z> chemical formula (more details in
reference[6,7]).
In our work, we have studied three compounds belonging to the second group of Heusler
compounds.

Ternary Heusler alloys have X>YZ formula composed by three elements: X and Y are
two transition metals while the Z is in the p-block, and in some cases X>YZ Heusler alloys
contain four atoms. According to the position occupied by these atoms, we distinguish two
types of structures symbolized L2:-type (Cu2MnAl structure, space group Fm-3m (225)) and
Xo (Hg2CuTi type) with space group F-43m (216) [3,8]. Each atom in the alloys can occupy
one of the following four sites: A(0.0.0), B(1/4.1/4.1/4), C(1/2.1/2.1/2), and D (3/4.3/4.3/4).
As it is also known that the physical properties of crystals depend directly on their structural
properties, therefore any change in the arrangement of the atoms' position in all the two phases
affects the properties of the compound as we will see later. In both types of structures, X and
Z atoms take places A and D, while the difference between the two phases remains in the place
that the atom Y will occupy. As shown in Figure 11.1, we note that the Y atom takes place in C

site in the X, phase, while it occupied B site in the other (L21) phase [3,8].
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Figure 11.1: Cubic crystal structure of X2Y Z full-Heusler alloys in L2;1-type and X,-type
phases[3].

2-Results and discussion

This section contains the results and their discussions during the studies carried out on
the structural, electronic and magnetic properties of Sco—based Full Heusler alloys
ScoZrX (X =P, Asand Ge).
2-1 Computational details

The results obtained in this work were carried out using the FP-LAPW method [9-14]
incorporated in the Wien2K code [15]. Exchange—correlation interactions were treated using
the Perdew-Burke-Ernzerhof version of the generalized gradient approximation (GGA-PBE )
[16] for estimating the equilibrium structural and magnetic parameters, whereas the Tran-Blaha
modified Becke Johnson approximation (TB-mBJ) [17] was used to calculate the electronic
properties of the title compounds. Based on the Muffin-Tin approximation [18], the space is

divided into two regions: inside the muffin-tin spheres (MT) and the interstitial region between

27



2ND CHAPTER: DFT-BASED SIMULATION ON SOME HEUSLER ALLOYS PROPERTIES

them. The radii of the Muffin-tin spheres of each atom were: 2.3, 2.4, 2.1, 2.35, and 2.35
Bohr for the Sc, Zr, P, As and Ge atoms respectively.

We indicate that the criterion and the condition of convergence of the total energy in all
the calculations carried out, is equal to 10 Ry and we take the value -6 eV as energy to separate
the valence states from the core states. The electronic configuration of the atoms that form the
compounds Sc2ZrP, ScoZrAs and ScoZrGe is given:

Sc: [Ar] 3d? 4s2

Zr: [Kr] 4d? 5s2
P : [Ne] 3s? 3p3
As: [Ar] 3d10 4s2 4p?

Ge: [Ar] 3d'° 4s% 4p?
2-2 Convergence tests

The convergence of the calculations is well controlled by the parameter Ry X Kigx
which represents the product between the minimum radius of the atomic spheres Ry in the
mesh unit and the magnitude of the largest vector in the plane wave expansion denoted K, .-

The optimal value of the cutoff parameter Rmt.Kmax Was chosen by following these steps:

Firstly; we calculate the total energy of the crystal cell for different values of Rmt.Kmax
(between 4 and 9.5), then we traced the curve of the total energy versus Rmt.kmax values as
shown in Figure 11.2. Through this figures, we notice that the total energy of the three
compounds decreases rapidly with the increase of Rmt.Kmax Where the total energy converges

towards its minimum value from value Rmt.Kmax=8.5.

In the same way, we tested the convergence of the optimal number of Kpoints for points-
range confined between 100 and 1500 with a step of 200. The variation of the total energy
according to the number of Kpoints iS presented in Figure 11.3. Regarding to these curves it
appears that the total energy starts to converge from a number of K-points equal to 900 and the

total energy becomes almost constant.
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2-3 Structural properties

The following section is devoted to explore the ground state structural properties of the
three compounds ScoZrX (X = P, As and Ge) in both type structures L21 and X,, and thus, we
estimate each of the lattice parameter (a), the bulk modulus B and its derivative B' and the

cohesion energy.

The aforesaid parameters were calculated by computing the total energy of five distinct
unit cell volumes for L2: and X structural phases, and then we plotted the volume-energy
curve by fitting the Energy-Volume curve with the Murnaghan equation [19] where this
equation is written as a function of the total energy (Eo), the equilibrium volume (Vo), the bulk
modulus (B) and its derivative B' as follow:

S B P A L B I
(E(V) - EO + B’(B’—l) lV(V) VO] + B’ (V VO)

From the figure 11.4 we can see that, the X,-phase (shown in black) has a lower energy
than the L2; structural phase (shown in red) for ScoZrP and Sc2ZrAs compounds, however,
the L2, phase is the more stable phase for the compound Sc2ZrGe.

The bulk modulus B(GPa) describes the material’s resistance to any deformation caused
by applying external hydrostatic pressure [20], so it gives information about resistance to
volume changes [21] and it can be considered as a factor used to estimate the relative stability
of crystal structure, we discovered that Sc2ZrP compound has the highest bulk modulus among
the ScoZrAs and ScoZrGe compounds, implying that it has the best rigidity and aptitude to
resist deformation against compression when compared to the other compounds|[3,22].

However, the relatively low value of the bulk modulus ( B <100 GPa) suggests all the
studied compounds are characterized by a relatively low resistance to volume change [23].

The cohesive energy as quantity reflects the energy required to divide a solid into its
many free parts, may be used to study the cohesiveness of compounds and the physical stability
of the Sc2ZrZ [3]. The formula of the cohesive energy of the ScoZrZ alloys expressed by the
difference between total energy at the equilibrium point of an elementary cell and the energy of

its isolated atoms Sc, Zr and Z like the following formula:

ScrZrZ
. (2 Eggom + Eg{om-l' Egtom) - Etoct2 "

E -
cohesive NSC + NZr +NZ

Where Nsc, Nzr, and Nz are the number of Sc, Zr and Z atoms in the unit-cell of Sc2ZrZ

compound. According to the calculated results, we can see that ScoZrP and ScoZrAs Heusler
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alloys have high cohesive energy in L2:-type unlike to ScoZrGe which was more stable

structurally in X,-type. The rest structural parameters could be found in the Table 11.1

Table I1.1: Structural parameters of the ScoZrX (X =P, As, Ge) compounds

calculated using GGA approximation in both L2: and X, structural phases.

Structural Our Results
Full Heusler ;
roperties
Alloys prop L2 Xa
6.6264 6.6183
a (A)
6.7[24] 6.69[24]
B (GPa) 91.9231 89.0796
ScoZrP B’ (GPa) 4.8611 4.6748
Vo (a.ud) 490.8807 489.0798
Eo (Ry) -10930.8238 -10930.8205
Ecoh (eV/atom) 4.801 4.792
6.7432 6.7538
a (A)
6.86[24] 6.84[24]
B (GPa) 86.5573 82.2059
Sc2ZrAs B’ (GPa) 5.3083 4.3759
Vo (a.ud) 517.3002 519.7395
Eo (Ry) -14766.8084 -14766.7999
Ecoh (eV/atom) 4.699 4.674
6.7981 6.7539
a (A)
7.11[24] 7.14[24]
B (GPa) 80.9666 80.8376
Sc2ZrGe B’ (GPa) 4.2149 3.4196
Vo (a.u®) 530.0337 519.7672
Eo (Ry) -14442.9120 -14442.9207
Econ (eV/atom) 4.849 4.865
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Figure 11.4: Total Energy-Volume curves ScoZrX (X = P, As and Ge) in both type structures

L2; and X« calculated using GGA approximations.
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2-4 Electronic properties

The study of electronic behavior is critical because it helps one to select the most
appropriate electronic domain in which to employ a material. To do this, we investigated the
compound's energy bands and density of state to define the orbits of the atoms that formed each
band.

2-4-1 Band structure

The electrons in solid systems with a periodic structure occupy discrete energy levels,
which are hybridized by the reciprocal interaction between atoms, resulting in their split into
sub-levels close to each other and generating a continuous energy spectrum known as "energy
band"

The band structure of ScoZrX (X = P, As, Ge) compounds has been investigated along
high symmetry directions in the most stable state in the first Brillouin zone. Figures
I1.5/11.6/11.7 show the band structure of ScoZrX (X = P, As, Ge) in the most stable state
determined using both GGA and mBJ approximations for the two spin directions "up" and
"down". For all the studied compounds, the valence and conduction bands overlap in both
directions of spins, as seen in these diagrams .As a result, in both cases of majority and minority
spins, the appearance of the band structure in the ferromagnetic state exhibits metallic behavior.
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2-4-2 Electronic density of states

A crystal system's density of states (DOS) measures the number of electronic states with
a given energy. The DOS parameter may also be used as a supplement to understand the
creation of particular band structures, as well as to determine the atomic orbitals responsible
for bond formation and to compute polarization.

Figures 11.8/9/10/11/12/13 shows total (TDOS) and partial (PDOS) electronic state
densities of the three ScoZrAs, Sc2ZrP and Sc2ZrGe compounds calculated using both GGA

and mBJ approximations, where the following notes can be recorded:
- We obtained almost identical curves using the previous two approximations.

- The presence of DOS values around the Fermi level for the three compounds confirms

their metallic behavior.

The atomic orbitals contributions seems in Figures 11.8/9 for the ScoZrAs compound can

be divided into two regions:

- 1st region located between [-5 eV, -3 V], is mainly due to the "p" states of the Arsenic atom.

- 2nd region located between [-2 eV, +6 eV] includes strong and dominant contributions from

the "d" states of both Scandium atoms and the Zirconium atom.

As for the Sc2ZrP compound, according to figures 11.10/11 we can divide the curves into

two regions as well:
- 1st region located between [-5 eV, -3 eV], formed by the "p" states of the Phosphorus atom.

- 2nd region located between [-2 eV, +6 eV] includes strong contributions from the "d" states
of the Zirconium atom and both Scandium atoms, and weak contributions from the "p" states
of the Phosphorus atom.

Also, we can see from figures 11.12/13, the contributions of atomic orbitals for the

ScaZrGe compound where the energetic space can be divided into three regions:
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- 1st region located between [-4 eV, -2 eV], is due to the "d" states of the Zirconium atom and

a weak contributions from the "p" states of the Germanium atom and the "d" states of the

Scandium atoms.

- 2nd region located between [-2 eV, 0 eV] shows significant contributions from the "d" states

of the Zirconium atom and a weak contributions from both Scandium atoms.

- 3rd region: the range [0 eV, +6 eV] comes from the dominant contributions of the "d" states
of the Sc (1), Sc (2) and Zr atoms.
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calculated with mBJ approximation.

45



2ND CHAPTER: DFT-BASED SIMULATION ON SOME HEUSLER ALLOYS PROPERTIES

2-5 Magnetic properties

We investigated the magnetic characteristics of these compounds, but first, we shall

review the background of magnetism in materials, on three levels.
2-5-1 Origin of magnetism in materials

2-5-1-a Electronic level

The movement of charged particles produces a magnetic field, and as the electron is a
charged particle that moves around itself and around the nucleus, these two motions produce

two magnetic moments [19-24]:

v/ Spin magnetic moment: ji; = —g ’%B S where g is the Landé parameter and A the
Planck constant.

v' Orbital magnetic moment ji;; = ”73 I where pj is the Bohr magneton.

The origin of magnetism

Orbit Spin
<<orbital>> magnetic moment A  <<intrinsic>> magnetic moment
due to spin

H orbital

s=1/2
”spin m,==%1/2

Horbital = 91 X Mg X { Hspin = 9s X U X S ® i

”Tofal - uor‘bifal -

Figure 11.14: Origin of magnetism at the electronic level.
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2-5-1-b Atomic level

The magnetism of the atom is related to the electrons distribution in the outermost shell;
if all of the electrons in its outer shell are placed in pairs, the total of their magnetic moments

is zero, and the atom is non-magnetic, and vice versa.[3,22,25-29]:

Pair of electrons Single electron

L a L
The sum of magnetic moments in The sum of magnetic moments in
the atom is equal to zero the atom is not equal to zero
« Non-Magnetic atom » « Magnetic atom »

Figure 11.15: Origin of magnetism at the atomic level.
2-5-1-c Material level

Magnetic potential created between atoms are quantum exchange interactions which
are related to atoms magnetic moments, the distance between them, and the external magnetic
field to which they are subjected. These interactions were modelled using the Heisenberg
Hamiltonians given by:

Hmag = zjijgi-gj + zgiHBh Si
7] q

Where g is the Bohr magneton, g; is the magnetic ratio ,§i is the spin operator, Ris the
external magnetic field , and J;; is the exchange coupling constant (depends on the distance
between the two atoms) [28,29]. The different types of the magnetic moments in atoms with

the exchange interaction is shown in the figure 11.16.
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tl tl ‘ Exchange interaction = 0

Atom « | » Atom « ] »
(Non Magnetic) (Non Magnetic)
tl t ‘ Exchange interaction = 0
Atom « 1 » Atom « ] »
(Non Magnetic) (Magnetic)

1 1

Atom « I » Atom « | » The exchange interaction
(Magnetic) (Magnetic) = % ]ijgi_gj
(Depends on the atomic
t ‘ distance)
Atom « 1 » Atom « | »
(Magnetic) (Magnetic)

Figure 11.16 : Different cases of the exchange interaction between atoms [28,29].
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2-5-2 Basic types of magnetization

In materials, there are five types of magnetism (as seen in Table I1.2 below) based on
the type of the atoms that make up the material and their magnetic moments alignment
[28,29].

Table 11.2: Types of magnetization.
a- Diamagnetism
The diamagnetic material [3,22,25-27,30] is / /
made up of non-magnetic atoms because all feosmmssecspsemsomsmszessnsssannsnens
of its electrons are paired, which means that

the total magnetic moment of the atoms is

Zero.

b- Paramagnetism

The atoms of the paramagnetic material

between them due to the large distance

[3,22,25-27,30] have unpaired electrons, and l ----------------------- ! ---------- S

S0 (o) N 7 :
therefore these atoms have magnetic e e e e nan oo annmmen S
moments with no exchange interaction i

between them. Thus its magnetic moments
are randomly directed so that the sum of the U8 SO

material's total torque is zero.

c- Ferromagnetism
The atoms of the ferromagnetic material ST , -|
— i (-

[3,22,25-27,30] composed of unpaired A , a :, . , . ’ ! :
electrons, the exchange interaction occurs :, , O U U
between them due to the small distance ' _ :
y o~ Y /.--'-.,\. “,“""‘\‘. :.' “\.‘ [

between them, so the exchange integral J;;is ':‘,"-‘ , ( ’ , | ’ j ’ J |

negative, so the electrons align in parallel. ——
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d- Antiferromagnetism

The atoms of the antiferromagnetic material
[3,22,25-27,30] composed of unpaired
electrons, the exchange interaction occurs
between them due to the small distance,
which is small enough, that the exchange
coupling constant J;; is positive, so the
electrons align with each other antiparallel,
then the atoms arrange themselves so that
two neighboring atoms can have opposite
magnetic moments and consequently the
moment of the material is equal to zero

e- Ferrimagnetism
It is a state similar to the antiferromagnetic
case, except that the magnetic moments
which are arranged antiparallel are not

equal, and therefore, the material has a

magnetic moment which is not equal to zero.

[3,22,25-27,30].

-------------------------------------

.......................................

2-5-3 Magnetic properties of the Sc.ZrX (X = P, As, Ge) compounds

To classify the studied compounds ( Sc2ZrX (X =P, As, Ge ) according to their magnetic

state, the total and partial magnetic moments of all compounds were evaluated in their most

stable state (without being exposed to any external pressure or temperature impact) and

recorded in Table 11.3.

Studying the values of the total and partial magnetic moments of the three compounds

tested in their most stable form reveals that these compounds are non-magnetic since the total

moment of the crystalline cell is zero, and the partial magnetic moments of all atoms are nearly

non-existent.
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Table 11.3: Total and partial magnetic moment of ScoZrX (X = P, As, Ge).

Magnetic Results

Compounds moments GGA mBJ
RI -0.00289 0.06798
Scl -0.00067 0.01854
Sc2 -0.00066 0.01848
SC2rP zZr -0.00308 0.11008
. 0.00036 -0.00405
Total -0.00696 0.21104
RI -0.00625 -0.00250
Scl -0.00151 -0.00069
Sc2 -0.00148 -0.00069
SC2ZIAS zZr -0.00751 -0.00398
e 0.00043 0.00006
ot -0.01633 -0.00779
RI ~0.04699 0.00000
scl -0.01384 0.00000
Sc2 -0.02137 0.00000
ScZrGe Zr -0.02962 -0.00000
e 0.00079 -0.00000
ol -0.11104 0.00000

ol



2ND CHAPTER: DFT-BASED SIMULATION ON SOME HEUSLER ALLOYS PROPERTIES

3-References

[1] H. Kurt, J.M.D. Coey, Heusler Alloys: Properties, Growth, Applications, (2016).

[2] A. Telfah, S.S. Essaoud, H. Baaziz, Z. Charifi, A.M. Alsaad, M.J.A. Ahmad, R.
Hergenrdder, R. Sabirianov, DFT Investigation of Physical Properties of KCrZ (Z=S, Se,
Te) Half-Heusler alloys. , Phys. Status Solidi B. n/a (n.d.).
https://doi.org/10.1002/pssb.202100039.

[3] S.S. Essaoud, A.S. Jbara, First-principles calculation of magnetic, structural, dynamic,
electronic, elastic, thermodynamic and thermoelectric properties of Co2ZrZ (Z= Al, Si)
Heusler alloys, J. Magn. Magn. Mater. (2021) 167984.

[4] H. Alqurashi, R. Haleoot, B. Hamad, First-principles investigations of Zr-based
quaternary Heusler alloys for spintronic and thermoelectric applications, Comput. Mater.
Sci. 210 (2022) 111477.

[5] X.-P. Wei, X. Zhang, J. Shen, W.-L. Chang, X. Tao, Gilbert damping, electronic and
magnetic properties for quaternary Heusler alloys CrYCoZ: First-principles and Monte
Carlo studies, Comput. Mater. Sci. 210 (2022) 111453.

[6] K. Berarma, S. Sdad Essaoud, A.A. Mousa, S.M. Al Azar, A.Y. Al-Reyahi, Opto-
electronic, thermodynamic and charge carriers transport properties of Ta2FeNiSn2 and
Nb2FeNiSn2 double half-Heusler alloys, Semicond. Sci. Technol. (2022).
https://doi.org/10.1088/1361-6641/ac612b.

[7] S. Anand, M. Wood, Y. Xia, C. Wolverton, G.J. Snyder, Double half-heuslers, Joule. 3
(2019) 1226-1238.

[8] I. Jum’h, H. Baaziz, Z. Charifi, A. Telfah, Electronic and Magnetic Structure and Elastic
and Thermal Properties of Mn 2-Based Full Heusler Alloys, J. Supercond. Nov. Magn. 32
(2019) 3915-3926.

[9] J.C. Slater, Damped electron waves in crystals, Phys. Rev. 51 (1937) 840.

[10] D.D. Koelling, G.O. Arbman, Use of energy derivative of the radial solution in an
augmented plane wave method: application to copper, J. Phys. F Met. Phys. 5 (1975)
2041.

[11] O.K. Andersen, Linear methods in band theory, Phys. Rev. B. 12 (1975) 3060.

[12] D.R. Hamann, Semiconductor charge densities with hard-core and soft-core
pseudopotentials, Phys. Rev. Lett. 42 (1979) 662.

[13] D. Singh, H. Krakauer, H-point phonon in molybdenum: Superlinearized augmented-
plane-wave calculations, Phys. Rev. B. 43 (1991) 1441.

52



2ND CHAPTER: DFT-BASED SIMULATION ON SOME HEUSLER ALLOYS PROPERTIES

[14] E. Sjostedt, L. Nordstrém, D.J. Singh, An alternative way of linearizing the
augmented plane-wave method, Solid State Commun. 114 (2000) 15-20.

[15] P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, J. Luitz, Wien2k, (2001).

[16] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made
simple, Phys. Rev. Lett. 77 (1996) 3865.

[17] A.D. Becke, E.R. Johnson, A simple effective potential for exchange, American
Institute of Physics, 2006.

[18] O.K. Andersen, T. Saha-Dasgupta, Muffin-tin orbitals of arbitrary order, Phys. Rev.
B. 62 (2000) R16219.

[19] F.D. Murnaghan, The compressibility of media under extreme pressures, Proc. Natl.
Acad. Sci. U. S. A. 30 (1944) 244.

[20] M.E. Ketfi, H. Bennacer, S.S. Essaoud, M.I. Ziane, A. Boukortt, Computational
evaluation of optoelectronic, thermodynamic and electron transport properties of CuYZ2
(Z=S, Se and Te) chalcogenides semiconductors, Mater. Chem. Phys. (2021) 125553.

[21] A. Benamer, Y. Medkour, S.S. Essaoud, S. Chaddadi, A. Roumili, Ab-initio study of
the structural, electronic, elastic and thermodynamic properties of Sc3XB (X= Sn, Al,
Hf), Solid State Commun. 331 (2021) 114305.

[22] S. Saad Essaoud, Les composés a base de manganese: investigation theéorique des
propriétés structurales électroniques et magnétiques, 2020.
https://doi.org/10.13140/RG.2.2.30742.68169.

[23] S. Séad Essaoud, A. Bouhemadou, S. Maabed, S. Bin-Omran, R. Khenata, Pressure
dependence of the electronic, optical, thermoelectric, thermodynamic properties of
CsVOa: first-principles study, Philos. Mag. (2022) 1-25.
https://doi.org/10.1080/14786435.2022.2057611.

[24] Y. Han, Z. Chen, M. Kuang, Z. Liu, X. Wang, X. Wang, 171 Scandium-based full
Heusler compounds: A comprehensive study of competition between XA and L21 atomic
ordering, Results Phys. 12 (2019) 435-446.

[25] S.S. Essaoud, Z. Charifi, H. Baaziz, G. Ugur, S. Ugur, Electronic structure and
magnetic properties of manganese-based MnAs1- xPx ternary alloys, J. Magn. Magn.
Mater. 469 (2019) 329-341.

[26] O. Volnianska, P. Boguslawski, Magnetism of solids resulting from spin polarization
of p orbitals, J. Phys. Condens. Matter. 22 (2010) 073202. https://doi.org/10.1088/0953-
8984/22/7/073202.

53



2ND CHAPTER: DFT-BASED SIMULATION ON SOME HEUSLER ALLOYS PROPERTIES

[27] J.M.D. Coey, ed., Magnetism of localized electrons on the atom, in: Magn. Magn.
Mater., Cambridge University Press, Cambridge, 2010: pp. 97-127.
https://doi.org/10.1017/CB09780511845000.005.

[28] H. Amina, Etude théorique des propriétés structurales, électroniques et magneétiques
du composé Co2AIB2., PhD Thesis, UNIVERSITE MOHAMED BOUDIAF-M’SILA,
2021.

[29]  ASadlinnge il s ) sa 5 5eSI alsadl Al )3 35 30 . CSVO3 Sl Master Thesis,
UNIVERSITE MOHAMED BOUDIAF-M’SILA, 2021.

[30] I Jum’h, H. Baaziz, Z. Charifi, A. Telfah, Electronic and Magnetic Structure and
Elastic and Thermal Properties of Mn 2-Based Full Heusler Alloys, J. Supercond. Nov.
Magn. (n.d.) 1-12.

o4



Conclusion



Conclusion

Conclusion

This thesis included a theoretical analysis of the structural, electronic, and magnetic
characteristics of three compounds, ScoZrP, ScoZrAs, and ScoZrGe, using the Wien2k simulation
code and the density functional theory "DFT" based on the full-potential linearized augmented-

plane wave (FP-LAPW) approach.

The fundamental objective of this work was realized, in which the foundations of quantum
mechanics were applied to determine the appropriate field for using these compounds, as well as
knowing the influence of the type of atoms on certain properties, which allows us to predict

additional materials with better properties.
Through our study, we took note of the following observations:

The three compounds crystallize in a cubic structure that has a large level of symmetry, so it is
easy for us to perform the calculations in a short time.

The methods employed to estimate the exchange-correlation potential produced results extremely
close to the experimental data, indicating that the experimental and theoretical sides are in

excellent accordance.

ScoZrP compound is more resistant to external pressure than the other two compounds after

calculating the Bulk modulus and the cohesive energy.

The three compounds have a metallic behavior, which when analyzing the electronic band

structure we observed an overlap between the conduction band and the valence band.

By studying magnetic properties we can see that these compounds are non-magnetic compounds.
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Abstract

A theoretical study of structural, electronic and magnetic properties for Sc2ZrP, ScaZrAs and
:Sc2ZrGe was done in the framework of the density functional theory (DFT) and using the
: Wien2k code based on the full-potential linearized augmented plane wave method (FP_LAPW).
:We used both generalized gradient approximation (GGA) and modified Becke-Johnson
:approximation (mBJ) to calculate the correlation-exchange potential. Concerning the structural
: properties, we determined the values of the lattice constant, the Bulk modulus and the cohesive
:energy. To understand the electronic behavior of each compound, we calculated and analyzed
:the structure of the electronic band-structure, the total density of state (TDOS) and partial
:density of state (PDOS). On the other hand, we also studied the partial and total magnetic
moment of the atoms forming the three compounds.

I-Resume !
: Une étude théorique a été effectué pour calculer les propriétés structurales, électroniques et
: magneétiques des composés ScoZrP, ScaZrAs et ScoZrGe, dans le cadre de la théorie de la :
: fonctionnelle de la densité (DFT) et en utilisant le code Wien2k basé sur la méthode des ondes :
: planes augmentées linéarisées (FP_LAPW). En utilisant a la fois de I'approximation de gradient :
: généralisée (GGA) et de I'approximation de Becke-Johnson modifiée (mBJ) pour calculer le :
: potentiel d'échange et de corrélation. Concernant les propriétés structurales, nous avons :
determlne les valeurs du parameétre de la mallle le module de compressibilité et de Ienergle



