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 شكر وعرفان
لله الحمد قيم السماوات والأرض ومن فيهن وله الحمد نور السماوات والأرض 

 ومن فيهن ..

لله الشكر أن أنعم علينا بنعم العقل والدين ..ووفقني لهذا الإنجاز  المتواضع 

 وألهمني الصبر على العقبات ..

 رون معناه.. وللإبداع أناس يحصدونه..للنجاحات أناس يقد  

ومن صنع إليكم معروفا فكافئوه، بقوله صلى الله عليه وأله وسلم " .. وعمل 
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أتقدم بالشكر لأستاذي الكريم "ساعد السعود صابر " وأقدر جهوده المضنية 

لثناء والشكر وله مني كل وتوجيهاته الثمينة ودعمه الامحدود .. فهو جدير با

 التقدير..

 جزاه الله خيرا عن كل حرف وجعله في ميزان حسناته ونفع به الأمة..

و أتوجه بجزيل الشكر إلى اللجنة, الأستاذة برارمة خديجة لتفضلها برئاسة 

 المناقشة والأستاذ كتفي محمد اللأمين لقبوله تقييم هذا العمل..
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Introduction 

Heusler alloys have gotten a great experimental and theoretical attention in the latest 

decade due to their characteristics, since they are theoretically assumed as half metals at room 

temperature (RT) [1]. These Alloys have a high Curie temperature above RT [2,3], and 

intermetallic controllability for spin of states at the Fermi level [4]. 

Due to their physical properties, Heusler compounds have the advantage of emerging 

as basic materials in many research fields such as superconductivity, magnetism, thermoelectric 

devices [4–9], ….etc. Therefore, research has focused on this family of materials and their 

characteristics, notably those relevant to the half-metallic property necessary in a wide range of 

technology domains. Furthermore, the magnetic characteristics of these materials have attracted 

the interest of many researchers, as understanding the origins of magnetism in these materials 

is an important part of condensed matter physics study. For this reason we have been interested 

in studying Sc2ZrX (X = P, As, Ge) Heusler alloys despite that there are few studies on these 

compounds in hoping that our work adds more fruitful information and represents a trusted and 

useful source about the properties of these compounds.  

The aforementioned objectives were achieved theoretically, as first-principles 

calculations based on density functional theory considerably aided us in studying and 

comprehending the structural, electronic, and magnetic behavior of these compounds.   

This work is divided into two chapters: in the first, we reviewed the foundations of 

density functional theory (DFT), the Kohn-Sham equations, and the approximations that allow 

us to estimate the potential of exchange-correlation, namely the generalized gradient GGA and 

modified Becke-Johnson approximations (mBJ). The obtained results are presented in the 

second chapter, where we used Wien2k code to compute structural parameters of all three 

Sc2ZrP, Sc2ZrAs, and Sc2ZrGe compounds, such as lattice parameter, bulk modulus, and 

cohesive energy. We also investigated the electronic behavior by determining the band 

structure, total density of states (DOS), and partial density of states (PDOS), then investigating 

the magnetic behavior. Finally, we finished our work by a general conclusion. 

 

 



Introduction 

 

 
2 

 

 

References  

[1] X. Wang, Z. Cheng, G. Liu, Largest magnetic moments in the half-Heusler alloys XCrZ 

(X= Li, K, Rb, Cs; Z= S, Se, Te): A first-principles study, Materials. 10 (2017) 1078. 

[2] B.T. Miller, L. Hug, T. Helbling, Potential of Thermoelectrics for Waste Heat Recovery, 

(n.d.). 

[3] H.Y. Lee, J.K. Lee, Dissolution of Thermoelectric Materials Containing Te with Acidic 

Solutions, Sep. Sci. Technol. 50 (2015) 1665–1670. 

[4] K. Elphick, W. Frost, M. Samiepour, T. Kubota, K. Takanashi, H. Sukegawa, S. Mitani, 

A. Hirohata, Heusler alloys for spintronic devices: review on recent development and 

future perspectives, Sci. Technol. Adv. Mater. 22 (2021) 235–271. 

https://doi.org/10.1080/14686996.2020.1812364. 

[5] S.B. Riffat, X. Ma, Thermoelectrics: a review of present and potential applications, Appl. 

Therm. Eng. 23 (2003) 913–935. 

[6] L.E. Bell, Cooling, heating, generating power, and recovering waste heat with 

thermoelectric systems, Science. 321 (2008) 1457–1461. 

[7] L. Huang, Q. Zhang, B. Yuan, X. Lai, X. Yan, Z. Ren, Recent progress in half-Heusler 

thermoelectric materials, Mater. Res. Bull. 76 (2016) 107–112. 

[8] W.G. Zeier, J. Schmitt, G. Hautier, U. Aydemir, Z.M. Gibbs, C. Felser, G.J. Snyder, 

Engineering half-Heusler thermoelectric materials using Zintl chemistry, Nat. Rev. Mater. 

1 (2016) 1–10. 

[9] T. Zhu, C. Fu, H. Xie, Y. Liu, X. Zhao, High efficiency half-Heusler thermoelectric 

materials for energy harvesting, Adv. Energy Mater. 5 (2015) 1500588. 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

CHAPTER 1 
 

 

 

 

 

 

 

 

 

 

 

 



1ST CHAPTER                                              THEORETICAL STUDY OF MANY-PARTICLES SYSTEM 

 

 
3 

 

CHAPTER 1:   

THEORETICAL STUDY OF MANY-PARTICLES SYSTEM 

 

Table of Contents 

1- The Schrödinger equation ................................................................................................................... 4 

2- Born-Oppenheimer approximation ..................................................................................................... 5 

3- Hartree and Hartree-Fock approximations (HF) ................................................................................. 6 

4- Density Functional Theory (DFT) ...................................................................................................... 7 

4-1 Formalism of Density Functional Theory (DFT) .............................................................................. 9 

I. The theorems of Hohenburg and Kohn ................................................................................................ 9 

A-1) First theorem……………………………………………………..……………………………….9 

A-2) Second theorem………………………………………….………………………………………10 

II. The Kohn - Sham equation ............................................................................................................... 10 

B-1) Solution of the Kohn - Sham equation .......................................................................................... 12 

5-The different types of approximations of the 𝑬𝒙𝒄𝝆 .......................................................................... 15 

5-1 Local density approximation (LSDA) ............................................................................................. 15 

5-2 The generalized gradient approximation GGA ............................................................................... 16 

6- Full-potential linearized augmented plane-wave method (FP-LAPW) ............................................. 16 

6-1 The plane wave method (APW) ...................................................................................................... 16 

6-2 The linearized augmented plane wave method (LAPW) ................................................................ 17 

7- WIEN2K simulation code ............................................................................................................. 19 

8- References ………………...……………………………………………………………………….22 

 

 

 

 

 



1ST CHAPTER                                              THEORETICAL STUDY OF MANY-PARTICLES SYSTEM 

 

 
4 

 

1- The Schrödinger equation  

In 1926, the physicist Erwin Schrödinger proposed a partial 

differential equation known as the Schrödinger equation in the 

framework of quantum theory [1]. The solution of this equation 

allows us to describe the instantaneous quantum state of a system 

through its wave function, which includes all the information about 

the system studied  [2–4]. The Schrödinger equation has the 

following expression: 

𝐻𝛹(�⃗� 𝐼 , 𝑟 𝑖) = 𝐸𝛹(�⃗� 𝐼 , 𝑟 𝑖) 

The two vectors �⃗� 𝐼and 𝑟 𝑖are the coordinates of the nucleus (I) and of the electron (i). 

H: Hamiltonian operator related to the sum of the kinetic energy and the potential energy of 

the system. 

E: Energy eigenvalue of the system. 

Ψ: Wave function which depends on the coordinates of electrons and nuclei. 

The Hamiltonian system - made up of nuclei and electrons - includes the kinetic energy 

of electrons and nuclei, as well as the potential energies (electron-electron, electron-nucleus, 

and nucleus-nucleus), therefore the expression of the total Hamiltonian of the system is 

written by the following expression: 

𝐻 = 𝑇𝑒 + 𝑇𝑁 + 𝑉𝑒𝑒 + 𝑉𝑒−𝑁 + 𝑉𝑁−𝑁 

𝑇𝑒 = −∑
ℏ2

2𝑚𝑖
�⃗� 𝑖

2 →𝑖  Electronic kinetic energy (mi the mass of electron i). 

𝑇𝑛 = −∑
ℏ2

2𝑚𝐼
�⃗� 𝐼

2
𝐼 →  Nuclei kinetic energy (mI the mass of the nucleus I). 

𝑉𝑁−𝑁 = ∑
𝑍𝐼𝑍𝐽𝑒

2

|𝑅𝐼−𝑅𝐽|
𝐼≠𝐽 →  The interaction part between the nuclei. 

𝑉𝑒−𝑁 = ∑
𝑍𝐼𝑒

2

|𝑅𝐼−𝑟𝑗|
𝐼,𝑗     →   The nuclei-electrons interaction part. 

𝑉𝑒−𝑒 = ∑
𝑒2

|𝑟𝑖−𝑟𝑗|
𝑖≠𝑗 →   The interaction part between the electrons. 
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|𝑅𝛼 − 𝑅𝛽|  → The distance between the two nuclei α and β 

 |𝑟𝑖 − 𝑅𝛼|   → The distance between the nucleus α and the electron i 

|𝑟𝑖 − 𝑟𝑗|     → The distance between the two electrons i and j. 

In practice, the Schrödinger equation is difficult to solve and the exact solution cannot 

be obtained, especially for systems containing large numbers of electrons and nuclei in 

motion and interaction between them, so simplifications and approximations must be used to 

obtain an approximate solution that is as close to the real solution as possible. The following 

are some of the most notable approximations and simplifications to the Schrödinger equation: 

2- Born-Oppenheimer approximation 

 The Born-Oppenheimer approximation [5], developed in 1927 by physicists Max Born 

and Robert Oppenheimer, allowed to separate the 

movement of nuclei from the movement of electrons. 

Despite its movement, the nucleus remains very close to 

its equilibrium with respect to the electrons, which are 

very fast, and thus it is possible to ignore the nuclei's 

kinetic energy in regards to the electrons' kinetic energy 

and consider the nucleus-nucleus interaction energy as a 

constant quantity (Vnn = Constant). 

According to the Born-Oppenheimer approximation we can rewrite the total wave 

function of the system 𝛹(�⃗� 𝐼
0
, 𝑟 𝑖)in the form of a product of an electronic function 𝛹𝑒 (�⃗� 𝐼

0
, 𝑟 𝑖) 

and a nuclear function 𝛹𝑛 (�⃗� 𝐼
0
), thus, we can separate the motion of nuclei from that of 

electrons. Then the wave function is written: 

𝛹 (�⃗� 𝐼
0
, 𝑟 𝑖) = 𝛹𝑛 (�⃗� 𝐼

0
)𝛹𝑒 (�⃗� 𝐼

0
, 𝑟 𝑖) 

{
 
 

 
 [𝑇𝑒  + 𝑉𝑒𝑒 + 𝑉𝑒𝑛]𝛹𝑒 (�⃗� I

0
, 𝑟 i) = 𝐸𝑒 (�⃗� I

0
)Ψ𝑒 (�⃗� I

0
, 𝑟 i)                     

[𝑇𝑛 + 𝑉𝑛𝑛 + 𝐸𝑒 (�⃗� I
0
)]𝛹𝑛 (�⃗� I

0
)  = 𝐸𝛹𝑛 (�⃗� I

0
)                           
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Despite applying this simplification to the Schrödinger equation, the problem remains 

difficult and cannot be solved using current mathematical methods due to the extremely 

complicated electron-electron interaction, thus we used additional approximations. 

3- Hartree and Hartree-Fock approximations (HF) 

 The Hartree-Fock approximation was proposed to modify 

and correct the shortcomings of the Hartree approximation. 

Hartree proposed in 1928 [6,7] that all electrons be treated as 

identical particles that move independently without interacting 

with other particles ( independent particle approximation [8]). In 

this approximation, Hartree treats the interactions between 

electrons as particles carrying a charge without taking into 

account the spin state, i.e. the interactions that occur between them 

are Columbian repulsion interactions with neglecting both exchange 

and correlation terms. Furthermore, the wave function is not "anti-

symmetric" since it does not take into consideration the Pauli 

exclusion principle [3,4]. 

Although the Hartree approximation does not take in account the electron spin and the 

Pauli exclusion principle, it simplifies the Schrödinger equation from studying a large number 

of electrons to studying a single electron, so that the total Hamiltonian H of electrons is the 

sum of the Hamiltonians hi of each electron, while the total wave function of the electronic 

system represents by multiplication the individual wave functions of each electron  [3,4]. 

Finally, the total energy of the electronic system is the sum of the energies of all electron. 

According to Hartree's approximation, the Hamiltonian equation for single electron can be 

written as follows: 

𝐻 = ∑ℎ𝑖

𝑖

 

ℎ𝑖 = −
ℏ2

2𝑚i
∆𝑖 − ∑

𝑍𝐼𝑒
2

|𝑟𝑖⃗⃗  − �⃗� I
0
|𝐼

+
1

2
∑

𝑒2

|𝑟𝑖⃗⃗  − 𝑟 𝑗|𝑗

 

𝛹𝑒 = ∏𝛹𝑖

𝑖
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𝐸𝑒 = ∑𝜀𝑖

𝑖

 

In 1930, Fock [9] improved and modified Hartree's model by substituting the wave 

functions of the electron with a Slater determinant[10], allowing him to accommodate for the 

exchange effect that Hartree neglected. In this way, the interaction between electrons takes 

into account both the coulomb interaction and the exchange effect, and thus the previous 

functions have been replaced by anti-symmetric functions, and therefore, Fock introduced the 

term spin in its dealing with electronic interactions and replaced the wave function of the 

electronic system by a Slater determinant expressed by the formula: 

𝛹𝐻𝐹(𝑟 1, 𝑟 2, 𝑟 3, … , 𝑟 𝑁) =
1

√𝑁𝑒!

[
 
 
 
 
ψ1(𝑟 1) ψ1(𝑟 2) ψ1(𝑟 3) ⋯ ψ1(𝑟 𝑁)

ψ2(𝑟 1) ψ2(𝑟 2) ψ2(𝑟 3) ⋯ ψ2(𝑟 𝑁)

ψ3(𝑟 1) ψ3(𝑟 2) ψ3(𝑟 3) … ψ3(𝑟 𝑁)
⋮ ⋮ ⋮ ⋱ ⋮

ψ𝑁(𝑟 1) ψ𝑁(𝑟 2) ψN(𝑟 3) ⋯ ψ𝑁(𝑟 𝑁)]
 
 
 
 

 

Where 
1

√𝑁𝑒!
 is a normalization factor. 

4- Density Functional Theory (DFT) 

The aim behind Density Functional Theory (DFT) is to rewrite the Hamiltonian of the 

electron using electron density rather than wave functions. Researchers like Dirac [11], Slater 

[12], Hohenburg, and Kohn [13] have made significant contributions to this theory through 

their theoretical work. 

The DFT theory was first discovered in the works of Thomas and Fermi in 1927[13,4], 

where they created the main idea in expressing the total energy of an electronic system as a 

function of electron density by considering the electronic system as a homogeneous and 

regular gas of electrons where the continuous partitioning of the Brillouin zone (without 

taking into consideration electron correlations) was carried out by the two scientists Thomas 

and Fermi in order to achieve regions where the electron density is constant in each part. The 

following two formulas provide expressions for the density and kinetic energy of a 

homogeneous electronic gas: 

𝜌 =
1

3𝜋2
𝐸
𝑓

3
2 (

2𝑚𝑒

ℎ2
)

3
2
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𝐸𝑐 =
3

5
(

ℎ2

2𝑚𝑒
) (3𝜋2)

2
3𝜌

5
2 

The following table presents a comparison between Hartree-Fock method and density 

functional theory and the characteristics of each method  [3]. 

Table I. 1: Comparison between the two methods, Hartree-Fock and the Density Functional 

Theory (DFT) [16,17]. 

HF method DFT 

  

 Principle: Solving the Schrödinger 

equation by considering the wave 

functions as a variable basic. 

 Based on the mean field theory 

(MFT). 

 Calculates wave functions and 

eigenvalue energy to obtain ground 

state energy. 

 Depend on the large number of 

variables, which makes the equation 

very complicated and time 

consuming. 

 The wave functions obtained as 

solutions for the Schrödinger 

equation have no physical meaning. 

 Does not take into account the 

correlation terms. 

 Principle: Solving the Schrödinger 

equation by considering the electron 

density as a variable basic. 

 Based on the two Hohenburg – Sham 

theorems and shifting from the 

Schrödinger equation to the Kohn-

Sham equations to find the solution. 

 Use electron density which has 

physical meaning. 

 Reduce the number of variables 

which makes the equation simpler 

and faster compared to the HF 

method. 

 Enable to treat the correlation terms. 



1ST CHAPTER                                              THEORETICAL STUDY OF MANY-PARTICLES SYSTEM 

 

 
9 

 

4-1 Formalism of density functional theory (DFT) 

The density functional theory (DFT) is based on describing the total energy of a 

system with many interacting electrons as a function of the electronic density, rather than its 

wave function, where the electronic density is expressed by the formula: 

𝜌(𝑟 ) = ∑|𝛹𝑖(𝑟 )|
2

𝑁

𝑖=1

 

The density functional theory (DFT) is based on two main theorems. 

I. The theorems of Hohenburg and Kohn 

The two theorems presented by Hohenburg and Kohn in 1964, are considered to be the basis 

of the density functional theory. 

A-1) First theorem: 

The total energy of an electronic system is a 

functional of the electron density for an external 

potential V (r), so it is possible to know all the properties of the system 

when determining the electron density[3,18]. 

𝐸[(𝑟 )] = 𝐹[(𝑟 )] + ∫𝑉(𝑟 )(𝑟 )𝑑𝑟3 

Where F [ρ] is universal functional. 

The external potential and the universal functional F [ρ] are expressed in the form: 

𝑉𝑒𝑥𝑡(𝑟𝑖⃗⃗ ) = −∑
𝑍𝐴

𝑟𝑖𝐴
𝐴

 

𝐹[𝜌] = 𝑇[𝜌] + 𝑈[𝜌] 

Where ZA is the charge of the nucleus, riA is the distance between nucleus A and electron i. 
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A-2) Second theorem: 

The second theory appears that to obtain the total energy of the ground state of the 

electronic system, it is enough to find the corresponding electron density which makes the 

density function at its minimum value. 

𝐸(𝜌0(𝑟 )) ≤ 𝐸[𝜌(𝑟 )] 

𝐸(𝜌0) =  𝑀𝑖𝑛𝐸(𝜌) 𝑙𝑖𝑚
𝜌→𝑁

⟨𝛹|�̂� + ∑ 𝑉𝑒𝑥𝑡𝑖 + 𝑉𝑒𝑒|𝛹
 ⟩ 

We can get the corresponding electron density of the ground state, by applying the 

variational principle via the differential of total energy in terms of electron density: 

𝑑𝐹[𝜌(𝑟)]

𝑑𝜌(𝑟)
+ 𝑉(𝑟) = 0 

Therefore, if the electron density which minimizes the energy function is known, we 

can easily determine the wave function and the exact energy of the ground state. 

II. The Kohn - Sham equation 

 One of the difficulties in studying a many-

electrons system is the inability to express the kinetic 

energy and electron-electron interactions analytically 

in terms of electron density. 

In 1965, scientists Kohn and Sham suggested the 

initial idea of replacing the real electronic system with a fictive system in which the behavior 

of the electron is independent, unrelated, and unaffected by the behavior of other electrons. It 

is only affected by the effective potential (Kohn-Sham potential), which involves both the 

external potential created by the nuclei's influence and the potential caused by the remaining 

particles effect on this electron[3,19,20]. 

The fictive system proposed by Kohn-Sham is characterized by: 

 The Kohn-Sham orbits which are space wave functions of a single electron are 

solutions of the Schrödinger equation in this vacuum space. 

 The fictive electronic system has the same electronic density as a real system. 
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 The kinetic energy of the fictive system is the kinetic energy of the electrons without 

the correlation effect and it is positive, while the kinetic energy in the real system “TR” 

is the sum of the kinetic energy of the fictive system “Tf” and an additional term that 

expresses the effect of the correlation “Tc” on the kinetic energy of the electron [3] 

that is: 

𝑇𝑅 = 𝑇𝑓 + 𝑇𝑐 

𝑇𝑐 = ⟨𝛹|𝑇|𝛹⟩ − ⟨𝜑|𝑇𝑠|𝜑⟩ 

The Vee interaction between electrons in the real system which is written in the following 

relation: 

⟨𝛹|𝑉𝑒𝑒|𝛹⟩ = 𝑈𝐻 + 𝑈𝑥 + 𝑈𝑐 

Where the terms represent: 

UH: The electron-electron coulomb interaction (Hartree potential) 

Ux: The exchange energy between electrons of the same spin. 

Uc: The correlation energy between the electrons. 

The Kohn-Sham equation for an electronic system is given as a function of the kinetic 

energy of the electron: external potential energy, Hartree interaction and exchange-correlation 

energy as follows: 

 The kinetic energy of an electron in a fictitious system: 

𝑇𝑠[𝜌] =  ⟨𝜑𝑖|−
ℏ2

2m∆|𝜑𝑖
 ⟩ =  −

ℏ2

2m
∑∫𝜑𝑖∇

2

i

𝜑𝑖
∗𝑑𝑟𝑖 

 The external potential generated by the effect of nuclei (nucleus-electron 

interaction): 

𝑉𝑁𝐸[𝜌] = −∫  ∑
𝑍𝐼𝜌(𝑟 )

|�⃗� I
0
− 𝑟  |𝐼,𝑖

𝑑𝑟  

 

 The Hartree potential (electron-electron coulomb interaction) 
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𝑈[𝜌] =
1

2
∫

𝜌(𝑟 )𝜌(𝑟′⃗⃗  ⃗)

|𝑟 − 𝑟′⃗⃗  ⃗|
𝑑𝑟𝑑𝑟′ 

 The exchange-correlation energy, which is the sum of the correlation and 

exchange terms, it does not have an exact mathematical expression, but it is 

estimated by approximations 

𝐸𝑥𝑐[𝜌] = 𝐸𝑥[𝜌] + 𝐸𝑐[𝜌] 

And finally, the Kohn-Sham equation is written as follows  [21–23]: 

𝐻𝐾𝑆𝜑𝑖(𝑟 ) = [𝑇𝑠[𝜌] + 𝑉𝐾𝑆(𝑟 )]𝜑𝑖(𝑟 ) = 𝜀𝐾𝑆𝜑𝑖(𝑟 ) 

𝑉𝐾𝑆(𝑟 ) = 𝑉𝑒𝑥𝑡(𝑟 ) + 𝑉𝐻(𝑟 ) + +𝑉𝑋𝐶(𝑟 ) 

𝐸[𝜌] = 𝑇𝑠[𝜌] + 𝑉𝑁𝐸[𝜌] + 𝑈𝐻[𝜌] + 𝐸𝑥𝑐[𝜌] 

B-1) Solution of the Kohn - Sham equation 

Solving the Kohn-Sham equation depends on two basic steps: 

• The first step: define all the terms of the effective Kohn-Sham potential, i.e. the exchange-

correlation potential Exc must be determined because this term has no mathematical formula 

but it can be estimated by approximations. 

• The second step: find the wave functions (Kohn-Sham orbits), which represent a solutions 

for the Kohn-Sham equation given by [3]: 

𝜑𝐾𝑆(𝑟 ) = ∑𝐶𝑖𝑗

𝑗

𝜑𝑗(𝑟 ) 

Where 𝜑𝑖(𝑟 ) are the basic functions, and Cij are are the development coefficients. 

∑𝐶𝑖𝑗

𝑗

𝐻𝐾𝑆|𝜑𝑗⟩ = ∑𝐶𝑖𝑗𝜀𝐾𝑆

𝑗

|𝜑𝑗⟩ 

⟨𝜑𝑘|∑𝐶𝑖𝑗

𝑗

𝐻𝐾𝑆|𝜑𝑗⟩ = ⟨𝜑𝑘|∑𝐶𝑖𝑗𝜀𝐾𝑆

𝑗

|𝜑𝑗⟩ 
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∑ 

𝑗

(〈𝜑𝑘|𝐻𝐾𝑆|𝜑𝑗〉 − 𝜀𝐾𝑆〈𝜑𝑘|𝜑𝑗〉)𝐶𝑖𝑗 = 0 

It remains to determine the Cij coefficients.  

The Kohn-Sham equation is solved according to an iterative cycles illustrated by  

figure (1.I), where the process starts using an initial density 𝜌𝑖𝑛for the first iteration, this 

density is used to solve the Kohn-Sham equation, then, We use a superposition of the atomic 

densities and we compute the Kohn-Sham matrix, to solve the equations, then obtain the 

Kohn-Sham orbitals. 

After this step, we calculate the new density𝜌𝑜𝑢𝑡, to check the convergence condition (if the 

density or energy has changed a lot or not) and we mixed the two charge densities 𝜌𝑜𝑢𝑡and 

𝜌𝑖𝑛as follow: 

𝜌𝑖𝑛
𝑖+1 = (1 − 𝛼)𝜌𝑖𝑛

𝑖 + 𝜌𝑜𝑢𝑡
𝑖  

Thus the iterative procedure can be repeated until the convergence condition is fulfilled. 
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Figure I. 1: Self-consistent calculation. 
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5-The different types of approximations of the 𝑬𝒙𝒄[𝝆] 

As the exchange-correlation potential between electrons has no analytical term, several 

scenarios have been used to obtain approximate values for this potential, the accuracy of the 

results obtained being mainly related to the mathematical formula of this potential[3]. 

5-1 Local density approximation (LSDA) 

This model was first proposed by Kohn and Sham in 1964  [24] where the 

inhomogeneous electronic system is approximated by a local homogeneous electronic system 

after dividing the Brillouin region into small regions, and the expression energy exchange - 

correlation is given by the relation : 

𝐸𝑋𝐶
𝐿𝑆𝐷𝐴 = ∫𝜌(𝑟 )𝐸𝑥𝑐[𝜌(𝑟 )]𝑑𝑟  

𝑉𝑥𝑐 =
𝑑𝐸𝑋𝐶

𝐿𝐷𝐴[𝜌]

𝑑𝜌
= 𝜀𝑋𝐶

𝐿𝐷𝐴 + 𝜌(𝑟 )
𝑑𝜀𝑋𝐶

𝐿𝐷𝐴

𝑑𝜌
 

For each spin up or down magnetic order, the total electron density becomes the sum of 

the two electron densities 

𝜌(𝑟 ) = 𝜌↑(𝑟 ) + 𝜌↓(𝑟 ) 

The Kohn-Sham equation for the two spins in the form  [3]: 

{
 
 

 
 (

−ℏ2

2𝑚
𝛻2 + 𝑉𝑒𝑓𝑓

↑ (𝑟 ))𝜑𝑖(𝑟 ) = 𝜀𝐾𝑆
↑ 𝜑𝑖(𝑟 )

(
−ℏ2

2𝑚
𝛻2 + 𝑉𝑒𝑓𝑓

↓ (𝑟 ))𝜑𝑖(𝑟 ) = 𝜀𝐾𝑆
↓ 𝜑𝑖(𝑟 )

 

The effective potential for the two spins is written as  [3]: 

{
 
 

 
 Veff

↑ (𝑟 ) = Vext
 + Vxc

↑ = Vext
 +

𝑑𝜀𝑋𝐶
𝐿𝑆𝐷𝐴[𝜌↑(𝑟 ), 𝜌↓(𝑟 )]

𝑑𝜌↑(𝑟 )
 

 
      

 Veff
↓ (𝑟 ) = Vext

 + Vxc
↓ = Vext

 +
𝑑𝜀𝑋𝐶

𝐿𝑆𝐷𝐴[𝜌↑(𝑟 ), 𝜌↓(𝑟 )]

𝑑𝜌↓(𝑟 )
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5-2 The generalized gradient approximation GGA 

The previous approximation considered the electron density to be uniformly 

distributed, making its density homogeneous, but this approximation produced results that 

were inconsistent with the experimental results on several times, so a new approximation was 

developed, in which the localized electron density was considered to be non-homogeneous 

and varied from place to place. Thus,  the total energy of the electron system is proportional 

to both the electron density ρ (r ) and its gradient  ∇ρ (r ), as shown by the equation [25]: 

EXC
GGA[ρ(r )] =   ∫ d3r ρ(r )εXC

 [ρ (r ), ∇ρ (r )] 

6- Full-potential linearized augmented plane-wave method (FP-LAPW) 

After solving the exchange-correlation potential problem, the search for wave functions 

as solutions to the Kohn-Sham equation became necessary. After extensive research, certain 

approaches emerged, including the OPW method presented by Herring theory in 1940 [26], 

the LMTO method [27], and the FP-LAPW method, where these methods are dependent on 

the quality of the effective potential utilized. 

6-1 The plane wave method (APW) 

This method was carried out by the scientist Slater [10] who divided the crystal space 

into two parts based on the Muffin-Tin approximation [28] (see Figure I.2) by representing 

the atoms as non-overlapping spheres of radius R0 in which the core electrons are located, and 

between these spheres, an interstitial region containing free electrons that are away from the 

nuclei of their atoms. 

 

 

Figure I. 2: Diagram of the distribution of the elementary cell in atomic spheres and in 

interstitial region. 

R0 The MT 
Spheres 

interstitial 

region 
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According to Slater's approximation [10], the core electrons located inside the sphere 

are subjected to the spherical potential, on the other hand, in the interstitial region the 

potential is constant [3]. So, the potential in the two regions is given in the form: 

𝑉(𝑟 ) = {

𝑉(𝑟)𝑟 ≤ 𝑅0

0𝑟 > 𝑅0

 

 

Also, the waves that describe the behavior of electrons inside MT spheres differ from 

those in the interstitial region, they are described by plane waves in the interstitial region, 

while inside spheres by functions radials multiplied by spherical harmonics[3]. The two 

different wave functions are given by the following expression: 

φ(r ) =  

{
  
 

  
 ∑ 

∞

l=0

∑𝐴𝑙𝑚𝑈𝑙(𝑟)𝑌𝑙𝑚(𝑟)

𝑚

−𝑚

                  𝑟 ≤  𝑅0

 
 

1

√𝛺
∑𝐶𝐺

𝐺

𝑒𝑖(�⃗⃗� +𝐺 )𝑟                                      𝑟 > 𝑅0

 

Where  Ω: The cell volume 

  𝑌𝑙𝑚: Spherical harmonics 

              𝐴𝑙𝑚: Development coefficients 

              𝑈𝑙 : The regular solution of the Schrödinger equation given by[29] : 

(
−𝑑2

𝑑𝑟2
+

𝑙(𝑙 + 1)

𝑟2
𝑉(𝑟 )) 𝑟𝑈𝑙 = 𝐸𝑙𝑈𝑙 

Where 𝐸𝑙: An energy parameter. 

 

6-2 The linearized augmented plane wave method (LAPW) 

The downside of using the APW method is its slow process in calculations due to the 

common radial function Ul ; additionally, it is difficult to define the radial function for each 

value of energy El. So that, Anderson [30] made improvements to the APW method [31]by 

using the Taylor expansion to write the radial functions 𝑈𝑙 (r) in the following form: 
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𝑈𝑙(𝑟, 𝐸) = 𝑈𝑙(𝑟, 𝐸𝑙) + (𝐸𝑙 − 𝐸)
𝑑𝑈𝑙(𝑟, 𝐸)

𝑑𝐸
|
𝐸=𝐸𝑙

+ 𝑂(𝐸𝑙 − 𝐸)2 

Where the term 𝒪(𝐸 − 𝐸𝑙) 
2 represents the quadratic error. 

After several simplifications, he has got the expression of potential inside and outside of 

Muffin-Tin balls as follows: 

𝑉(𝑟) =  

{
  
 

  
 ∑𝑉𝑙𝑚(𝑟)𝑌𝑙𝑚

𝑚

𝑙𝑚

                                    𝑟 ≤  𝑅0

 
 

∑𝑉𝑘(𝑟)𝑒
𝑖𝑘𝑟

𝑚

𝑙𝑚

                                    𝑟 > 𝑅0

 

As well as the wave functions inside the spheres in terms of radial functions and their 

derivatives. Where the wave functions are written as follows [32,33]: 

𝛷�⃗⃗� +𝐺 (𝑟 ) =  

{
  
 

  
 ∑(𝐴𝑙𝑚𝑈𝑙(𝑟) + 𝐵𝑙𝑚�̇�𝑙(𝑟)) 𝑌𝑙𝑚(𝑟)

 

𝑙𝑚

            𝑟 ≤  𝑅0

 
 

1

√𝛺
∑𝐶𝐺

𝐺

𝑒𝑖(�⃗⃗� +𝐺 )𝑟                                               𝑟 > 𝑅0

 

Where: 

�⃗⃗� : represents the wave vector. 

𝐺 : is the vector of the reciprocal lattice. 

𝐴𝑙𝑚: are coefficients corresponding to the function 𝑈𝑙. 

𝐵𝑙𝑚: are coefficients corresponding to the function 𝑈𝑙. 

We can determine the coefficients 𝐴𝑙𝑚 and 𝐵𝑙𝑚, for each wave vector, and for each atom 

by applying the conditions of continuity of the basic functions in the vicinity of the limit of 

the spheres. After some simplifications we find the coefficient formula 𝐴𝑙𝑚 and 𝐵𝑙𝑚 in the 

following forms: 

𝐴𝑙𝑚 = 
4𝜋𝑟0

2𝑖𝐿

√𝛺
𝑌∗

𝑙𝑚(𝐾 + 𝐺)𝑎𝑙(𝐾 + 𝐺)  

𝐵𝑙𝑚 = 
4𝜋𝑟0

2𝑖𝐿

√𝛺
𝑌∗

𝑙𝑚(𝐾 + 𝐺)𝑏𝑙(𝐾 + 𝐺)  
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7- WIEN2K simulation code  

 With the technological development, especially programming languages, researchers 

from the Institute of Materials Chemistry in Vienna were able to design the Wien2k program 

package [34], which is considered to be one of the most important programs used to study the 

properties of solid materials. This program consists of many subprograms written in Fortran 

language, the last of which are algorithms that translate the equations of the crystal system 

treated according to the density functional theory (DFT) which adopt the method of The full 

potential linearized augmented plane wave FP-LAPW as a way to compute algorithms to 

study the properties of compounds [3] . 
The most important subprograms and its role in the Wien2k code are shown in Figure 

I.3 which are organized as follows: [3] : 

 NN : This subprogram calculates the distances between nearest neighbors up to a 

specified limit which therefore helps to determine the value of the radius of the atomic 

sphere. 

 SGROUP : determines the space group of the compound.  

 SYMMETRY : is a program that defines the symmetry number and space group 

symmetry operations of our structure.  

 LSTART : calculates electron densities in free atoms and show how different orbitals 

will be treated in band structure calculations.  

 KGEN : generates a mesh of K points in the irreducible part of the first Brillouin zone 

(B.Z). We specify the number of K points in the whole 1stB.Z. 

 DSTART : produces an initial density for the SCF cycle (self-consistent cycle) by a 

superposition of atomic densities produced in the LSTART subprogram. 

After the last subprogram ; we enter a loop of SFC calculations and therefore we shall  reach 

five steps : 
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 LAPW0 (POTENTIAL) : uses the total electron density to calculate the coulomb and 

exchange potential (Hartree-Fock potential). In addition to that, it divides the space into 

a MT (muffin-tin) sphere and an interstitial region. 

 LAPW1 (BANDS) : calculate eigenvalues and wave functions for valence electrons 

from solving the equation (III.1).  

 LAPW2 (RHO) : calculate the valence electron densities obtained in the step LAPW0.  

 LCORE : calculates eigenvalues and wave functions to obtain core electron densities. 

 MIXER : calculate the new density by mixing. 
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Figure I. 3 : Programs incorporated in Wien2k code [3] . 
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1- Heusler alloys family 

Heusler alloys were discovered in 1903, when Heusler revealed that the addition of “sp” 

elements (Al, In, Sn, Sb, or Bi) transforms a Cu-Mn alloy into a ferromagnetic material despite 

the alloy containing no ferromagnetic elements [1]. After this discovery, research intensified 

in order to reveal the properties of numerous compounds belonging to this family, which were 

later classified according to the chemical formula and the positions of the atoms that make up 

them into four types: 

- Half-Heusler Alloys (HHA) with XYZ chemical formula (more details in reference 

[2]). 

- Full-Heusler Alloys (FHA) with X2YZ chemical formula (more details in reference[3]). 

- Quaternary Heusler alloys (QHA) with XX’YZ chemical formula (more details in 

reference [4,5]). 

- Half-Heusler Alloys (DHA) with X2YY′Z2 chemical formula (more details in 

reference[6,7]). 

In our work, we have studied three compounds belonging to the second group of Heusler 

compounds. 

Ternary Heusler alloys have X2YZ formula composed by three elements: X and Y are 

two transition metals while the Z is in the p-block, and in some cases X2YZ Heusler alloys 

contain four atoms. According to the position occupied by these atoms, we distinguish two 

types of structures symbolized L21-type (Cu2MnAl structure, space group Fm-3m (225)) and 

Xα (Hg2CuTi type) with space group F-43m (216) [3,8]. Each atom in the alloys can occupy 

one of the following four sites: A(0.0.0), B(1/4.1/4.1/4), C(1/2.1/2.1/2), and D (3/4.3/4.3/4). 

As it is also known that the physical properties of crystals depend directly on their structural 

properties, therefore any change in the arrangement of the atoms' position in all the two phases 

affects the properties of the compound as we will see later. In both types of structures, X and 

Z atoms take places A and D, while the difference between the two phases remains in the place 

that the atom Y will occupy. As shown in Figure II.1, we note that the Y atom takes place in C 

site in the Xα phase, while it occupied B site in the other (L21) phase [3,8]. 
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Figure II.1: Cubic crystal structure of X2YZ full-Heusler alloys in L21-type and Xα-type 

phases[3]. 

2-Results and discussion 

This section contains the results and their discussions during the studies carried out on 

the structural, electronic and magnetic properties of Sc2–based Full Heusler alloys 

Sc2ZrX (X = P, As and Ge). 

2-1 Computational details 

The results obtained in this work were carried out using the FP-LAPW method [9–14] 

incorporated in the Wien2K code [15]. Exchange–correlation interactions were treated using 

the Perdew-Burke-Ernzerhof version of the generalized gradient approximation (GGA-PBE ) 

[16] for estimating the equilibrium structural and magnetic parameters, whereas the Tran-Blaha 

modified Becke Johnson approximation (TB-mBJ) [17] was used to calculate the electronic 

properties of the title compounds. Based on the Muffin-Tin approximation [18], the space is 

divided into two regions: inside the muffin-tin spheres (MT) and the interstitial region between 
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them. The radii of the Muffin-tin spheres of each atom were: 2.3 , 2.4 , 2.1 , 2.35 , and 2.35 

Bohr for the Sc, Zr, P, As and Ge atoms respectively. 

We indicate that the criterion and the condition of convergence of the total energy in all 

the calculations carried out, is equal to 10-4 Ry and we take the value -6 eV as energy to separate 

the valence states from the core states. The electronic configuration of the atoms that form the 

compounds Sc2ZrP, Sc2ZrAs and Sc2ZrGe is given: 

Sc: [Ar] 3d1 4s2 

Zr: [Kr] 4d2 5s2  

P : [Ne] 3s2 3p3 

As: [Ar] 3d10 4s2 4p3  

Ge: [Ar] 3d10 4s2 4p2  

2-2 Convergence tests 

The convergence of the calculations is well controlled by the parameter  𝑅𝑀𝑇 × 𝐾𝑚𝑎𝑥 

which represents the product between the minimum radius of the atomic spheres  𝑅𝑀𝑇 in the 

mesh unit and the magnitude of the largest vector in the plane wave expansion denoted 𝐾𝑚𝑎𝑥. 

The optimal value of the cutoff parameter RMT.Kmax was chosen by following these steps:  

Firstly; we calculate the total energy of the crystal cell for different values of RMT.Kmax 

(between 4 and 9.5), then we traced the curve of the total energy versus RMT.kmax values as 

shown in Figure II.2. Through this figures, we notice that the total energy of the three 

compounds decreases rapidly with the increase of RMT.Kmax where the total energy converges 

towards its minimum value from value RMT.Kmax=8.5. 

In the same way, we tested the convergence of the optimal number of Kpoints for points-

range confined between 100 and 1500 with a step of 200. The variation of the total energy 

according to the number of Kpoints is presented in Figure II.3. Regarding to these curves it 

appears that the total energy starts to converge from a number of K-points equal to 900 and the 

total energy becomes almost constant. 
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Figure II.2: Convergence test of the total energy according to RMTKmax. 
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Figure II.3: Convergence test of the total energy according to k- points. 

 

0 200 400 600 800 1000 1200 1400 1600
-10930.49

-10930.48

-10930.47

-10930.46

-10930.45

-10930.44

 

 

E
n

er
g

y
(R

y
) 

K-points

Sc2ZrP

0 200 400 600 800 1000 1200 1400 1600
-14766.49

-14766.48

-14766.47

-14766.46

-14766.45

-14766.44

 

 

E
n

er
g

y
(R

y
) 

K-points

Sc2ZrAs

0 200 400 600 800 1000 1200 1400 1600
-14441.49

-14441.48

-14441.47

-14441.46

-14441.45

-14441.44

 

 

E
n

er
g

y
(R

y
) 

K-points

Sc2ZrGe



2ND CHAPTER:                    DFT-BASED SIMULATION ON SOME HEUSLER ALLOYS PROPERTIES 

 
31 

 

2-3 Structural properties 

  The following section is devoted to explore the ground state structural properties of the 

three compounds Sc2ZrX (X = P, As and Ge) in both type structures L21 and Xα, and thus, we 

estimate each of the lattice parameter (a), the bulk modulus B and its derivative B' and the 

cohesion energy.  

The aforesaid parameters were calculated by computing the total energy of five distinct 

unit cell volumes for L21 and Xα structural phases, and then we plotted the volume-energy 

curve by fitting the Energy-Volume curve with the Murnaghan equation  [19] where this 

equation is written as a function of the total energy (E0), the equilibrium volume (V0), the bulk 

modulus (B) and its derivative B' as follow: 

(E(V) = E0 +
B

 B′( B′−1)
 V (

V0

V
)
B′

− V0 +
B

 B′
(V − V0) 

From the figure II.4 we can see that, the Xα-phase (shown in black) has a lower energy 

than the L21 structural phase (shown in red) for Sc2ZrP and Sc2ZrAs compounds, however, 

the L21 phase is the more stable phase for the compound Sc2ZrGe. 

The bulk modulus B(GPa) describes the material’s resistance to any deformation caused 

by applying external hydrostatic pressure [20], so it gives information about resistance to 

volume changes [21] and it can be considered as a factor used to estimate the relative stability 

of crystal structure, we discovered that Sc2ZrP compound has the highest bulk modulus among 

the Sc2ZrAs and Sc2ZrGe compounds, implying that it has the best rigidity and aptitude to 

resist deformation against compression when compared to the other compounds[3,22]. 

However, the relatively low value of the bulk modulus ( 100 B  GPa) suggests all the 

studied compounds are characterized by a relatively low resistance to volume change [23]. 

The cohesive energy as quantity reflects the energy required to divide a solid into its 

many free parts, may be used to study the cohesiveness of compounds and the physical stability 

of the Sc2ZrZ [3]. The formula of the cohesive energy of the Sc2ZrZ alloys expressed by the 

difference between total energy at the equilibrium point of an elementary cell and the energy of 

its isolated atoms Sc, Zr and Z like the following formula:  

𝐸𝑐𝑜ℎ𝑒𝑠𝑖𝑣𝑒 =  
(2 𝐸𝑎𝑡𝑜𝑚

𝑆𝑐 + 𝐸𝑎𝑡𝑜𝑚
𝑍𝑟 + 𝐸𝑎𝑡𝑜𝑚

𝑍 ) − 𝐸𝑡𝑜𝑡
𝑆𝑐2𝑍𝑟𝑍

𝑁𝑆𝑐 + 𝑁𝑍𝑟 + 𝑁𝑍
 

Where NSc, NZr, and NZ are the number of Sc, Zr and Z atoms in the unit-cell of Sc2ZrZ 

compound. According to the calculated results, we can see that Sc2ZrP and Sc2ZrAs Heusler 
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alloys have high cohesive energy in L21-type unlike to Sc2ZrGe which was more stable 

structurally in Xα-type. The rest structural parameters could be found in the Table II.1 

 

Table II.1: Structural parameters of the Sc2ZrX (X = P, As, Ge)  compounds 

calculated using GGA approximation in both L21 and Xα structural phases. 

 

 

 

 

Full Heusler 

Alloys 

Structural 

properties 

Our Results 

L21 Xα 

Sc2ZrP 

a (Å) 
6.6264 

6.7[24] 

6.6183 

6.69[24] 

β (GPa) 91.9231 89.0796 

Β’ (GPa) 4.8611 4.6748 

V0 (a.u3) 490.8807 489.0798 

E0 (Ry) -10930.8238 -10930.8205 

ECoh (eV/atom) 4.801 4.792 

Sc2ZrAs 

a (Å) 
6.7432 

6.86[24] 

6.7538 

6.84[24] 

β (GPa) 86.5573 82.2059 

Β’ (GPa) 5.3083 4.3759 

V0 (a.u3) 517.3002 519.7395 

E0 (Ry) -14766.8084 -14766.7999 

ECoh (eV/atom) 4.699 4.674 

Sc2ZrGe 

a (Å) 
6.7981 

7.11[24] 

6.7539 

7.14[24] 

β (GPa) 80.9666 80.8376 

Β’ (GPa) 4.2149 3.4196 

V0 (a.u3) 530.0337 519.7672 

E0 (Ry) -14442.9120 -14442.9207 

ECoh (eV/atom) 4.849 4.865 
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Figure II.4: Total Energy-Volume curves Sc2ZrX (X = P, As and Ge) in both type structures 

L21 and Xα calculated using GGA approximations. 
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2-4 Electronic properties 

The study of electronic behavior is critical because it helps one to select the most 

appropriate electronic domain in which to employ a material. To do this, we investigated the 

compound's energy bands and density of state to define the orbits of the atoms that formed each 

band. 

2-4-1 Band structure 

The electrons in solid systems with a periodic structure occupy discrete energy levels, 

which are hybridized by the reciprocal interaction between atoms, resulting in their split into 

sub-levels close to each other and generating a continuous energy spectrum known as "energy 

band" 

The band structure of Sc2ZrX (X = P, As, Ge) compounds has been investigated along 

high symmetry directions in the most stable state in the first Brillouin zone. Figures 

II.5/II.6/II.7 show the band structure of Sc2ZrX (X = P, As, Ge) in the most stable state 

determined using both GGA and mBJ approximations for the two spin directions "up" and 

"down". For all the studied compounds, the valence and conduction bands overlap in both 

directions of spins, as seen in these diagrams .As a result, in both cases of majority and minority 

spins, the appearance of the band structure in the ferromagnetic state exhibits metallic behavior. 

 

 

 

 



2ND CHAPTER:                    DFT-BASED SIMULATION ON SOME HEUSLER ALLOYS PROPERTIES 

 
35 

 

-6

-4

-2

0

2

4

6

 

 
E

n
e
r
g
y
(
e
V

)
Sc2ZrAs (SPIN UP)-GGA

 G             X      W   K                 G                L        U   W         L        K
-6

-4

-2

0

2

4

6

 

 

E
n

e
r
g
y
(
e
V

)

Sc2ZrAs (SPIN UP) - mBJ

 G             X      W   K                 G                L        U   W         L        K  

-6

-4

-2

0

2

4

6

 

 

E
n

e
r
g
y
(
e
V

)

Sc2ZrAs (SPIN DOWN) - GGA

 G             X      W   K                 G                L        U   W         L        K
-6

-4

-2

0

2

4

6

 

 

E
n

e
r
g
y
(
e
V

)

Sc2ZrAs (SPIN DOWN) - mBJ

 G             X      W   K                 G                L        U   W         L        K   

  

Figure II.5: Band structure of the Sc2ZrAs compound obtained by GGA and mBJ 

approximations. 
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Figure II.6: The band structure of the Sc2ZrP compound obtained by GGA and mBJ 

approximations. 
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Figure II.7: The band structure of the Sc2ZrGe compound obtained by GGA and mBJ 

approximations. 
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2-4-2 Electronic density of states 

A crystal system's density of states (DOS) measures the number of electronic states with 

a given energy. The DOS parameter may also be used as a supplement to understand the 

creation of particular band structures, as well as to determine the atomic orbitals responsible 

for bond formation and to compute polarization. 

Figures II.8/9/10/11/12/13 shows total (TDOS) and partial (PDOS) electronic state 

densities of the three Sc2ZrAs, Sc2ZrP and Sc2ZrGe compounds calculated using both GGA 

and mBJ approximations, where the following notes can be recorded: 

- We obtained almost identical curves using the previous two approximations. 

- The presence of DOS values around the Fermi level for the three compounds confirms 

their metallic behavior. 

The atomic orbitals contributions seems in Figures II.8/9 for the Sc2ZrAs compound can 

be divided into two regions: 

- 1st region located between [-5 eV, -3 eV], is mainly due to the "p" states of the Arsenic atom. 

- 2nd region located between [-2 eV, +6 eV] includes strong and dominant contributions from 

the "d" states of both Scandium atoms and the Zirconium atom.  

As for the Sc2ZrP compound, according to figures II.10/11 we can divide the curves into 

two regions as well: 

- 1st region located between [-5 eV, -3 eV], formed by the "p" states of the Phosphorus atom. 

- 2nd region located between [-2 eV, +6 eV] includes strong contributions from the "d" states 

of the Zirconium atom and both Scandium atoms, and weak contributions from the "p" states 

of the Phosphorus atom. 

Also, we can see from figures II.12/13, the contributions of atomic orbitals for the 

Sc2ZrGe compound where the energetic space can be divided into three regions: 
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- 1st region located between [-4 eV, -2 eV], is due to the "d" states of the Zirconium atom and 

a weak contributions from the "p" states of the Germanium atom and the "d" states of the 

Scandium atoms. 

- 2nd region located between [-2 eV, 0 eV] shows significant contributions from the "d" states 

of the Zirconium atom and a weak contributions from both Scandium atoms.  

- 3rd region: the range [0 eV, +6 eV] comes from the dominant contributions of the "d" states 

of the Sc (1), Sc (2) and Zr atoms. 
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Figure II. 8: Total (TDOS) and partial (PDOS) density of states of the Sc2ZrAs compound 

calculated with GGA approximation. 
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Figure II. 9: Total (TDOS) and partial (PDOS) density of states of the Sc2ZrAs compound 

calculated with mBJ approximation. 
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Figure II. 10: Total (TDOS) and partial (PDOS) density of states of the Sc2ZrP compound 

calculated with GGA approximation. 
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Figure II. 11: Total (TDOS) and partial (PDOS) density of states of the Sc2ZrP compound 

calculated with mBJ approximation. 
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Figure II. 12: Total (TDOS) and partial (PDOS) density of states of the Sc2ZrGe compound 

calculated with GGA approximation. 
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Figure II. 13: Total (TDOS) and partial (PDOS) density of states of the Sc2ZrGe compound 

calculated with mBJ approximation. 
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2-5 Magnetic properties 

We investigated the magnetic characteristics of these compounds, but first, we shall 

review the background of magnetism in materials, on three levels. 

2-5-1 Origin of magnetism in materials 

2-5-1-a Electronic level  

 The movement of charged particles produces a magnetic field, and as the electron is a 

charged particle that moves around itself and around the nucleus, these two motions produce 

two magnetic moments [19-24]: 

 Spin magnetic moment: 𝜇 𝑠 = −𝑔 
𝜇𝐵

ℏ
 𝑆  where g is the Landé parameter and ℏ the 

Planck constant.  

 Orbital magnetic moment 𝜇 𝑠𝐼 =
𝜇𝐵

ℏ
 𝐼  where 𝜇𝐵 is the Bohr magneton. 

Figure II.14: Origin of magnetism at the electronic level. 
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2-5-1-b Atomic level   

The magnetism of the atom is related to the electrons distribution in the outermost shell; 

if all of the electrons in its outer shell are placed in pairs, the total of their magnetic moments 

is zero, and the atom is non-magnetic, and vice versa.[3,22,25–29]: 

 

Figure II.15: Origin of magnetism at the atomic level. 

2-5-1-c Material level 

 Magnetic potential created between atoms are quantum exchange interactions which 

are related to atoms magnetic moments, the distance between them, and the external magnetic 

field to which they are subjected. These interactions were modelled using the Heisenberg 

Hamiltonians given by: 

Hmag = ∑JijS⃗ i. S⃗ j
i j

  +  ∑giμB h⃗    S⃗ i
i

 

Where 𝝁𝑩 is the Bohr magneton,  𝒈𝒊 is the magnetic ratio , �⃗⃗� 𝒊  is the spin operator,  �⃗⃗�  is the 

external  magnetic field   , and  𝑱𝒊𝒋 is the exchange coupling constant (depends on the distance 

between the two atoms) [28,29]. The different types of the magnetic moments in atoms with 

the exchange interaction is shown in the figure II.16. 

Single electron Pair of electrons 

The sum of magnetic moments in 

the atom is equal to zero 

« Non-Magnetic atom » 

 

The sum of magnetic moments in  

the atom is not equal to zero 

« Magnetic atom » 

https://fr.wikipedia.org/wiki/Gyromagn%C3%A9tisme
https://fr.wikipedia.org/wiki/Champ_magn%C3%A9tique
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Figure II.16 : Different cases of  the exchange interaction between atoms [28,29]. 

 

 

 

 

 

Atom « i »                     Atom « j » 

(Non Magnetic)            (Non Magnetic) 

   Exchange interaction = 0 

    Exchange interaction = 0 

Atom « i »                     Atom « j » 

(Non Magnetic)                  (Magnetic) 

 

Atom « i »                     Atom « j » 

(Magnetic)                           (Magnetic) 

 

    

The exchange interaction  

= ∑ 𝑱𝒊𝒋�⃗⃗� 𝒊. �⃗⃗� 𝒋𝒊 𝒋   

(Depends on the atomic  

distance) 

 

    

Atom « i »                     Atom « j » 

(Magnetic)                                (Magnetic) 
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2-5-2 Basic types of magnetization 

In materials, there are five types of magnetism (as seen in Table II.2 below) based on 

the type of the atoms that make up the material and their magnetic moments alignment 

[28,29]. 

 

 

Table II.2: Types of magnetization. 

a- Diamagnetism 

The diamagnetic material [3,22,25–27,30] is 

made up of non-magnetic atoms because all 

of its electrons are paired, which means that 

the total magnetic moment of the atoms is 

zero. 

 

b- Paramagnetism 

The atoms of the paramagnetic material 

[3,22,25–27,30] have unpaired electrons, and 

therefore these atoms have magnetic 

moments with no exchange interaction 

between them due to the large distance 

between them. Thus its magnetic moments 

are randomly directed so that the sum of the 

material's total torque is zero. 

 

c- Ferromagnetism 

The atoms of the ferromagnetic material 

[3,22,25–27,30] composed of unpaired 

electrons, the exchange interaction occurs 

between them due to the small distance 

between them, so the exchange integral 𝑱𝒊𝒋is 

negative, so the electrons align in parallel. 
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d- Antiferromagnetism 

The atoms of the antiferromagnetic material 

[3,22,25–27,30] composed of unpaired 

electrons, the exchange interaction occurs 

between them due to the small distance, 

which is small enough, that the exchange 

coupling constant 𝑱𝒊𝒋  is positive, so the 

electrons align with each other antiparallel, 

then the atoms arrange themselves so that 

two neighboring atoms can have opposite 

magnetic moments and consequently the 

moment of the material is equal to zero 

 

e- Ferrimagnetism 

It is a state similar to the antiferromagnetic 

case, except that the magnetic moments 

which are arranged antiparallel are not 

equal, and therefore, the material has a 

magnetic moment which is not equal to zero. 

[3,22,25–27,30]. 

 

 

 

 

2-5-3 Magnetic properties of the Sc2ZrX (X = P, As, Ge) compounds 

To classify the studied compounds ( Sc2ZrX (X = P, As, Ge ) according to their magnetic 

state, the total and partial magnetic moments of all compounds were evaluated in their most 

stable state (without being exposed to any external pressure or temperature impact) and 

recorded in Table II.3. 

Studying the values of the total and partial magnetic moments of the three compounds 

tested in their most stable form reveals that these compounds are non-magnetic since the total 

moment of the crystalline cell is zero, and the partial magnetic moments of all atoms are nearly 

non-existent. 
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Table II.3: Total and partial magnetic moment of Sc2ZrX (X = P, As, Ge). 

 

Compounds 

Magnetic 

moments 

Results 

GGA mBJ 

Sc2ZrP 

RI 

 

-0.00289 

 

0.06798 

 

Sc1 

 

-0.00067 

 

0.01854 

 

Sc2 

 

-0.00066 

 

0.01848 

 

Zr 

 

-0.00308 

 

0.11008 

 

P 
0.00036 

 

-0.00405 

 

Total 
-0.00696 

 

0.21104 

 

Sc2ZrAs 

RI 

 

-0.00625 

 

-0.00250 

 

Sc1 

 

-0.00151 

 

-0.00069 

 

Sc2 

 

-0.00148 

 

-0.00069 

 

Zr 

 

-0.00751 

 

-0.00398 

 

As 
0.00043 

 

0.00006 

 

Total 
-0.01633 

 

-0.00779 

 

 

Sc2ZrGe 

RI 

 

-0.04699 

 

0.00000 

 

Sc1 

 

-0.01384 

 

0.00000 

 

Sc2 

 

-0.02137 

 

0.00000 

 

Zr 

 

-0.02962 

 

-0.00000 

 

Ge 
0.00079 

 

-0.00000 

 

Total 
-0.11104 

 

0.00000 
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Conclusion 

This thesis included a theoretical analysis of the structural, electronic, and magnetic 

characteristics of three compounds, Sc2ZrP, Sc2ZrAs, and Sc2ZrGe, using the Wien2k simulation 

code and the density functional theory "DFT" based on the full-potential linearized augmented-

plane wave (FP-LAPW) approach. 

The fundamental objective of this work was realized, in which the foundations of quantum 

mechanics were applied to determine the appropriate field for using these compounds, as well as 

knowing the influence of the type of atoms on certain properties, which allows us to predict 

additional materials with better properties. 

Through our study, we took note of the following observations: 

 The three compounds crystallize in a cubic structure that has a large level of symmetry, so it is 

easy for us to perform the calculations in a short time.  

 The methods employed to estimate the exchange-correlation potential produced results extremely 

close to the experimental data, indicating that the experimental and theoretical sides are in 

excellent accordance. 

 Sc2ZrP compound is more resistant to external pressure than the other two compounds after 

calculating the Bulk modulus and the cohesive energy.  

 The three compounds have a metallic behavior, which when analyzing the electronic band 

structure we observed an overlap between the conduction band and the valence band. 

 By studying magnetic properties we can see that these compounds are non-magnetic compounds.  



 

 

 ملخص 

 و ZrAs2Sc و ZrP2Sc قمنا بدراسة نظرية لحساب الخواص البنيوية، الالكترونية والمغناطيسية لثلاثة مركبات هي
ZrGe2Sc  في إطار نظرية دالية الكثافة(DFT )وباستعمال برنامج Wien2k  المعتمد على طريقة الامواج المستوية المتزايدة

لحساب كمون  (mBJ)والتقريب المعدل  (GGA)التدرج المعمم  وهذا بالاعتماد على كل من تقريب (FP_LAPW) خطيا
تبادل_ارتباط . فيما يخص الخواص البنيوية، حددنا قيم كل من ثابت الشبكة، معامل الانضغاطية وطاقة التماسك. ولفهم 

ية الإلكترونية وكثافة الحالة الإلكترونية الكلالسلوك الالكتروني لكل مركب قمنا بحساب وتحليل بنية عصابات الطاقة 
(TDOS ) والجزئية(PDOS).  ومن جهة أخرى قمنا أيضا بدراسة العزم المغناطيسي الكلي والجزئي للذرات المكونة للمركبات

  الثلاثة.

Abstract 

A theoretical study of structural, electronic and magnetic properties for Sc2ZrP, Sc2ZrAs and 

Sc2ZrGe was done in the framework of the density functional theory (DFT) and using the 

Wien2k code based on the full-potential linearized augmented plane wave method (FP_LAPW). 

We used both generalized gradient approximation (GGA) and modified Becke-Johnson 

approximation (mBJ) to calculate the correlation-exchange potential. Concerning the structural 

properties, we determined the values of the lattice constant, the Bulk modulus and the cohesive 

energy. To understand the electronic behavior of each compound, we calculated and analyzed 

the structure of the electronic band-structure, the total density of state (TDOS) and partial 

density of state (PDOS). On the other hand, we also studied the partial and total magnetic 

moment of the atoms forming the three compounds. 

Résumé  

Une étude théorique a été effectué pour calculer les propriétés structurales, électroniques et 

magnétiques des composés Sc2ZrP, Sc2ZrAs et Sc2ZrGe, dans le cadre de la théorie de la 

fonctionnelle de la densité (DFT) et en utilisant le code Wien2k basé sur la méthode des ondes 

planes augmentées linéarisées (FP_LAPW). En utilisant à la fois de l'approximation de gradient 

généralisée (GGA) et de l'approximation de Becke-Johnson modifiée (mBJ) pour calculer le 

potentiel d'échange et de corrélation. Concernant les propriétés structurales, nous avons 

déterminé les valeurs du paramètre de la maille, le module de compressibilité et de l'énergie 

cohésion. Pour comprendre le comportement électronique de chaque composé, nous avons 

calculé et analysé la structure des bandes d'énergie électronique, la densité totale d'état 

électronique (TDOS) et la densité partielle d'état électronique (PDOS). D'autre part, nous avons 

également étudié le moment magnétique partiel et total des atomes formant les trois composés. 

 


