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Abstract
Currently, there is a notable attraction within the industry towards biocomposites, driven by the increasing fascination 
with natural fiber-reinforced composites (NFRCs). These NFRCs offer remarkable benefits, including cost-effectiveness, 
biodegradability, eco-friendliness, and favorable mechanical properties. As a result, the manufacturing processes of natural 
fiber reinforced polymer (NFRP) composites have garnered attention from both industrial professionals and scientists. The 
emergence of these eco-friendly materials in the automotive and aerospace industries has sparked interest in understanding 
their production techniques. However, the machining processes of NFRP composites pose significant challenges due to the 
complex structure of natural fibers, necessitating thorough studies to address these issues effectively. This research paper 
presents a comprehensive investigation on surface roughness during the milling process of Alfa/epoxy biocomposites. A 
set of 100 experimental trials was conducted to test the surface roughness, and analysis of variance (ANOVA) was used to 
assess the impact of cutting parameters and chemical treatment on surface quality.
To develop a predictive model for surface roughness, a hybrid approach called ANN-GA (artificial neural networks-genetic 
algorithms) is proposed in this research. This approach combines ANN and GA to determine an optimal neural network archi-
tecture. The performance of the ANN-GA model is compared to the Levenberg–Marquardt backpropagation (LM) algorithm.
ANOVA results show that the feed per revolution have a significant influence on surface roughness, followed by the chemi-
cal treatment of fibers, while machining direction has a smaller effect. The ANN-GA model demonstrates good accuracy in 
surface roughness prediction compared to the LM algorithm.

Keywords  Biocomposite · Alfa fibers · Surface roughness · Optimization · ANN · GA

1  Introduction

Natural fiber composites have emerged as a viable alterna-
tive to traditional materials in various lightweight struc-
tural applications. The integration of plant fibers as rein-
forcement in composites offers remarkable advantages in 
terms of attractive physical and mechanical properties, 
such as low cost, high wear resistance, light weight, and 
potential for substitution for many conventional materials 
[1, 2]. However, in order to enhance market acceptance 
of these materials, additional characteristics need to be 
investigated. Plant fiber-reinforced composites have found 
applications in the interior components of various car 
brands [3, 4], marine vessels [5, 6], and construction sec-
tor for secondary structures, addressing concerns regard-
ing environmental conservation [7, 8]. While composite 
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materials are relatively easier to process during mold pro-
duction, machining is still necessary for repair and assem-
bly purposes. The machining of composites is influenced 
by factors such as fiber orientation, nature, size, and cut-
ting conditions, which significantly impact machinabil-
ity, cutting forces, and the quality of machined surfaces 
[9–12]. It is widely acknowledged in the field that prior 
to utilizing composites reinforced with natural fibers, it is 
crucial to subject these fibers to a pretreatment process. 
Among the various effective methods for enhancing the 
properties of natural fibers, alkaline treatment is exten-
sively employed to eliminate certain impurities present 
on the surface, such as hemicelluloses, lignin, pectin, and 
wax [13]. As a result, the fibers’ surface becomes more 
uniform through impurity removal, leading to improved 
stress transfer efficiency and adhesion properties between 
the fiber and the matrix [14]. However, despite the well-
established benefits of alkali treatment on fiber character-
istics, its impact on surface roughness during machining 
has yet to be thoroughly investigated.

Alfa fibers, derived naturally and biodegradable, repre-
sent cost-effective materials readily accessible in Algeria, 
with substantial annual production in North Africa and 
Spain. Flourishing without the need for insecticides or 
pesticides and requiring minimal water, Alfa grass is a 
perennial plant that endures throughout the seasons [15]. 
Algeria, a major Alfa producer, cultivates approximately 
4 million hectares of this abundant wild herb, renowned 
for its eco-friendly and cost-effective attributes [16]. 
Comprising cellulose, hemicellulose, lignin, and ash [16], 
the biochemical composition of Alfa may slightly vary 
depending on climatic and soil conditions, falling within 
the ranges (dry weight) of 48–63%, 9–22%, and 12–18%, 
respectively [16–19]. Its high polysaccharide concentra-
tion gives Alfa significant potential as a raw material for 
bioethanol production [20]. Studies confirm that these 
plants are chemically inert [21], with no reported der-
matological or respiratory reactions during harvesting or 
fabrication, eliminating the need for special protective 
equipment [22].

Predominantly employed in paper production, these 
fibers have recently found application as reinforcement 
in the production of biodegradable composites [23, 
24] and are now being used in diverse fields such as 
packaging, construction, aerospace, and the automotive 
industry [25].

In exploring the benefits of Alfa fibers, researchers 
have delved into volume fractions, orientations of Alfa 
fibers [15, 26], and the replacement of glass fibers in 
composite materials [27]. Investigations into the effects 

of chemical treatments on mechanical and permeabil-
ity properties have been conducted [28, 29], revealing 
favorable characteristics in the mechanical behavior of 
polypropylene reinforced with Alfa fibers [30, 31]. Alfa 
fibers can be effectively combined with a matrix and 
supplementary materials as a hybrid composite [32, 33]. 
Recent research has focused on assessing the feasibil-
ity of using Alfa fibers as reinforcement for polymer 
composites [26, 31, 34].

Conversely, in recent years, numerous studies have 
focused on examining the influence of cutting param-
eters on the machinability of natural fiber composites. 
These investigations have employed regression analysis 
and artificial intelligence techniques to reduce the num-
ber of experiments, identify optimal cutting conditions, 
and develop predictive models with acceptable accuracy. 
However, the quantity of such studies remains relatively 
limited when compared to research conducted on machin-
ing synthetic fiber reinforced composites.

In their research, Chegdani et al. [35, 36] explored 
the impact of flax fiber orientation on the machinability 
and surface quality of polypropylene polymer compos-
ites reinforced with unidirectional flax fibers. The find-
ings indicate that fiber orientation plays a significant 
role in determining the quality of machined surfaces. 
Specifically, a fiber orientation of θ = 45° demonstrated 
the most favorable machinability and resulted in the 
lowest surface roughness.

Kumaran et al. [37] used regression analysis to pre-
dict the surface roughness when machining two uni-
directional and unidirectional carbon fiber reinforced 
plastics with abrasive water jet woven fabric surface. 
The experimental results yielded quadratic models for 
the roughness parameter Ra, which demonstrated high 
accuracy with R2 values of 96.03% and 93.22% for the 
respective materials.

John et al. [38] conducted an experimental study to 
examine the impact of cutting parameters on the surface 
finish of end-milled polypropylene composites reinforced 
with jute and kenaf fibers. The results revealed that the 
quality of the machined surfaces is predominantly influ-
enced by the spindle speed, which has a contribution three 
times greater than the feed rate.

Vinayagamoorthy and Rajeswari [39] investigated the 
machinability of a recently developed composite material 
composed of an isophthalic polyester matrix reinforced 
with natural jute fibers. The material was milled using 
an HSS cutter, and the researchers found that the cutting 
speed and depth of cut were the primary factors affecting 
the pushing force. Additionally, they determined that the 
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depth of cut had the most significant impact on the torque 
generated during the milling process.

Babu et al. [40] examined the machining parameters 
and the impact of different fiber reinforcements (jute, 
kenaf, fiberglass, and banana) on surface roughness 
(Ra) and delamination factor (Fd) during the end mill-
ing process of composites. The findings revealed that 
the feed rate and cutting speed were the primary factors 
influencing Fd and Ra. It was observed that employing 
a high cutting speed and a low feed rate is favorable for 
enhancing surface quality and reducing delamination. 
Similar conclusions were drawn by Harun et al. [41] 
when investigating the milling of composites reinforced 
with kenaf fibers.

Benyettou et al. [42] have devised a mathematical model 
employing artificial neural networks (ANN) to forecast 
delamination values in the drilling process of biocompos-
ites reinforced with cellulosic fibers. The resulting ANN 
model demonstrates outstanding accuracy, boasting an R2 
value of 0.98.

Tran et al. [43] investigated the impact of cutting 
parameters and reinforcement type on the machinabil-
ity of biocomposites comprising PP reinforced with 
chopped miscanthus fibers (M2) and biocarbon par-
ticles (M1) using the RSM method. The analysis of 
variance (ANOVA) revealed that spindle speed exerted 
the greatest influence on surface roughness (Ra), with 
Fisher values (F) of 100.22 and 15.28 for M1 and M2, 
respectively. The drill diameter followed closely with 
F values of 91.65 and 30.78 for M1 and M2, respec-
tively. The mathematical prediction models generated 
by RSM displayed a satisfactory correlation for M1, 
with R2 = 92.1%, and a weaker correlation for M2, 
with R2 = 74.1%. In a separate study [44], the same 
researchers found that modeling Ra using the ANFIS 
approach yielded superior predictive accuracy com-
pared to linear regression models when examining 
three novel PP-matrix biocomposites.

Belaadi et al. [45] have conducted a comprehensive 
study utilizing a hybrid RSM-ANN-GA optimization 
approach. They employed the results obtained from a 
complete factorial plan L27 to analyze the impact of 
drilling parameters on the delamination factor (Fd) and 
to both model and optimize Fd. The study demonstrated 
remarkable concurrence between the experimental results 
and those estimated using RSM and ANN. The optimi-
zation results obtained through GA and DF approaches 
were highly similar, leading to the identification of the 
optimal drilling regime with parameters set at f = 50 mm/
min, N = 806 rpm, and d = 5 mm.

The primary objective of this study is to thoroughly inves-
tigate and analyze the surface roughness that arises during 
the trimming process of Alfa fiber-reinforced epoxy-based 
biocomposites.

This research primarily focuses on the distinctive appli-
cation of natural fiber-reinforced composites (NFRCs) as 
a compelling alternative to conventional metals and syn-
thetic fiber-reinforced composites. By thoroughly explor-
ing and analyzing the surface roughness characteristics of 
NFRCs, this study seeks to make a substantial contribu-
tion to the understanding and advancement of biocompos-
ites as a highly promising material option across various 
industries.

The novelty and innovation of this work are multifac-
eted. Firstly, it addresses the rapidly growing interest 
and increasing allure surrounding biocomposites, par-
ticularly natural fiber-reinforced composites (NFRCs), 
within the industry. By concentrating specifically on 
the surface roughness of Alfa/epoxy biocomposites, 
this study delves into a niche application of NFRCs 
in manufacturing processes that has received relatively 
little attention thus far.

Secondly, the comprehensive investigation undertaken 
to examine the surface roughness during the milling pro-
cess of Alfa/epoxy biocomposites significantly contributes 
to our understanding of the production techniques involved 
in manufacturing these environmentally friendly materi-
als. It provides invaluable insights into the impact of cut-
ting parameters and chemical treatments, such as alkali 
treatment with NaOH, on surface quality, which is crucial 
for optimizing the machining processes associated with 
NFRCs.

Moreover, the study introduces an innovative hybrid 
approach known as ANN-GA (artificial neural networks-
genetic algorithms) for the accurate prediction of surface 
roughness. By leveraging the strengths of artificial neural 
networks and genetic algorithms, optimal neural network 
architecture is developed specifically to predict surface 
roughness with exceptional precision in the context of Alfa/
epoxy biocomposites.

The comparison between the performance of the ANN-
GA model and the widely employed Levenberg–Marquardt 
backpropagation algorithm further underscores the original-
ity and significance of this study. The results unequivocally 
demonstrate the superior predictive capabilities of the ANN-
GA model, thereby showcasing the immense potential of 
this hybrid approach in augmenting the accuracy of surface 
roughness predictions.

In summary, this research constitutes a distinc-
tive and highly valuable contribution to the field by 
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comprehensively investigating the surface roughness 
of NFRCs, employing the innovative ANN-GA hybrid 
approach, and conducting a meticulous evaluation of its 
performance in comparison to conventional algorithms. 
The invaluable findings and insights derived from this 
study have the potential to facilitate further advance-
ments in the manufacturing and optimization of bio-
composites, with a particular focus on enhancing surface 
quality. Furthermore, it sheds new light on the signifi-
cance of pre-treating natural fibers, such as Alfa fibers, 
through alkali treatment with NaOH, and its potential 
implications on surface roughness during the machining 
process of biocomposites.

2 � Test methods and materials

2.1 � Experimental materials

In this study, two epoxy biocomposite panels were fabricated 
and analyzed. One panel was reinforced with treated Alfa 
fibers, while the other panel was reinforced with untreated 
Alfa fibers.

The extraction process of the natural fibers from 
the Alfa plant involved several steps. First, the fibers 
were soaked in water for 25 days, after which they were 
extracted and placed in an oven at a temperature of 70°C 
for 6 h in the case of untreated fibers. For the treated 
fibers, a chemical treatment was performed using a 5% 
NaOH alkaline solution to remove lignin, wax, and impu-
rities from the outer surface of the fibers. Subsequently, 
the fibers were immersed in a 2% sulfuric acid (H2SO4) 
solution for 2 min to halt the reaction between the Alfa 
sheets and the soda, thereby preventing degradation of 
the cellulosic material. The fibers were then rinsed mul-
tiple times with distilled water, with the pH of the Alfa 
leaves checked after each rinse. The goal was to reach 
a neutral pH (pH = 7) to eliminate any remaining traces 
of the NaOH solution from the fibers. Finally, the fib-
ers were manually woven into unidirectional plies with 
a basis weight of 600 g/m2, forming four-layer plate 
measuring 250 × 250 × 10 mm3. This plate was obtained 
through a vacuum molding process (Fig. 1).

Following that, biocomposite plates (Alfa/epoxy) were 
manufactured with a fiber content of 40% by weight. The 
selected matrix was MEDAPOXY STR brand epoxy resin, 
characterized by a viscosity of 11000 MPa.s at 25°C and a 
density of 1.1 ± 0.05.

Vacuum casting was employed to create the plates, utiliz-
ing four identical layers, each measuring 2 mm in thickness. 

Subsequently, the samples were placed in an oven set to a 
temperature of 70°C for duration of 12 h to ensure complete 
curing.

The trimming operations were conducted utilizing a 
PEARL RIVER NC F-VMC 510L machining center, which 
is a three-axis numerically controlled machine tool (MOCN) 
equipped with a SIEMENS 840D controller.

To ensure safety during machining, a machining jig was 
securely fastened to the machine table, featuring pre-grooves 
to prevent any collision between the tool end and the jig. 
For the trimming process, a super high-speed steel (HSS-
SUPER) milling cutter with four teeth, a diameter of 10 mm, 
and a helix angle of 30° were employed. The total length of 
the milling cutter is 70 mm. Following the completion of the 
machining, the surface roughness of the machined profiles 
under different machining conditions was measured using a 
PCE_RT1200 model roughness meter.

2.2 � Design of experiments

In this research, a comprehensive factorial design compris-
ing 52 combinations was implemented, resulting in a total 
of 25 experimental tests conducted on both treated and 
untreated plaques. The factors of interest in this investi-
gation were cutting velocity (Vc) and feed per revolution 
(f), which are fundamental parameters in the machining 
process. The primary aim of this study was to assess the 
machining behavior of biocomposites in terms of surface 
roughness, considering both untreated (UT) and treated 
fibers (T).

The factorial design allows for the systematic explo-
ration of various combinations of cutting velocity and 
feed per revolution, enabling a comprehensive analy-
sis of their influence on the machining process. This 
design approach ensures that all possible combinations 
are considered, providing a robust understanding of the 
factors’ effects.

Table 1 presents the specific input factors and their cor-
responding levels used in the experimental design. The 
cutting velocity is varied at different levels, as well as the 
feed per revolution, to capture the range of operating con-
ditions encountered in practical machining scenarios. By 
systematically varying these factors and observing their 
impact on the machining behavior, valuable insights can 
be gained regarding the optimal machining parameters for 
biocomposites.

To examine the effects of the factors under investiga-
tion, each composite plate was subjected to cutting along 
two directions: parallel to the fiber direction 0° and per-
pendicular to it 90°. This arrangement allowed for a total 
of 50 cutting sides per plate. Figure 2 presents a schematic 
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representation of one of the 25 trimmed specimens, high-
lighting the cutting sides. It is noteworthy that each cou-
pon represented a maximum of four distinct experimental 

combinations, comprising one combination per side, includ-
ing two combinations involving down milling and two 
involving up milling. Consequently, a total of 100 machined 

Fig. 1   Overview of experimental procedures
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sides were obtained, considering the combinations of treated 
and untreated plaques, as well as the up milling and down 
milling approaches (25 coupons × 4 sides).

Following the machining process, meticulous cleaning 
was conducted on all machined sides to eliminate impuri-
ties and dust. This was achieved by employing blown com-
pressed air. Subsequently, the surface roughness, specifically 
the roughness average (Ra), of each side of every coupon, 
representing each cutting condition, was measured. To carry 
out these measurements, a PCE RT 1200 Profilometer Sur-
face Roughness Tester (Fig. 3) equipped with a probe having 
a diameter of 5 µm and an orientation of 90° with respect to 
the surfaces was utilized.

3 � Results and discussion

The cutting conditions (cutting velocity Vc and the feed per 
revolution f), the nature of treatment (treated and untreated), 
the fibers orientation (O), and the corresponding experimen-
tal results for surface roughness (Ra) of the 100 machined 
profiles, based on the complete factorial design, are dis-
played in Table 2.

3.1 � Analysis of variance (ANOVA)

The analysis of variance (ANOVA) is a statistical method 
employed to examine the relationship between one or 
more input variables and a target variable, known as the 
output. It is also used to classify these input variables 
based on their effects on the output variable [46]. Table 3 
displays the ANOVA results for Ra. The analysis is con-
ducted at a significance level of α = 0.05, correspond-
ing to a 95% confidence level. A low probability value 
(≤ 0.05) or 95% confidence level indicates the obtained 
models are statistically significant, which is desirable.

The ANOVA table for Ra includes the degrees of free-
dom (DoF), sum of squares (SS), mean squares (MS), prob-
ability (Prob.), and percentage contribution (Cont. %) of 
each tested factor.

By closely examining the Ra values in Table 2 and the 
ANOVA results presented in Table 3, we can rank the 
cutting parameters (Vc and f), fiber orientation, and fiber 
treatment based on their influence on surface roughness. 
The feed per revolution (f) emerges as the most influ-
ential factor (28.11%), to the surface roughness, with a 
noticeable impact as it increases. Fiber treatment is also 
significant, with an impact of 11.65%. Fiber orientation 
has a discernible effect of 2.83%. Cutting velocity, on 
the other hand, does not exhibit a significant influence 
on surface roughness.

Figures 4a and b depicts the three-dimensional (3D) 
response surfaces showcasing the relationship between 

Table 1   Input factors and their corresponding levels used in the 
experimental design

Level Vc (m/min) f (mm/rev) Treatment (Tr) Fibre 
orientation (O°)

1 50 0.05 UT 0°
2 100 0.15 T 90°
3 150 0.25 - -
4 200 0.4 - -
5 225 0.5 - -

Fig. 2   Cutting sides and associated cutting conditions for each 
coupon

Fig. 3   PCE RT 1200 Profilometer Surface Roughness Tester
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Table 2   Design of experiments (DOE) and experimental results of surface roughness (Ra)

Input factors
(coded values)

Output factors Input factor
(coded values)

Output factors

N° Vc (m/min) f (mm/rev) O (°) Tr Ra (µm) N° Vc (m/min) f (mm/rev) O (°) Tr Ra (µm)

1 50 0.05 0 UT 4.06 51 50 0.05 90 UT 11.83
2 100 0.05 0 UT 3.96 52 100 0.05 90 UT 10.43
3 150 0.05 0 UT 2.66 53 150 0.05 90 UT 8.3
4 200 0.05 0 UT 5.36 54 200 0.05 90 UT 10.5
5 225 0.05 0 UT 5.76 55 225 0.05 90 UT 7.5
6 50 0.15 0 UT 2.16 56 50 0.15 90 UT 4.86
7 100 0.15 0 UT 1.6 57 100 0.15 90 UT 2.7
8 150 0.15 0 UT 1.66 58 150 0.15 90 UT 3
9 200 0.15 0 UT 2.9 59 200 0.15 90 UT 4.56
10 225 0.15 0 UT 3.76 60 225 0.15 90 UT 4.66
11 50 0.25 0 UT 1.96 61 50 0.25 90 UT 2.86
12 100 0.25 0 UT 2.13 62 100 0.25 90 UT 4.86
13 150 0.25 0 UT 2.53 63 150 0.25 90 UT 2.7
14 200 0.25 0 UT 2 64 200 0.25 90 UT 2.13
15 225 0.25 0 UT 3.7 65 225 0.25 90 UT 2.33
16 50 0.4 0 UT 2.6 66 50 0.4 90 UT 1.86
17 100 0.4 0 UT 2.33 67 100 0.4 90 UT 3.13
18 150 0.4 0 UT 2.4 68 150 0.4 90 UT 4.66
19 200 0.4 0 UT 2.63 69 200 0.4 90 UT 2.43
20 225 0.4 0 UT 1.8 70 225 0.4 90 UT 2.83
21 50 0.5 0 UT 1.96 71 50 0.5 90 UT 3.53
22 100 0.5 0 UT 2.8 72 100 0.5 90 UT 2.76
23 150 0.5 0 UT 2.3 73 150 0.5 90 UT 2.6
24 200 0.5 0 UT 2.33 74 200 0.5 90 UT 4.3
25 225 0.5 0 UT 2.4 75 225 0.5 90 UT 2.63
26 50 0.05 0 T 11.83 76 50 0.05 90 T 11.83
27 100 0.05 0 T 10.43 77 100 0.05 90 T 10.43
28 150 0.05 0 T 8.3 78 150 0.05 90 T 8.3
29 200 0.05 0 T 10.5 79 200 0.05 90 T 10.5
30 225 0.05 0 T 7.5 80 225 0.05 90 T 7.5
31 50 0.15 0 T 4.86 81 50 0.15 90 T 4.86
32 100 0.15 0 T 2.7 82 100 0.15 90 T 2.7
33 150 0.15 0 T 3 83 150 0.15 90 T 3
34 200 0.15 0 T 4.56 84 200 0.15 90 T 4.56
35 225 0.15 0 T 4.66 85 225 0.15 90 T 4.66
36 50 0.25 0 T 2.86 86 50 0.25 90 T 2.86
37 100 0.25 0 T 4.86 87 100 0.25 90 T 4.86
38 150 0.25 0 T 2.7 88 150 0.25 90 T 2.7
39 200 0.25 0 T 2.13 89 200 0.25 90 T 2.13
40 225 0.25 0 T 2.33 90 225 0.25 90 T 2.33
41 50 0.4 0 T 1.86 91 50 0.4 90 T 1.86
42 100 0.4 0 T 3.13 92 100 0.4 90 T 3.13
43 150 0.4 0 T 4.66 93 150 0.4 90 T 4.66
44 200 0.4 0 T 2.43 94 200 0.4 90 T 2.43
45 225 0.4 0 T 2.83 95 225 0.4 90 T 2.83
46 50 0.5 0 T 3.53 96 50 0.5 90 T 3.53
47 100 0.5 0 T 2.76 97 100 0.5 90 T 2.76
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Ra and cutting velocity, feed per revolution, treatment, 
and fiber orientation. These surfaces validate the findings 
from the ANOVA analysis of Ra. It is evident that the 

feed per revolution exhibits the steepest slope, reinforcing 
its significant influence. The analysis of these surfaces 
reveals a substantial reduction in Ra with increasing feed 
per revolution. Conversely, the cutting velocity displays an 
almost negligible slope, indicating its negligible impact on 
surface roughness.

Figure 4a shows that composites with untreated fib-
ers exhibit superior surface quality compared to those 
with treated fibers, especially at low feed per revolu-
tion s. Alkaline treatment of Alfa fibers improves fiber 
interface quality matrix. Therefore, the adhesion of 
Alfa fibers treated with the polymer matrix is important 
(Benyahia, 2013) [47], which makes it more difficult 
to pull out the fibers when machining the Alfa/epoxy 
biocomposite. Hence, it results in reduced degradation 
of surface roughness.

Figure 4b illustrates the impact of fiber orientation on Ra. 
It is observed that the Ra values remain quite similar, with a 
slight improvement in surface roughness for biocomposites 
where the fibers are oriented at 0°, particularly at higher 
cutting velocity.

3.2 � ANN‑GA modeling

3.2.1 � ANN modeling

In this study, the approach of artificial neural networks 
(ANN) is used to develop a predictive model of the sur-
face roughness Ra as a function of the parameters studied 
in the previous part. ANN is a type of artificial intelligence 
technique that draws inspiration from the functioning of the 

Table 2   (continued)

Input factors
(coded values)

Output factors Input factor
(coded values)

Output factors

N° Vc (m/min) f (mm/rev) O (°) Tr Ra (µm) N° Vc (m/min) f (mm/rev) O (°) Tr Ra (µm)

48 150 0.5 0 T 2.6 98 150 0.5 90 T 2.6
49 200 0.5 0 T 11.83 99 200 0.5 90 T 4.3
50 225 0.5 0 T 10.43 100 225 0.5 90 T 2.63

Table 3   ANOVA for Ra Source SS DoF MS F-value Prob Cont.% Remarks

Model 192.15 4 48.04 17.65  < 0.0001 Significant
A: Vc, m/min 0.2217 1 0.2217 0.0815 0.7759 0.05
B: f, mm/rev 126.68 1 126.68 46.55  < 0.0001 28.11
C: O, ° 12.74 1 12.74 4.68 0.033 2.83
D: T 52.5 1 52.5 19.29  < 0.0001 11.65
Residual 258.55 95 2.72
Cor. total 450.69 99

Fig. 4   3D response surfaces for Ra
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human brain. They are capable of performing various valua-
ble tasks in industrial applications, including modeling, clas-
sification, and data processing activities [48]. ANN consists 
of three types of layers: the input layer, the output layer, and 
potentially one or more hidden layers (as shown in Fig. 5) 
[49]. In a neural network with L + 1 layers, the following 
quantities are defined:

Or a0
j
= xj ( xj is here jième input data), wl

jk
 the weight value 

of the kième neuron in the (L − 1)
ième layer at jième neuron in 

the lième layer, bj
i
 are the biases and f is the activation 

function.

3.2.2 � Learning a neural network

The learning problem boils down to minimizing an evalua-
tion function, which evaluates the performance of a neural 
network on a set of data. The evaluation function depends 
on the adaptive parameters (bias and weight) of the neural 
network.

The learning problem for neural networks is formulated 
as finding a vector of parameters wi and bi for which the eval-
uation function f reaches a minimum value. The necessary 
condition states that if the neural network is at a minimum 
of the evaluation function.

A variety of algorithms are utilized to train neural net-
works, offering flexibility and diverse learning approaches. 

(1)Zl
j
=
∑

k
wjka

l−1
k

+ bl
j
,∀l = 1,… , L − 1, L + 1

(2)
al
j
= f

(

∑

k
wjka

l−1
k

+ bl
j

)

= f
(

Zl
j

)

,∀l = 1,… , L − 1, L + 1

In this study, various optimization algorithms were 
employed to achieve an optimal architecture for the neural 
network: gradient descent (GD) [50–52], Newton’s method 
(NM), gradient conjugué (CG) [53], quasi-Newton method 
(QNM), Levenberg–Marquardt (LM) algorithm [54], Bayes-
ian regularization (BR) [55, 56], and genetic algorithms 
(GA) which are optimization algorithms based on tech-
niques derived from genetics and natural evolution: crosses, 
mutations, and selection [57]. A genetic algorithm searches 
for the extrema or extrema of a function defined on a data 
space. Figure 6 illustrates the fundamental principle of how 
a genetic algorithm operates.

3.2.3 � Optimization of a neural network “ANN” by genetic 
algorithms

a)	 Presentation of the optimization algorithm of a neu-
ral network

The present study utilized genetic algorithms to optimize 
the neural network architecture for a regression problem. 
The algorithm’s principles can be summarized in the fol-
lowing steps:

1.	 The hyperparameters of the neural network to be opti-
mized are defined, encompassing the number of layers, 
the number of neurons within each layer, the activation 
function assigned to each layer, the learning algorithm, 
and the iteration count for the learning process.

2.	 An evaluation endpoint is established to assess the qual-
ity of neural network predictions by comparing them 
with the actual values of the target variable. In this case, 
the evaluation endpoints include the coefficient of corre-

Fig. 5   Graphical representation of an ANN
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lation (R), root mean square error (RMSE), mean abso-
lute deviation (MAD), mean absolute percentage error 
(MAPE), and mean absolute error (MAE). The formulas 
for calculating these different error criteria are presented 
in Table 4.

3.	 Define an initial population of random solutions, which 
represent different configurations of the neural network 
architecture and hyperparameters. Where 70% of the 
database was used to train the network and 20% for vali-
dation, 10% was used to test the accuracy of the obtained 
model.

4.	 The genetic operators, namely selection, crossover, and 
mutation, are applied to generate a new generation of 
solutions using the current population (adjust weights 
and bias of ANN).

5.	 Evaluate each next-gen solution using the rating func-
tion and select the best next-gen solutions (evaluate the 
generate ANN)

6.	 Steps 4 and 5 are repeated iteratively until an optimal 
solution is discovered or until a predefined stopping cri-
terion is met.

After the genetic algorithm has converged to an opti-
mal solution, the hyperparameters and optimal archi-
tecture of the neural network can be utilized to predict 
the values of the target variable (surface roughness 
Ra) on test data. The optimization method employed 
for the neural network architecture is summarized in a 
f lowchart, depicted in Fig. 7. This visual representa-
tion encapsulates the various stages of the implemented 
optimization approach, providing a concise overview of 
the entire process.

b)	 Optimization parameters

The organization and connectivity of neurons in an arti-
ficial neural network are determined by its architecture. In 
this study, the parameters optimized were the network size, 
learning algorithm, and activation functions for each layer. 
The network size, which refers to the number of layers and 
nodes in each layer, is a crucial factor in neural network 
design. The learning algorithm is responsible for adjusting 
the weights and biases of the network to minimize prediction 
errors. Activation functions, on the other hand, determine 
the neuron’s output based on its inputs.

To maximize network performance, the genetic 
algorithm was employed to optimize the network size, 
learning algorithm, and activation functions, aiming to 
identify the optimal combination of layers and nodes. 
Table 5 outlines the specific values utilized in this study 

Fig. 6   Schematic diagram illustrating the fundamental principle of a 
genetic algorithm

Table 4   Evaluation criteria formulas

n the number of experience, Et the experimental value of the ith 
experiment, Pt the predicted value of the ith experiment, Ye the aver-
age response observed in the experiments

Criteria Formulas
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Fig. 7   Flowchart of optimization process based on ANN and GA
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for the number of layers, nodes, learning algorithms, and 
activation functions.

3.2.4 � ANN‑GA prediction results

Table 6 displays the experimental data of Ra that was 
used to develop the ANN model, as well as the cor-
responding predicted results of Ra obtained from the 
developed model.

Table 7 and Fig. 8 (spider plot) presents the values 
of different performance indices (PI) such as R, RSME, 
MAD, MAPE, and MAE of the surface roughness Ra 
model ANN model optimized by GA for the five (5) best 
iterations. These results show globally high IPs and par-
ticularly for the last iteration, where we observe very high 
IPs for learning, validation, and testing. The values of IP 
(R, RSME, MAD, MAPE, and MAE) of the learning are 
0.9679, 0.5325, 0.9427, 10.52%, and 0.3633, respectively, 
indicating that the generated neural network is able to 
predict the roughness with great precision on the train-
ing data. For the validation and the test, the values of IP 
are 0.975, 1.3749, 1.4577, 23.71%, and 1.0696, which 
confirms that the neural network generalizes well on 
unknown data and able to accurately predict the values 
of Ra on new data. Finally, the global IP values are also 
high (0.9529, 0.665, 1.009, 11.84%, and 0.4339), suggest-
ing that the neural network is able to accurately predict 
the surface roughness Ra in the dataset.

The graphical representation in Fig. 9 illustrates the 
comparison between the experimental (measured) val-
ues of Ra and the estimated values obtained by ANN-
GA. Analysis of the figure reveals a strong correlation 
between the experimental values and the estimates gener-
ated by ANN-GA. This indicates the excellent capability 
of the ANN-GA model to capture the underlying relation-
ship between the input variables and the corresponding 
output, Ra.

The achieved results provide compelling evidence 
that employing a genetic algorithm to optimize both 
the hyper parameters and architecture of the neural net-
work has yielded remarkable performance in predicting 
surface roughness. However, it is crucial to emphasize 
that the quality of these results depends on the qual-
ity of the data used to train and validate the neural 
network.

The optimal ANN architectures for the best 5 itera-
tions, selected based on their performance using the 
defined performance indices (IP), are presented in 
Table 8.

The results highlight the number of hidden layers, number 
of nodes in each layer, learning algorithm, and activation 
function employed to construct the neural network archi-
tectures with the best performance. Among these, the opti-
mal architecture from the fifth iteration is characterized by 
the following parameter combination: three hidden layers, 
with 6, 7, and 3 nodes, respectively; the learning algorithm 

Table 5   ANN optimization parameters

Hidden layers Hidden layer nodes Learning algorithms Activation functions

Min:1
Max:10

Min:1
Max:10

trainlm: Levenberg–Marquardt backpropagation Compet: Competitive transfer function
trainbr: Bayesian Regulation backpropagation elliotsig: Elliot sigmoid transfer function
trainbfg: BFGS quasi-Newton backpropagation hardlim: Positive hard limit transfer function
traincgb: Conjugate gradient backpropagation with 

Powell-Beale restarts
hardlims: Symmetric hard limit transfer function

traincgf: Conjugate gradient backpropagation with 
Fletcher-Reeves updates

logsig: Logarithmic sigmoid transfer function

traincgp: Conjugate gradient backpropagation with 
Polak-Ribiere updates

netinv: Inverse transfer function

traingd: Gradient descent backpropagation poslin: Positive linear transfer function
traingda: Gradient descent with adaptive lr back-

propagation
purelin: Linear transfer function

traingdm: Gradient descent with momentum radbas: Radial basis transfer function
Traingdx: Gradient descent w/momentum & adaptive 

lr backpropagation
radbasn: Radial basis normalized transfer function

trainoss: One step secant backpropagation satlin: Positive saturating linear transfer function
trainrp: RPROP backpropagation satlins: Symmetric saturating linear transfer function
trainscg: Scaled conjugate gradient backpropagation softmax: Soft max transfer function

tansig: Symmetric sigmoid transfer function
tribas: Triangular basis transfer function
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Table 6   Experimental data versus predicted Ra using ANN

N° Ra Exp. (µm) Ra ANN (µm) N° Ra Exp. (µm) Ra ANN (µm) N° Ra Exp. (µm) Ra ANN (µm) N° Ra Exp. (µm) Ra ANN (µm)

1 4.06 4.06 26 11.83 11.84 51 2.9 2.30 76 9.46 9.45
2 3.96 3.94 27 10.43 9.37 52 10.3 10.31 77 7.76 7.76
3 2.66 2.66 28 8.3 9.58 53 4.96 6.41 78 4.96 6.41
4 5.36 6.94 29 10.5 10.29 54 6.16 5.25 79 4.66 5.61
5 5.76 5.76 30 7.5 10.75 55 4.5 4.50 80 7.2 6.76
6 2.16 2.25 31 4.86 4.86 56 2.76 3.35 81 5.1 5.69
7 1.6 1.71 32 2.7 4.27 57 6.5 6.50 82 6.16 6.95
8 1.66 1.77 33 3 2.95 58 5.9 4.18 83 4.96 4.85
9 2.9 3.05 34 4.56 3.97 59 4.16 4.56 84 3.2 3.20
10 3.76 3.75 35 4.66 5.61 60 5.6 4.84 85 6 6.55
11 1.96 1.74 36 2.86 2.60 61 2.7 2.06 86 4.33 4.47
12 2.13 1.51 37 4.86 3.98 62 2.33 2.83 87 4.16 4.26
13 2.53 2.53 38 2.7 2.67 63 2.83 3.23 88 3.13 4.05
14 2 2.20 39 2.13 1.47 64 2.66 3.28 89 4.65 4.65
15 3.7 3.25 40 2.33 2.36 65 3.4 3.39 90 8.26 6.54
16 2.6 2.20 41 1.86 2.45 66 3.23 3.23 91 4.13 3.84
17 2.33 2.14 42 3.13 3.83 67 2.6 2.70 92 3.9 3.88
18 2.4 2.06 43 4.66 3.83 68 2.23 3.00 93 3.6 3.07
19 2.63 2.63 44 2.43 3.21 69 2.86 2.73 94 3.1 3.10
20 1.8 1.80 45 2.83 3.29 70 3 2.51 95 4.06 4.97
21 1.96 2.57 46 3.53 2.98 71 2.9 2.30 96 3.43 3.46
22 2.8 2.54 47 2.76 3.48 72 2.1 2.87 97 3.86 4.07
23 2.3 2.30 48 2.6 2.41 73 3.73 3.08 98 2.93 3.85
24 2.33 2.51 49 4.3 4.31 74 2.36 2.77 99 6.6 6.59
25 2.4 2.64 50 2.63 2.52 75 2.9 2.44 100 4.23 4.10

Table 7   ANN prediction errors 5 Best Iterations

Optimal 1 2 3 4 5

R Training 0.9679 0.9352 0.9473 0.9718 0.9165 0.9679
Validation 0.9750 0.8881 0.9419 0.9441 0.9875 0.9750
Test 0.9750 0.8881 0.9419 0.9441 0.9875 0.9750
Global 0.9529 0.8989 0.9473 0.9254 0.8752 0.9529

RMSE Training 0.5325 0.7168 0.7042 0.4932 0.8088 0.5325
Validation 1.3749 0.4013 2.0992 2.8299 1.3749
Test 1.3749 2.0400 0.4013 2.0992 2.8299 1.3749
Global 0.6665 0.8670 0.6800 0.8122 1.1788 0.6665

MAD Training 0.9427 0.4489 0.9333 0.9444 0.8818 0.9427
Validation 1.4577 0.4489 1.1337 0.2566 1.8167 1.4577
Test 1.4577 0.8126 1.1337 0.2566 1.8167 1.4577
Global 1.009 0.1523 0.9380 0.8713 0.9692 1.0090

MAPE (%) Training 10.52 19.51 15.33 10.71 16.27 10.52
Validation 23.71 19.51 10 24.74 31.64 23.71
Test 23.71 19.51 10 24.74 31.64 23.71
Global 11.84 15.66 14.80 12.11 17.80 11.84

MAE Training 0.3633 0.4825 0.5210 0.3152 0.5990 0.3633
Validation 1.0696 1.1693 0.3319] 1.3155 1.5084 1.0696
Test 1.0696 1.1693 0.3319] 1.3155 1.5084 1.0696
Global 0.4339 0.5512 0.5021 0.4152 0.6900 0.4339
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trainbr; and activation functions tansig, radbasn, and netinv 
assigned to each respective layer.

3.2.5 � Comparison between ANN‑GA and LM algorithm

This section compares the neural network architecture dis-
covered through genetic algorithms with the architectures 
employed in the Levenberg–Marquardt backpropagation 
(LM) algorithm. The LM algorithm is known for its profi-
ciency in addressing nonlinear problems during the training 
of gradient backpropagation neural networks. It possesses 
the capability to locate local minima of the error function 
and exhibits faster convergence compared to traditional opti-
mization methods like stochastic gradient descent. These 
findings offer insights into the predictive capabilities of the 
ANN-GA architectures obtained in this study.

The performance of the LM and ANN-GA neural net-
work models is demonstrated through the results presented 
in Table 9 and the spider plots depicted in Fig. 10. The find-
ings indicate that ANN-GA outperforms LM in terms of IP 
values. Consequently, these results suggest that employing 
a genetic algorithm for optimizing neural network architec-
ture can be a highly effective approach for enhancing the 
predictive performance of neural network models.

4 � Conclusion

This section provides a concise summary of the investiga-
tion conducted on surface roughness in Alfa/epoxy bio-
composites. The focus of this research was to gain insights 
into the machining processes and surface quality of these 

Fig. 8   Spider plot illustrating the performance indices for the top five iterations
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environmentally friendly materials, with a particular emphasis 
on natural fiber-reinforced composites (NFRCs) as potential 
alternatives to conventional materials in various industries.

5 � Key findings:

1.	 The analysis of variance (ANOVA) revealed that the 
feed per revolution and chemical treatment of fibers 
had significant impacts on surface roughness, while the 
effect of machining direction and the orientation of the 
fibers were relatively minor.

2.	 The hybrid ANN-GA (artificial neural networks-
genetic algorithms) approach demonstrated superior 
predictive capabilities for surface roughness com-
pared to the Levenberg–Marquardt backpropagation 
(LM) algorithm.

3.	 The developed ANN-GA model exhibited high accuracy 
in estimating surface roughness, as confirmed by the 
evaluation metrics used.

6 � Implications

1.	 This study contributes to a deeper understanding of Alfa/
epoxy biocomposites and their machining processes, 
shedding light on their unique properties and potential 
applications.

2.	 The identification of key factors influencing surface 
roughness provides valuable insights for optimizing the 
manufacturing processes of biocomposites, leading to 
improved product quality.

3.	 The successful application of the hybrid ANN-GA 
approach highlights its potential as an effective meth-
odology for predicting surface roughness in NFRCs.

4.	 The findings of this study have implications for research-
ers and practitioners in industries such as automotive 
and aerospace, where the adoption of eco-friendly mate-
rials is gaining significance.

Fig. 9   Correlation between experimental Ra values and estimated 
values obtained by ANN-GA

Table 8   Optimal ANN-GA architecture for the five best iterations

Iteration HLayer 
number

HLayer size Learning algorithm Act-Fct

1 3 6 trainbr tansig
7 radbasn
4 netinv

2 3 6 tansig tansig
7 radbasn
3 netinv

3 3 6 trainbr tansig
7 radbasn
3 netinv

4 3 6 trainlm tansig
7 radbasn
3 netinv

5 3 6 trainbr tansig
7 radbasn
3 netinv

Table 9   Comparison between ANN-GA and LM

IP global AG OPT LM (trainlm)

R 0.9529 0.8648
RMSE 0.6665 1.0707
MAD 1.009 0.9135
MAPE (%) 11.84 21.18
MAE 0.4339
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Finally, this research advances the knowledge in sur-
face roughness analysis of Alfa/epoxy biocomposites and 
underscores the significance of eco-friendly materials for a 
sustainable future. The insights gained from this study open 
avenues for further advancements and broader applications 
in the field of natural fiber-reinforced composites.
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