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Abstract
In this paper, the effect of approximation approaches on a novel low-order fractionalized proportional–integral–derivative 
(LOA/FPID) optimal controller based on the Harris Hawks optimization algorithm (HHOA) for airplane pitch angle control 
is studied. The Carlson, Oustaloup and Matsuda methods are used separately to approximate the fractional integral order of 
the fractionalized PID controller. This technique consists in introducing fractional-order integrators into the classical feed-
back control loop without modifying the overall equivalent closed loop transfer function. To validate the effectiveness of the 
suggested approach, performance indices, as well as transient and frequency responses, were used. The comparative study 
was performed, and the results show that the proposed reduced fractionalized PID based on HHO algorithm with Carlson 
controller is better in terms of percentage overshoot, settling time and rise time than other controllers.

Keywords Fractional calculus · Fractionalized order controllers · Integer order controllers · Aircraft system · Pitch angle · 
Approximation methods

1 Introduction

Fractional-order (FO) differential calculus, or fractional cal-
culus, is an area of mathematics concerned with the expan-
sion of well-known differentiation and integration operations 
to arbitrary orders. Thanks to correspondence between two 
mathematicians, Leibniz and L'Hospital [1], science began 
to deal with the field about 1695.

Fractional PID controllers offer advantages over tra-
ditional PID controllers in specific applications owing to 
their capability to introduce fractional-order derivatives and 
integrals [2]. These fractional-order components provide 

increased flexibility in capturing the dynamics of nonlinear 
systems, thereby enhancing control performance. The intro-
duction of a memory effect through fractional-order compo-
nents allows the controller to consider not only the current 
error but also historical error values, improving adaptabil-
ity to changing system conditions [3]. Additionally, frac-
tional derivatives and integrals enable a smoother transition 
between differentiation and integration, proving beneficial in 
systems with abrupt changes or varying dynamics. In certain 
cases, fractional-order controllers can enhance stability mar-
gins and robustness, particularly in systems characterized by 
long time delays. The extra degrees of freedom in fractional 
PID controllers can be tuned to reduce overshoot and settling 
time, resulting in an improved transient response [4].

Fractional-order PID has advanced rapidly over the past 
decades and has a wide range of applications in control engi-
neering and research [5–9]. Pdlubny was the first to imple-
ment FOPID in 1997 [6]. Compared with the traditional PID 
tuning methods, Luo et al. [7] designed FOPID and FOPI 
controllers, which improved the system robustness and con-
trol performance. Bensafia et al. [8] used a fractionalized 
PID controller strategy to reduce effect noise in the conven-
tional feedback control loop PID controller by introducing 
fractional-order filters. Idir et al. [9] have demonstrated the 
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superiority of fractionalized PID controller with Matsuda 
approximation over classical ones.

Fractional differentiators and integrators are important 
in fractional filter-based signal processing and fractional 
feedback management of complex and chaotic systems 
[10]. A fractional-order system in the s-domain is an infi-
nite-dimensional filter with an irrational continuous time 
transfer function.

In the literature, various approximation methods have 
been proposed to achieve low complexity and practical 
implementation of fractional derivative operators. Vinagre 
et al. [11] presented continuous models in the frequency 
domain and discrete models in the time domain. Khovanskii 
[12] and Vinagre et al. [11] proposed the continued frac-
tion expansion (CFE) method, which yields an integer-order 
rational function that approximates fractional-order elements 
based on continued fraction expansion. Deniz et al. [13] pre-
sented the stability boundary locus (SBL) fitting method, 
which performs fitting of a rational transfer function to SBL 
curves of fractional-order elements or transfer functions 
within a desired frequency range. Wei et al. [14] proposed 
an algorithm for fixed pole approximation that results in 
smaller-order approximate models. Additionally, Bingi et al. 
[15] introduced a novel curve fitting-based approximation 
algorithm using the Sanathana-Koerner least square itera-
tive. The Carlson methodology [17], Matsuda approximation 
method [18], Charef approximation method [19], Oustaloup 
approximation method [20] and the method provided by Xue 
et al. [21] are all well-known ways to produce the rational 
approximation.

The advantages of fractionalized PID based on the Harris 
Hawks optimization algorithm, which uses fractional-order 
filters to approximate integer-order transfers in the feedback 
control loop, are demonstrated in this study. The automation 
designer can apply the attributes and dynamics of fractional 
order to the rational system under consideration by insert-
ing fractional-order integrators into the classical feedback 
control loop without modifying the overall equivalent closed 
loop transfer function.

In the airplane pitch angle control system, this study com-
pares the responses of the traditional PID and the Oustaloup, 
Matsuda and Carlson fractionalized PID controllers. Some 
of these methods produce models with very high-order inte-
ger orders, allowing for the desired accuracy. Higher-order 
models, on the other hand, are difficult to realize, imple-
ment and simulate. This includes lowering the model's 
order, either by simplifying it or by computing a lower-order 
model, while retaining the important attributes and qualities 
of the original integer-order model.

The performance of the airplane pitch system can be fur-
ther improved by using an ideal lower-order approximation 
of a fractionalized PID. Accordingly, this paper proposes 

a new reduced-order fractionalized PID (RFPID) control-
ler based on the Harris Hawks optimization algorithm 
(HHOA) and approximation methods of Carlson, Matsuda 
and Oustaloup.

This paper’s contribution to originality can be summa-
rized as follows:

1. For the first time, a Carlson-based HHOA/reduced frac-
tionalized PID controller was proposed.

2. For the first time, the efficiencies of appropriately 
designed Carlson HHOA/FPID, Matsuda HHOA/FPID 
and Oustaloup HHOA/FPID controllers for increasing 
aircraft system pitch angle performance were tested.

3. The performance of the proposed controllers approach 
has been compared in detail with the integer HHOA/PID 
controller [16] and integer HGSOA/PID controller [28] 
through several analyses, as these controllers with stated 
algorithms are the most recent techniques for determin-
ing optimal controller’s gains.

4. The comparisons of transient and frequency responses 
clearly confirmed the performance of the proposed low-
order fractionalized PID (RFPID) controller, as well as 
its superiority over current algorithms.

2  Mathematical model of the aircraft

During flight, the plane can be turned in three different direc-
tions. Yaw is rotation along the vertical axis, roll is rotation 
along the longitudinal axis, and pitch is rotation along the lat-
eral axis. The axis intersects in the aircraft's gravity center.

Aircraft control is extremely difficult to model in a single 
model. However, some simplifications can be made below in 
the appropriate models provided for the control, resulting in 
an analysis of pitch control only.

• The drag, lift, thrust and weight forces are balanced in the 
x- and y directions if the aircraft is expected to be in a 
steady cruise at a constant speed and altitude.

• Any change in pitch angle should be assumed to have no 
effect on aircraft speed under all conditions for simplicity.

Figure 1 [22, 23] depicts the mathematical model for pitch 
angle.

The dynamic behavior of an aircraft is determined by the 
following set of relationships:

(1)

d�

dt
= �Ω�

[
−
(
CL + CD

)
� +

1

� − CL

q −
(
CM sin �

)
� + CL

]
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with

where � is the angle of attack, � is the pitch angle, q is the 
pitch rate, � is the flight path, � is the elevator deflection 
angle, � is the reduced mass of the aircraft, which represents 
the ratio of the air density (ρ) multiplied by the wing plat-
form area (S) and the mean chord length (c ̅) to four times 
the mass of the aircraft (m), and Ω is the reduced frequency, 
a dimensionless quantity. It is the ratio of wing's oscillation 
frequency (2U) to the speed of sound ( c ) in the surround-
ing fluid (typically air), U is the equilibrium flight speed 
and ( c ) is the average chord length, which represents the 
distance between the airfoil's leading and trailing edges at 
a given spanwise point. � represents the downwash factor 
(σ) of the aircraft, which is a dimensionless quantity used in 
aerodynamics to account for the effects of lift distribution 
on the aircraft's angle of attack. � represents the pitching 
moment coefficient of the aircraft, which is a dimension-
less quantity used in aerodynamics to characterize the pitch-
ing moment generated by an aerodynamic body, such as an 
airfoil or wing. CD,CL,CW and CM are the coefficients for 
thrust, drag, lift, weight and pitch moment, respectively, and 
Iyy is the inertia normalized moment.

In this study, the coefficient of lift CL is neglected; it means 
that the lift force generated by the wing or airfoil is assumed to 
be zero or not taken into account in the analysis or calculation. 
The following simplified modeling equations are generated 
by substituting the aircraft parameter values in Eqs. (1), (2) 
and (3):

(2)

dq
dt

=
�Ω
2iyy

[(

CM − �
(

CL + CD
))

�

+
(

CM + �
(

1 − �CL
))

q + +
(

�Cw sin �
)

�
]

(3)
d�

dt
= Ωq

� =
�Sc

4m
,Ω =

2U

c
, � =

1

1 + �CL

, � = ��CM

The following is the Laplace transform of the preceding 
equations (we assume that the initial conditions are null):

Finally, aircraft pitch angle transfer function is given in 
Eq. (10) [22].

where Δ(s) is the elevator deflection and Θ(s) is the pitch 
angle.

The open-loop step response is shown in Fig. 2 with 
the input signal as step input � = 0.2 . Based on the plot, 
it is clear that the open-loop response completely fails to 
meet the design objectives. In fact, the open-loop response 
is unstable. Determining the stability of a system entails 
examining the poles of its transfer function. The open-loop 
transfer function has a pole on the imaginary axis, indicating 
a system's free response will not grow unbounded but not 
decay to zero. However, a system with a pole on the imagi-
nary axis can grow unbounded when given an input, even 
when the input is bounded. The pole at the origin acts like 
an integrator, causing the system's output to grow to infinity 
when given a step input.

(4)
d�(t)

dt
= −0.313�(t) + 56.7q(t) + 0.232�(t)

(5)
dq(t)

dt
= −0.0139�(t) − 0.426q(t) + 0.0203�(t)

(6)
d�(t)

dt
= 56.7q(t)

(7)s�̂�(s) = −0.313�̂�(s) + 56.7Q(s) + 0.232Θ(s)

(8)sQ(s) = −0.0139�̂�(s) − 0.426Q(s) + 0.0203Δ(s)

(9)sΘ(s) = 56.7Q(s)

(10)GP(s) =
Θ(s)

Δ(s)
=

1.121s + 0.1774

s3 + 0.739s2 + 0.9215s

Fig. 1  Pitch control description
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3  Fractional‑order approximation methods

The definition of the integro-differentiation operator D is 
given in many fractional-order (FO) calculus papers [24–26]:

where a represents the lower limit of integration, ‘t’ repre-
sents the upper limit of integration, α represents the order 
of fractional differentiation or integration (� ∈ R ) and R(�) 
represents the real part of �.

Fractional-order systems are widely used in various 
fields, including control systems, signal processing, physics, 
biology and finance. They capture memory effects, better 
model fit, robustness against disturbances and uncertainties 
and can analyze fractal phenomena. Fractional-order cal-
culus is closely related to fractal theory, allowing for bet-
ter understanding of complex structures and non-locality 
in modeling systems with spatial or temporal interactions. 
These applications make fractional-order calculus an attrac-
tive choice for various applications.

Many definitions of the operation D can be found in the 
literature. Riemann–Liouville, Riesz, Weyl, Grünwald–Let-
nikov and Caputo [27–29] are among of them.

The Laplace transform of a fractional derivative of func-
tion f(t) with respect to t, denoted as L

{
aD�

t
f (t)

}
 , is equal 

to s� times the Laplace transform of f (t), denoted as F(s), 
where s is a complex variable.

(11)aD𝛼
t
=

⎧
⎪⎪⎨⎪⎪⎩

d𝛼

dt𝛼
, R(𝛼) ≻ 0

1, R(𝛼) = 0
t∫

a

(d𝜏)−𝛼 , R(𝛼) ≺ 0

3.1  Oustaloup filter approximation

To estimate fractional-order (FO) integrators and differ-
entiators, Oustaloup's approximation approach is utilized 
[20]. An approximation of fractional operator s� is the most 
important objective of Oustaloup’s approximation [30].

The Oustaloup filter comes in a standard form:

where the zeros, poles and gain can be obtained from

For k = 1, 2,… , N with

where �b and �h are the desired lower and upper bound fre-
quencies of the filter, respectively, � is the order of derivative 
and  N is the filter order.

3.2  Matsuda filter approximation

Matsuda's method is based on the continuous fraction tech-
nique (CFE) [18] to approximate an irrational function 
with a rational one. Assuming that the points selected are 
sk, k = 0, 1, 2,… , the approximation takes the following 
form:

(12)Gf (s) = s� , (� ∈ R)

(13)Gf (s) = K

N∏
k=1

s + ��
k

s + �k

(14)�k = �b�
(2k−1+�)∕N

ll
,��

k
= �b�

(2k−1−�)∕N

ll
,K = �

�

h

(15)�u =

√
�h

�b

Fig. 2  Open-loop step response 
of aircraft pitch angle
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where

3.3  Carlson filter approximation

The method suggested in [31] was obtained from an itera-
tive estimate of the � − th  root using a conventional Newton 
process. The method's beginning point is defined as

The approximated rational function is obtained by setting 
the initial value to H0(s) = 1,∀k = 1…N ∶

where the derivative is defined  G(s) = s and the integral is 
defined G(s) = 1∕s.

• Using Oustaloup’s approximation

• Using Matsuda’s approximation

• Using Carlson’s approximation

From these results, it is evident that when using any filter 
approximation method, it is essential to consider the spe-
cific requirements and characteristics of the filter you intend 
to design. This is because each method may yield different 
results in terms of accuracy, stability and performance.

(16)
Gf (s) = �0 +

s − s0

�1 +
s−s1

�2+
s−s1
�3+⋯

(17)�i = vi
(
si
)
, v0(s) = Gf (s), vi+1(s) =

s − si

vi(s) − �i
.

(18)H(s) = G(s)�

(19)Hk(s) = Hk−1(s)
(1 − �)Hk−1(s)

1

�
+(1+�)G(s)

(1 − �)Hk−1(s)
1

� + (1 − �)G(s)

(20)

G�(s) = G1−�(s) = G0.5(s)

= 0.03162s5 + 19.76s4 + 1122s3 + 6311s2 + 3514s + 177.8
s5 + 197.6s4 + 3549s3 + 6311s2 + 1111s + 17.78

(21)

G�(s) = G1−�(s) = G0.5(s)

= 0.01386s5 + 25.92s4 + 1940s3 + 11350s2 + 5576s + 177.8
s5 + 313.5s4 + 6383s3 + 10910s2 + 1458s + 7.797

(22)

G� (s) = G1−� (s) = G0.5(s)

= 0.1111s6 + 4.074s5 + 16.68s4 + 19.11s3 + 8.778s2 + 1.704s + 0.1111
s6 + 10s5 + 20.33s4 + 14.37s3 + 4.333s2 + 0.5185s + 0.01235

4  Frequency domain analysis 
of a fractionalized integrator

Consider the Laplace transform of the following integrator:

Figure 3 shows the result of the classical integrator frac-
tionalization Eq. (26).

where � is a real number such that 0 < 𝛼 < 1.

Using Oustaloup and Matsuda methods of approxima-
tion presented in Sect. 3 with the approximation parame-
ters:ωb = 0.01 rad∕s , ωh = 1000 rad∕s , we get the approxi-
mated functions  G�(s) and G1−�(s) given below (for � = 0.5) 
It should be noted that, for the Carlson filter shown below, 
the actual order of the filter rises significantly as n increases; 
hence, n = 2 is commonly chosen. The integer-order integral 
operator 1∕s and the product of fractional-order integral opera-
tors approximating filters G�(s) = G1−�(s) = 1∕s0.5 built utiliz-
ing singularity approximation methodologies are compared in 
the frequency domain in Fig. 4.

Figure 4 shows the filter's Bode diagram, which is placed 
on the exact responses of 1∕s . It can be seen that the Mat-
suda–Fujii filter has a broader fitting band. In addition, it is 
evident that this filter product 

(
1∕s0.5

)
X
(
1∕s0.5

)
 provides a 

good approximation of the integral operator in the frequency 
interval of interest.

The frequency response fitting by Carlson and the 
Oustaloup filter are likewise good, as can be observed.

5  Fractionalized PID controller based 
on HHO algorithm

5.1  Fractionalized PID controller

The proposed fractionalization approach is examined in this 
study by analyzing its application to Eq. (10) transfer func-
tion of a feedback control aircraft system.

(23)G(s) =
1

s

(24)
1

s
=

1

s�
⋅

1

s1−�

Fig. 3  Integral operator fractionalization
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Figure 5 shows a feedback control loop with an HHOA 
based on a fractionalized PID controller.

In Fig. 6, �ref is the desired pitch angle, � is the pitch 
angle, � is deflection angle, 

(
Kp,Ki,Kd

)
  are gains of frac-

tionalized PID (proportional, integral and derivative, respec-
tively), and � is the fractional order.

The traditional PID controller to be designed looks like 
this:

where
Ti =

Kp

Ki

 and Td =
Kd

Kp

.

The improvement fractionalization of the control system 
element modifies the PID control law, and the operator of 
integral 1∕s  is fractionalized as expressed in Eq. (28) and 
illustrated in Fig. 3, that is,

(25)Gc(s) = Kp

(
1 +

1

Tis
+ Tds

)

The fractionalization of the traditional PID controller to 
be created looks like this [8, 9]:

where 0 < 𝛼 < 1.

5.2  Harris Hawks optimization algorithm (HHOA)

The Harris Hawks optimization algorithm (HHOA) is a 
population-based model that is inspired by nature [22]. 
This software is essentially a mathematical description of 
the searching behavior of Harris Hawks.

1

s
=

1

s�
⋅

1

s1−�

(26)

Gc(s) = Kp

(
1 +

1

Tis
+ Tds

)
=

1

s

(
KpTiTds

2 + KpTis + Kp

Ti

)

=
1

s�s1−�

(
KpTdTis

2 + KpTis + Kp

Ti

)

Fig. 4  Bode diagram com-
parison of the integration 1∕s  
with the Oustaloup, Matsuda 
and Carlson approximations 
G0.5(s)XG0.5(s)

Fig. 5  The proposed HHOA-
FPID approach using approxi-
mation methods for aircraft 
pitch angle control
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The various stages of Harris Hawks formulation are bro-
ken down into three main phases:

5.2.1  Exploration phase

This is the first step of the algorithm, during which Harris 
Hawks search for prey at random locations and employ a 

Fig. 6  Flowchart of the proposed design procedure for an aircraft pitch angle control
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wait-and-watch method to catch it:

where X(t + 1) is the Hawks' position in the next itera-
tion, Xrabbit(t) is the rabbit position, X(t) is the vector of the 
Hawks' current position, 

(
r1, r2, r3, r4

)
 are random numbers 

between (0, 1) , 
(
Lb,Ub

)
 are the lower and upper bounds of 

variables and Xrand (t) is a randomly selected hawk from the 
current position.

The following formula is used to calculate the Hawks' 
average position:

where Xm is the mean of the current population of Hawks 
and N is the Hawks’ total population.

5.2.2  Exploration to exploitation transition

This stage imitates a variety of Harris Hawk maneuvering 
strategies, which are based on the prey's energy level when 
fleeing (E). To demonstrate this behavior, imagine that the 
rabbit's energy comes from:

where E,E0 and Tmax represent the escaping prey’s energy, 
initial prey energy and the maximum number of iterations 
taken, respectively.

5.2.3  Exploitation phase

The final stage of the HHO algorithm can be divided into 
four distinct techniques. These tactics are determined by the 
energy level of the prey as well as the potential of escape.

Let’s consider r < 0.5 represents the successful escape 
chance of the prey, while r ≥ 0.5 represents the unsuccess-
ful escape.

For r ≥ 0.5 and |E| ≥ 0.5 , a soft besiege will be performed 
in this case which is described by Eqs.(30) and (31).

where ΔX(t) is the difference between the rabbit's position 
and the current place in iteration t and  J is the rabbit's ran-
dom jump strength.

(27)

X(t + 1) =

{
Xrand (t) − r1

||Xrand (t) − 2r2X(t)
||q ≥ 0.5

Xrab (t) − Xm(t) − r3
(
Lb + r4

(
Ub − Lb

))
q < 0.5

(28)Xm(t) =
1

N

N∑
i=1

Xi(t)

(29)E = 2E0

(
1 −

t

Tmax

)

(30)X(t + 1) = ΔX(t) − E||JXrabbit (t) − X(t)||

(31)ΔX(t) = Xrabbit (t) − X(t)

• For  r ≥ 0.5 and |E| < 0.5 , a hard besiege will be per-
formed in this case which is described by Eq. (32).

• For r < 0.5 and |E| ≥ 0.5 , a soft besiege with progres-
sive rapid drive will be performed in this case which is 
described by Eqs. (33) and (34).

where D is the problem dimension, S is a size random 
vector 1 × D and LF is levy flight function.

Therefore, the position update is fulfilled using Eq. (35).

• For  r and |E| having values smaller than 0.5 , a hard 
besiege with progressive rapid drive will be performed 
in this case which is described by Eqs. (36)–(38).

Y2 and Z2 are obtained using (33) and (34), respectively.

6  Carlson/Oustaloup/Matsuda 
HHO‑fractionalized PID approach 
of aircraft system control

The initialization phase of the optimal gains of the PID con-
troller with the HHO algorithm has started with the integra-
tion of the advanced MATLAB/Simulink model for aircraft 
pitch control with the HHO algorithm and approximation 
methods in the initialization phase. The PID controller's 
gains were assigned to a vector of real values represent-
ing each Harris Hawk in the population, which needed to 
be optimized. The population consisted of N Harris Hawks 
and their opposing forces, which were produced randomly. 
Figure 6 depicts a detailed flowchart of the suggested design 
approach.

Accordingly, for each Harris Hawk, a time-domain 
simulation of the aircraft’s pitch angle control system was 

(32)X(t + 1) = Xrabbit (t) − E|ΔX(t)|

(33)Y1 = Xrabbit (t) − E||JXrabbit − X(t)||

(34)Z1 = Y1 + S × LF(D)

(35)X(t + 1) =

{
Y1, if F

(
Y1
)
< F(X(t)

Z1, if F
(
Z1
)
< F(X(t))

(36)X(t + 1) =

{
Y2, if F

(
Y2
)
< F(X(t))

Z2, if F
(
Z2
)
< F(X(t))

(37)Y2 = Xrabbit (t) − E||JXrabbit − X(t)||

(38)Z2 = Y2 + S × LF(D)
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performed with the proposed fractionalized PID controller 
and unit feedback, and response curves of the pitch angle 
of the aircraft system were obtained along with the integral 
Time absolute error (ITAE) criteria.

The ITAE performance criterion was chosen for this 
investigation because it allows a good comparison with the 
references [22, 32]. Equation (39) shows the ITAE objective 
function:

J stands for performance criteria. It indicates the degree 
to which the controlled object is similar to the reference 
model. Here e(t) represents the difference between the set 
point and the controlled variable, and t is the time.

(39)J
(
Kp,Ki,Kd

)
=

tsim

∫
0

t|e(t)|dt

Table 1 lists the parameters of the proposed HHO algo-
rithm. The HHO algorithm is used to construct a PID con-
troller for the system model Gp(s) shown in Eq. (10) with 
the following PID parameters: Kp = 55.27, Ki = 51.40, and 
Kd = 90 . The closed-loop transfer function of an aircraft sys-
tem with fractionalized PID and unity feedback is obtained 
as:

As a result, the closed-loop transfer function is 'frac-
tionalized' as shown in Eq. (24), with integrator fractional 
order � = 0.1 approximated using the methods of Carlson, 
Matsuda and Oustaloup with the approximation parameters: 
�b = 0.01 rad∕s , �h = 1000 rad∕s and unity feedback for the 
HHO algorithm is given by:

(40)GCLFPID(s) =
GHHO−FPID(s)

∗Gp(s)

1 + GHHO−FPID(s) ∗ Gp(s)

(41)GCL FPID−Oust (s) =

0.1047s13 + 145s12 + 5.18e4s11 + 5.272e6s10 + 1.74e08s9 + 1.807e09s8+

6.761e09s7 + 1.044e10s6 + 9.306e09s5 + 5.305e09s4 + 1.446e09s3+

2.404e08s2 + 1.481e07s + 2.883e05

1.105s13 + 583.6s12 + 1.015e5s11 + 6.89e6s10 + 1.914e08s9 + 1.871e09s8+

6.865e09s7 + 1.054e10s6 + 9.366e09s5 + 5.332e09s4 + 1.648e09s3+

2.404e08s2 + 1.481e07s + 2.883e05

Table 1  Parameters of HHOA-PID for solving optimization problem

Number of hawks (population size) 50
Maximum iteration number 40
Constant of levy flight function 1.5
Lower bound for [Kp; Ki; Kd] [0.01;0.01;0.01]
Upper bound for [Kp; Ki; Kd] [100;100;100]
Dimension for optimization problem 3
Time of simulation 1 s

Table 2  Approximation order using Carlson method (Iteration 1)

G�(s) =
1

s�
Carlson’s approxima-
tion

G�(s) =
1

s�
Carlson’s approxi-
mation

G0.1(s)
s+1.222

1.222s+1
G0.6(s) s2+4.222s+3.666

3.667s2+4.222s+0.9999

G0.2(s)
s+1.5

1.5s+1
G0.7(s) s2+4.5s+4.5

4.5s2+4.5s+0.9999

G0.3(s) s2+2.722s+1.833

1.833s2+2.722s+1
G0.8(s) s3+5.722s2+9.999s+5.499

5.5s3+10s2+5.722s+1

G0.4(s) s2+3s+2.25

2.25s2+3s+1
G0.9(s) s3+6s2+11.25s+6.75

6.75s3+11.25s2+6s+1

G0.5(s)
s+3

3s+1
– –

Table 3  Approximation order using Matsuda

G�(s) =
1

s�
Matsuda’s approximation

G0.1(s) 0.4342s5+347.1s4+15130s3+54070s2+16070s+281.8

s5+570.1s4+19190s3+53670s2+12320s+154.1

G0.2(s) 0.1877s5+180.5s4+8971s3+36260s2+12240s+281.8

s5+487.1s4+14440s3+35710s2+7186s+74.71

G0.3(s) 0.0803s5+94.29s4+5357s3+24490s2+9372s+223.9

s5+418.6s4+10940s3+23930s2+4212s+35.87

G0.4(s) 0.0338s5+49.41s4+3216s3+16630s2+7214s+199.5

s5+361.6s4+8336s3+16120s2+2476s+16.94

G0.5(s) 0.01386s5+25.92s4+1940s3+11350s2+5576s+177.8

s5+313.5s4+6383s3+10910s2+1458s+7.797

G0.6(s) 0.005466s5+13.6s4+1174s3+7778s2+4324s+158.5

s5+272.8s4+4908s3+7405s2+858.3s+3.449

G0.7(s) 0.00202s5+7.128s4+712s3+5348s2+3363s+141.3

s5+238.1s4+3786s3+5040s2+504.6s+1.43

G0.8(s) 0.0006621s5+3.723s4+432.7s3+3687s2+2622s+125.9

s5+208.3s4+2929s3+3437s2+295.8s+0.526

G0.9(s) 0.0001622s5+1.936s4+263.4s3+2548s2+2049s+112.2

s5+182.6s4+2271s3+2347s2+172.5s+0.1446
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The HHO algorithm-based closed-loop system with frac-
tionalized PID has a high order. As a result, the memory 
capacity of the fractionalized PID controller will be lowered 
to fit better inside the correction loop.

Similarly, for different integrator fractional orders 
� = 0.2, � = 0.3, � = 0.4, and � = 0.5 , the integer-order 
approximation models given in Tables 2, 3, 4 may be uti-
lized to determine the closed loop transfer functions of the 
HHOA-based fractionalized PID using Carlson, Matsuda 
and Oustaloup approximation methods.

Tables  2, 3 and 4 show a list of integer-order 
approximation models found by Carlson, Matsuda 
and Oustaloup approximation methods using these 

(42)GCL FPID−Mats (s) =

0.007376s13 + 93.93s12 + 8.267e4s11 + 1.282e7s10 + 5.305e08s9+

6.009e09s8 + 2.273e10s7 + 3.361e10s6 + 2.882e10s5 + 1.558e10s4+

4.331e09s3 + 5.287e08s2 + 2.388e07s + 2.883e05

1.007s13 + 847.4s12 + 2.088e5s11 + 1.777e7s10 + 5.889e08s9+

6.223e09s8 + 2.306e10s7 + 3.392e10s6 + 2.9e10s5 + 1.562e10s4 + 4.333e09s3+

5.287e08s2 + 2.388e07s + 2.883e05

(43)G
CLFPID−Carlson (s) =

104.7s7 + 835.9s6 + 2591s5 + 4135s4 + 3846s3 + 2241s2 + 755.8s + 75.21

113s7 + 862.5s6 + 2632s5 + 4175s4 + 3869s3 + 2248s2 + 756.7s + 75.21

parameters:�b = 0.01 rad∕s , �h = 1000 rad∕s   and filter 
order N = 5.

Some of these methods produce very high-order 
integer-order models, allowing for the desired accuracy. 
Higher-order models, on the other hand, are difficult to 
realize, implement and simulate. This includes decreasing 
the model's order, either by simplifying it or computing 
a lower-order model, while keeping the original integer-
order model's important traits and qualities.

Figure 7 shows the error signal for model reduction, 
where the original model is given by

As indicated below [32], our current goal is to find a low-
order approximation integer-order model.

The error signal's Laplace transform can be represented 
as:

where R(s) is the Laplace transform of the input signal r(t).
An objective function for minimizing the H2− norm of 

the reduction error signal is as follows:

where � the parameters are tuned so that:

where J is the criterion of performance and Gr∕m(s) is the 
reduced-order model.

As a result, the low-order closed loop transfer function 
of high-order closed loop given in Eqs. 41 − 43 with the 
resultant PID controller 'fractionalized' with integrator 

(44)G(s) =
b1s

n−1 +⋯ + bn−1s + b0

sn + a1s
n−1 +⋯ + �n−1s + an

(45)Gr∕m(s) =
�1s

r +⋯ + �rs + �r+1

sm + �1s
m−1 +⋯ + �m−1s + �m

(46)E(s) = G(s) − Gr∕m(s)

(47)J = min
θ

Ĝ(s) − Gr∕m(s)2

(48)� =
[
�1,… , �r, �1,… , �m

]

Table 4  Approximation order using Oustaloup

G�(s) =
1

s�
Oustaloup’s approximation

G0.1(s) 0.5012s5+197.6s4+7081s3+25120s2+8826s+281.8

s5+313.2s4+8914s3+25120s2+7011s+177.8

G0.2(s) 0.2512s5+111.1s4+4468s3+17790s2+7011s+251.2

s5+279.1s4+7081s3+17790s2+4423s+100

G0.3(s) 0.1259s5+62.48s4+2819s3+12590s2+5569s+223.9

s5+248.7s4+5624s3+12590s2+2791s+56.23

G0.4(s) 0.0631s5+35.14s4+1779s3+8914s2+4423s+199.5

s5+221.7s4+4468s3+8914s2+1761s+31.62

G0.5(s) 0.03162s5+19.76s4+1122s3+6311s2+3514s+177.8

s5+197.6s4+3549s3+6311s2+1111s+17.78

G0.6(s) 0.01585s5+11.11s4+708.1s3+4468s2+2791s+158.5

s5+176.1s4+2819s3+4468s2+701.1s+10

G0.7(s) 0.007943s5+6.248s4+446.8s3+3163s2+2217s+141.3

s5+156.9s4+2239s3+3163s2+442.3s+5.623

G0.8(s) 0.003981s5+3.514s4+281.9s3+2239s2+1761s+125.9

s5+139.9s4+1779s3+2239s2+279.1s+3.162

G0.9(s) 0.001995s5+1.976s4+177.9s3+1585s2+1399s+112.2

s5+124.7s4+1413s3+1585s2+176.1s+1.778

Fig. 7  Error signal for model reduction
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fractional order derived using Oustaloup, Matsuda and Carl-
son approaches becomes:

Therefore, closed-loop transfer functions of the 
HHOA-based reduced-order fractionalized PID control-
ler with Oustaloup, Matsuda and Carlson approxima-
tion methods for different integrator fractional orders 
� = 0.2, � = 0.3, � = 0.4, and � = 0.5 applied to aircraft 
system are listed in Table 5. The reduced models are all of 
order 3/4.

6.1  Original model

(49)GCLRFPID−O Ustaloup
(s) = 109.8s3 + 83.62s2 + 72.31s + 9.56

s4 + 110.5s3 + 84.55s2 + 72.32s + 9.56

(50)

GCLRFPID−Matsuda
(s) =

124s3 + 94.2s2 + 81.65s + 10.8

s4 + 124.7s3 + 95.34s2 + 81.65s + 10.8

(51)

GCLRFPID−Carison
(s) =

176.1s3 + 134.1s2 + 116s + 15.34

s4 + 177.1s3 + 135.2s2 + 116.2s + 15.34

GHHOA∕FPID(s) =
Θdes(s)

Θref(s)
=

(
Kds

2 + Kps + Ki

)
(1.121s + 0.1774)

s�s1−�
(
s3 + 0.739s2 + 0.9215s

)
+
(
Kds

2 + Kps + Ki

)
(1.121s + 0.1774)

7  Comparative simulation results 
and discussion

The algorithm’s performance in directing the pitch angle 

response of an aircraft system given in Eq. (10) is verified 
through the following simulations. The simulations were 
developed using MATLAB/SIMULINK software.

Table 5  Transfer function of 
proposed fractionalized PID 
controllers

Controller type Carlson RFPID
GCL_Carlson−RFPID(s)

Matsuda RFPID
GCL_Matsuda−RFPID(s)

Oustaloup RFPID
GCL_Oustaloup−RFPID(s)

Original* model
Test 1 [0.1 0.9]

176.1s3+134.1s2+116s+15.34

s4+177.1s3+135.2s2+116.2s+15.34

124s3+94.42s2+81.65s+10.8

s4+124.7s3+95.34s2+81.65s+10.8

109.8s3+83.62s2+72.31s+9.56

s4+110.5s3+84.55s2+72.32s+9.56

Original model
Test 2 [0.2 0.8]

176.1s3+134.1s2+116s+15.34

s4+177s3+135.2s2+116.2s+15.34

142.2s3+108.3s2+93.67s+12.38

s4+143s3+109.2s2+93.67s+12.38

113.9s3+86.78s2+75.04s+9.922

s4+114.7s3+87.71s2+75.05s+9.922

Original model
Test 1 [0.3 0.7]

176.1s3+134.1s2+116s+15.34

s4+177s3+135.2s2+116.2s+15.34

157s3+119.6s2+103.4s+13.67

s4+157.7s3+120.5s2+103.4s+13.67

117s3+89.13s2+77.07s+10.19

s4+117.8s3+90.06s2+77.08s+10.19

Original model
Test 1 [0.4 0.6]

176.1s3+134.1s2+116s+15.34

s4+177.1s3+135.2s2+116.2s+15.34

166.5s3+126.8s2+109.6s+14.5

s4+167.2s3+127.7s2+109.6s+14.5

118.9s3+90.59s2+78.34s+10.36

s4+119.7s3+91.52s2+78.35s+10.36

Original model
Test 1 [0.5 0.5]

171.1s3+130.3s2+112.7s+14.9

s4+172s3+131.4s2+112.9s+14.9

169.7s3+129.2s2+111.8s+14.78

s4+170.4s3+130.2s2+111.8s+14.78

109.8s3+83.62s2+72.31s+9.56

s4+110.5s3+84.55s2+72.32s+9.56

Table 6  Optimized PID controller parameters

Controller Kp Ki KdKd

HHOA-based PID [16] 55.2698 51.4031 90.9434
HGSOA-based PID [28] 69.7726 3.6054 95.1465

Fig. 8  Pitch angle changing curves for test 1: � = 0.1
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The simulations of the transient response and frequency 
response were carried out using the specified environment. 
The simulation results of various analyses obtained by using 
the proposed reduced-order fractionalized PID controllers, 
acquired through various approximation methods, are com-
pared with other recent approaches such as HHO [16] and 
HGSO [28] used for optimizing the classical PID controller. 
HHO is explained in subsect. 5.B, and Henry gas solubil-
ity optimization (HGSO) is an optimization algorithm that 
utilizes Henry's law to mimic the behavior of gas molecules 
dissolving in liquids. It employs exploration and exploita-
tion principles to find optimal solutions in problem spaces, 
guiding the search for optimal solutions [9, 28].

7.1  Comparison of overshoot, rising time 
and settling time

Table 6 shows the PID controller settings that correlate to 
the ITAE criterion function's minimum value for a variety 
of controllers selected for fair comparison.

Using these parameters, the transfer functions of HHOA-
based PID and HGSOA-based PID controllers are given in 
Eqs. (52)–(53).

To compare the performances of the proposed approaches 
(HHOA/RFPID) for aircraft pitch angle control with other 
existing approaches such as HHOA/PID[16] and HGSO/
PID[28], a comparative stability analysis was performed in 
the time and frequency domains; using an input reference 
of �ref = 0.1 rad.

Figures 8, 9 and 10 compare the set point following of air-
craft pitch angle obtained by the three proposed controllers 
and integer HHOA/PID [16] and HGSOA/PID [28] control-
lers for different integrators fractional order � = 0.1 , � = 0.2  
and   � = 0.5 of the fractionalized PID, respectively.

The suggested Carlson HHOA/RFPID controller has 
superior time response than others, as shown in Fig. 8; 
except for � = 0.5 , the performance of Carlson HHOA/
RFPID and Matsuda HHOA/RFPID is very close.

Tables 7, 8, 9, 10 and 11 compare the transient response 
study simulation study for all integral fractional operators 
(Five tests) in terms of maximum percentage overshoot, 
rising time (for 10–90% tolerance) and settling time (for 
2% tolerance) obtained by the RFPID controllers with dif-
ferent approximation methods and other controllers.

The pitch angle of the aircraft system with the proposed 
Carlson HHOA/RFPID exhibited the fastest settling and 
rise times without overshoot, as shown in Tables 7, 8, 9, 10.

(52)

GCLHHOA−PID
(s) =

104.7s3 + 79.75s2 + 68.97s + 9.118

s4 + 105.4s3 + 80.67s2 + 68.97s + 9.118

(53)

GCLHGSOA−PID
(s) =

109.5s3 + 79.18s2 + 16.45s + 0.6282

s4 + 110.3s3 + 98.11s2 + 16.45s + 0.6282

Fig. 9  Pitch angle changing curves for test 2: � = 0.2

Fig. 10  Pitch angle changing curves for test 3:� = 0.5

Table 7  Comparative analysis of transient response performance 
[� = 0.1 − � = 0.9]

Bold values indicate the better results than other controllers

Controller OS, % tr ts ± 2%

Carlson RFPID controller [Proposed] 0.0000 0.0125 0.0225
Matsuda RFPID controller [Proposed] 0.0000 0.0177 0.0315
Oustaloup RFPID controller [Proposed] 0.0000 0.0200 0.0356
Integer HHO/PID [16] 0.0000 0.0210 0.0373
Integer HGSOA/PID [28] 0.0000 0.0200 0.0352
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The Carlson HHOA/RFPID controller design approach 
proposed not only outperforms the Matsuda HHOA/
RFPID and Oustaloup HHOA/RFPID controller design 
approaches, but also other controller design approaches 
such as integer HHOA/PID [16] and integer HGSO/
PID [28] in terms of transient stability, fast damping 

Table 8  Comparative analysis of transient response performance [� = 0.2 − � = 0.8]

Bold values indicate the better results than other controllers

Controller OS, % tr ts ± 2%ts ± 2%

Carlson RFPID controller 
[Proposed]

0.0000 0.0124 0.0224

Matsuda RFPID controller 
[Proposed]

0.0000 0.0154 0.0275

Oustaloup RFPID controller 
[Proposed]

0.0000 0.0193 0.0343

Integer HHO/PID [16] 0.0000 0.0210 0.0373
Integer HGSOA/PID [28] 0.0000 0.0200 0.0352

Table 9  Comparative analysis of transient response performance 
[� = 0.3 − � = 0.7]

Bold values indicate the better results than other controllers

Controller OS, % tr ts ± 2%

Carlson RFPID controller [Proposed] 0.0000 0.0125 0.0225
Matsuda RFPID controller [Proposed] 0.0008 0.0140 0.0249
Oustaloup RFPID controller [Proposed] 0.0000 0.0188 0.0334
Integer HHO/PID [16] 0.0000 0.0210 0.0373
Integer HGSOA/PID [28] 0.0000 0.0200 0.0352

Table 10  Comparative analysis of transient response performance 
[� = 0.4 − � = 0.6]

Bold values indicate the better results than other controllers

Controller OS, % tr ts ± 2%

Carlson RFPID controller [Proposed] 0.0000 0.0125 0.0224
Matsuda RFPID controller [Proposed] 0.0008 0.0132 0.0235
Oustaloup RFPID controller [Proposed] 0.0000 0.0185 0.0329
Integer HHO/PID [16] 0.0000 0.0210 0.0373
Integer HGSOA/PID [28] 0.0000 0.0200 0.0352

Table 11  Comparative analysis of transient response performance 
[� = 0.5 − � = 0.5]

Bold values indicate the better results than other controllers

Controller OS, % tr ts ± 2%

Carlson RFPID controller [Proposed] 0.0000 0.0129 0.0231
Matsuda RFPID controller [Proposed] 0.0008 0.0129 0.0230
Oustaloup RFPID controller [Proposed] 0.0000 0.0200 0.0356
Integer HHO/PID [16] 0.0000 0.0210 0.0373
Integer HGSOA/PID [28] 0.0000 0.0200 0.0352

Fig. 11  Bode graphs comparing different controller designs for test 1: 
� = 0.1.

Fig. 12  Bode graphs comparing different controller designs for test 
2:� = 0.2.
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characteristics and minimum overshoot. The rise and 
settling times of Carlson HHOA/RFPID and Matsuda 
HHOA/RFPID controllers are nearly identical, with minor 
changes, as shown in Table 11.

7.2  Comparison of frequency domain analyses

Bode graphs with various controller configurations are com-
pared in Figs. 11, 12, 13.

The results of the comparative frequency response per-
formance analysis are presented in Tables 12, 13, 14, 15, 16, 
which includes gain margin (in decibels), phase margin (in 
degrees) and bandwidth (in Hertz).

As shown in Tables 12, 13, 14, 15 and 16, the aircraft 
system with the proposed Carlson HHOA/RFPID controller 
has the maximum phase margin 180°, while the proposed 
Matsuda and Oustaloup /HHOA-RFPID, integer HHO/PID 

Fig. 13  Bode graphs comparing different controller designs for test 
5:� = 0.5.

Table 12  Comparative analysis of transient response performance 
[� = 0.1 − � = 0.9]

Bold values indicate the better results than other controllers

Controller Gm[dB] �m[
◦] Bw [Hz]

Carlson RFPID controller [proposed] ∞ 180 175.5093
Matsuda RFPID controller [pro-

posed]
∞ 179.5987 123.6927

Oustaloup RFPID controller [pro-
posed]

∞ 179.5575 109.5320

Integer HHO/PID [16] ∞ 179.5244 104.4835
Integer HGSOA/PID [28] ∞ 177.3060 109.4146

Table 13  Comparative analysis of transient response performance 
[� = 0.2 − � = 0.8]

Bold values indicate the better results than other controllers

Controller Gm[dB] �m[
◦] Bw [Hz]

Carlson RFPID controller [proposed] ∞ 180 175.5061
Matsuda RFPID controller [pro-

posed]
∞ 179.6507 141.8900

Oustaloup RFPID controller [pro-
posed]

∞ 179.5739 113.6756

Integer HHO/PID [28] ∞ 179.5244 104.4835
Integer HGSOA/PID [28] ∞ 177.3060 109.4146

Table 14  Comparative analysis of transient response performance 
[� = 0.3 − � = 0.7]

Bold values indicate the better results than other controllers

Controller Gm[dB] �m[
◦] Bw [Hz]

Carlson RFPID controller [proposed] ∞ 180 175.5093
Matsuda RFPID controller [pro-

posed]
∞ 179.6840 156.6461

Oustaloup RFPID controller [pro-
posed]

∞ 179.5854 116.7515

Integer HHO/PID [16] ∞ 179.5244 104.4835
Integer HGSOA/PID [28] ∞ 179.5244 104.4835

Table 15  Comparative analysis of transient response performance 
[� = 0.4 − � = 0.6]

Bold values indicate the better results than other controllers

Controller Gm[dB] �m[
◦] Bw [Hz]

Carlson RFPID controller [proposed] ∞ 180 175.5093
Matsuda RFPID controller [pro-

posed]
∞ 179.7023 166.0820

Oustaloup RFPID controller [pro-
posed]

∞ 179.5923 118.6640

Integer HHO/PID [16] ∞ 179.5244 104.4835
Integer HGSOA/PID [28] ∞ 179.5244 104.4835

Table 16  Comparative analysis of transient response performance 
[� = 0.5 − � = 0.5]

Bold values indicate the better results than other controllers

Controller Gm[dB] �m[
◦] Bw [Hz]

Carlson RFPID controller [proposed] ∞ 180 170.5491
Matsuda RFPID controller [pro-

posed]
∞ 179.7080 169.2970

Oustaloup RFPID controller [pro-
posed]

∞ 179.5575 109.5320

Integer HHO/PID [16] ∞ 179.5244 104.4835
Integer HGSOA/PID [28] ∞ 179.5244 104.4835
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[16] and integer HGSOA/PID [28] controller have an accept-
able phase margin (179°). Furthermore, the proposed Carl-
son HHOA/RFPID controller has the maximum bandwidth 
(fastest response). That means that proposed controller is the 
most stable system in terms of frequency response criterion.

8  Conclusions

In this research, the influence of approximation techniques 
on a novel low-order fractionalized proportional–inte-
gral–derivative (RFPID) optimal controller for airplane 
pitch angle control based on the Harris Hawks optimization 
algorithm (HHOA) is studied. The Carlson, Oustaloup and 
Matsuda techniques are employed individually to estimate 
the fractional integral order of the fractionalized PID con-
troller. Based on these comparative studies, we may infer 
that different approximation methodologies for construct-
ing fractionalized PID controllers result in different sorts 
of response behavior. The rise time of the system also var-
ies and is highly dependent on the filter and approximation 
methods used. Transient and frequency responses were 
applied, and the comparative studies show that the suggested 
reduced fractional PID based on HHO algorithm with Carl-
son controller (Carlson HHOA/RFPID) performs better than 
other controllers in terms of overshoot percentage, settling 
time, rise time and maximum bandwidth (fastest response).

The aircraft pitch angle control system simulation results 
demonstrated that the technique of approximation adopted 
can impact the optimal performance of the optimal adjusting 
methods. As a result, future research should focus on the role 
of selected approximation models in the optimum design of 
the control process in order to avoid degradations in com-
mand performance while performing optimal fractional or 
fractionalized order controllers in applications.
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