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Abstract: During the current study, the phenolic and flavo-
noid contents were measured in Physalis acutifolia extracts
with Folin–Ciocalteu and AlCl3 methods, respectively. Various

antioxidant assays, including 1,1-diphenyl-2-picrylhydrazyl,
ABTS, reducing power, Fe2+-phenanthroline reduction, and
silver nanoparticle assays, were also conducted, along with
anti-enzymatic assays. The cytotoxicity of the ethanolic
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extract was assessed on cancer cell lines (i.e., CAPAN-1 and
dld-1) and a healthy cell line (i.e., L929). Optimal parameters
for polyphenol extraction were determined: extraction time
of 72 h, solvent-to-plant ratio of 10mL/1 g, and plant concen-
tration of 90%. The n-butanol extract showed the highest
phenolic and flavonoid contents (i.e., 263.84mg GAE/g dw
and 72.03 QE/g dw, respectively), along with superior anti-
oxidant and anti-enzymatic activities with IC50 values of
49.77 and 187.12 μg/mL with acetylcholinesterase and butyr-
ylcholinesterase assays, respectively. LC-ESI-MS/MS analysis
revealed 12 components, with hesperidin being the most
abundant (i.e., 1829.0001 μg/g). The ethanolic extract exhib-
ited cytotoxic effects on cancer cell lines, with an IC50 value
of 0.959mg/mL for dld-1, but with no effect on healthy cells.
The bioavailability scores of the identified components sup-
port the in vitro findings and confirm the different assessed
therapeutic effects.

Keywords: polyphenols, Physalis acutifolia, flavonoids, phar-
macokinetics, biological activity, LC-ESI-MS/MS

1 Introduction

Plants have been used since ancient times as remedies for
various diseases and comprise important research direc-
tions of modern medicine due to various bioactive consti-
tuents, sometimes with fewer side effects compared to
synthetic drugs [1–3]. Nowadays, the use of new bioactive
molecules is considered complementary to traditional med-
icine [4]. The polyphenols comprise a very diverse and well-
known group of bioactive compounds produced by plants.
In general, polyphenols are beneficial to human health due
to their antioxidant, antibacterial, antithrombotic, antihy-
pertensive, anti-atherogenic, anticancer, and anti-inflamma-
tory activities [5–7]. Polyphenols decrease oxidative stress
and protect human health by acting as radical scavengers,
hydrogen donors, metal chelators, and reducing agents [8].
Furthermore, by controlling key metabolic enzymes, poly-
phenols also play an essential role in the treatment of
Alzheimer’s disease and diabetes mellitus [9]. Alzheimer’s
disease is characterized by the cholinergic deterioration of
neurons and subsequent low levels of acetylcholine in the
brain, causing cognitive impairment [10]. The enzymes acet-
ylcholinesterase (AchE) and butyrylcholinesterase (BchE) play
crucial roles in this process, with the former type dominant in
the early stage, whereas the latter in the final stages of the
disease [11]. Natural compounds are increasingly preferred to
synthetic inhibitors because they are effective and induce
fewer complications [12]. Moreover, the identification of
plant bioactive compounds used in the control and

treatment of diseases such as cancer is paramount to
minimize the suffering in patients and reduce treatment
costs [13].

Physalis sp. is a genus appurtenant to the Family Solanaceae
and comprises approximately 100 species, mainly distributed in
tropical and subtropical areas [14]. The plants of this genus
gained great commercial interest, given that their derived pro-
ducts have a high nutritional andmedicinal value [15]. The use of
Physalis is well-known in folk medicine for the treatment of
many human diseases, such as dermatitis, tracheitis, rheuma-
tism, cancer, leukemia, and hepatitis [14,16,17]. Moreover, several
species of the Physalis genus, such as P. angulata, P. peruviana,
and P. alkekengi, have therapeutic potential due to their antiox-
idant, cytotoxic, anti-inflammatory, and antimicrobial activities
[18–20]. P. acutifolia (Miers) Sandw is a plant native to the south-
western United States and northern Mexico, but it can also be
found in central north Algeria [15]. The phytocomplex and the
biological properties of this plant havenot been fully investigated.
Xu et al. [21] reported for the first time the isolation of physalins
from the plant, which demonstrated a high cytotoxic effect
against NCIH460 (non-small-cell lung cancer), SF-268 (glioma
cancer), PC-3 (prostate adenocarcinoma), and MCF-7 (breast ade-
nocarcinoma) [21]. Therefore, the current study considered, for
the first time, to the best of our knowledge, the optimization of
polyphenol extraction from P. acutifolia, their thorough charac-
terization, and the assessment of their antioxidant and anti-enzy-
matic activities. In the current study, we have undertaken the
optimization of extraction bymaceration on amixture of solvent
(i.e., ethanol-distilled water) of polyphenols of P. acutifolia,
followed by testing the therapeutic potential by measuring the
antioxidant and anti-enzymatic activities of the ethanolic, chlor-
oformic, ethyl acetate, and butanolic extracts, respectively,
of P. acutifolia by different methods. Both bioavailability
and pharmacokinetic attributes of the P. acutifolia identified
compounds have been studied using the in silico approach.
In the end, we have also assessed the cytotoxic effect of the
ethanolic extract against two cancer cell lines (i.e., CAPAN-1
and dld-1) and a healthy cell line (i.e., L929). The composition
of the ethanolic extract of P. acutifolia was determined by
LC-ESI-MS/MS analysis, which revealed the specific mole-
cules accountable for the observed effects.

2 Materials and methods

2.1 Chemicals and reagents

High-quality analytical-grade chemicals and solvents, com-
prising the reagents Folin–Ciocalteu (FCR), 1,1-diphenyl-2-picryl-
hydrazyl (DPPH), butylated hydroxyanisole (BHA), butylated
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hydroxytoluene (BHT), quercetin, and α-tocopherol, were pur-
chased from Merk (St. Louis, United States).

2.2 Plant material

The flowering aerial parts of P. acutifolia were gathered in
August 2021 from naturally occurring individuals in the
Ouled Madi region of Msila province, northeast of Algeria
(361 m a.s.l., 35°36′25″N, 04°30′16″E). The taxonomic identi-
fication of the plant material was performed by Prof. K.
Rebbas from the University of Msila using accessible litera-
ture and the Algeria Flora [22]. A voucher specimen (No
KR0044) was preserved in the herbarium of the same uni-
versity. The collected samples were rinsed with Milli-Q
water, dried at room temperature (25°C) away from sun-
light for several days, then grounded with a blender to fine
powder, and stored at 4°C before use.

2.3 Preparation of extracts

2.3.1 Optimization of extraction by maceration

To optimize the extraction process of polyphenols from
P. acutifolia aerial parts, maceration was selected as the
extractive technique, and a mixture of ethanol/water as
the extractive solvent. The extractions were carried out
at room temperature (25°C). For preliminary tests, a face-
centered central composite design (CCDC) was used to
generate surface responses. The optimized extraction para-
meters were as follows: the extraction time (X1) ranged
from 24 to 72 h, the liquid–solid ratio (X2) ranged from 20
to 10 mL/g, and the ethanol concentration (X3) ranged from
50 to 90% (Table 1). The total phenolic content (TPC) was
the response evaluated for each extraction. The optimized
parameters were then selected for the subsequent solid–
liquid extraction.

2.3.2 Liquid–liquid extraction

P. acutifolia powder (40 g) was subjected to maceration at
room temperature. The extract was filtered and evapo-
rated under reduced pressure using a Büchi rotavapor
R-215 (BüchiLabortechnik AG, Switzerland) at a temperature
of 40°C. The dry extract was reconstituted by adding 100mL
of distilled water at a temperature of 100°C. Subsequently,
liquid–liquid extraction was performed using a separating
funnel with solvents of increasing polarity (POLA), namely
chloroform, ethyl acetate, and n-butanol. Every extraction
was performed twice.

2.4 LC-ESI-MS/MS analysis

The samples for LC-ESI-MS/MS analysis were prepared fol-
lowing the method of Griffith et al. [23], with minor mod-
ifications. A 50 mg of ethanolic extract was dissolved in a
mixture of 1 mL of methanol and 1 mL of n-hexane in an
Eppendorf tube of 2 mL, vortexed by a Bioprep-24 homo-
genizer for 2 min at 4°C, and centrifuged at 9,000 rpm for
10 min at 4°C by a Hettich Universal 320R (Germany). The
methanol phase was then separated and diluted at a ratio
of 1:9 in distilled water. Finally, the samples were filtered
using a Captiva premium syringe filter with a polypropy-
lene shield, a nylon membrane of 25 mm in diameter, a
pore size of 0.45 μm, and an injection volume of 5.12 μL.
The LC-ESI-MS/MS analysis was performed in an Agilent
1260 Infinity II LC System coupled with a tandem mass
spectrometer. The flow rate of the method was 0.5mL/min,
the total run time was 30min, and the oven temperature was
set at 25°C. The chromatographic separation was carried out
in a reversed-phase Agilent Poroshell120 EC-C18 analytical
column (100mm × 3.0mm, 2.7 μm). Eluent A (consisting of
water with 5mM ammonium formate) and eluent B (acet-
onitrile with 0.1% formic acid) were employed as mobile
phases in isocratic conditions of 75% A and 25% B. Mass
spectrometry was carried out utilizing an Agilent 6460
Triple Quadrupole Mass Spectrometer System equipped
with electrospray ionization (LC–ESI–MS/MS) to detect the
compounds. The acquisition was performed in both positive
and negative ionization modes. The data were analyzed
using Agilent Mass Hunter Software. A multiple reaction
monitoring approach was used to accurately identify and
quantify the phytochemical compounds. The collision ener-
gies were chosen to guarantee ideal fragmentation and
transmission of the targeted ions. The mass spectrometer
operated with a nitrogen (N2) drying gas flow of 15mL/min,
a nitrogen nebulizing gas flow of 11mL/min, a capillary voltage

Table 1: Experimental design (CCDC) involved coded and real indepen-
dent variables at different levels

Factor Symbol Factors levels

−1 0 1

Extraction time (h) X1 24 48 72
Liquid–solid ratio (mL/g) X2 10 15 20
Ethanol concentration (%) X3 50 70 90

Phytochemistry and bioactivities of Physalis acutifolia  3



of 4,000 V, and a gas temperature of 350°C [24]. According to
Yilmaz [25], validation parameters for the method, including
limit of detection (LOD), limit of quantification (LOQ), and
linearity range, were studied and calculated.

2.5 Total phenolic compounds

2.5.1 TPC

The TPC of P. acutifolia extracts was determined using the
FCR method of Müller et al. [26] with slight modifications.
Within a 96-well microplate, 20 mL of each extract at a
concentration of 1 mg/mL was diluted with 75 mL of 7.5%
sodium carbonate solution and 100mL of FCR (1:9 ratio
in distilled water). After the incubation of the solutions
in the dark at room temperature for 2 h, the absorbance
was measured at 765 nm. The total phenolic concentra-
tion was calculated using the linear regression equation
(y = 0.0034x + 0.1044, R² = 0.997) calculated using the stan-
dard gallic acid calibration curve (concentrations ranging
from 0 to 200 g/mL).

2.5.2 Total flavonoid content (TFC)

The TFC in the P. acutifolia extracts was estimated using
the aluminum colorimetric method following the proce-
dure of Topçu et al. [27], with slight modifications. A
volume of 50 μL of each extract (at a concentration of
1 mg/mL), 10 μL of potassium acetate (1 M), 10 μL of alu-
minum nitrate (10%), and 130 μL of methanol were added
to a 96-well microplate. The solutions were stored for
45 min at room temperature, and then the optical density
was measured at 415 nm. The curve of quercetin was pre-
pared under the same conditions using concentrations of
0 to 50 μg/mL, and the linear regression equation (y =

0.004x, R² = 0.997) was used to calculate the TFC.

2.6 Biological activities

All tests were done on a 96-well microplate, and the absor-
bance was measured using a PerkinElmer Multimode
Plate reader EnSpire (Waltham, MA, USA). The IC50 and
A0.5 (μg/mL) values were calculated using a regression
equation, and regression analysis was carried out using
the best-fit approach. Three replicates’ worth of findings
are displayed on average.

2.6.1 Antioxidant activities

2.6.1.1 DPPH radical scavenging assay
The free radical scavenger potential of P. acutifolia extract
was examined by the free radical DPPH method following
that reported by Blois [28]. In a 96-well microplate, 160 μL
of DPPH solution (1 mM in methanol) was added to 40 μL of
various concentrations of the plant extracts solubilized in
methanol. The solutions were maintained in the dark for
30min at room temperature. The optical density was deter-
mined at 517 nm. The absorbance of the blank (methanol)
was read to calculate the inhibition percentages for each
concentration. The DPPH scavenging assay results were
determined using the following equation:

( ) =
−

×

+
A A

A
DPPH scavenging effect %

100,

control sample

control (1)

where Acontrol is the optical density of the reference and
Asample is the optical density of the sample obtained from
the microplate reader. The obtained inhibitions were plotted
with the concentrations of the samples. These resulting plots
were then utilized to determine the IC50 values, which repre-
sent the concentration of the samples necessary to reduce
DPPH by 50%. BHT and BHA were used as positive controls.

2.6.1.2 ABTS cation radical scavenging assay
The evaluation of antioxidant activity was performed by
the ABTS scavenging assay following the Re et al. [29]
method, with minor modifications. The ABTS+ solution
was first prepared by mixing 7mM ABTS in H2O with
2.45mM potassium persulfate. Then, the mixture was placed
for 12 h obscured at room temperature to start the oxidation
process of ABTS. In a 96-well microplate, various concentrations
(0.0625–4mg/mL) of the plant extracts prepared in methanol
(40μL) were mixed with 160μL of the +ABTS solution. The
optical density was measured after incubation in the dark for
10min at 734 nm. The optical density of the blank (methanol)
was read to calculate the inhibition percentages for each con-
centration. BHA and BHT were used as positive controls.

2.6.1.3 Reducing power
The reducing ability of P. acutifolia plant extracts was
determined following the Oyaizu method [30] with slight
modifications. Various concentrations of the plant extracts
solubilized in methanol (10 μL) were mixed with 40 μL of
buffer phosphate (pH 6.6) and 50 μL of 1% potassium ferric
cyanide (K3Fe( )CN 6). The mixture was maintained at 50°C
for 20 min, and then 50 μL of 10% trichloro acetic acid was
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added with 40 μL of purified water and 10 μL of 0.1% ferric
chloride (FeCl3). The optical density reading was obtained
at 700 nm, utilizing ascorbic acid as the positive control.

2.6.1.4 Phenanthroline activity
Phenanthroline potential was evaluated following the Szydlowska–
Czerniaka method [31] in a 96-well microplate reader. In
detail, 10 μL of different concentrations (0.0625–4mg/mL)
of the plant extracts dissolved in methanol was blended
with 50 μL of 0.2% FeCl3, 30 μL of 0.5% phenanthroline,
and 110 μL of methanol. Consequently, the mixture was
incubated at 30°C for 20min. The optical density was deter-
mined at 510 nm by a microplate reader. BHA was used as a
control positive.

2.6.1.5 Silver nanoparticle (SNP) assay
The antioxidant power of P. acutifolia plant extracts was esti-
mated by the silver ion ( +Ag ) reduction method, according to
Ozyurek et al. [32]. About 130mL of SNP solution (1mMAgNO3,
1% citrate solution) and 50mL of distilled water were added to
20 μL of various doses (0.0625–4mg/mL) of the plant extracts
dissolved in methanol. The mixture’s optical density was
obtained at 423 nmafter incubating for 30min at 25°C. Ascorbic
acid and Trolox were used as control positives.

2.6.2 Anti-enzymatic activities

2.6.2.1 Anti-AchE activity
AchE and BChE inhibitory activities were determined
according to Ellman et al. [33]. A total of 10 μL of various
doses of the plant extracts prepared in ethanol was added to
150 μL of 100mM sodium phosphate buffer (pH 8.0). Then,
20 μL of AChE (5.32 × 10−3 U) or BChE (6.85 × 10−3 U) solution
was added, and the solution was incubated for 15min at
25°C. After that, 10 μL of 5,5′-dithio-bis-2-nitrobenzoic acid
(0.5 mM) and 10 μL of acetylthiocholine iodide (0.71 mM) or
butyrylthiocholine chloride (0.2 mM) was added. The optical
density of the mixture was determined at 412 nm: one
reading at 0min, two readings after 5min, three readings
after 10min, and finally, four readings after 15min. The
effectiveness of the extracts was evaluated by the following
percentage of inhibition:

=
−

I
A A

A
% ,

control sample

control

(2)

where Acontrol is the optical density of the blank, and Asample

is the optical density of the test sample. Galantamine
hydrobromide was used as a reference.

2.6.2.2 α-Amylase inhibition activity
The inhibitory activity of α-amylase was assessed following
the Zengin et al. [34] method. A total of25 μL of various
concentrations of plant extracts solubilized in methanol
was incubated for 10 min at 37°C and 50 μL of α-amylase
solution was added. The solution was incubated again for
10 min at 37°C after the addition of 50 μL of the starch
solution (0.1%). The reaction was stopped by the addition
of 25 μL of HCl (1 M). Then, 100 μL of iodine–potassium
solution was added. The optical density was determined
at a wavelength of 630 nm. The blank used for this assay
did not contain the enzyme. The α-amylase inhibitory
activity was determined using formula (2). Acarbose was
used as a positive control.

2.6.2.3 Urease inhibition activity
The urease inhibitory activity was measured according to Taha
et al. [35]. By using a 96-well microplate, 10 μL of various con-
centrations of the plant extracts solubilized in methanol were
added to 25μL of urease preparation and 50μL of urea solution
(17mM). The mixture was incubated for 15min at 30°C. Then,
45μL of phenol reagent (0.1%w/v sodium nitroprusside and 8%
w/v phenol) was added to each well with 70 μL of alkaline
reagent (4.7% NaOCl active chloride and 2.85% NaOH). The
optical density of the mixture was measured after 50min incu-
bation. Urease inhibitory activity was determined using for-
mula (2). Thiourea was applied as the positive control.

2.6.3 Anticancer activity

To assess the anticancer potential, the L929 fibroblast cell
line, CAPAN-1 pancreatic cancer cell line, and dld-1 color-
ectal adenocarcinoma cell line were used; they were pro-
cured from the laboratory of Prof. Dr. Mustafa Türk at
Kırıkkale University (Turkey). All cell culture experiments
were conducted in culture plates and multi-well plates
(Corning, USA). The frozen cells were quickly defrosted at
37°C. The cells were shifted to a 15 mL cell culture tube
inside a sterile laminar flow hood. The cell culture tube
was rotated at 250 G for 5 min. Then, 3 mL of the corre-
sponding medium (10% fetal bovine serum, 1% antibiotic)
was added to the Falcon tube and made homogeneous
before being seeded into 25 cm² flasks. The flask was incu-
bated in a 37°C incubator with 5% CO2 [36]. To prepare the
samples, the extract was mixed with a nutrient medium to
create concentrations of 1, 0.5, 0.25, and 0.125 mg/mL, which
were thoroughly mixed using a vortex mixer. Cell applica-
tion was carried out without any delay. It was ensured that
each well had 10 × 10³ cells based on the live cell count. In
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detail, 100 μL of the cell suspension in complete medium
was added to each well and incubated for 24 h. The adhesion of
cells to the surface of the well plate was checked after 24 h.
The media in the wells were removed, and the test materials
were added to the wells at concentrations of 1, 0.5, 0.25, and
0.125mg/mL. The negative control group received only the com-
plete medium, while the positive control group received 10%
DMSO. After 24 h of incubation, the media were removed, and
MTT (tetrazolium salt) solution (1mg/mL) was included in each
well. The plate was incubated at 37°C for 2–2.5 h. Subsequently,
the MTT solution was treated with 100 mL of MTT solvent (iso-
propanol). The optical density of the 96-well plate was deter-
mined at 570nm using an ELISA plate reader to determine
cell viability. The cell viability percentage for each group was
determined using the following formula, with the control cell
viability assumed to be 100%:

( ) = ×
A

A
Cell viability % 100,

sample

control

where Asample is the optical density of the sample and
Acontrol is the optical density of the reference.

Cells were added to a 48-well plate with 15 × 10³ cells per
well and allowed to stand for 1 day in a controlled environ-
ment. The medium was removed, and 200 μL of samples
with a density of 0.5mg/mL was added to each well, except
for the negative control well which only received cells. The
plate was then incubated for an additional 24 h. Afterward,
70 μL of double staining preparation was included in each
well, covered, and stored in the dark for 15min [37].

2.7 Bioavailability and pharmacokinetic
properties

The bioavailability, which depends on the physicochemical
properties, such as molecular size, lipophilicity, POLA, and
insolubility, of the compoundswas studied by in silico analyses,
as described by Bédoui et al. [38] and Mhadhbi et al. [39].
Druggability and several pharmacokinetic attributes of the P.
acutifolia identified phytochemicals were also studied based on
their absorption, distribution, metabolism, excretion, and toxi-
city (ADMET) attributes as previously reported [40–42].

2.8 Statistical analysis

Multiple regression analyses were carried out in Minitab
Release 19 (Minitab Inc., State College, Pennsylvania, USA),
and Statistica v.10 (Stat Soft, France) was used to assess the
response surfaces using the models. To compare the impact of

variables on the responses, ANOVAwas used. The appropriate-
ness of models was then assessed by dividing the residual sum
of squares into pure error and lack-of-fit, and the coefficient of
determination (R2) was calculated. Additionally, optimization
was assessed using Minitab Release 19. An analysis of the var-
iation in means among treatments was performed using
Tukey’s HSD multiple-range tests (p < 0.05).

3 Results and discussion

3.1 Optimization of extraction

The effects of specific extraction parameters (i.e., extrac-
tion time, solvent concentration, and liquid–solid ratio) of
polyphenol recovery from P. acutifolia aerial part material
were carried out. For the optimization study, a surface
response methodology (RSM) was adopted. Each response
was measured in terms of TPC as part of the experimental
design. According to Box and Wilson [43], RSM is suitable
for the optimization of the extraction of bioactive com-
pounds and is a useful statistical tool for optimizing, pro-
cessing, and reducing the number of experimental trials.
RMS is widely employed when the extraction methods

Table 2: CCDC matrix and response values of the P. acutifolia extraction

Entry X1 (h)a X2 (%)b X3 (mL/g)c TPC (mg GAEd/g dwe)

1 48 70.0 15.0 46.1
2 24 90.0 10.0 26.3
3 48 70.0 15.0 43.4
4 24 50.0 10.0 75.4
5 48 50.0 15.0 48.2
6 48 70.0 15.0 43.4
7 72 50.0 20.0 65.1
8 24 70.0 15.0 48.3
9 24 50.0 20.0 75.6
10 72 90.0 20.0 77.5
11 48 70.0 15.0 43.4
12 72 70.0 15.0 80.7
13 72 50.0 10.0 83.5
14 48 70.0 15.0 43.4
15 48 70.0 20.0 49.9
16 24 90.0 20.0 37.2
17 48 90.0 15.0 34.7
18 48 70.0 10.0 61.1
19 48 70.0 15.0 46.0
20 72 90.0 10.0 77.2
R2 = 0.975

aX1, extraction time; bX2, solvent concentration; cX3, liquid/solid ratio;
dGAE, gallic acid equivalents; edw, dry weight. CCDC: face-centered cen-
tral composite design.
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involve several factors and interactions and whenever the
independent parameters have combined effects [44]. Table
2 lists the response values of 20 tests that were performed.

The TPC values for P. acutifolia extracts ranged from
26.3 to 83.5 mg GAE/g dw. The experimental data were
regressively analyzed, and the importance of model coef-
ficients in the extraction of phenolic compounds was
assessed. According to Table 2, the R2 value was 0.975,
indicating a correlation between experimental results
and the model for the selected parameters. The relation-
ship between the extraction time, the concentration of the
dried plant material, and the concentration of ethanol for
the extraction of phenolic compounds is

= + − + +
− + + +
−

X X X X

X X X X X X

X X

TPC 45.459 12.115 9.493 1.818 17.237

5.763 8.232 11.694 3.646

3.661 .

1 2 3 1
2

2
2

3
2

1 2 1 3

2 3

The outcome of multiple regression analysis is consis-
tent with the surface plot analysis results, as shown in
Figure 1. The effects of extraction duration and ethanol
concentration on the TPC are shown in Figure 1a. The
extraction time is seen as a more significant quadratic
variable in addition to its positive linear influence. Based
on these results, TPC levels peaked between 70 and 90%
ethanol in the range of 60–70 h. On the contrary, the lowest
phenolic concentration was recorded at less than 50 h, with
an ethanol concentration greater than 65%. Normally, the
combination of water with organic solvents leads to a mod-
erately polar medium that increases the interactions between
the plant matrix and the extracting agent. This usually
enhances the polyphenol extraction efficiency [45]. Moreover,
the ethanol/water mixture is considered to be an eco-friendly
solvent to be employed for natural compound extraction [46].

Figure 1b shows the results of the impact of extraction
time and liquid/solid ratio on the TPC. The results show
that the concentration of dry plant matter is an important
factor in increasing the yield of polyphenols extraction. The

TPC peaked after 65 h, while the impact of the liquid/solid
ratio was more significant with low values (<1 g/12 mL).

The impact of the ethanol/distilled water ratio and the
liquid/solid ratio on the polyphenol extraction (Figure 1c)
had a slight effect on the quantity of polyphenols extracted.
The maximum polyphenol extraction was obtained with an
ethanol/distilled water ratio under 70% and a solid/liquid
ratio of less than 1 g/16 mL. Based on these findings, the
ideal conditions and anticipated values were determined
by using a desirability function in the range of 0.95–1, with
1 denoting the most desirable result. To verify the experi-
ment, three replicates were carried out using the ideal
parameters obtained via RSM. The results are summarized
in Table 3.

3.2 LC-ESI-MS/MS results

To deepen the understanding of the chemical composition of
plant extracts, the current study used LC-ESI-MS/MS analysis,
a powerful analytical tool [47]. LC-MS-based approaches are

Figure 1: Response surface plots indicating combined effects of maceration parameters on TPC: (a) time and solvent ratio, (b) time and liquid–solid
ratio, and (c) solvent ratio and liquid–solid ratio.

Table 3: Estimated optimal conditions and predicted and experimental
values of the investigated responses

Optimum extraction parameters

X1 (h)a X2 (%)b X3 (mL/g)c

71.96 50.00 10.13

Response variables TPC (mg GAEd/g dw)e

Predicted Experimental

83.47 83.50 ± 0.72

aX1, extraction time; bX2, solvent concentration; cX3, liquid/solid ratio;
dGAE, gallic acid equivalents; edw, dry weight; The values represent
the means ± standard deviation (SD) obtained from three independent
replicates.
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effective in understanding the biochemical diversity of such
plant metabolites, which includes numerous semi-polar com-
pounds with main groups of secondary metabolites [48].
However, this technique has its limitations due to the asso-
ciated matrix effects, which are characterized by the co-elu-
tion phenomenon of residual matrix constituents impacting
the ionization process of the target analytic and altering the
ionization of analytes in LC-MS, affecting their response and
compromising the accuracy of subsequent measurements
[49,50]. This subsequently limits the applicability of this ana-
lysis for quantitative analysis due to sensitivity variations,
reference alterations, imprecise results, retention time devia-
tions, and distortion of chromatographic peaks [49]. Figure 2
depicts the chemical composition of the ethanolic extract of
P. acutifolia by LC-ESI-MS/MS analysis. The choice of the etha-
nolic extract for LC-ESI-MS/MS analysis was related to the
average POLA of the ethanol solvent, which helps in the
efficient extraction of phenolic compounds in plants [51].
Twelve compounds were successfully identified in the
ethanolic extract of P. acutifolia by utilizing their MS
fragmentation patterns, high-resolution mass, and reten-
tion time (Table 4). Furthermore, the identified com-
pounds were quantified.

The component present in significant quantities
was mainly hesperidin, with a concentration of
1829.0 μg/g, followed by chlorogenic acid, with a concentration
of 312.431 μg/g. However,fisetinwas also present, albeit in lower

concentrations (i.e., 1.907 μg/g). Indeed, hesperidin, the most
abundant compound, is a natural phenol compound known
for its antioxidant and anticancer properties [52], and has an
inhibitory effect in neurodegenerative diseases [53]. The consid-
erable concentration of this component in the ethanolic extract
of P. acutifoliamay account for the observed therapeutic poten-
tial of this plant, as evidenced by previous tests indicating its
efficacy in reducing free radicals and inhibiting the prolif-
eration of cancer cells. Moreover, compounds including pro-
tocatechuic acid, hydroxybenzaldeyde, caffeic acid, vanillin,
o-coumaric acid, salicylic acid, isoquercitrin, kaempferol-3-
glucoside, and naringenin were detected in this plant, which
has shown therapeutic effects in previous studies [54–56].
The protocatechuic acid and the naringenin have notable
antioxidant and antiproliferative properties [54,57]. Fisetin,
a bioactive compound found in various vegetables and fruits,
exhibits anticancer properties [55]. Vanillin, a safe-for-use food
flavoring agent, has anti-metastatic potential and decreases the
invasiveness of breast cancer cells, with great potential for use
as cancer treatment [58]. Furthermore, salicylic acid improves
the growth rate, photosynthesis, and antioxidant activity under
moderate salt stress [59]. Additionally, chlorogenic acid, a pro-
minent dietary polyphenol naturally occurring in green coffee,
displays antioxidant activity [56]. The isolation and purification
of these bioactive molecules and the assessment of their ther-
apeutic potential open new scientific perspectives for future
studies.

Figure 2: Chemical composition of P. acutifolia ethanolic extract.
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3.3 TPC and TFC

Table 5 shows the TPC and TFC of P. acutifolia extracts. The
results show that the n-butanol fraction is richest in poly-
phenols and flavonoids (i.e., 263.84 ± 1.14 mg GAE/g dw and
72.03 ± 0.27 mg QE/g, respectively). The lowest amounts of
TPC and TFC were detected in the chloroform fraction (i.e.,
71.96 ± 0.42 mg GAE/g dw and 6.20 ± 0.73 mg QE/g, respec-
tively). The results confirm that the increasing POLA of the
solvent enhanced the recovery of polyphenols and flavonoids in
the extract [60]. The extraction efficiency and quality of end-
products are strongly influenced by several co-occurring factors,
encompassing the nature of solvents, ambient temperature, and
treatment duration, along with the compositional and physico-
chemical properties of the samples per se [61]. However, the
POLA of each solvent exerted a distinct influence on the dissolu-
tion rate of active compounds during the extraction process.
Consequently, this variability significantly impacted the yield
of end-product metabolites [62]. The solvents with the highest
POLA, such as n-butanol and ethyl acetate, are also the most
suitable for polyphenol extraction due to their increased affinity
to these compounds compared to non-polar solvents [63]. There-
fore, the lower ability to extract phenolics and flavonoids by
chloroform can be explained by the low solubility of these com-
pounds in low-polar solvents [64]. To the best of our knowledge,
studies with a main focus on Physalis sp. using various solvent
extracts are lacking. Banothu et al. [65] reported for the first time
the abundance of flavonoids in the polar solvents of P. minima
(i.e., ethyl acetate) compared to non-polar solvents (i.e., chloro-
form), which is in agreement with our findings.

3.4 Biological activities

3.4.1 Antioxidant activity

Table 6 lists the antioxidant activities of P. acutifolia
extracts. Given that the polyphenols comprise the mainTa
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Table 5: Phenolic and flavonoid contents of P. acutifolia extracts

Extract TPCa ± SDb (mg GAEc/
g dwd)

TFCe ± SD (mg QEf/
g dw)

Ethanol 83.50 ± 0.72a 54.29 ± 0.55a

Chloroform 71.96 ± 0.42b 6.20 ± 0.73b

Ethyl acetate 124.72 ± 0.85c 44.62 ± 1.05c

n-Butanol 263.84 ± 1.14d 72.03 ± 0.27d

aTPC, total phenolic content; bSD, standard deviation; cGAE, gallic acid
equivalents; ddw, dry weight; eTFC, total flavonoid content, fQE, quer-
cetin equivalents. The values reported are from three independent ana-
lyses. The unrelated characters (a, b, c, or d) denote significant variations
between the values (p < 0.05).
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class of antioxidant phytochemicals [66,67], in vitro antiox-
idant assays were also performed (Table 6). The identification
of phenolic compounds is usually followed by a thorough
investigation of the antioxidant activity of extracts [68]. In
the current study, the antioxidant activity of P. acutifolia
extracts (i.e., ethanol, chloroform, ethyl acetate, and n-
butanol) was evaluated by various methods, such as DPPH,
ABTS, FRAP, phenanthroline, and SNP, respectively. The
results of the antioxidant potential, measured in terms of
IC50 or A0.5, were compared with different reference stan-
dards (Table 6).

The n-butanol extract had high antioxidant potential
compared to other P. acutifolia extracts, with IC50 values
equal to 72.81 ± 0.44 and 49.77 ± 0.43 μg/mL by DPPH and
ABTS assays, respectively, and A0.5 values equal to 49.77 ±

0.72 and 7.33 ± 0.33 μg/mL by FRAP and phenanthroline
assays, respectively. The activity of the n-butanol extract
was followed by that of the ethyl acetate extract, whereas the
chloroform extract had the lowest antioxidant activity. In
summary, DPPH, FRAP, and phenanthroline assays showed
that the effectiveness of the different extracts in terms of
antioxidant activity was as follows: chloroform extract <

ethanol extract < ethyl acetate extract < n-butanol extract.
Regarding the ABTS assays, the resulting efficacy was as fol-
lows: chloroform extract < ethyl acetate extract < ethanol
extract < n-butanol extract. Even if P. acutifolia extracts
were all less effective in terms of antioxidant activity than
the reference standards, they can be employed in several
application fields. The n-butanol extract can then be considered
to be a potent antioxidant depending on its IC50 values with
DPPH and ABTS assays (72.81 ± 0.44 and 49.77 ± 0.43 μg/mL,
respectively), and its A0.5 values with FRAP and phenanthro-
line assays (49.77 ± 0.72 and 7.33 ± 0.33 μg/mL, respectively)
[69]. The abundance of phenolic molecules and components
with antioxidant properties identified by LC-ESI-MS/MS as
hesperidin, protocatechuic acid, naringenin, and

chlorogenic acid, respectively, can justify the overall antiox-
idant potential of plant extracts from P. acutifolia [52,54,56,57].
Naringin and hesperidin possess hydroxyl groups at positions
4 and 3, respectively, which very likely increased the antiox-
idative efficacy of flavonoids [70]. Moreover, caffeic acid was
also considered an important candidate with antioxidant
properties, as revealed by increased demonstrable efficacy
in in vitro assays, mostly against ABTS and DPPH radicals,
which were benchmarked against established standards, such
as BHA and butylated hydroxytoluene [71]. The observed dif-
ference in the antioxidant activity can be explained by the
variable POLA of the solvents used in the current study.
This POLA induced the selective extraction of certain antiox-
idant compounds according to their chemical structures, pola-
rities, and solubility, thus modulating the overall antioxidant
capacity of the resulting extracts [72]. The information on the
antioxidant activity of P. acutifolia and those comparing the
antioxidant potential of polar and non-polar extracts of Phy-
salis genus was not further explored in the current study.
However, polar solvents such as ethyl acetate were reported
for the first time in the current study to have the highest
antioxidant activity in P. minima extracts compared to non-
polar solvents such as hexane and chloroform, which showed
the lowest activity [65].

3.4.2 Anti-enzymatic activities

The results of in vitro enzymatic activity of P. acutifolia
extracts are presented in Table 7.

The chloroform extract of P. acutifolia showed an anti-
BChE with an IC50 of 187.12 ± 1.36 μg/mL. However, the IC50
of the positive control galantamine was 34.75 ± 1.99 μg/mL.
The other extracts were almost inactive against BChE with
IC50 values higher than 200 μg/mL. Moreover, all the extracts
tested were also nearly inactive against both AChE (IC50 >

Table 6: In vitro antioxidant activity of P. acutifolia extracts

Extracts and standards DPPH IC50 (µg/mL) ABTS IC50 (µg/mL) FRAP A0.5 (µg/mL) Phenanthroline A0.5 (µg/mL) SNP A0.5 (µg/mL)

Ethanol 331.74 ± 2.22a 54.17 ± 0.37a >200 90.50 ± 0.50a >400
Chloroform 657.49 ± 7.7b 222.84 ± 0.55b 193.94 ± 1.42a 170.66 ± 0.57b >400
Ethylacetate 138.46 ± 1.46c 136.53 ± 0.73c 141.05 ± 1.33b 41.50 ± 0.33c >400
n-Butanol 72.81 ± 0.44d 49.77 ± 0.43d 49.77 ± 0.72c 7.33 ± 0.33d >400
BHA 6.35 ± 0.13e 12.11 ± 0.10e NT 1.04 ± 0.14e NT
BHT 12.59 ± 0.34e 1.28 ± 0.05f NT 2.24 ± 0.06f NT
α-Tocopherol NT NT 34.50 ± 0.50d NT NT
Ascorbic acid NT NT 6.50 ± 0.50e NT 7.14 ± 0.12a

Trolox NT NT NT NT 34.17 ± 1.03b

BHT, butylhydroxyltoluene; BHA, butylhydroxyanisole; NT, not tested. The values within the columns, denoted by unrelated characters (a, b, c, d, e, or
f), exhibit significant differences (p < 0.05).
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200 μg/mL) and α-amylase (IC50 > 400 μg/mL). These results
are in contrast with the data reported in the literature,
which reported the activity of plants from the Physalis
genus against the α-amylase enzyme and the enzymes
involved in Alzheimer’s disease [73]. The high abundance
of hesperidin, with its potent inhibitory properties against
enzymes implicated in neurodegenerative diseases, empha-
sizes the pivotal role played in impeding the pathological
processes associated with Alzheimer’s [53]. Andrade et al.
[74] reported the important role played by caffeic acid in
preventing and treating Alzheimer’s disease by the inhibi-
tion of aggregation and disruption of Aβ fibrils. Moreover,
isoquercetin is a monoglycoside of quercetin, which was
detected by LC-ESI-MS-MS in the ethanolic extract of P. acu-
tifolia and is an effective inhibitor of alpha-amylase in a
competitive mode [75]. In addition, P. acutifolia extracts
were inactive against urease.

3.4.3 Anticancer activity

The cytotoxicity of the ethanolic extract of P. acutifolia
against three cell lines, namely L929 (fibroblast cell line),
CAPAN-1 (pancreatic cancer cell line), and dld-1 (colorectal

adenocarcinoma cell line), was assessed using the MTT
assay. The results are presented in Table 8.

The obtained results show a significant cytotoxic effect
of P. acutifolia ethanolic extract against both dld-1 and
CAPAN-1 cell lines at different concentrations with an IC50
value equal to 0.959 ± 0.02mg/mL for dld-1 and more than
1mg/mL for CAPAN-1 and L929 cell lines, concluding that the
mean effectiveness of P. acutifolia ethanolic extract against
dld-1 cell line was comparable with the other two. The cyto-
toxic effect, validated using simple linear regression ana-
lysis, showed a highly significant negative correlation
between the concentration (x-axis) and cell viability against
dld-1 (R2 = 0.993; p < 0.001***); CAPAN-1 (R2 = 0.943; p <

0.001***), and L929 (R2 = 0.842; p < 0.001***) (Figure 3).
The extract concentration of 1 mg/mL had the greatest
impact, leading to a cell line viability of 46.42 and 57.74%
for dld-1 and CAPAN-1, respectively. The cytotoxic effect of
this extract was not significant at concentrations of 0.5, 0.25,
and 0.125mg/mL. Conversely, the ethanolic extract showed
low toxicity against L929 cell lines, which are the reference
healthy cell lines since cell viability was 93.25% for an
extract concentration of 1 mg/mL. The observed anticancer
potential of P. acutifoliamay be enhanced by the presence of
various bioactive molecules, such as hesperidin, which was

Table 7: In vitro enzymatic activity of P. acutifolia extracts

Extracts and standards AChE IC50 (µg/mL) BChE IC50 (µg/mL) α-Amylase IC50 (µg/mL) Urease IC50 (µg/mL)

Ethanol >200 >200 >400 NA
Chloroform >200 187.12 ± 1.36a >400 NA
Ethylacetate >200 >200 >400 NA
n-Butanol >200 >200 >400 NA
Galantamine 6.27 ± 0.36 34.75 ± 1.99b NT NT
Acarbose NT NT 365.09 ± 2.07 NT
Thiourea NT NT NT 11.57 ± 1.13

AChE, acetylcholinesterase; BChE, butyrylcholinesterase; NT, not tested; NA, not active; the values within the columns, denoted by different super-
scripts (a or b), demonstrate substantial variances (p < 0.05).

Table 8: Cytotoxic effect of P. acutifolia ethanolic extract on cancer cell lines

Concentration (mg/mL) Cell viability (%)

dld-1 CAPAN-1 L929

1.0 46.42 ± 1.99a 57.74 ± 1.12a 93.25 ± 1.47a

0.5 110.59 ± 1.78b 147.60 ± 0.98b 304.97 ± 2.65b

0.25 148.48 ± 1.31c 152.02 ± 1.03b 302.33 ± 2.32b

0.125 172.37 ± 2.13c 178.98 ± 2.36b 307.67 ± 2.36b

IC50 (mg/mL) 0.959 ± 0.02 >1.0 >1.0
Control absorbance 0.2397 ± 0.001 0.2422 ± 0.002 0.1223 ± 0.001

Values within the columns, denoted by different superscripts (a, b, or c), demonstrate substantial variances (p < 0.05).
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Figure 3: Regression trendline presenting the relationship between concentration and cell viability (%).

Table 9: ADMET properties of the P. acutifolia identified compounds

Entry P. acutifolia identified compounds

1 2 3 4 5 6 7 9 10 11 12

Physicochemical properties/lipophilicity
Molecular weight 154.12 354.31 122.12 180.16 152.15 164.16 138.12 464.38 448.38 286.24 272.25
No. heavy atoms 11 25 9 13 11 12 10 33 32 21 20
No. arom. Heavy atoms 6 6 6 6 6 6 6 16 16 16 12
Fraction Csp3 0 0.38 0 0 0.12 0 0 0.29 0.29 0 0.13
No. rotatable bonds 1 5 1 2 2 2 1 4 4 1 1
No. H-bond acceptors 4 9 2 4 3 3 3 12 11 6 5
No. H-bond donors 3 6 1 3 1 2 2 8 7 4 3
Molar refractivity 37.45 83.5 33.85 47.16 40.34 45.13 35.42 110.16 108.13 76.01 71.57
TPSA (Å²) 77.76 164.75 37.3 77.76 46.53 57.53 57.53 210.51 190.28 111.13 86.99
Consensus Log Po/w 0.65 −0.39 1.17 0.93 1.2 1.4 1.24 −0.48 −0.09 1.55 1.84
Druglikeness/bioavailability/pharmacokinetics
Lipinskiˈs rule Yes Yes Yes Yes Yes Yes Yes No No Yes Yes
Bioavailability score 0.56 0.11 0.55 0.56 0.55 0.85 0.85 0.17 0.17 0.55 0.55
GI absorption High Low High High High High High Low Low High High
BBB permeant No No Yes No Yes Yes Yes No No No No
P-gp substrate No No No No No No No No No No Yes
CYP1A2 inhibitor No No No No No No No No No Yes Yes
CYP2C19 inhibitor No No No No No No No No No No No
CYP2C9 inhibitor No No No No No No No No No No No
CYP2D6 inhibitor No No No No No No No No No Yes No
CYP3A4 inhibitor Yes No No No No No No No No Yes Yes
Log Kp (cm/s) −6.42 −8.76 −6.13 −6.58 −6.37 −5.86 −5.54 −8.88 −8.52 −6.65 −6.17
Synthetic accessibility 1.07 4.16 1 1.81 1.15 1.85 1 5.32 5.29 3.16 3.01
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Figure 4: Bioavailability hexagons of the major P. acutifolia identified compounds as assessed by LC-ESI-MS/MS analysis of the ethanolic extract:
(LIPO) lipophilicity, (SIZE) molecular size, (POLA) polarity, (INSO) insolubility, (INSA) unsaturation, and (FLEX) flexibility.
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the dominant compound in the current study and is known
for its anticancer properties [52]. Moreover, hesperidin was
reported to influence several types of cancer, such as gastric,
colon, and breast, by inducing apoptotic death in the cancer
cells via intrinsic and extrinsic pathways [76]. Furthermore,
compounds such as protocatechuic acid, caffeic acid, and
naringenin also exhibit significant antiproliferative proper-
ties [54,57]. Additionally, fisetin, a bioactive compound com-
monly found in vegetables and fruits, is also known for its
efficient anticancer properties [55]. The assessment of the
anticancer activity of some Physalis plants has already
shown satisfactory results [14]. Among Physalis plants that
have shown cytotoxic effects, P. neomexicana has demon-
strated a notable cytotoxic effect on two human breast
cancer cell lines, namely MDA-MB-231 and MCF-7, indicating
its potential as a therapeutic agent for breast cancer treat-
ment with IC50 values of 1.7 and 6.3 μM, respectively [77]. Simi-
larly, withanolides from P. peruviana L. exhibited selective
cytotoxic activity against two prostate cancer cell lines, LNCaP
and 22Rv1, with IC50 values of 0.94 and 0.99 μM, respectively
[78]. Additionally, withanolides extracted from P. angulate L.
demonstrated cytotoxic activity against three different cell
lines, A549, p388, and HeLa, with IC50 values of 11.36, 8.03,
and 21.75 μM, respectively [79].

Withanolides extracted from the methanolic extract of
P. acutifolia exhibited cytotoxic activity against a panel of
human cancer cell lines, namely NCIH460 (non-small-cell
lung), SF-268 (CNS glioma), PC-3 (prostate adenocarcinoma),
and MCF-7 (breast adenocarcinoma), as well as normal

human lung fibroblast cells (WI-38) with IC50 values of 6.5,
7.2, 2.3, 1.7, and 3.9 μM, respectively [21]. These findings indi-
cate that the current study validates the cytotoxic potential
of P. acutifolia against additional cell lines. Moreover, the
presence of bioactive molecules suggests that further testing
on different types of cell lines and cancer cell lines could be
conducted to explore its potential for cancer treatment.
In vivo tests are also recommended considering their crucial
role in confirming the anticancer potential observed in vitro
by offering essential insights into effectiveness, safety, and
drug behavior in living organisms, and thus unraveling intri-
cate biological processes. By evaluating the compounds in
dynamic tumor environments, these studies validate initial
observations and propel promising candidates toward clinical
applications [80]. In addition, the use of other colorectal ade-
nocarcinoma cell lines is advised. In fact, colorectal carcinomas
present a disability by coherent chromosomal gains and
losses, despite intratumoral heterogeneity. This highlights
stable genomic alterations in the cancer cell population [81].

3.5 Bioavailability and pharmacokinetics

Both bioavailability and pharmacokinetic analyses are com-
monly explored for computer-aided drug design and to
avoid drug failure at advanced stages [38,39,82]. Table 9
exhibits the bioavailability and pharmacokinetic properties
of the compounds identified in P. acutifolia ethanolic extract.
Our data showed that the majority of the compounds (10 out
of 12) met the Lipinski rule and possessed acceptable bioavail-
ability scores (BAS). BAS values varied between 0.11 and 0.85.
The skin permeability of P. acutifolia identified compounds
were predicted to be low to moderate, as log Kp ranged
between –5.54 and –8.88. Similar findings, particularly for
the BAS results, supported that P. acutifolia compounds
have biological activities without eventual violations and/or
toxic outcomes. This was further supported by the bioavail-
ability hexagons (Figure 4), which depend on the physico-
chemical characteristics of the compounds.While themajority
of the components were associated with high gastrointestinal
(GI) absorption, only four of them were blood–brain barrier
permeants. These compounds are hydroxybenzaldeyde,
vanillin, o-coumaric acid, and salicylic acid, which corre-
spond to phytochemicals 3, 5–7, respectively. The boiled-egg
mapping (Figure 5) supported these calculations. Interest-
ingly, regardless of compound 12, all the others are not pre-
dicted to be substrates for P-glycoprotein (P-gp). Hence, it
could be deduced that P. acutifolia phytochemicals induced
no disruption of drug distribution and elimination [82–84].
The content of the studied extract is also safe for the

Figure 5: Boiled-egg model of P. acutifolia identified compounds as
assessed by LC-ESI-MS/MS analysis of the ethanolic extract: (1) protoca-
techuic acid, (2) chlorogenic acid, (3) hydroxybenzaldeyde, (4) caffeic
acid, (5) vanillin, (6) o-coumaric acid, 7) salicylic acid, (8) hesperidin; (9)
isoquercitrin, (10) kaempferol-3-glucoside, (11) fisetin, and (12)
naringenin.
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transportation and distribution of the drugs as most of the
phytochemicals did not inhibit the majority of the cyto-
chrome P450 (CYP) isoforms: CYP1A2, CYP2C19, CYP2C9,
CYP2D6, and CYP3A4 [39,40]. Furthermore, eight compounds
(2–10) did not inhibit the five studied CYPs. The synthetic
accessibility of P. acutifolia phytochemicals ranged between
1.0 and 5.32, which indicates that they are easy to synthesize
and suitable drug molecules [38,84,85]. The beneficial effects
of P. acutifolia phytochemicals have already been reported in
the current study itself through in vitro approaches. Altogether,
our findings support the promising biological activities and
health promotion potentialities of natural-derived compounds,
phytotherapy, and medicinal plants including P. acutifolia
[42,82,85].

4 Conclusions

The current study emphasized the polyphenol content extracted
from P. acutifolia, a process optimized by maceration using the
CCDC design. The concentration of polyphenols and flavonoids
as well as the antioxidant and anti-enzymatic activities were
assessed for the ethanolic extract and its fractions (i.e., chloro-
form, ethyl acetate, and n-butanol, respectively). The n-butanol
fraction had the highest TPC and TFC, as well as superior anti-
oxidant and anti-enzymatic activities. Moreover, the current
study proved the cytotoxic effect of the ethanolic extracts
of P. acutifolia against two cancer cell lines (i.e., CAPAN-1
and dld-1). However, the anticancer effect was almost neg-
ligible on the healthy cell line L929. The LC-ESI-MS/MS ana-
lysis identified 12 components in the ethanolic extract of the
plant. Out of these, hesperidin, which has powerful antiox-
idant and anticancer properties, was measured in high con-
centrations. Both the bioavailability and pharmacokinetic
properties of P. acutifolia might explain the antioxidant, anti-
enzymatic, and anticancer effects, which can certainly be the
consequence of the phytochemical constituents. These findings
open further research opportunities to develop more efficient
and effective food preservatives in terms of therapeutic agents
and will be further improved in support of folk medicine and
“in vivo” biological activities.
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